Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com

GENERALIZATION OF NONLINEAR DIFFERENTIAL POLYNOMIALS SHARING 1-POINTS

Harina P. Waghamore and S. Rajeshwari
Department of Mathematics
Central College Campus
Bangalore University
Bangalore 560 001, India

Abstract

In this paper, we generalize two theorems on the uniqueness of nonlinear differential polynomials sharing 1-points, which improves a result of Lahiri and Pal [7].

1. Introduction, Definitions and Main Results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. Let k be a positive integer or infinity and $a \in\{\infty\}$ $\cup \mathbb{C}$. We denote by $E_{k)}(a ; f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. If for some $a \in\{\infty\} \cup \mathbb{C}, \mathbb{E}_{\infty)}(a, f)=E_{\infty)}(a ; g)$ we say that f, g share the value a CM (counting multiplicities).

In [4], the problem of uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points was studied. Received: March 28, 2016; Revised: May 13, 2016; Accepted: June 24, 2016 2010 Mathematics Subject Classification: 30D35.
Keywords and phrases: uniqueness, meromorphic function, nonlinear differential polynomial.

Regarding the nonlinear differential polynomials the following question was asked in [4]: What can be said if two nonlinear differential polynomials generated by two meromorphic functions share 1 CM? Some works have already been done in this direction [1, 2, 8, 9]. Recently Fang and Fang [2] and Lin and Yi [9] proved the following result.

Theorem A. Let f and g be two nonconstant meromorphic functions and $n(\geq 13)$ be an integer. If $f^{n}(f-1)^{2} f^{\prime}$ and $g^{n}(g-1)^{2} g^{\prime}$ share the value 1 CM, then $f \equiv g$.

In 2006, Lahiri and Pal [7] investigated the uniqueness problem of meromorphic functions when two nonlinear differential polynomials share the value 1 and proved the following two theorems, the first of which improves Theorem A.

Theorem B. Let f and g be two nonconstant meromorphic functions and $n(\geq 13)$ be an integer. If $E_{3)}\left(1 ; f^{n}(f-1)^{2} f^{\prime}\right)=E_{3)}\left(1 ; g^{n}(g-1)^{2} g^{\prime}\right)$, then $f \equiv g$.

Theorem C. Let f and g be two nonconstant meromorphic functions and $n(\geq 14)$ be an integer. If $E_{3)}\left(1 ; f^{n}\left(f^{3}-1\right) f^{\prime}\right)=E_{3}\left(1 ; g^{n}\left(g^{3}-1\right) g^{\prime}\right)$, then $f \equiv g$.

In this paper, we generalize and improve Theorems A, B and C and obtain the following results.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions and $n(\geq m+11)$ be an integer. If

$$
E_{3)}\left(1 ; f^{n}(f-1)^{m} f^{\prime}\right)=E_{3)}\left(1 ; g^{n}(g-1)^{m} g^{\prime}\right),
$$

then $f \equiv g$.
Theorem 1.2. Let f and g be two nonconstant meromorphic functions and $n(\geq m+11)$ be an integer. If

$$
E_{3)}\left(1 ; f^{n}\left(f^{m}-1\right) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}\left(g^{m}-1\right) g^{\prime}\right)
$$

then $f \equiv g$.
Remark. (1) If $m=2$ in Theorem 1.1, then Theorem 1.1 reduces to Theorems A and B.
(2) If $m=3$ in Theorem 1.2, then Theorem 1.2 reduces to Theorem C.

Though for the standard notations and definition of value distribution theory we refer [3], in the following definition we explain a notation used in the paper.

Definition 1.1. Let f be a meromorphic function and $a \in \mathbb{C} \bigcup\{\infty\}$. For a positive integer p we denote by $N_{p}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq p$ and is counted p times if $m>p$.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1. Let f and g be two nonconstant meromorphic functions. Then $f^{n}(f-1)^{m} f^{\prime} g^{n}(g-1)^{m} g^{\prime} \not \equiv 1$, where n is an integer.

