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Let B¢(n) denote the number of t-regular bipartitions of n. In this work, we establish
several infinite families of congruences modulo powers of 2 and 5 for Bs(n). For example,
we find that for all nonnegative integers n, i and j and r € {23,47},

.92i+1 527 _q

Bs (22”4 52ty L
3

) =0 (mod 2%).
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1. Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is n. We denote the number of partitions of n by p(n).
Ramanujan proved that for every nonnegative integer n,

p(bn+4)=0 (mod 5), p(Tn+5)=0 (mod 7) and p(lln+6)=0 (mod 11).

Throughout this paper, we will use the notation

o0

(@; @)oo == [J(1 —ad®) and  fi:= (¢ ¢")ee

k=0
Recall that for an integer ¢ > 1, a t-regular partition is a partition none of whose
parts is divisible by ¢. We denote the number of ¢-regular partitions of n by b (n)
and assume b.(0) = 1 by convention. The generating function for b;(n) satisfies

00 n_ﬁ
,;Obt(n)q =0
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Let f(a,b) be Ramanujan’s general theta function given by

o0

flap)= 37 a5

n=—oo

In this notation, Jacobi’s triple product identity takes the form

fla,b) = (—a;ab)oo(—b; ab) s (ab; ab) .

Thus,
— fa) = S gt _ (56
¥(q) = fa.¢°) = ;q = P (1.1)
o) = fle)= Y ¢ = (6% (@ P (1.2)
and
f=0) = f=q,—a) = > (-1)"¢"F " = (g:9)e = fr. (1.3)

Equality (1.3) is a statement of Euler’s famous pentagonal number theorem [1,
pp. 9-12]. After Ramanujan, we also define

X(@) = (—4:¢*) -

Recently, the arithmetic of t-regular partition functions has been studied by
a number of authors. Calkin et al. [5] examined the 5-regular partition function
modulo 2 and the 13-regular partition function modulo 2 and 3 using the theory of
modular forms. Hirschhorn and Sellers [7] obtained stronger results for the 5-regular
partition function using only Jacobi’s triple product identity. For example, for all
m >0

bs(4p*m + du(pr —7)+1) =0 (mod 2),

where p is any prime greater than 3 such that —10 is a quadratic nonresidue modulo
p, u is the reciprocal of 24 modulo p?, and r # 0 (mod p). By studying p-dissection of
f(—=¢) and ¥(q), Cui and Gu [6] have derived several infinite families of congruences
modulo 2 for b;(n), where t € {2,4,5,8,13,16}. For example, for any prime p > 5
such that —10 is a quadratic nonresidue modulo p,

24 2041 _ 1
bs (4p2"‘+2n + (24 + 7p)6p ) =0 (mod 2)

and

L R2a0 1
bs (4 52ty 4 %) =0 (mod 2)

for all a,m > 0,1 <i<p—1andr e {31,79}.
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A bipartition of n is an ordered pair of partitions (71, ms) such that the sum of
all of the parts equals n, where 7 and 72 are allowed to be the empty partition. Let
p—2(n) denote the number of bipartitions of n. The generating function for p_s(n)
satisfies

S poa(n)g” = .
n=0 fl

Several mathematicians have studied the function p_s(n). For example,
Ramanathan [12] established the following analogs of Ramanujan’s classical con-
gruences for p(n) (see also [2]):

p_2(dn+2) =p_2(5n+3) =p_2(5n+4) =0 (mod 5). (1.4)

For ¢ > 1, a bipartition is said to be t-regular if none of its parts is divisible by ¢.
Let By(n) denote the number of ¢t-regular bipartitions of n. Then the generating
function of By(n) satisfies

2

ZBt(n)q" = _tz (1.5)
n=0

i
Lin [8] proved that

1132+l 1

B4 (32a+27’l + 4

) =0 (mod 3),

for all a,n > 0, and using Ramanujan’s modular equations of degree seven [9]
showed that
5.3911 1

B7 <3a+27’l + D)

) =0 (mod 3).
In [10] the same author proved that
and

The aim of this paper is to study the arithmetic properties of 5-regular biparti-
tions in the spirit of Ramanujan’s congruences for the partition function p(n).
The main results of this paper can be stated as follows.

