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Abstract 

In this paper, we generalize two theorems on the uniqueness of 
nonlinear differential polynomials sharing 1-points, which improves a 
result of Lahiri and Pal [7]. 

1. Introduction, Definitions and Main Results 

Let f and g be two nonconstant meromorphic functions defined in the 
open complex plane .C  Let k be a positive integer or infinity and { }∞∈a  

.C∪  We denote by ( )faEk ;)  the set of all a-points of f with multiplicities 

not exceeding k, where an a-point is counted according to its multiplicity. If 
for some { } ,C∪∞∈a  ( ) ( )gaEfa ;, )) ∞∞ =E  we say that f, g share the 

value a CM (counting multiplicities). 

In [4], the problem of uniqueness of meromorphic functions when two 
linear differential polynomials share the same 1-points was studied. 
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Regarding the nonlinear differential polynomials the following question was 
asked in [4]: What can be said if two nonlinear differential polynomials 
generated by two meromorphic functions share 1 CM? Some works have 
already been done in this direction [1, 2, 8, 9]. Recently Fang and Fang [2] 
and Lin and Yi [9] proved the following result. 

Theorem A. Let f and g be two nonconstant meromorphic functions and 

( )13≥n  be an integer. If ( ) fff n ′− 21  and ( ) gggn ′− 21  share the value 

1 CM, then .gf ≡  

In 2006, Lahiri and Pal [7] investigated the uniqueness problem of 
meromorphic functions when two nonlinear differential polynomials share 
the value 1 and proved the following two theorems, the first of which 
improves Theorem A. 

Theorem B. Let f and g be two nonconstant meromorphic functions and 

( )13≥n  be an integer. If ( ( ) ) ( ( ) ),1;11;1 2
)3

2
)3 gggEfffE nn ′−=′−  then 

.gf ≡  

Theorem C. Let f and g be two nonconstant meromorphic functions and 

( )14≥n  be an integer. If ( ( ) ) ( ( ) ),1;11;1 3
)3

3
)3 gggEfffE nn ′−=′−  then 

.gf ≡  

In this paper, we generalize and improve Theorems A, B and C and 
obtain the following results. 

Theorem 1.1. Let f and g be two nonconstant meromorphic functions 
and ( )11+≥ mn  be an integer. If 

( ( ) ) ( ( ) ),1;11;1 )3)3 gggEfffE mnmn ′−=′−  

then .gf ≡  

Theorem 1.2. Let f and g be two nonconstant meromorphic functions 
and ( )11+≥ mn  be an integer. If 
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( ( ) ) ( ( ) ),1;11;1 )3)3 gggEfffE mnmn ′−=′−  

then .gf ≡  

Remark. (1) If 2=m  in Theorem 1.1, then Theorem 1.1 reduces to 
Theorems A and B. 

(2) If 3=m  in Theorem 1.2, then Theorem 1.2 reduces to Theorem C. 

Though for the standard notations and definition of value distribution 
theory we refer [3], in the following definition we explain a notation used in 
the paper. 

Definition 1.1. Let f be a meromorphic function and { }.∞∈ ∪Ca  For a 

positive integer p we denote by ( )farN p ;,  the counting function of a-points 

of f, where an a-point of multiplicity m is counted m times if pm ≤  and is 

counted p times if .pm >  

2. Lemmas 

In this section, we present some lemmas which will be needed in the 
sequel. 

Lemma 2.1. Let f and g be two nonconstant meromorphic functions. 

Then ( ) ( ) ,111 ≡/′−′− gggfff mnmn  where n is an integer. 

