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ABSTRACT

The Irreversible Thermodynamics-based model for the description
of coupled heat and moisture transfer, attributed to Cary and Taylor,
was analyzed. The transport coefficients appearing in the model equa-
tions were independently determined, and the equations were numerically
integrated to predict temperature and moisture content profiles for a
closed system of water unsaturated glass beads.

An experimental investigation of the moist glass beads medium
provided measurements of steady-state profiles of local temperatures
and moisture content. These data, when compared with model predictions,
indicated the validity of the Irreversible Thermodynamics approach. The
coupling coefficient relating thermal gradients to moisture flux was
found to be strongly moisture-dependent. The coupling coefficient which
relates moisture content gradient to heat flux was found to be
extremely small, and the heat flux associated with the moisture content

gradient proved to be negligible.
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CHAPTER 1

INTRODUCTION

Simultaneous transport of heat and mass in porous media occurs
widely in natural and industrial processes. An understanding of the
associated phenomenology is applicable, for example, to industrial
processes such as recovery of petroleum from underground sources,
process drying ofvgranu1ar materials, heat and mass transfer in packed
beds, and in heat pipe technology. Simultaneous heat and moisture
transport in soil occur as a result of diurnal and seasonal temperature
fluctuations. Engineered systems involving soil heating with power
plant condenser effluent for enhancing agricultural yields, and irri-
gation, particularly with warm water, portend a need for predictive
theories for such processes.

Temperature gradients can induce water movement in porous media.
For example, if a sealed column filled with an unsaturated porous
medium of uniform moisture content is subjected to a temperature
gradient, moisture movement occurs, and ultimately a steady-state
moisture content profile is established in the column. Such a structure
would not be anticipated from classical phenomenological relationships
such as Darcy's Law. Thus, it is "observed" that moisture transfer in
unsaturated porous media occurs in association with temperature
gradients in addition to moisture content gradients. It is commonly
asserted that the associated heat and mass transport processes are
"coupled".

The Irreversible Thermodynamics (IT) theory which has been used

to model coupled heat and moisture transfer processes was examined in
1



the present study. The coupled heat and moisture transfer equations
attributed to Cary and Taylor [91] were numerically inteérated to
obtain temperature and moisture content profiles for a sealed, one-
dimensional spherical system of water-unsaturated glass beads. A one-
dimensional (spherical) water unsaturated glass bead medium was sub-
jected to known heat flow rates, and the steady-state temperature and
moisture content profiles were measured and compared with the Cary and

Taylor model predictions.



CHAPTER 2
HISTORICAL AND LITERATURE REVIEW

The study of moisture transfer in porous media was initiated
by Darcy [27] who observed that the flux of water through saturated
soil is proportional to the imposed pressure gradient, an empirical
relation now referred to as Darcy's Law. Buckingham [13] described the
flow in an unsaturated porous medium occurring as a result of below-
atmospheric water pressure and termed it capillary flow. Darcy's Law
was later "extended" to include moisture flow in unsaturated porous
media as well, and the coefficient of diffusivity of water in unsatu-
rated media was defined [24]. Procedures for numerical treatment of
the unsaturated flow Darcy equation with different kinds of boundary
conditions have been proposed, and the literature is replete with
examples of numerical solutions for various boundary conditions;

However, the work described above was restricted to considera-
tion of moisture transfer under isothermal conditions. It was subse-
quently observed that temperature gradients can cause significant move-
ment of moisture in soil [10, 11], and considerable research effort has
been focused on the "energy status" of moisture in unsaturated porous
media. Several authors have applied the theory of Equilibrium Thermo-
dynamics to derive property relations among macroscopic variables in
water-containing porous media [7, 32, 36, 108].

Simultaneously, efforts were made to establish transport
equations for the transfer of heat in porous media and to determine

the thermal properties of porous media. A complete theoretical



description is difficult, since a moist porous medium is a three-phase
system (solid phase, liquid water, and a gas phase), and transfer of

heat is invariably "coupled" to moisture movement. However, the special
case of "pure" (Fourier) heat transfer has been considered, and the
transport equations thus obtained have been solved for boundary conditions
of practical interest [58, 59, 60, 95, 106]. Furthermore, experimental
determination of the "effective" thermal conductivity of the porous
medium, for use in these heat conduction equations, has been reported

(46, 69, 70, 82].