Theorem 1.1. Let r € {29,53,77,101}. Then, for all nonnegative integers o and
n, we have
22a+2 -1

Bs (220‘“71 + 3

) =Bs(2n+1) (mod 2%), (1.6)
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Bs (22"‘+3n + %) =0 (mod 2%), (1.7)
Bs (22°‘+4n + %) =0 (mod 2?), (1.8)
Bs (5 cg2etdy 4 L 220‘;1 - 1) =0 (mod 2%), (1.9)
Bs (22“+4 4T 22&: — 1) =0 (mod 2?) (1.10)
and
Bs (22"‘+5n + %) =0 (mod 2%). (1.11)
Moreover,
Bs (5 . 92at4y 5 22a+1 1)
1

_ B5 22a+5 22a+2
o 3

2 (mod 2%) ifn=k(3k+1)/2 for some k € Z, (1.12)
|0 (mod 22) otherwise. .
Theorem 1.2. For all nonnegative integers o and n, we have
22a+2 -1
Bs (22°‘+2n + T) = Bs(4n+1) (mod 2%), (1.13)
Bs(16n +15) =0 (mod 2%), (1.14)
19 . 22a+2 -1
Bs (22a+5n + %) =0 (mod 2%) (1.15)
and
23 . 22a+3 -1
Bs (22‘”% + %) =0 (mod 2%). (1.16)

Theorem 1.3. Let r € {83,107} and s € {31,79}. Then, for all nonnegative inte-
gers o, j and n, we have

G o 11-2%etlp2
> Bs (22a+4 - 5%n + 3 ) " =4f1f2 (mod 2%),  (1.17)
n=0

=0 (mod 2%), (1.18)

Bs <22a+4 52ty L T 2o+l . 525 _ 1)
3
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S - 22a+1 . 52j+1 -1
3

Bs <2h+4 5202 4 ) =0 (mod 2%), (1.19)

> S 7.922042.5%5
Z Bs (22a+5 5% + 3 ) " =4fifs (mod 2%),  (1.20)
n=0

) . 22a+2 CE2j 1
Bs <220‘+5 52ty 4 2 3 > ) =0 (mod 2%) (1.21)
and
. . 22a+2 CE25+1 1
Bs (22a+5 5%t2y 4 L 35 ) =0 (mod 2%). (1.22)

Theorem 1.4. For all nonnegative integers o and n, we have

22a+4 o 1
B5 (22a+4n .

. ) = B5(16n+5) (mod 2%). (1.23)

Theorem 1.5. Let r € {23,47}. Then, for all nonnegative integers o, j and n, we
have

= : 23 . 20+1 . 524k _ ]
> Bs <2a+4 52tk 4 ) " =8 f1f* (mod 2%)  (1.24)
n=0

3

and

0 (mod 2%), (1.25)

« j+k
B <2a+4 52k, T P AL 1)

3

where

0 if « is even,
1 if a is odd.

Theorem 1.6. For all nonnegative integers o and n, we have

Bs(5n+2) = B5(5n+3) = B5(5n+4) =0 (mod 5), (1.26)
200 1

Bs (22% 42 ) =2° Bs(n) (mod 5) (1.27)

and
22a+1 . 5 _
3

Theorem 1.7. Let r € {11,29} and s € {7,13,25}. Then, for all nonnegative
integers o and n, we have

Bs (22‘”% + 1) =0 (mod 5). (1.28)

52042 ro2%ett _ 2
Bs|5-2 n + 3 =0 (mod 5°) (1.29)
and
5s - 220t — ]
Bs (52 -2ty 4 %) =0 (mod 5%). (1.30)
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The rest of the paper is organized as follows. In Sec. 2 we establish some pre-
liminary results, and prove our main results in Secs. 3-5.