Proof. If possible let $f^{n}(f-1)^{m} f^{\prime} g^{n}(g-1)^{m} g^{\prime} \equiv 1$. Let z_{0} be an 1-point of f with multiplicity $p(\geq 1)$. Then z_{0} is a pole of g with multiplicity $q(\geq 1)$ such that

$$
m p+p-1=(n+m+1) q+1 \geq n+m+2
$$

and so $p \geq \frac{n+m+3}{m+1}$.
Let z_{1} be a zero of f with multiplicity $p(\geq 1)$ and it be a pole of g with multiplicity $q(\geq 1)$. Then

$$
n p+p-1=n q+m q+q+1
$$

i.e.,

$$
(n+1)(p-q)=m q+2
$$

Hence $p \geq \frac{n+m-1}{m}$. Since a pole of f is either a zero of $g(g-1)$ or a zero of g^{\prime}, we get

$$
\begin{aligned}
\bar{N}(r, \infty ; f) & \leq \bar{N}(r, 0 ; g)+\bar{N}(r, 1 ; g)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& \leq \frac{m}{n+m-1} N(r, 0 ; g)+\frac{m+1}{n+m+3} N(r, 1 ; g)+\bar{N}\left(r, 0 ; g^{\prime}\right) \\
& \leq\left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, g)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right),
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is the reduced counting function of those zeros of g^{\prime} which are not the zeros of $g(g-1)$.

By the second fundamental theorem, we obtain

$$
\begin{aligned}
T(r, f) \leq & \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; f)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f) \\
\leq & \frac{m}{n+m-1} N(r, 0 ; f)+\frac{m+1}{n+m+3} N(r, 1 ; f) \\
& +\left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, g) \\
& +\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f),
\end{aligned}
$$

i.e.,

$$
\begin{align*}
\left(1-\frac{m}{n+m-1}-\frac{m+1}{n+m+3}\right) T(r, f) \leq & \left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, g) \\
& +\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right) \\
& +S(r, f) \tag{2.1}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
\left(1-\frac{m}{n+m-1}-\frac{m+1}{n+m+3}\right) T(r, g) \leq & \left(\frac{m}{n+m-1}+\frac{m+1}{n+m+3}\right) T(r, f) \\
& +\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)-\bar{N}_{0}\left(r, 0 ; g^{\prime}\right) \\
& +S(r, g) \tag{2.2}
\end{align*}
$$

Adding (2.1) and (2.2), we get

$$
\left(1-\frac{2 m}{n+m-1}-\frac{2(m+1)}{n+m+3}\right)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction. This proves the lemma.
Lemma 2.2 [10]. Let f be a nonconstant meromorphic function and $P(f)$ $=a_{0}+a_{1} f+a_{2} f^{2}+\cdots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and $a_{m} \neq 0$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Lemma 2.3. Let

$$
\begin{aligned}
& F=f^{n+1}\left[\frac{m_{c_{0}}}{n+m+1} f^{m}-\frac{m_{c_{1}}}{n+m} f^{n+m-1}+\cdots+(-1)^{m} \frac{1}{n+1}\right] \\
& G=g^{n+1}\left[\frac{m_{c_{0}}}{n+m+1} g^{m}-\frac{m_{c_{1}}}{n+m} g^{n+m-1}+\cdots+(-1)^{m} \frac{1}{n+1}\right]
\end{aligned}
$$

where $n(>m+3)$ is an integer. Then $F^{\prime} \equiv G^{\prime}$ implies $F \equiv G$.
Proof. Let $F^{\prime} \equiv G^{\prime}$. Then $F \equiv G+c$, where c is a constant. If possible, let $c \neq 0$. Then by the second fundamental theorem, we get

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+S(r, F) \\
& \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}\left(r, \frac{m_{c_{0}}}{n+m+1} ; f^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\bar{N}(r, 0 ; g)+\bar{N}\left(r, \frac{m_{c_{0}}}{n+m+1} ; g^{m}\right)+S(r, f) \\
\leq & 2 T(r, f)+m T(r, f)+T(r, g)+m T(r, g)+S(r, f) .
\end{aligned}
$$

Since by Lemma 2.2,

$$
T(r, F)=(n+m+1) T(r, f)+S(r, f),
$$

it follows that

$$
\begin{equation*}
(n+m+1) T(r, f) \leq(2+m) T(r, f)+(m+1) T(r, g)+S(r, g) \tag{2.3}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
(n+m+1) T(r, g) \leq(2+m) T(r, g)+(m+1) T(r, f)+S(r, f) . \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4), we obtain

$$
(n-m-2)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction. So $c=0$ and the lemma is proved.
Lemma 2.4 [9]. Let F and G be given as in Lemma 2.3. Then $F \equiv G$ implies $f \equiv g$.