In order to obtain a clearer understanding of the transport
processes in a porous, three-phase system, it is necessary to formulate
equations for describing the simultaneous or coupled transport of heat
and mass species present. Research in this area has evolved along
two paths: the classical Soil Physics approach and the phenomenological
formalism of the Thermodynamics of Irreversible Processes.

The Soil Physics approach pioneered by Philip and deVries
[78, 79, 97, 98, 99, 100] suggests modified forms of Fick's Law and
Darcy's Law for vapor and liquid transfer of moisture in porous media.
Philip and deVries developed equations for describing the coupled heat
and moisture transfer phenomena from the theories of heat and mass
transfer in soils and from a knowledge of the soil structure. This
model, however, does not provide guidance for determining the transport
coefficients appearing in the model equations. Numerous reports of
application of the Philip and deVries model have been made. These
include extensions of the model to different types of soils, attempts
to estimate the transport coefficients, and solutions of the model

equations for various boundary conditions [2, 23, 31, 33, 35, 40, 44,



45, 47, 51, 53, 55, 56, 61, 62, 64, 83, 84, 85, 88, 103, 105, 110].
However, these investigations have not established a conclusive quantita-
tive description In agreement with experimental evidence, primarily
because of the difficulty of determining the transport coefficients.

The Irreversible Thermodynamics approach, in contrast to the
Soil Physics approach, does not require as detailed an understanding of
the mechanism of heat and mass transfer or of the porous medium struc-
ture. It is a phenomenological theory, which postulates linear rela-
tions between "fluxes" of heat and mass and "thermodynamic forces" iden-
tified by the entropy production equation. This application of the
theory of Irreversible Thermodynamics was proposed by Cary and Taylor
as a special application of the general case involving transfers of heat
and several species in a porous medium system [20, 21, 22, 90, 91, 92].
It has since been extended by Cary to the consideration of the model's
lTimitations and its application to systems of practical interest [15,
16, 17, 18, 19]. One apparent advantage of the Cary and Taylor model
over the Philip and deVries model is that it provides definitions of the
coupling coefficients which facilitates their determination and subse-
quent use in the model equations. Other investigators have discussed
the determination of the phenomenological coefficients and the applica-
tion of the model to various porous media systems [1, 9, 14, 38, 41, 49,
55, 56, 81, 89]. To the author's knowledge, Gee [38] and Jury [55, 56]
have made the only experimental attempts to quantitatively determine the
coupling effects. Gee reported a significant increase in moisture
transfer when a temperature gradient was applied to a soil column. He
obtained values of the coupling coefficient relating the moisture flux

to the temperature gradient. Jury also reported a strong effect of
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temperature gradient on moisture flux. Jury's data indicate negligible
heat flux associated with moisture content gradient. He performed two
experiments: a closed column one with zero net steady-state moisture
flux and an open column experiment with zero heat flux. Jury solved the
four simultaneous algebraic transport equations describing these two
experiments. The solution provided the values of the four phenomenolo-
gical coefficients in these equations. Jury also reported relations
between the coefficients appearing in the Cary and Taylor model equa-
tions and those in the Philip and deVries transport equations.

None of the work mentioned so far has, however, verified the
Cary and Taylor model by solving a boundary value problem involving the
phenomenological equations, conducting the corresponding laboratory
experiment with a porous medium system, and comparing the experimental

measurements with model predictions.



CHAPTER 3

THERMODYNAMICS OF IRREVERSIBLE PROCESSES

Irreversible Thermodynamics, the development of which is fre-
quently associated with Onsager [74], Meixner [66], and Prigogine [39,
80], is a comparatively recent and developing subject. While Equili-
brium Thermodynamics or "thermostatics", deals with the study of
equilibrium states of physical and chemical systems, Non-equilibrium
or Irreversible Thermodynamics attempts a phenomenological description
of systems undergoing irreversible processes. Such processes are
characterized by the presence of fluxes (transport) of mass and/or
different fqrms of energy.

Although Irreversible Thermodynamics has recently been exténded
to the consideration of nonlinear system behavior [39, 63], the present
discussion is limited to the theory of Linear Irreversible Thermodynamics,
which has been described in several standard works [28, 34, 39, 43, 63,
80]. In thjs chapter, the basic principles of Linear Irreversible
Thermodynamics are briefly summarized.

