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Abstract

In this paper, we generalize two theorems on the uniqueness of
nonlinear differential polynomials sharing 1-points, which improves a
result of Lahiri and Pal [7].

1. Introduction, Definitions and Main Results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. Let k be a positive integer or infinity and a e {oo}

U C. We denote by Eyy(a; f) the set of all a-points of f with multiplicities

not exceeding k, where an a-point is counted according to its multiplicity. If
for some a e {0} UC, Ey)(a f)=Ey)(a g) we say that f, g share the

value a CM (counting multiplicities).

In [4], the problem of uniqueness of meromorphic functions when two
linear differential polynomials share the same 1-points was studied.
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Regarding the nonlinear differential polynomials the following question was
asked in [4]: What can be said if two nonlinear differential polynomials
generated by two meromorphic functions share 1 CM? Some works have
already been done in this direction [1, 2, 8, 9]. Recently Fang and Fang [2]
and Lin and Yi [9] proved the following result.

Theorem A. Let f and g be two nonconstant meromorphic functions and
n(=13) be an integer. If f"(f —1)%>f’ and g"(g —1)%>g’ share the value
1CM, then f =g.

In 2006, Lahiri and Pal [7] investigated the unigqueness problem of
meromorphic functions when two nonlinear differential polynomials share
the value 1 and proved the following two theorems, the first of which
improves Theorem A.

Theorem B. Let f and g be two nonconstant meromorphic functions and
n (= 13) be an integer. If Eg)(L; f"(f - 12§ = E3 (L g"(g ~1)?g’), then
f=g.

Theorem C. Let f and g be two nonconstant meromorphic functions and
n (= 14) be an integer. If Eg)(L; fN(F3-1)f) = Eg) (L g"(g®-1)g"), then
f=g.

In this paper, we generalize and improve Theorems A, B and C and
obtain the following results.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions
and n(> m +11) be an integer. If

Eg(L f1(f - ) = E5(& g"(g -)™g),
then f = g.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions
and n(>m +11) be an integer. If
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Eg (L f"(f™ -1 ) = E5(& g"(¢" -1)g),
then f = g.
Remark. (1) If m =2 in Theorem 1.1, then Theorem 1.1 reduces to
Theorems A and B.
(2) If m = 3 in Theorem 1.2, then Theorem 1.2 reduces to Theorem C.

Though for the standard notations and definition of value distribution
theory we refer [3], in the following definition we explain a notation used in
the paper.

Definition 1.1. Let f be a meromorphic function and a € C U {}. For a
positive integer p we denote by N IO(r, a; ) the counting function of a-points

of f, where an a-point of multiplicity m is counted m times if m < p and is
counted p times if m > p.

2. Lemmas
In this section, we present some lemmas which will be needed in the
sequel.

Lemma 2.1. Let f and g be two nonconstant meromorphic functions.
Then f"(f =)™ f§"(g —1)™g’ # 1, where n is an integer.

Proof. If possible let f"(f 1) f§"(g-1)"g’ =1. Let z, be an 1-point
of f with multiplicity p (> 1). Then z; is a pole of g with multiplicity q (> 1)
such that

mp+p-l=MN+m+1)g+1l>n+m+2

n+m-+3

>
andso p > p—]

Let z; be a zero of f with multiplicity p(>1) and it be a pole of g with
multiplicity q(>1). Then
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np+p-1l=ng+mq+q+1,

i.e.,

(n+1)(p-q)=mq+2.
Hence p > n+—m—1. Since a pole of f is either a zero of g(g —1) or a zero
of g', we get

N(r, oo; f) < N(r, 0; g)+ N(r, L g)+ Np(r, 0; g")

m - m—+1 . INE . '
Shamog N0 9 N B e) e N 0 )

m m+1 — .
S(n+m—1+n+m+3jT(r’ 9)+ No(r, 0: 9),

where Ng(r, 0; g’) is the reduced counting function of those zeros of g’
which are not the zeros of g(g —1).