2. Preliminaries

In this section, we give three lemmas which are helpful in proving our main results.

Lemma 2.1. The following 2-dissections hold:

fs _ fsfso | Fifiofao

i f3fa0 Ta f3 fsf20 @1)
and

fi _ fofsfsy  fifwo (2.2)

s fafiyfao qfsffo'

Proof. Equation (2.1) was proved by Hirschhorn and Sellers in [7] (see also [3]).
Replacing ¢ by —¢ in (2.1) and using the relation
fifa

we obtain (2.2). m|

(=4 —0)

Lemma 2.2. The following 2-dissections hold:
s Jaf 9 fafTs

=m0, (23)

7= )

= o 25)
and

! i +4qﬁ£§. (2.6)

G 3

Proof. Lemma 2.2 is an immediate consequence of dissection formulas of Ramanu-
jan, collected in Berndt’s book [4, Entry 25, p. 40]. O

Lemma 2.3. We have

F12 =242 fafsy + 13 f10 — 2q3ffffof10 - 132 £% f20

nrz g

and

f2fi 10 n fafiof3
f212 13 f20

fifs =2¢ + 243 f20 — 5afaf1o- (2.8)
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Proof. In [11] the authors and Sumanth Bharadwaj employ theta function identi-
ties of Ramanujan to show that

3 ffffo f2f20

o2y (5. 10N3 . 2 5. 1003 _ 4 .

(=407 )00 (=070 ) — (6547 )oc (@750 )5 = 44 f§f§f§0+2qf4f10’ (2.9)

(5 @)oo (0% 4V, + (65 (65501 = 4?2120 +2f2 (2.10)
f2f10

_.2\3 (5. 10 f1o f4f20

(—:6*)3 (=" 0" )0 — (:6°)2. (6% 0" )0 10qf2 T (2.11)

and

_ 4y Iof 49 f4f10 (2.12)

f2f8f20 f2f20'
Subtracting (2.9) from (2.10), and then using the relation

()2 (0" ") oo + (6: 033 (0" o

_ N
(4:0)oo =5
we obtain (2.7). Similarly, (2.8) follows from (2.11) and (2.12). m|
3. Proofs of Theorems 1.1-1.5
Setting ¢ = 5 in (1.5) yields
S Bs(myg" = L3 (3.1)
o fi
Combining (2.1) and (3.1), we see that
> Bs(2n+1)¢" = f2f10f5. (3.2)

7
Substituting (2.1) and (2.6) into (3.2), we have

fs 1

7222035(2n+1)q = 2f2f10f fl

fsf30 f4f1of4o) ( 4 f4fs
=2f3 ( + +4q ,
f2fro f3fo 7 f3fsfao 38
which implies that
S o f5f2 3 o 15 2 foo f2
Bs(4n +1)q + 8¢ . 3.3
Z ( 7 flgf of? f1° f1o (3:3)
By the binomial theorem, it is easy to see that for any positive integer k,
f2 = far (mod 2), (3.4)

= f3,  (mod 2%)
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and

fi = fa (mod 2°).
From (3.6) and (3.4), it follows that

[sfat iy _ f3fiofafs

I3 fa0f2 — faof? (mod 2%

and

f313 o f3
1 f10

In view of (3.7) and (3.8), we can rewrite (3.3) as

= fife0 (mod 2).

235 (4n +1)q fQJJZ;sf“ j:"’ i +8¢f3 fao  (mod 2%).

y (3.5) and (3.9), we see that

3 n = offofsfs
;35(4n+1)q =27

Substituting (2.1) and (2.6) into (3.9), we obtain

(mod 2%).