Proof. If possible let ( ) ( ) .111 ≡′−′− gggfff mnmn  Let 0z  be an 1-point 

of f with multiplicity ( ).1≥p  Then 0z  is a pole of g with multiplicity ( )1≥q  

such that 

( ) 2111 ++≥+++=−+ mnqmnpmp  

and so .1
3

+
++≥ m

mnp  

Let 1z  be a zero of f with multiplicity ( )1≥p  and it be a pole of g with 

multiplicity ( ).1≥q  Then 



Harina P. Waghamore and S. Rajeshwari 4 

,11 +++=−+ qmqnqpnp  

i.e., 

( ) ( ) .21 +=−+ mqqpn  

Hence .1
m
mnp −+≥  Since a pole of f is either a zero of ( )1−gg  or a zero 

of ,g′  we get 

( ) ( ) ( ) ( )grNgrNgrNfrN ′++≤∞ ;0,;1,;0,;, 0  

( ) ( ) ( )grNgrNmn
mgrNmn

m ′+
++

++
−+

≤ ;0,;1,3
1;0,1  

( ) ( ),;0,,3
1

1 0 grNgrTmn
m

mn
m ′+⎟

⎠
⎞⎜

⎝
⎛

++
++

−+
≤  

where ( )grN ′;0,0  is the reduced counting function of those zeros of g′  

which are not the zeros of ( ).1−gg  

By the second fundamental theorem, we obtain 

( ) ( ) ( ) ( ) ( ) ( )frSfrNfrNfrNfrNfrT ,;0,;1,;,;0,, 0 +′−+∞+≤  

( ) ( )frNmn
mfrNmn

m ;1,3
1;0,1 ++

++
−+

≤  

( )grTmn
m

mn
m ,3

1
1 ⎟

⎠
⎞⎜

⎝
⎛

++
++

−+
+  

( ) ( ) ( ),,;0,;0, 00 frSfrNgrN +′−′+  

i.e., 

( ) ( )grTmn
m

mn
mfrTmn

m
mn
m ,3

1
1,3

1
11 ⎟

⎠
⎞⎜

⎝
⎛

++
++

−+
≤⎟

⎠
⎞⎜

⎝
⎛

++
+−

−+
−  

( ) ( )frNgrN ′−′+ ;0,;0, 00  

( )., frS+  (2.1) 
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Similarly, we get 

( ) ( )frTmn
m

mn
mgrTmn

m
mn
m ,3

1
1,3

1
11 ⎟

⎠
⎞⎜

⎝
⎛

++
++

−+
≤⎟

⎠
⎞⎜

⎝
⎛

++
+−

−+
−  

( ) ( )grNfrN ′−′+ ;0,;0, 00  

( )., grS+  (2.2) 

Adding (2.1) and (2.2), we get 

( ) ( ) ( ){ } ( ) ( ),,,,,3
12

1
21 grSfrSgrTfrTmn

m
mn
m +≤+⎟

⎠
⎞⎜

⎝
⎛

++
+−

−+
−  

which is a contradiction. This proves the lemma. 

Lemma 2.2 [10]. Let f be a nonconstant meromorphic function and ( )fP  

,2
210

n
n fafafaa ++++= "  where naaaa ...,,,, 210  are constants and 

.0≠ma  Then 

( )( ) ( ) ( ).,,, frSfrnTfPrT +=  

Lemma 2.3. Let 

( ) ,1
111

11 10
⎥
⎦

⎤
⎢
⎣

⎡
+

−++
+

−
++

= −++
nfmn

m
fmn

m
fF mmncmcn "  

( ) ,1
111

11 10
⎥
⎦

⎤
⎢
⎣

⎡
+

−++
+

−
++

= −++
ngmn

m
gmn

m
gG mmncmcn "  

where ( )3+> mn  is an integer. Then GF ′≡′  implies .GF ≡  

Proof. Let .GF ′≡′  Then ,cGF +≡  where c is a constant. If possible, 
let .0≠c  Then by the second fundamental theorem, we get 

( ) ( ) ( ) ( ) ( )FrSFrNFcrNFrNFrT ,;,;,;0,, +∞++≤  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+∞+≤ mc fmn
m

rNfrNfrN ;1,;,;0, 0  
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( ) ( )frSgmn
m

rNgrN mc ,;1,;0, 0 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++  

( ) ( ) ( ) ( ) ( ).,,,,,2 frSgrmTgrTfrmTfrT ++++≤  

Since by Lemma 2.2, 

( ) ( ) ( ) ( ),,,1, frSfrTmnFrT +++=  

it follows that 

( ) ( ) ( ) ( ) ( ) ( ) ( ).,,1,2,1 grSgrTmfrTmfrTmn ++++≤++  (2.3) 