The entropy change of any system (defined by a closed surface
in three-dimensional space) during an accounting period St may be

written as
ds = deS + diS, (3.1)

where
deS is the total entropy transferred from the surroundings to

system during the accounting period. The quantity deS, in



general, may be negative, zero or positive depending on
the nature of the interactions of the system with its

surroundings,

diS is the entropy production within the system during
the accounting period, which results from irreversible

processes.
According to the Second Law of Thermodynamics,
diS > 0 for all real processes. (3.2)

Invoking the so-called assumption of "local equilibrium", the
local (specific) entropy S is assumed related to the local values of
the macroscopic state variables by the fundamental property relation-
ship (Gibbs Eqpation) of Equilibrium Thermodynamics. The resulting
equation, which relates the local entropy to internal energy, volume

and composition, is

_7ds _ pdv o]
at - Tat " Par iMoo (3.3)

Application of balance (conservation) equations for mass and energy and
subsequent utilization of Equation (3.3) leads to an entropy accounta-

bility relationship of the form

5. (3.4)

The local rate of entropy production o is always nonnegative, and has

the bilinear form



o= §J1- X (3.5)

th

where Ji is the i "thermodynamic flux",

th

Xi is the i "thermodynamic force".

The fluxes Ji appearing in the entropy production term are
related to the familiar heat flux, mass flux, electrical current, etc.,
and the thermodynamic forces Xi are the gradients of intensive proper-
ties of the system (or functions thereof).

It has been experimentally observed that the thermodynamic
fluxes and forces appearing in the entropy balance equation can be
related by empirical rate expressions. In general, the fluxes and

forces may be described by the phenomenological expressions [43]

J; = iLTka , (3.6)

where Lik are known as the phenomenological coefficients.

Equation (3.6) expresses the "Irreversible Thermodynamics" postulate
that each thermodynamic flux is linearly related to all of the thermo-
dynamic forces. The phenomenological coefficients may be functions of
the intensive properties of the system such as temperature and pressure
but not of the forces.

An important relation between the phenomenological coefficients,
generally assumed valid within the linear region, is the Onsager recip-

rocal relation [74]

Lik = Lki . (3.7)
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Equation (3.7) states that the matrix of phenomenological coefficients
Lik is symmetric, which reduces the number of unknowns in the trans-
port equations.
Equation (3.7), which was derived by Onsager for a rather
restricted class of relaxation processes using the principle of
"microscopic reversibility" from statistical mechanics, has been veri-

fied experimentally for a large number of processes [67].



CHAPTER 4
DEVELOPMENT OF THE COUPLED HEAT AND
MOISTURE TRANSFER MODEL

The first development of an Irreversible Thermodynamics-based
model for coupled heat and moisture transfer in unsaturated porous
media is common]y'attributed to Taylor and Cary [91]. In this chapter,
the development by Taylor and Cary will be described to illustrate the
Irreversible Thermodynamics theoretical approach to this problem. Con-
currently, questions raised during the present work relating to the
formulation of the entropy balance equation for this process and the
identification of the associated thermodynamic "driving" forces for heat
and mass fluxes are discussed.

The following simplifying assumptions are made in Taylor and
Cary's development of the model equations for the coupled transfer of
matter and energy in a continuous porous medium system:

1. The concept of "local equilibrium" which holds that the

Gibbs equation of Equilibrium Thermodynamics (which pro-
vides an equation of state for entropy in equilibrium
systems), applies locally in non-equilibrium or continu-
ous systems. This is a fundamental, underlying assump-
tion of the theory of Irreversible Thermodynamics.

2. An idealized, chemically inert, porous medium is con-

sidered, and effects other than heat and moisture trans-

fers are neglected.

11



Moisture transfer is liquid phase, and the moisture
content of the porous medium is sufficiently

high that a continuous liquid phase exists. This
assumption is implicit in Taylor and Cary's restric-
tion of the "general" equations to the case with water
being the only form of flowing matter, and in particu-
lar to single component flow (i.e., no diffusion).

The system is never "far" from equilibrium, so that
the fluxes can be described by linear phenomenological
equations.

The "water potential" is a unique function of the
moisture content. (The identification of the water
potential with local thermodynamic properties will be
discussed below.)