235 (4n +1)g"

14 4+4
2

o foo \f3fao ’ T Fsf0
+8¢fifo0 (mod 2%),

which yields

f3 13 frof?

n — f218f53f20
B f1%f20

fe 317
It follows from (3.6) and (3.4) that
32320 _ f3fooffofa

+38

> Bs(8n+5)q

= mod 23
T g M)
and
L3 ffE _ .
fReLl Y0 — mod 2).
110 f20 Ji )
In view of (3.12) and (3.13), we can rewrite (3.11) as

7;35(871 +5)¢" = 2f2 f;zflo ? f4

and by (3.4) we also have

f3 foffofr _ f3Fi0fs
faf? R

+8f4 +8f3f10 (mod 2%),

(mod 2).

+8f5f10  (mod 2%).

(3.9)

(3.10)

I3 13[4 (fsf%o f4f10f40> ( 14 f4fs)

(3.11)

(3.12)

(3.13)

(3.14)
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From the above two identities, we arrive at

f2f10f5

235 8n 4 5)¢" (mod 22). (3.15)

n=0 fl

Using (3.2) and (3.15), we find that for n > 0,
Bs(8n+5) = Bs(2n+1) (mod 2%). (3.16)

By (3.16) and mathematical induction, we find that (1.6) is true.
Using (3.6), we can rewrite (3.2) as

Z Bs(2n + 1)q J;lofl f5 (mod 2%). (3.17)

Employing (2.8) in (3.17) and then extracting the terms involving ¢*"*! from both
sides of the resulting identity, we arrive at

> Bs(dn+3)q" = 4f3 fro ff 10f2  (mod 2%), (3.18)
n=0
which implies that
> Bs(n+3)q" =2fx (mod 2%). (3.19)

n=0

From (3.19), it is easy to see that for all n > 0 and 1 <14 < 4,

B5(8n+7) =0 (mod 2?), (3.20)
Bs(16n+11) =0 (mod 2%), (3.21)
> Bs(16n+3)¢" = 2f5 (mod 2%) (3.22)
n=0
and
Bs(80n +16i +3) =0 (mod 22). (3.23)

Congruences (1.7)—(1.9) follow from (3.20), (3.21), (3.23) and (1.6).
We can also rewrite (3.9) as

Z Bs(4n +1)q J{lo? F3fs +8qf3 foo  (mod 2%). (3.24)

Applying (2.8) in (3.24), then extracting the terms involving ¢* from both sides,
we find that

0 2 £7 13 2 r4
> Bs(8n+1)¢" =4q ;%szf‘% + Qf;é} (mod 2*%), (3.25)
n=0
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and by (3.4) we also have

2 4
f22f5 =f4 (mod 2). (3.26)
fio

In view of (3.25) and (3.26), we have

> Bs(8n+1)¢" =24 (mod 2%). (3.27)
n=0

From (3.27) we deduce that

Bs(16n+9) =0 (mod 2?) (3.28)
and
Bs(32n+17) =0 (mod 2?) (3.29)
for all n > 0 and
> Bs(32n+1)¢" =2f1  (mod 2%). (3.30)
n=0
Congruences (1.10) and (1.11) follow from (3.28), (3.29) and (1.6).
From (3.22) and (3.30), we see that
> Bs5(80n+3)¢" =) Bs(32n+1)¢" =2f1 (mod 2%, (3.31)
n=0 n=0

and by (1.3) we have

fr= (~1)Fg"B12, (3.32)
k=—oc0

Combining (3.31) and (3.32), we deduce that

> Bs5(80n+3)q" = Bs(32n+1)q"
n=0 n=0
=2 > D2 (mod 2%). (3.33)
k=—o00

By (3.33) and (1.6), we find that (1.12) is true.