Similarly, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ).,,1,2,1 frSfrTmgrTmgrTmn ++++≤++  (2.4) 

Adding (2.3) and (2.4), we obtain 

( ) ( ) ( ){ } ( ) ( )grSfrSgrTfrTmn ,,,,2 +≤+−−  

which is a contradiction. So 0=c  and the lemma is proved. 

Lemma 2.4 [9]. Let F and G be given as in Lemma 2.3. Then GF ≡  
implies .gf ≡  

Lemma 2.5 [6]. Let f, g are nonconstant meromorphic functions and 
( ) ( )gEfE ;1;1 )3)3 =  then one of the following cases holds: 

  (i) ( ) ( ) { ( ) ( ) ( )frNgrNfrNgrTfrT ;,;0,;0,2,, 222 ∞++≤+  

( )} ( ) ( );,,;,2 grSfrSgrN ++∞+  

 (ii) ;gf ≡  

(iii) .1≡fg  

Lemma 2.6 [5]. Let f be a nonconstant meromorphic function and k be a 
positive integer. Then 

( ( ) ) ( ) ( ) ( ).,;0,;,;0, 22 frSfrNfrNkfrN k
k ++∞≤ +  



Generalization of Nonlinear Differential … 7 

Lemma 2.7. Let F and G be given as in Lemma 2.3. Then 

 (i) ( ) ( ) ( ) ( ) ( )fbrNfbrNfrNFrTFrT ;,;,;0,,, 21 +++′≤  

( ) ( ) ( )fcrNfcrNfbrN m ;,;,;, 21 −−++"  

( ) ( ) ( );,;0,;, frSfrNfcrN m +′−−−"  

(ii) ( ) ( ) ( ) ( ) ( )gbrNgbrNgrNGrTGrT ;,;,;0,,, 21 +++′≤  

( ) ( ) ( )gcrNgcrNgbrN m ;,;,;, 21 −−++"  

( ) ( ) ( ).,;0,;, grSgrNgcrN m +′−−−"  

Proof. By the Nevanlinna’s first fundamental theorem and Lemma 2.2, 
we get 

( ) ( )11,, OFrTFrT +⎟
⎠
⎞⎜

⎝
⎛=  

( ) ( )11,;0, OFrmFrN +⎟
⎠
⎞⎜

⎝
⎛+=  

( ) ( ) ( )1;0,,;0, OFrmF
FrmFrN +′+⎟

⎠
⎞⎜

⎝
⎛ ′

+≤  

( ) ( ) ( ) ( )FrSFrNFrNFrT ,;0,;0,, +′−+′=  

( ) ( ) ( ) ( )fbrNfbrNfrNFrT ;,;,;0,, 21 +++′≤  

( ) ( ) ( )fcrNfcrNfbrN m ;,;,;, 21 −−++"  

( ) ( ) ( ).,;0,;, frSfrNfcrN m +′−−−"  

Similarly, we get ( )., GrT  

This proves the lemma. 

Lemma 2.8. Let f and g be two nonconstant meromorphic functions. 

Then ( ) ( ) ,111 ≡/′−′− gggfff mnmn  where n is a positive integer. 

Proof. If possible let ( ) ( ) .111 ≡′−′− gggfff mnmn  Let 0z  be a 1-point 
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of f with multiplicity p. Then 0z  is a pole of g with multiplicity q, say, such 

that ( ) ( ) ,21111 ++≥+++=−− mnqmnpm  i.e., .1
3

−
++≥ m

mnp  

Hence ( ) .3
11;1
++

−−>Θ mn
mf  

Similarly, we can now show that 

( ) 3
11;
++

−−≥ωΘ mn
mf  

and 

( ) ,3
11;2
++

−−≥ωΘ mn
mf  

where ω is the imaginary cube root of unity. 