Hysteresis effects are neglected.

12

Phenomenological equations are first developed for the transport

of energy and several species in a general multicomponent system.

These equations are then specialized to describe heat and Tiquid

moisture transfer in porous media.

thermodynamic system but excluding chemical reaction, the equation of

change for component mass is [43]

p— = -V J'i .

Dt

where p is the total mass density of the system,

%% is the substantial derivative operator,
Oy
Ci = 7;-15 the mass fraction of component i,

Considering an open, multicomponent
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P; is the mass density of component i,

Ji is the "diffusive" flux of component i,
or pi(Vi - V), vi Is the velocity of component I,

and v is the mass average velocity, or & Civi’
i
and V is the gradient operator.

The equation of change for total internal energy, neglecting

external forces and viscous dissipation effects, is [43]

Ppt = V- JQ -PV v, (4.2)

where U is the specific internal energy,
JQ is the thermodynamic heat flux,

and P is the pressure.

*It will be seen later that this form of the internal energy
balance, when used in conjunction with Equations (4.1) and (4.3), leads
to an entropy balance which requires a reinterpretation of "heat"
transfer (defined in classical Equilibrium Thermodynamics as being
strictly separable from energy transfers associated with mass transfer).
This problem has been discussed and proposals for its clarification
offered [111]. The application of the equations derived herein to a
closed (zero mass flux) system renders these difficulties moot; how-
ever, verification of the Taylor and Cary model for open systems in

which the mass flux is not zero requires attention to this problem.
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The fundamental property relation, or Gibbs equation, which
applies locally, is [43]

S
Bt

T

UIO
+| =
+
o
ol o
<<
]

™S
—

where S is the specific entropy,
V is the specific volume, 1/p,

and My is the chemical potential of component i.

Combination of Equations (4.1), (4.2), and (4.3) gives, after

some algebraic manipulations,

1 ] n Hj 3 4.4
—_— = ==Y + ¥ = . . . .
PeE = T ot BT v d, (4.4)
Noting that
J J
.I L] = L] _ﬂ. ®
TV gV +T§ vT
and
T U.d. M.
i I e el

and utilizing the definition of the substantial derivative, Equation
(4.4) can be rewritten as



3pS J nouyds
— = =V o pSV"‘T‘.Q“ % 1T1
ot i=]
J n Hj
R AT T
T i=1

where the overbar denotes partial properties, i.e.,

= oH
H- = -~ 'Y
1 [ami]
T,P,m,
J

Equation (4.6) becomes

apS n n J
——— = -y.d{psv+ £ 35, - +14+Q
dt - i=1 'V 5= T

J n W
SR IS R N TR i1
T .- i T

3

. n
JiS. = E

Since pSv + I j
i=1 i

1

» Equation (4.8) reduces to

15

(4.8)
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apS n _ J.H. J
—_— = _v a Z p’iv - Z 11 + .j.
at j=1 VU1 T T
J n M '
- %VT+Z%-VT : (4.9)
T i=1

The first term in the brackets on the RHS of Equation (4.9) is

commonly interpreted as the transfer of entropy between the system and
surroundings due to mass and heat transfers, while the second bracketed
term represents the entropy production associated with irreversible
processes taking place in the system. A redefinition of thermodynamic

heat flux (see footnote, page 13) is then made as follows. Noting that
Vg ——— -5 VIT | (4.10)

where (VLH) denotes evaluation at a given temperature, and
T

defining the calorimetric heat flux Jq as
n -
J =Jd.- % J.H., (4.11)

Equation (4.9) becomes

0pS n — J
—==-v . 2pvs+$
3t j=1 V7
(4.12)
J n J
-{F VT + I {WWQ
T i=1 T



The local volumetric rate of entropy production is therefore

7" (Vlli)T .

and the dissipation function (rate of lost work) is

n
Tao'=-J «VInT - ¢ . .
o} q E J1 (V}H

)
T

The fluxes in Equation (4.13) are then assumed related to the

associated forces identified in the equation by the linear pheno-

menological expressions

and

n
=- % L, (Vp) -L_VInT ,
"7 F LTyl - Lgg i

(=
I

17

(4.13)

(4.14)