Invoking (2.2) and (2.6) in (3.14), we obtain

- 3 foo fo (fzfsfg’o fff40) ( 20 5 f30 fio
B5(8n+5)¢" =2 —q + 4q°

2 Baltn+9) foo \fafofuo " fsff) \ A fh 1

n=0

+8f¢+8f3fi0 (mod 2%),
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which yields

oo 18
> Bs(16n+5)q" = f115f1°f4 — 8¢ 3 ST f2f1100f20 +8fF +8f3fs (mod 2%).
2 5535 fuf
(3.34)
From (3.6) and (3.4), it follows that
fifisfs _ f2faftofs 3
= mod 2 3.35
T Y .
and
2 £3 45
Jil2fiofa JZJ; 15100f 20 = f, (mod 2). (3.36)
From (3.35) and (3.36), (3.34) can be rewritten as
235 161+ 5)q" fzf‘*floﬁ——s3f§0+8f§+8f§f5 (mod 2%).
o foo S ft
(3.37)
It follows that
Z Bs(16n + 5)q" o J1fiofs (mod 22). (3.38)
= J20f1
In view of (3.10) and (3.38), we deduce that for all n > 0,
Bs(16n 4+ 5) = Bs(4n +1) (mod 2%). (3.39)
By (3.39) and mathematical induction, we can deduce (1.13).
Substituting (2.1) and (2.5) in (3.18), we find that
S fs f30 f4f1of4o)
Bs(4n + 3)q" = 4f3 ( +
,;0 sl 1 fafw f3fio 7 f3fsf20
10 f f
—~10 ( 20 4 5J10 40) (mOd 24)’
ftoFio 3
which yields
oo 3 2 4 42
Z Bs(8n+T7)¢" = fa 2ol + 842 f202f5 (mod 2%). (3.40)
= fafro fio
Since
3 2
J2 Jo0)5 = fof?, (mod 2), (3.41)
fafro
it follows that
D Bs(8n+T7)q" =4faffy  (mod 2%). (3.42)

n=0
Congruence (1.14) follows from (3.42).
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Using (3.5), we can rewrite (3.25) as

f i 3
Z Bs(8n+1)q 1;34 f; 2T§0 F& (mod 2%). (3.43)
Now, employing (2.2) and (2.5) in (3.43), we see that
f10f4 <f2f8f230 f4f40>
B
Z R VY N )

f2 < 20 5f10f40) 4
2= —4 mod 2
e\ ) med?):

which implies that

Z Bs(16n + 9)¢" JL2fille 1 @ fafd  (mod 24). (3.44)
= foo  f7
By (3.44) and (3.4), we find that
> Bs(16n+9)g" =4f5fi0  (mod 2%). (3.45)
n=0
From (3.45) we deduce that
Bs(32n +25) =0 (mod 2%) (3.46)
for all n > 0 and
> Bs(32n+9)q" =4f7f; (mod 2°). (3.47)

n=0

Congruence (1.15) follows from (3.46) and (1.13).
Using (3.6), we can rewrite (3.14) as

i B5(8n+5)¢" = f2 J20

J1f2 + 81 +8f3 fio (mod 2%). (3.48)
n=0 fl()f

Invoking (2.7) in (3.48) and then extracting the terms involving ¢?"*! from both
sides of the resulting identity, we deduce that

o0 2
S Bs(16n + 13)¢" = LaglEfofn i oS a0, (349)
n—0 f4 fs 2
Substituting (2.2) and (2.5) in (3.49), then extracting the terms involving ¢*"*!
from both sides, we obtain
> Bs(32n+29)¢" = —4f10f4 =+ 8f4 f2 (mod 2%). (3.50)

o fafoo f2
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It follows from (3.50) and (3.4) that

> Bs(32n+29)¢" = 4fof7, (mod 2°). (3.51)

n=0

From (3.51) we see that
Bs(64n +61) =0 (mod 2°) (3.52)
for all n > 0 and

> Bs(64n+29)q" = 4f1f3  (mod 2°). (3.53)
n=0
Congruence (1.16) follows from (3.52) and (1.13).
Identity (3.42) implies that

> Bs(16n+7)q" =4f1f2 (mod 2°). (3.54)
n=0

From (1.13) and (3.53), we can easily see that for all integers o > 0,

- 246 11- 22a+3 -1 n 2 3
> Bs (2 nt————— )" =4Af (mod 2°). (3.55)
n=0

In view of (3.54) and (3.55), we see that congruence (1.17) is true for j = 0.