By the second fundamental theorem, we obtain

T(r, £) < N(r, 0; f)+ N(r, oo f)+ N(r, L f)— No(r, 0; )+ S(r, f)

m . m+1 .
S rmo N0 ) N L )

m N m+1
n+m-1 n+m+3

jT(r, 9)

+ No(r, 0; ") — Ng(r, 0; f")+S(r, f),

ie.,

m m+1 m m+1
(1_n+m—1_n+m+3jT(r’ f)g(n+m_1+n+m+3jT(ry 9)

+ No(r, 0; g") — Ng(r, 0; ')

+5(r, 1) (2.1)
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Similarly, we get

m m+1 m m+1
- - <
(1 n+m-1 n+m+3jT(r’g)_(n+m—1+n+m+3jT(r’f)

+ No(r, 0; f)— Ng(r, 0; g)

+ S(r, 9). (2.2)

Adding (2.1) and (2.2), we get

2m 2(m+1)
1-— —
n+m-1 n+m+3

j{T(r, f)+T(r, g)} <S(r, f)+S(r, 9),

which is a contradiction. This proves the lemma.
Lemma 2.2 [10]. Let f be a nonconstant meromorphic function and P( )

=ag+af + a2f2 +--+a,f", where ag, ay, a,, ..., a, are constants and
am #= 0. Then

T(r, P(f))=nT(r, f)+S(r, f).

Lemma 2.3. Let

szn+1{ Mey Fmo_ Me, fn+m—1+m+(_1)m 1 }’

n+m+1 n+m n+1
m m
_ n+l Co m_ "o n+m-1, o am 1
G=4 {n+m+1g ntmo o+ () n+1}’

where n(> m + 3) isan integer. Then F' = G' implies F = G.

Proof. Let F' = G". Then F = G + ¢, where c is a constant. If possible,
let ¢ = 0. Then by the second fundamental theorem, we get

T(r, F) < N(r, 0; F)+ N(r, ¢; F)+ N(r, ; F) + S(r, F)

< N(r, 0; f)+ N(r,o0; f)+N|r _ My . ¢m
- ) ) i) 1 1n+m+11



6 Harina P. Waghamore and S. Rajeshwari

NI . N Mey . 4M
+N(I’, O, g)+ N(r,m,g j+S(I’, f)

<2T(r, f)+mT(r, f)+T(r, g)+mT(r, g)+ S(r, f).
Since by Lemma 2.2,
T(r, F)=(n+m+D)T(r, f)+S(r, ),

it follows that

(n+m+)T(r, f)<@2+m)T(r, f)+(m+21)T(r, g)+S(r, g). (2.3)
Similarly, we get

(n+m+)T(r, g)<(2+m)T(r, g)+(M+1)T(r, f)+S(r, f). (2.4)
Adding (2.3) and (2.4), we obtain

(n=m—=2){T(r, f)+T(r, g9)} <S(r, f)+S(r, g)

which is a contradiction. So ¢ = 0 and the lemma is proved.

Lemma 2.4 [9]. Let F and G be given as in Lemma 2.3. Then F =G
implies f = g.

Lemma 2.5 [6]. Let f, g are nonconstant meromorphic functions and
E3)(L f) = Eg)(L g) then one of the following cases holds:

(i) T(r, £)+T(r, g) < 2{Na(r, 0; f)+ Na(r, 0; g) + Na(r, oo; f)
+ No(r, o; g); +S(r, f)+5S(r, g);

(i) f =g;

(iii) fg = 1.

Lemma 2.6 [5]. Let f be a nonconstant meromorphic function and k be a
positive integer. Then

No(r, 0; F0)) < KN(r, oo; )+ Npy i (r, 0; )+ S(r, f).
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Lemma 2.7. Let F and G be given as in Lemma 2.3. Then
@) T(r, F)<XT(r, F')+ N(r, 0; f)+ N(r, by; f)+ N(r, by; f)

+ -+ N(r, by; f)=N(r,c; )= N(r,cp; )

— = N(r,cn; f)=N(r,0; )+ S(r, f);
(i) T(r,G) <T(r, G')+ N(r, 0; g) + N(r, by; g) + N(r, by; 9)

+ -+ N(r, b3 @) = N(r, &5 9) = N(r, ¢3; 9)

—-+=N(r,cn; )= N(r,0; g')+ S(r, 9).