Lemma 2.5 [6]. Let f, g are nonconstant meromorphic functions and $E_{3)}(1 ; f)=E_{3)}(1 ; g)$ then one of the following cases holds:
(i) $T(r, f)+T(r, g) \leq 2\left\{N_{2}(r, 0 ; f)+N_{2}(r, 0 ; g)+N_{2}(r, \infty ; f)\right.$

$$
\left.+N_{2}(r, \infty ; g)\right\}+S(r, f)+S(r, g)
$$

(ii) $f \equiv g$;
(iii) $f g \equiv 1$.

Lemma 2.6 [5]. Let f be a nonconstant meromorphic function and k be a positive integer. Then

$$
N_{2}\left(r, 0 ; f^{(k)}\right) \leq k \bar{N}(r, \infty ; f)+N_{2+k}(r, 0 ; f)+S(r, f)
$$

Lemma 2.7. Let F and G be given as in Lemma 2.3. Then
(i) $T(r, F) \leq T\left(r, F^{\prime}\right)+N(r, 0 ; f)+N\left(r, b_{1} ; f\right)+N\left(r, b_{2} ; f\right)$

$$
\begin{aligned}
& +\cdots+N\left(r, b_{m} ; f\right)-N\left(r, c_{1} ; f\right)-N\left(r, c_{2} ; f\right) \\
& -\cdots-N\left(r, c_{m} ; f\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f)
\end{aligned}
$$

(ii) $T(r, G) \leq T\left(r, G^{\prime}\right)+N(r, 0 ; g)+N\left(r, b_{1} ; g\right)+N\left(r, b_{2} ; g\right)$

$$
\begin{aligned}
& +\cdots+N\left(r, b_{m} ; g\right)-N\left(r, c_{1} ; g\right)-N\left(r, c_{2} ; g\right) \\
& -\cdots-N\left(r, c_{m} ; g\right)-N\left(r, 0 ; g^{\prime}\right)+S(r, g)
\end{aligned}
$$

Proof. By the Nevanlinna's first fundamental theorem and Lemma 2.2, we get

$$
\begin{aligned}
T(r, F) & =T\left(r, \frac{1}{F}\right)+O(1) \\
& =N(r, 0 ; F)+m\left(r, \frac{1}{F}\right)+O(1) \\
& \leq N(r, 0 ; F)+m\left(r, \frac{F^{\prime}}{F}\right)+m\left(r, 0 ; F^{\prime}\right)+O(1) \\
& =T\left(r, F^{\prime}\right)+N(r, 0 ; F)-N\left(r, 0 ; F^{\prime}\right)+S(r, F) \\
& \leq T\left(r, F^{\prime}\right)+N(r, 0 ; f)+N\left(r, b_{1} ; f\right)+N\left(r, b_{2} ; f\right) \\
& +\cdots+N\left(r, b_{m} ; f\right)-N\left(r, c_{1} ; f\right)-N\left(r, c_{2} ; f\right) \\
& -\cdots-N\left(r, c_{m} ; f\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f)
\end{aligned}
$$

Similarly, we get $T(r, G)$.
This proves the lemma.
Lemma 2.8. Let f and g be two nonconstant meromorphic functions. Then $f^{n}\left(f^{m}-1\right) f^{\prime} g^{n}\left(g^{m}-1\right) g^{\prime} \not \equiv 1$, where n is a positive integer.

Proof. If possible let $f^{n}\left(f^{m}-1\right) f^{\prime} g^{n}\left(g^{m}-1\right) g^{\prime} \equiv 1$. Let z_{0} be a 1-point
of f with multiplicity p. Then z_{0} is a pole of g with multiplicity q, say, such that $(m-1) p-1=(n+m+1) q+1 \geq n+m+2$, i.e., $p \geq \frac{n+m+3}{m-1}$.