Now suppose that (1.17) holds for some j; > 0, and recall Ramanujan’s
5-dissection [13, p. 212]

f1 = fas(alq) —q—q*a"'(q)), (3.56)

where a(q) = L=t

Utilizing (3.56) in (1.17) and then extracting the terms involving ¢°"*1 from
both sides of the resulting congruence, we find that

> ) 11.92a+1 .52 _q
> Bs (22a+4 5% (504 1) + 3 > ) q"
n=0

7. 22a+1 . 52j+1 _ 1) N
q

_ Z Bs (22a+4 . 52j+1n +
3
n=0

= 4f5f35(a*(q) + ¢* + ¢*a"*(q)) (mod 2°). (3.57)

Therefore,

> Bs (226“+4 5T (5n 4+ 2) +
n=0

7. 22a+1 . 52j+1 -1 "
3 q

_ Z Bs (22a+4 L5200 4

n=0

11 - 920+1 . 52(j+1) -1 .
3 ) 1

=4f1f2 (mod 2%).
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Thus, (1.17) is true for j + 1. Hence, by mathematical induction congruence (1.17)
holds for all 7 > 0, and thanks to (3.56), congruences (1.18) and (1.19) follow easily
from (1.17) and (3.57), respectively.

It follows from (3.47) and (1.13) that for all integers a > 0,

S 2a+5 7.2 -1 2 3
ZB5 2"‘+n+f q" =4f7fs (mod 2°),
n=0

which is the j = 0 case of (1.20). The rest of the proof by mathematical induction
is similar to that of (1.17), so we omit the details. Congruences (1.21) and (1.22)
follow immediately from the proof of (1.20).

Substituting (2.1), (2.6) and (2.8) in (3.37) and then extracting the terms involv-

ing ¢?"*! from both sides of the resulting identity, we deduce that
- 383 fa0 | S35 Fi0f3 4 3
B5(32n 4+ 21)¢" = 2 +8 —8q¢fio+8f1f
2 Bo(B2m -+ 20)0" = 255y + 87— Safio + 81
2 2
1
= 2%%—4 +8ff = 8qflo +8f1f5 (mod 2%).

5

(3.58)

Now, employing (2.2), (2.6) and (2.7) in (3.58) and then extracting the terms which
involve ¢2", we arrive at

- n _— f22f4f120f5 3 r4 4 3 4
> Bs(64n +21)q" = 2722002 — 8¢3 3, + 815 + 8f1f; (mod 2%).
2 faof
(3.59)
By (3.37) and (3.59), we deduce that for all n > 0,
Bs(64n + 21) = B5(16n+5) (mod 2%). (3.60)
Congruence (1.23) follows from (3.60) and mathematical induction.
Invoking (2.3) in (3.40), we see that
- foof3 (floffo 5f10f820) 2 f30 4
B5(8n+T7)q" = —2q + 8¢“== (mod 2%),
2 Btsn+ 0t =4 (e = 20T fhp (mod )
which implies that
- n_ o2 f10fifi ooy 1
> Bs(16n+15)¢" = —8¢ = 82 fif*  (mod 2%). (3.61)
220

n=0
Employing (2.4) in (3.44), then extracting terms of the form ¢?"*! and using (3.56),
we obtain

S n_ JSBIER
7235(3271 +25)¢" = 8f10f4ff
=8f1'fs

= 8f5f21§l (a(q) —q— qQa_l(q))14 (mod 2%).  (3.62)
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Expanding the right-hand side of (3.62) and then extracting the terms involving

5nt4we see that

23.22.5 -1
235 160n 4 153)q ZBg) (25 5n +7> q"
n=0 n=0 3

=82 f1 £ (mod 2%).
Employing (2.4) in (3.50), we deduce that

23-2° — 1
235 64n + 61)g ZB5 (26 3 )q"

q

n=0
= 842 f104f40f1 =82 /1 /M (mod 2Y).
5 f20
Utilizing (3.6), we can rewrite (3.37) as
S Bs(16n+5)¢" = jf‘;*’;lo Fifs — 84* fly + 8FA+8£3f5 (mod 2.
n=0

Substituting (2.8) in (3.65), we obtain

& 7. B \
mod .
2 B34 0)0" = A + 275 % - (mod 21

By (3.25) and (3.66), we see that for n > 0,

Bs(32n +5) = Bs(8n+ 1) (mod 2%).