(4.15)

where the phenomenological coefficients are related by the

Onsager relations [74],

ik ki

and L

iq = Lqi

(4.16)
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Considering water the only species transferred, Equations (4.14) and

(4.15) reduce to

(<)
1]

-wa (Vuw)T - qu VinT (4.17)

and

(<9}
n

-L % - L InT . 4.18
au (VB = Lgg 71n (4.18)

Following Taylor and Cary, the "water potential" y is defined
as the difference in chemical potential between water in the porous

medium and pure free water [91], i.e.,

where the chemical potential of pure free water, “3’ is a

constant; hence

n

Vu Vy . (4.19)
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Substitution of Equation (4.19) in Equations (4.17) and (4.18) gives

x
L V¥ - L VInT (4.20)

(<
"

and J

-L Vy - L
q qw v

vinT , 4.21
aq ( )
which describe the coupled flows of heat and moisture in a porous
medium.

When a sealed column of unsaturated porous medium is subjected
to a constant temperature gradient, the steady-state moisture flux is

zero, and Equation (4.20) reduces to

0=-wa\7w- quV]nT s ‘ (4.22)

*The careful reader has noted that the isothermal gradient of
the water potentia],(vw)T, has been dropped in favor of Vy. Such an
assumption appears justified in practice since the water potential
is a much stronger function of moisture content than of temperature.
This is probably more apparent from consideration of the temperature
dependence of air-water surface tension which undoubtedly is a major

component of the water potential as defined by Taylor and Cary.
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which can be simplified to give

which is to be considered the definition of the coefficient B.

Now, rewriting Equation (4.20,

J, = L (Vy + 8V 1InT) , (4.24)

and using the Onsager relation [74], Equation (4.21) becomes

J = -L - . .25
q ww BV quvlnT (4.25)
In order to use Equation (4.24) and (4.25) for systems of

practical interest, it is necessary to relate Y to a practically
measurable variable. A single-valued functionality between y and water

content is assumed, so that

Jy = Py Dve - quV1nT . (4.26)

where 6 is the volumetric moisture content,

Py is the density of water,

wa d
and D = 7;—Aa%-is the coefficient of diffusivity.
w

At steady-state, in a sealed column, Jw = 0, and Equation

(4.26) reduces to
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Ve _ _wWqg _ _
TT = oo - F (4.27)

which is to be considered the definition of the coefficient g*.

Applying the above relation to Equation (4.26),

Jw = -wa(ve + B*V InT) , (4.28)

and similarly, using Equation (4.25) and the definition of D given in

(4.26)

Jq=-waBV6-quV1nT . (4.29)

Equations (4.28) and (4.29) are known as the Cary and Taylor model.



CHAPTER 5
DISCUSSION OF TRANSPORT EQUATIONS AND
SOLUTION TECHNIQUE

The Cary and Taylor Irreversible Thermodynamics-based model for
coupled heat and liquid moisture transfer in a three dimensional

unsaturated porous medium is:

[«
1]

-0, D(V6 + g*V1In T) (4.28)

(=59}
"

- - InT, : 4.29
p,,PBVE quv nT ( )
where J is the flux of liquid water,

J_is the flux of heat,

D is the coefficient of diffusivity of water in the
unsaturated porous medium,

*

B” is the coupling coefficient, defined as -v8/VInT

at steady-state and zero moisture flux,

B is the coupling coefficient, defined as -V¢/ViInT
at steady-state and zero moisture flux

qu is a phenomenological coefficient = AT,

A is the thermal conductivity of the porous medium,

T is the absolute temperature,

6 is the volumetric moisture content of the porous
medium,

Pu is the density of water,

Y is the water potential of liquid moisture in the

porous medium, and
22
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V is the gradient operator.

The transport coefficients D, 8*, B and qu have been reported
to be strong functions of the volumetric moisture content [38, 50, 55,
91].

It is instructive to consider the case where only one of the
gradients V6 or VInT is present in the porous medium. For the case of

isothermal equations (VInT = 0), Equation (4.28) reduces to

Jw = -waVG , (5.1)

which is a form of the classical Darcy's Law for movement of moisture
in an isothermal unsaturated porous medium. Conversely, for heat con-
duction in a porous medium of uniform moisture content, V6 is zero, and

Equation (4.29) reduces to

- - - T, 2
Jq = “Lgg?InT = =AvT (5.2)

which is the well known Fourier's law of heat conduction. It is thus
seen that the theory of Irreversible Thermodynamics permits temperature
gradients to be combined with moisture content gradients in the general
flow equations of water and heat in unsaturated porous media in such a
way that they reduce to the commonly used phenomenological equations
under particular conditions.