Therefore 

( ) ( ) ( ) ( ) ,23
133;;;1 2 >
++
−−≥ωΘ+ωΘ+Θ mn

mfff  

a contradiction. This proves the lemma. 

Lemma 2.9. Let 

,1
1

1
1

1 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
++

= +
nmn

ffF
m

n  

,1
1

1
1

1 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
++

= +
nmn

ggG
m

n  

where 2≥n  is an integer. If ,11 GF ≡  then .gf ≡  

Proof. Let .f
gh =  If possible, suppose that h is nonconstant. Since 

,11 GF ≡  it follows that 

.
1

1
1

1
1

1

−

−⋅
+
++=

++

+

mn

n
m

h
h

n
mnf  
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Since mf  has no simple pole, it follows that 0=− kuh  has no simple 

root for ,3...,,2,1 += nk  where .1
2

⎟
⎠
⎞⎜

⎝
⎛

++
π

= mn
ik

k eu  

Hence ( ) 2
1; >Θ huk  for ,3...,,2,1 += nk  which is impossible. Therefore 

h is a constant. If ,1≠h  it follows that f is a constant, which is not the case. 
So 1=h  and hence .gf ≡  This proves the lemma. 

Lemma 2.10. If 1F  and 1G  be defined as in Lemma 2.9. Then 

 (i) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

+
++++′≤ mfn

mnrNfrNFrTFrT ;1
1,;0,,, 11  

( ) ( ) ( ),,;0,;1, frSfrNfrN m +′−−  

(ii) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

+
++++′≤ mgn

mnrNgrNGrTGrT ;1
1,;0,,, 11  

( ) ( ) ( ).,;0,;1, grSgrNgrN m +′−−  

The lemma can be proved in the line of the proof of Lemma 2.7. 

Lemma 2.11. Let 1F  and 1G  be defined as in Lemma 2.9, where 

( )2+≥ mn  is an integer. Then 11 GF ′≡′  implies .11 GF ≡  The proof is 

similar to that of Lemma 2.3. 

3. Proof of the Theorems 

In this section, we present the proofs of the main results. 

Proof of Theorem 1.1. Let F and G be defined as in Lemma 2.3. If 
possible, suppose that 

( ) ( ) { ( ) ( ) ( )FrNGrNFrNGrTFrT ′∞+′+′≤′+′ ;,;0,;0,2,, 222  

( )} ( ) ( ).,,;,2 GrSFrSGrN ′+′+′∞+  
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Then by Lemmas 2.2, 2.6 and 2.7, we get 

( ) ( )GrTFrT ,, +  

( ) ( ) ( ) ( )fbrNfbrNfrNFrT ;,;,;0,, 21 +++′≤  

( ) ( ) ( )fcrNfcrNfbrN m ;,;,;, 21 −−++"  

( ) ( ) ( )GrTfrNfcrN m ′+′−−− ,;0,;,"  

( ) ( ) ( ) ( )gbrNgbrNgbrNgrN m ;,;,;,;0, 21 +++++ "  

( ) ( ) ( ) ( )grNgcrNgcrNgcrN m ′−−−−− ;0,;,;,;, 11 "  

( ) ( ) ( ) ( ){ }GrNFrNGrNFrN ′∞+′∞+′+′≤ ;,;,;0,;0,2 2222  

( ) ( ) ( ) ( )fbrNfbrNfbrNfrN m ;,;,;,;0, 21 +++++ "  

( ) ( ) ( ) ( )frNfcrNfcrNfcrN m ′−−−−− ;0,;,;,;, 21 "  

( ) ( ) ( ) ( )gbrNgbrNgbrNgrN m ;,;,;,;0, 21 +++++ "  

( ) ( ) ( ) ( )grNgcrNgcrNgcrN m ′−−−−− ;0,;,;,;, 21 "  