In view of (1.23), congruence (3.67) implies that for all a > 0,
200+4 _

Bs <2M+5(20n +19) + 3

By (3.63), we rewrite (3.68) as

n=0 3

Using (3.6), we can rewrite (3.58) as

7;35(3211 +21)¢" = 2??0

Now, employing (2.7) in (3.70), we deduce that

- n J1f3 fof ffflo
Bs5(64 —
7;0 5(64n 4 53)¢" = —4q 77 2

It follows from (3.49) and (3.71) that for n > 0,

Fofs + 841 = 8afio +8f1f3  (mod 27).

(mod 2%).

Bs(64n + 53) = Bs(16n 4 13)  (mod 2*).

71) = B5(8(20n+19) + 1) (mod 2*).

- 23.2%t4.5 1
Z B (22‘”7 -bn + L) q" =8¢°f1f3* (mod 2%).

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
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Therefore,
Bs(256n 4 245) = Bs(64n + 61) (mod 2*).

In view of (1.23), (3.64) and (3.72), we find that

> 23. 22045 _ ]
> Bs (22°‘+8n + f) " =82 f1f* (mod 2%).
n=0

Combining (3.61), (3.63), (3.64), (3.69) and (3.73), we obtain

= . 23205k
Z Bs (2°‘+4 -5Fn + 3 ) ¢" =8¢°f1fa*  (mod 2%),
n=0
which is the j = 0 case of (1.24).
Now suppose that (1.24) holds for some j > 0. Using (3.56), we have

o0

) 23 .9a+1 . 52j+k _ 1
a+4 2j+k n
;JBS (2 52tk 4 ; >q

=8¢ ffa*
=8¢ fa' fos (alq) — ¢ — ¢°a"'(g))  (mod 2%).

Then

Z Bs <2a+4 -520TR (50 + 3) +

n=0

23. 20+ . 52k _ 1\
3 q

oo N
ZB5 (2a+4 B2kl 19 - 2+ Z GHk4+1 _ 1) p
n=0

8fsf1*
8fs. a2 (a(q) —q —q*a ()" (mod 2%),

and therefore

> Bs (2‘”4 52HRFL (5 1 4) +

n=0

19 .90+l 52i+k+1l _ q .
3 q

00 atl | m2(j41)+k
=Y B <2a+4 520+ +k,, | 2372 '53(j Tk — 1) .

n=0
=8¢°f1f3* (mod 2*).
So (1.24) holds. Also, from (3.75) we see that
> o 23.90+1 52tk _q
Z Bs <2a+4 52tk (50) 4 3 ) ¢" =0 (mod 2%)
n=0

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)
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and

=0 (mod?2%). (3.77)

> Bs (2“*4 52tk (5p 4 1) +
n=0

23 . 2oz+1 . 52j+k -1 .
3 q

Congruence (1.25) follows from (3.76) and (3.77). This completes the proof.

4. Proof of Theorem 1.6

Congruence (1.26) follows readily from (1.4) and (3.1).
For any positive integer k, it is easy to see that

f,f = fsr  (mod 5). (4.1)

Utilizing (4.1), one can rewrite (3.2) as

oo 2
Z B;(2n+ 1)¢" = 2fi20 (mod 5),
s f
which yields
Bs(4n+3) =0 (mod 5) (4.2)
for all n > 0 and
S n_of3
> Bs(dn+1)¢" =225 (mod 5). (4.3)
n=0 fl
It follows from (3.1) and (4.3) that for n > 0,
Bs(4n+1) =2 Bs(n) (mod 5). (4.4)

Congruence (1.27) follows from (4.4) and mathematical induction. Replacing n by
4n + 3 in (1.27) and employing (4.2), we deduce (1.28).