Further, the general phenomenological Equations (4.28) and
(4.29) provide information regarding the interaction between the coupled
heat and moisture transfers and some insight into the nature of the

phenomenological coefficients. For example, for the isothermal case,

Jq = -waBVG (5.3)



represents the transport of heat associated with the gradient in
moisture content. The magnitude of B will, in such a case, be a
measure of the effect of coupling of the moisture content gradient on
the heat flux. An evaluation of the coefficient waB*, or qu, which
is the effect of the In temperature gradient on the 1iquid moisture
flow, will be considered later in this report. As described in the
chapter on the development of the model equations, B* is measured as
the ratio -V6 /V]rfT in sealed steady-state experiments with zero net
moisture flux. A large value of B* indicates a strong influence of
temperature gradient on moisture transfer in open systems.

Irreversible Thermodynamics is a phenomenological theory which
does not explain the mechanism of coupling or the reasons for it, but
several explanations have been proposed to account for the effects of
the thermal gradient on moisture transfer [6, 18]. It has been sug-
gested that since surface tension of an air-water interface decreases
with increasing temperature,moisture in an unsaturated porous medium
could flow from a warm region to a cooler region due to a surface
tension gradient. Another proposed reason for coupled moisture flux
is the effect of temperature on the adsorbed layer of moisture on the
solid particles. The observation of coupled moisture transfer in a
saturated medium has led to the proposal that transfer results from a
net motion generated by random kinetic energy changes associated with
the hydrogen bond distribution which develops under a thermal gradient
[18].

It is possible that one or more of the above effects acts to
cause coupling effects between heat and moisture. However, as Beatty

[3] points out, it seems constructive to think of coupled heat and

24
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mass transfers as "separable effect" processes. Beatty proposed that
coupled processes are two or more macroscopically separable effects
resulting from a single microscopic process in which the carrier mole-
cules with higher kinetic energies than the average particles are
transported as a result of two or more independently variable macro-
scopic potentials.

The thermal conductivity coefficient is a measure of the effect
of the temperature gradient on the heat flux for the uncoupled case
in the absence of moisture content gradients in the unsaturated porous
medium. Porous medium thermal conductivity is a function of the
moisture content, but its measurement as such is not straightforward
since a moisture content gradient invariably accompanies steady state
heat transfer.

The coefficient of diffusivity of liquid moisture in an unsatu-
rated porous medium, D, is also a strong function of the moisture con-
tent. The coefficient of diffusivity is defined as K%%3 where K is the
hydraulic conductivity of the porous medium and dy/ de is the slope of
the water potential versus moisture content (the so-called water reten-

tion curve), which is also a function of the moisture content.

A verification of the model Equations

(9]
|

= -p, D(V6 + B*VInT) (4.28)

(=}
]

-p,DBY6 - L v InT (4.29)

q

can be carried out in the following manner. The transport coefficients

D, B*, B and qu can be determined independently from separate experi-

ments. With proper initial and boundary conditions, Equations (4.28)
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and (4.29) can be integrated, for steady-state conditions, yielding
profiles of temperature and moisture contents. These profiles, when
compared with experimentally observed temperatures and moisture content
values for the system, provide a check of the validity of the model.

For the steady-state condition in a closed spherically symmetri-
cal system of unsaturated porous medium indicated schematically in

Figure 1, Equations (4.28) and (4.29) reduce to

=0 = - de dinT

Jw 0 wa(dr L dr ) (5.4)
= - . de _ dinT

Y7 o - PP ar T bgg Tar (5.5)

where Q is the total steady state heat flow rate.