( ) ( )grSfrS ,, ++  

( ) ( ( ) ) ( ) ( )grNfrNfrNfrN m ;0,4;0,21;0,2;0,4 2 +′+−+≤  

( ( ) ) ( ) ( )frNgrNgrN m ;,4;0,21;0,2 2 ∞+′+−+  

( ) ( ) ( )fbrNfrNgrN ;,;0,;,4 1++∞+  

( ) ( ) ( ) ( )fcrNfcrNfbrNfbrN m ;,;,;,;, 212 −−+++ "  

( ) ( ) ( ) ( )gbrNgrNfrNfcrN m ;,;0,;0,;, 1++′−−−"  

( ) ( ) ( ) ( )gcrNgcrNgbrNgbrN m ;,;,;,;, 212 −−+++ "  

( ) ( ) ( ) ( ),,,;0,;, grSfrSgrNgcrN m ++′−−−"  
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( ) ( )frTmn ,1++  

( ) ( ) ( ) ( ) ( ) ( )grSfrSgrmTgrTfrmTfrT ,,,2,11,2,11 +++++≤  

( ) ( ) ( ) ( ) ( ) ( ).,,,211,211 grSfrSgrTmfrTm +++++≤  

So by Lemma 2.2, we get 

( ) ( ) ( ){ } ( ) ( ),,,,,10 grSfrSgrTfrTmn +≤+−−  

which is a contradiction. 

Hence by Lemma 2.5 either GF ′≡′  or .1≡′′GF  Since by Lemma 2.1 
,1≡/′′GF  it follows by Lemma 2.3 and Lemma 2.4 .gf ≡  This proves the 

theorem. 

Proof of Theorem 1.2. Let 1F  and 1G  be defined as in Lemma 2.9. If 

possible suppose that 

( ) ( ) { ( ) ( ) ( )12121211 ;,;0,;0,2,, FrNGrNFrNGrTFrT ′∞+′+′≤′+′  

( )} ( ) ( ).,,;, 1112 GrSFrSGrN ′+′+′∞+  

Then by Lemmas 2.2, 2.6 and 2.10, we get 

( ) ( )11 ,, GrTFrT +  

( ) ( ) ( ) ( ){ }12121212 ;,;,;0,;0,2 GrNFrNGrNFrN ′∞+′∞+′+′≤  

( ) ( )frNfn
mnrNfrN m ′−⎟

⎠
⎞⎜

⎝
⎛

+
++++ ;0,;1

1,;0,  

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

+
++++− mm gn

mnrNgrNfrN ;1
1,;0,;1,  

( ) ( ) ( ) ( )grSfrSgrNgrN m ,,;1,;0, ++−′−  

( ) ( ) ( )frNfrNfrN m ′++≤ ;0,2;1,2;0,4 22  

( ) ( ) ( )grNgrNgrN m ′+++ ;0,2;1,2;0,4 22  
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( ) ( ) ( )frNgrNfrN ;0,;,4;,4 +∞+∞+  

( ) ( )frNfrNfn
mnrN mm ′−−⎟

⎠
⎞⎜

⎝
⎛

+
+++ ;0,;1,;1

1,  

( ) ( )mm grNgn
mnrNgrN ;1,;1

1,;0, −⎟
⎠
⎞⎜

⎝
⎛

+
++++  

( ) ( ) ( )grSfrSgrN ,,;0, ++′−  

( ) ( ) ( ) ( ) ( ) ( )grSfrSgrTmfrTm ,,,211,211 +++++≤  

and so by Lemma 2.2, we get 

( ) ( ) ( ){ } ( ) ( ),,,,,10 grSfrSgrTfrTmn +≤+−−  

which is a contradiction. 

Hence by Lemma 2.5 either 11 GF ′≡′  or .111 ≡′′GF  Since by Lemma 2.8 

,111 ≡/′′GF  it follows by Lemmas 2.9 and 2.11 that .gf ≡  This proves the 

theorem. 
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