Hence $\Theta(1 ; f)>1-\frac{m-1}{n+m+3}$.
Similarly, we can now show that

$$
\Theta(\omega ; f) \geq 1-\frac{m-1}{n+m+3}
$$

and

$$
\Theta\left(\omega^{2} ; f\right) \geq 1-\frac{m-1}{n+m+3},
$$

where ω is the imaginary cube root of unity.
Therefore

$$
\Theta(1 ; f)+\Theta(\omega ; f)+\Theta\left(\omega^{2} ; f\right) \geq 3-\frac{3(m-1)}{n+m+3}>2
$$

a contradiction. This proves the lemma.
Lemma 2.9. Let

$$
\begin{aligned}
& F_{1}=f^{n+1}\left[\frac{f^{m}}{n+m+1}-\frac{1}{n+1}\right], \\
& G_{1}=g^{n+1}\left[\frac{g^{m}}{n+m+1}-\frac{1}{n+1}\right],
\end{aligned}
$$

where $n \geq 2$ is an integer. If $F_{1} \equiv G_{1}$, then $f \equiv g$.
Proof. Let $h=\frac{g}{f}$. If possible, suppose that h is nonconstant. Since $F_{1} \equiv G_{1}$, it follows that

$$
f^{m}=\frac{n+m+1}{n+1} \cdot \frac{h^{n+1}-1}{h^{n+m+1}-1} .
$$

Since f^{m} has no simple pole, it follows that $h-u_{k}=0$ has no simple root for $k=1,2, \ldots, n+3$, where $u_{k}=e^{\left(\frac{2 \pi i k}{n+m+1}\right)}$.

Hence $\Theta\left(u_{k} ; h\right)>\frac{1}{2}$ for $k=1,2, \ldots, n+3$, which is impossible. Therefore h is a constant. If $h \neq 1$, it follows that f is a constant, which is not the case. So $h=1$ and hence $f \equiv g$. This proves the lemma.

Lemma 2.10. If F_{1} and G_{1} be defined as in Lemma 2.9. Then
(i) $T\left(r, F_{1}\right) \leq T\left(r, F_{1}^{\prime}\right)+N(r, 0 ; f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right)$

$$
-N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right)+S(r, f),
$$

(ii) $T\left(r, G_{1}\right) \leq T\left(r, G_{1}^{\prime}\right)+N(r, 0 ; g)+N\left(r, \frac{n+m+1}{n+1} ; g^{m}\right)$

$$
-N\left(r, 1 ; g^{m}\right)-N\left(r, 0 ; g^{\prime}\right)+S(r, g)
$$

The lemma can be proved in the line of the proof of Lemma 2.7.
Lemma 2.11. Let F_{1} and G_{1} be defined as in Lemma 2.9, where $n(\geq m+2)$ is an integer. Then $F_{1}^{\prime} \equiv G_{1}^{\prime}$ implies $F_{1} \equiv G_{1}$. The proof is similar to that of Lemma 2.3.

3. Proof of the Theorems

In this section, we present the proofs of the main results.
Proof of Theorem 1.1. Let F and G be defined as in Lemma 2.3. If possible, suppose that

$$
\begin{aligned}
T\left(r, F^{\prime}\right)+T\left(r, G^{\prime}\right) \leq & 2\left\{N_{2}\left(r, 0 ; F^{\prime}\right)+N_{2}\left(r, 0 ; G^{\prime}\right)+N_{2}\left(r, \infty ; F^{\prime}\right)\right. \\
& \left.+N_{2}\left(r, \infty ; G^{\prime}\right)\right\}+S\left(r, F^{\prime}\right)+S\left(r, G^{\prime}\right) .
\end{aligned}
$$