Equations (5.4) and (5.5) represent a set of nonlinear (due to
the functionality of the coefficients) ordinary differential equations
which, with two boundary conditions, can be integrated to give T and 6
profiles in the annular region. A numerical integration technique
utilizing the boundary value problem "shooting method" was used, with

the temperature T] at radius R, as one of the boundary conditions and

]
conservation of the total mass of water in the system as an additional
equation of constraint. An initial value of moisture content e], at
radius Ry, was initially guessed to start the integration. After
integration to the outside sphere radius Ry» the total mass of water

in the system was calculated by integration of the predicted moisture
profile. If the calculated mass of water was different from the initial

mass of water in the system, the initial value 6, was iterated and

the integration repeated. When the calculated and original masses of
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water agreed, the temperature and moisture content profiles thus
obtained were the predicted steady-state distributions in these
variables for the given system.

The Continuous System Modeling Program (CSMP)] was used for

the numerical integration. A sample program is given in the Appendix.

]System 360 Continuous System Modeling Program (360-A-CS-16X),
User's Manual, International Business Machines Corporation, Data
Processing Division, White Plains, New York.



CHAPTER 6
MEASUREMENT OF TRANSPORT COEFFICIENTS

The transport coefficients thermal conductivity, diffusivity,
and the two coupling coefficients were obtained independently from

separate experiments, as functions of moisture content.

Thermal Conductivity, A

The thermal conductivity of an unsaturated porous medium is an
"overall" value for the three-phase solid-water-air system.

A steady-state determination of the thermal conductivity
coefficient as a function of the volumetric moisture content of the
porous medium, from heat flux and temperature gradient measurements, is
not straightforward, since moisture transfer results from nonisothermal
conditions in such a system. However, a transient method allows measure-
ment of thermal diffusivity, from which thermal conductivity can be
determined, before moisture migration occurs. An unsteady-state method
for measuring thermal diffusivity of Tow thermal conductivity materials
[25, 75] was used to determine the thermal diffusivity of moist porous
media over a range of volumetric moisture contents.

The method is based on the solution of the differential equation

for unsteady-state heat conduction in a cylinder,

= 82
= ol—%

3T T,1
AN + =
arz r

d

o)lc)
S|4

» (6.1)

with the initial and boundary conditions
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T = TO at t =0
ST -0atr=0fort>0
ar
and
lim 3T _ _h _
r>oroor - -A.(Ta T) for t >0

where T is the temperature,
TO is the initial uniform temperature of sample,
r is the radial distance from center of cylinder,
" is the radius of cylinder,
h is the surface heat transfer coefficient,
A is the thermal conductivity,
Ta is the constant ambient temperature,

and t is the time.

The series solution to Equation (6.1) converges rapidly, and

after a time of about one minute is well represented by the simple

relation
Y = A107Pt, (6.2)
2 J,(xy)
where A = > 171 5 Jo(x];?-)
X][JO(X]) + \]](X] )] m

-Xq (6.3)

and b =

2.303 rm

where Y is the ratio of the temperature differences,

(Ta - T)/(Ta - To)a
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A is a constant,
-b is an exponent; graphically, the slope of the
log Y - t curve,
Jo(x) is a Bessel function of first kind and zero order of x
J](x) is a Bessel function of first kind and first order
of x,

and o is the thermal diffusivity of the porous medium.

Equation (6.2) implies a linear relation between log Y and t with
slope -b. For the experimental conditions used in this work, it can be
shown that a limiting value of x, = 2.405 applies [25].

A diagram of the experimental apparatus is shown in Figure 2.
Samples of the 210 - 297u glass beads media were encased in thin-walled
aluminum cylinders 15.2 cm long and 1.91 cm in diameter. A 0.1191 cm
diameter two-bore ceramic thermocouple insulator supported a Chromel-
Alumel thermocouple junction near the center of the sample. After
allowing the sample temperature to equilibrate with the room tempera-
ture, T0 (20°C), the cylinder was immersed in the constant temperature (Ta)
water bath, and the thermocouple temperature, T, recorded as a function
of time.

The recorded temperature was used in Equation (6.2) to graphically
determine the slope, -b, from which the thermal diffusivity was calcu-
lated from Equation (6.3). 'Thermal conductivity was determined from

the relation

A=apc (6.4)
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Figure 2. Schematic of Experimental Apparatus for Thermal
Conductivity Determination
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where the volumetric heat capacity, pc, was calculated as the volume
weighted average of the heat capacities of the sample constituents,
glass, water and air. Measurements were made with bath temperatures
of 30° C, 35° C and 40° C. Thermal diffusivities calculated therefrom
differed by less than 3%, which is within the expected e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>