Proof. By the Nevanlinna’s first fundamental theorem and Lemma 2.2,

we get

T F)=T(r. £ )+ 0w

= N(r, 0; F) + m(r, %) +0()

<N(r,0; F)+ m(r, FF!) +m(r, 0; F')+ O(1)
=T(r, F')+ N(r, 0; F) = N(r, 0; F") + S(r, F)
<T(r, F')+ N(r, 0; f)+ N(r, by; f)+ N(r, by; f)
+ o4+ N(r, by; )= N(r, c; f)—N(r,cp; f)
— o= N(r, c; f)= N(r, 0; f')+S(r, ).
Similarly, we get T(r, G).
This proves the lemma.
Lemma 2.8. Let f and g be two nonconstant meromorphic functions.

Then f"(f™ —1)f§" (g™ —1)g’ # 1, where n is a positive integer.

Proof. If possible let f"(f™ -1)fg"(g™ —1)g’ =1. Let zq be a 1-point
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of f with multiplicity p. Then z is a pole of g with multiplicity g, say, such

that(m-)p-1=(nN+m+1)g+1>n+m+2 ie, p zmm—n:?’.
Hence ©(1; f) s1-_m=1
’ n+m+3
Similarly, we can now show that
m-1
Cfysq__m-1
Ow; 1)1 n+m+3
and
2. > _m—_l
007 1)1 n+m+3’
where o is the imaginary cube root of unity.
Therefore
. . 2. ¢y q_ 3(Mm-1)
OF f)+0(w; f)+0O(0*; f)>3 T3 > 2,
a contradiction. This proves the lemma.
Lemma 2.9. Let
_ n+1— fm _ 1 |
EA A e g |
Gl — gn+l gm 1

n+m+l Cn+ 1]
where n > 2 isan integer. If F, = G, then f = g.

Proof. Let h = % If possible, suppose that h is nonconstant. Since
F = Gy, it follows that

em_ n+m+1 h"l_1
- n+1 ' hn+m+1_1'
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Since ™ has no simple pole, it follows that h — u, = 0 has no simple

( 2mik j

Hence O(uy; h) > % fork =1, 2, ..., n+ 3, which is impossible. Therefore

h is a constant. If h = 1, it follows that f is a constant, which is not the case.
So h =1 and hence f = g. This proves the lemma.

Lemma 2.10. If F; and G; be defined as in Lemma 2.9. Then

(i) T(r, F) <T(r, )+ N(r, 0; f)+ N(r, n+ T1+1; m)

—N(r, L, f™)=N(r, 0; f)+S(r, f),

(i) T(r, Gy) < T(r, G])+ N(r, 0; g) + N(r' n;Tfl; mj

=N(r, 3 ™)~ N(r, 0; g') + S(r, 9).
The lemma can be proved in the line of the proof of Lemma 2.7.

Lemma 2.11. Let F and G; be defined as in Lemma 2.9, where
n(>=m+2) is an integer. Then F = G; implies F = G;. The proof is
similar to that of Lemma 2.3.

3. Proof of the Theorems

In this section, we present the proofs of the main results.

Proof of Theorem 1.1. Let F and G be defined as in Lemma 2.3. If
possible, suppose that

T(r, F)+T(r, G") < 2{Ny(r, 0; F") + No(r, 0; G') + Ny(r, o0; F')

+ No(r, o0; G")} + S(r, F") + S(r, G').
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Then by Lemmas 2.2, 2.6 and 2.7, we get

T(r, F)+T(r, G)

<T(r, F')+ N(r, 0; f)+N(r, by f)+N(r, by; f)
+ 4 N(r, by £) = N(r, ¢ )= N(r, cp; f)
— o = N(r, & £)=N(r, 0; f)+T(r, G
+ N(r, 0; g) + N(r, by; @) + N(r, bp; ) + -+ + N(r, by )
= N(r, ¢1; 9) = N(r, &5 9) —--- = N(r, ¢p; 9) = N(r, 0; @)