Then by Lemmas 2.2, 2.6 and 2.7, we get

$$
\begin{aligned}
& T(r, F)+T(r, G) \\
& \leq T\left(r, F^{\prime}\right)+N(r, 0 ; f)+N\left(r, b_{1} ; f\right)+N\left(r, b_{2} ; f\right) \\
& +\cdots+N\left(r, b_{m} ; f\right)-N\left(r, c_{1} ; f\right)-N\left(r, c_{2} ; f\right) \\
& -\cdots-N\left(r, c_{m} ; f\right)-N\left(r, 0 ; f^{\prime}\right)+T\left(r, G^{\prime}\right) \\
& +N(r, 0 ; g)+N\left(r, b_{1} ; g\right)+N\left(r, b_{2} ; g\right)+\cdots+N\left(r, b_{m} ; g\right) \\
& -N\left(r, c_{1} ; g\right)-N\left(r, c_{1} ; g\right)-\cdots-N\left(r, c_{m} ; g\right)-N\left(r, 0 ; g^{\prime}\right) \\
& \leq 2\left\{N_{2}\left(r, 0 ; F^{\prime}\right)+N_{2}\left(r, 0 ; G^{\prime}\right)+N_{2}\left(r, \infty ; F^{\prime}\right)+N_{2}\left(r, \infty ; G^{\prime}\right)\right\} \\
& +N(r, 0 ; f)+N\left(r, b_{1} ; f\right)+N\left(r, b_{2} ; f\right)+\cdots+N\left(r, b_{m} ; f\right) \\
& -N\left(r, c_{1} ; f\right)-N\left(r, c_{2} ; f\right)-\cdots-N\left(r, c_{m} ; f\right)-N\left(r, 0 ; f^{\prime}\right) \\
& +N(r, 0 ; g)+N\left(r, b_{1} ; g\right)+N\left(r, b_{2} ; g\right)+\cdots+N\left(r, b_{m} ; g\right) \\
& -N\left(r, c_{1} ; g\right)-N\left(r, c_{2} ; g\right)-\cdots-N\left(r, c_{m} ; g\right)-N\left(r, 0 ; g^{\prime}\right) \\
& +S(r, f)+S(r, g) \\
& \leq 4 \bar{N}(r, 0 ; f)+2 N\left(r, 0 ;(f-1)^{m}\right)+2 N_{2}\left(r, 0 ; f^{\prime}\right)+4 \bar{N}(r, 0 ; g) \\
& +2 N\left(r, 0 ;(g-1)^{m}\right)+2 N_{2}\left(r, 0 ; g^{\prime}\right)+4 \bar{N}(r, \infty ; f) \\
& +4 \bar{N}(r, \infty ; g)+N(r, 0 ; f)+N\left(r, b_{1} ; f\right) \\
& +N\left(r, b_{2} ; f\right)+\cdots+N\left(r, b_{m} ; f\right)-N\left(r, c_{1} ; f\right)-N\left(r, c_{2} ; f\right) \\
& -\cdots-N\left(r, c_{m} ; f\right)-N\left(r, 0 ; f^{\prime}\right)+N(r, 0 ; g)+N\left(r, b_{1} ; g\right) \\
& +N\left(r, b_{2} ; g\right)+\cdots+N\left(r, b_{m} ; g\right)-N\left(r, c_{1} ; g\right)-N\left(r, c_{2} ; g\right) \\
& -\cdots-N\left(r, c_{m} ; g\right)-N\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g),
\end{aligned}
$$

$$
\begin{aligned}
& (n+m+1) T(r, f) \\
\leq & 11 T(r, f)+2 m T(r, f)+11 T(r, g)+2 m T(r, g)+S(r, f)+S(r, g) \\
\leq & (11+2 m) T(r, f)+(11+2 m) T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

So by Lemma 2.2, we get

$$
(n-m-10)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction.
Hence by Lemma 2.5 either $F^{\prime} \equiv G^{\prime}$ or $F^{\prime} G^{\prime} \equiv 1$. Since by Lemma 2.1 $F^{\prime} G^{\prime} \not \equiv 1$, it follows by Lemma 2.3 and Lemma $2.4 f \equiv g$. This proves the theorem.