< 2{Ny(r, 0; F') + Ny(r, 0; G') + N (r, o0; F') + Ny(r, oo; G')}
+N(r, 0; f)+ N(r, by; £)+N(r, by; £)+--+ N(r, by; )
= N(r,c; f) = N(r, cz; f) === N(r, cy; ) = N(r, 0; ')
+N(r, 0; g) + N(r, by; g) + N(r, bp; g) + -+ + N(r, b} 9)
= N(r, c1; 9) = N(r, ¢2; @) =+ = N(r. ¢pp; 9) = N(r, 0; @)
+5(r, f)+5(r, )

<4AN(r, 0; f)+2N(r, 0; (f —1)™) + 2N,(r, 0; f') + 4N(r, 0; g)
+2N(r, 0; (g =1)™) + 2Ny(r, 0; g") + 4N(r, oo; f)
+4N(r, o0; g) + N(r, 0; )+ N(r, by; )
+ N(r, by; £)+-+ N(r, by £) = N(r, ¢ )= N(r, ¢; f)
— o= N(r, Cy; F) = N(r, 0; ')+ N(r, 0; g) + N(r, by; 9)
+ N(r, b5 )+ -+ N(r, b; g) = N(r, ¢35 9) = N(r, ¢3; 9)

— - = N(r, ¢; g) = N(r, 0; g') + S(r, f)+S(r, 9),
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(n+m+)T(r, f)
<1IT(r, f)+2mT(r, f)+211T(r, g) +2mT(r, g) + S(r, f)+ S(r, 9)
< @1+ 2m)T(r, f)+ @2+ 2m)T(r, g)+ S(r, f)+ S(r, g).
So by Lemma 2.2, we get
(n—=m=10){T(r, f)+T(r, g)} <S(r, f)+S(r, 9),
which is a contradiction.

Hence by Lemma 2.5 either F' =G’ or F'G' = 1. Since by Lemma 2.1
F'G" £1, it follows by Lemma 2.3 and Lemma 2.4 f = g. This proves the

theorem.

Proof of Theorem 1.2. Let F; and G; be defined as in Lemma 2.9. If

possible suppose that
T(r, )+ T(r, G{) < 2{Ny(r, 0; F) + Ny(r, 0; G]) + No(r, oo; F)
+ No(r, o; G])} + S(r, F) + S(r, Gp).
Then by Lemmas 2.2, 2.6 and 2.10, we get
T(r, F)+T(r, G)

< 2{No(r, 0; F{) + No(r, 0; G{) + No(r, oo; F) + No(r, oo; G{)}

. n+m+1 .m) Y
+N(r,0,f)+N(r,—n+1  f j N(r, 0; f)

CN(r L fT - n+m+l. om
N(r,1 f )+N(r,0,g)+N(r, - ,g)

—N(r, 0; g)= N(r, ; g™) + S(r, f)+5S(r, )
<AN(r, 0; f)+2No(r, L, M)+ 2Ny(r, 0; )

+4N(r, 0; g)+ 2N,(r, 1, g™) + 2Ny(r, 0; g')
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+4N(r, oo; f)+4N(r, o0; g)+ N(r, 0; )

n+m+1 . m B CEmy Y
+N(r,—n+1 -t ) N(L T f™) = N(r, 0; £1)

i n+m+1_ m) _ .om
+N(r,0,g)+N(r,—rl+1 ' g ) N(r,L g")

= N(r, 0; g")+ S(r, f)+S(r, 9)
< @1+ 2m)T(r, f)+ @1+ 2m)T(r, g)+ S(r, f)+S(r, 9)
and so by Lemma 2.2, we get
(n=m-=10){T(r, f)+T(r, g)} <S(r, f)+5S(r, 9),
which is a contradiction.

Hence by Lemma 2.5 either F = G{ or F/G; = 1. Since by Lemma 2.8
FG{ #1, it follows by Lemmas 2.9 and 2.11 that f = g. This proves the

theorem.
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