Proof of Theorem 1.2. Let F_{1} and G_{1} be defined as in Lemma 2.9. If possible suppose that

$$
\begin{aligned}
T\left(r, F_{1}^{\prime}\right)+T\left(r, G_{1}^{\prime}\right) \leq 2 & \left\{N_{2}\left(r, 0 ; F_{1}^{\prime}\right)+N_{2}\left(r, 0 ; G_{1}^{\prime}\right)+N_{2}\left(r, \infty ; F_{1}^{\prime}\right)\right. \\
& \left.+N_{2}\left(r, \infty ; G_{1}^{\prime}\right)\right\}+S\left(r, F_{1}^{\prime}\right)+S\left(r, G_{1}^{\prime}\right)
\end{aligned}
$$

Then by Lemmas 2.2, 2.6 and 2.10, we get

$$
\begin{aligned}
& T\left(r, F_{1}\right)+T\left(r, G_{1}\right) \\
\leq & 2\left\{N_{2}\left(r, 0 ; F_{1}^{\prime}\right)+N_{2}\left(r, 0 ; G_{1}^{\prime}\right)+N_{2}\left(r, \infty ; F_{1}^{\prime}\right)+N_{2}\left(r, \infty ; G_{1}^{\prime}\right)\right\} \\
& +N(r, 0 ; f)+N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right) \\
& -N\left(r, 1 ; f^{m}\right)+N(r, 0 ; g)+N\left(r, \frac{n+m+1}{n+1} ; g^{m}\right) \\
& -N\left(r, 0 ; g^{\prime}\right)-N\left(r, 1 ; g^{m}\right)+S(r, f)+S(r, g) \\
\leq & 4 N(r, 0 ; f)+2 N_{2}\left(r, 1 ; f^{m}\right)+2 N_{2}\left(r, 0 ; f^{\prime}\right) \\
& +4 N(r, 0 ; g)+2 N_{2}\left(r, 1 ; g^{m}\right)+2 N_{2}\left(r, 0 ; g^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +4 \bar{N}(r, \infty ; f)+4 \bar{N}(r, \infty ; g)+N(r, 0 ; f) \\
& +N\left(r, \frac{n+m+1}{n+1} ; f^{m}\right)-N\left(r, 1 ; f^{m}\right)-N\left(r, 0 ; f^{\prime}\right) \\
& +N(r, 0 ; g)+N\left(r, \frac{n+m+1}{n+1} ; g^{m}\right)-N\left(r, 1 ; g^{m}\right) \\
& -N\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g) \\
& \leq(11+2 m) T(r, f)+(11+2 m) T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

and so by Lemma 2.2, we get

$$
(n-m-10)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)
$$

which is a contradiction.
Hence by Lemma 2.5 either $F_{1}^{\prime} \equiv G_{1}^{\prime}$ or $F_{1}^{\prime} G_{1}^{\prime} \equiv 1$. Since by Lemma 2.8 $F_{1}^{\prime} G_{1}^{\prime} \equiv 1$, it follows by Lemmas 2.9 and 2.11 that $f \equiv g$. This proves the theorem.

Acknowledgement

The authors thank the anonymous referees for their valuable suggestions which led to the improvement of the manuscript.

References

[1] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32(9) (2001), 1343-1348.
[2] C. Y. Fang and M. L. Fang, Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl. 44(5-6) (2002), 607-617.
[3] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, The Clarendon Press, Oxford, 1964.
[4] I. Lahiri, Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points, Ann. Polon. Math. 71(2) (1999), 113-128.
[5] I. Lahiri and A. Sarkar, Uniqueness of meromorphic function and its derivative, JIPAM J. Inequal. Pure Appl. Math. 5(1) (2005), Article 20 (electronic).
http://jipam.vu.edu.au/.
[6] I. Lahiri and P. Sahoo, Uniqueness of non-linear differential polynomials sharing 1-points, Georgian Math. J. 12(1) (2005), 131-138.
[7] I. Lahiri and Rupa Pal, Non-linear differential polynomials sharing 1-points, Bull. Korean Math. Soc. 43(1) (2006), 161-168.
[8] W. C. Lin, Uniqueness of differential polynomials and a problem of Lahiri, Pure Appl. Math. 17(2) (2001), 104-110 (in Chinese).
[9] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math. 35(2) (2004), 121-132.
[10] C. C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107-112.