5. Proof of Theorem 1.7

One of the Ramanujan’s modular equations of degree five [4, p. 259] can be written
in the equivalent form

¢*(—¢°) x(=¢°)
ST — 1 =44—F—=. 5.1
70 -0 o
By manipulating the ¢-products, one can easily arrive at
/i N1
—q) =1L, —q) = . 5.2
P(—q) 7, x(—q) T (5.2)

In the view of (5.1) and (5.2), we see that

Voo Lt

7 e R (5:3)
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Thanks to (5.3) and (4.1), we can rewrite (3.2) as

i2B5(2n+ 1g" = 5f—‘i — fiQO
P B
f2
=5f1f2 — =2 (mod 5%). (5.4)
f3

From (3.56), (3.1) and (5.4),

> 2B5(2n +1)¢" = 5f fas(alg) — 4 — a0 (q)

n=0
- i Bs(n)¢®"  (mod 5?). (5.5)
n=0
Equating the terms involving ¢!%"+3 ¢'%"+9 and ¢°"**! on both sides of (5.5), we
find that
Bs(20n +7) = B5(20n+19) =0 (mod 5%) (5.6)
for all n > 0 and

> 2B5(10n+3)q" = =5 f5f — Y Bs(5n+ 3)¢*" !
n=0

n=0 =

= —5fsf35(a(q) — ¢ — ¢*a" (q))°

- i Bs(5n+3)¢>" ™ (mod 5%). (5.7)

n=0
Now, equating coefficients of ¢19"*2 ¢4 and ¢!o"*8 in (5.7), we obtain
Bs(100n + 23) = B5(100n + 43) = B5(100n +83) =0 (mod 5%).  (5.8)

Employing (2.7) in (5.4) and then extracting the terms involving even powers of g,
we arrive at

o] 2
> 2Bs(n + 0" = 52afofly + 15) ~ 25 (mod ).

n=0 1

Using (3.1), (3.56) and (4.1) in the above congruence, we obtain

> Bs(An+1)q" = 5qfafiy +2 Y Bs(n)g"
n=0

n=0
= 5q/fiofs0(alq®) —¢* — q*a ' (¢%))
+2) Bs(n)g" (mod 5%). (5.9)
n=0

Thus,
B5(20n + 9) = 2B5(5n+2)  (mod 52) (5.10)
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and
Bs5(20n+17) = 2Bs(5n 4+ 4)  (mod 52) (5.11)

for all n > 0 and

> Bs(20n+13)¢" = —5f5fi0+2 ) Bs(5n+ 3)q"

n=0 n=0

= —5f10fi0(a(q®) — > — ¢*a (¢))?

+2iB5(5n+3)q" (mod 5?). (5.12)
n=0
From (5.12) it follows that
Bs(100n + 33) = 2B5(25n +8)  (mod 57), (5.13)
Bs(100n + 73) = 2B5(25n + 18)  (mod 52) (5.14)
and
Bs(100n + 93) = 2B5(25n + 23)  (mod 52). (5.15)

By (5.10), (5.11) and mathematical induction, we see that for all n > 0 and o > 0,

20 13-22> — 1 “ 9
Bs (5-2% + ﬁ =2 B5(5n + 4) (mod 5 ) (5.16)
and
20 7 220 — 1 « 2
Bs(5-2 n—!—# =2 B5(5n+2) (mod 5 ) (5.17)

Congruence (1.29) follows from (5.16), (5.17) and (5.6).
Now, by (5.13) and mathematical induction, we deduce that

25. 2% 1

Bs (52 2% 4 3

) = 2°B5(25n +8) (mod 5?). (5.18)

Also, by (5.14), (5.15) and mathematical induction, we have

2 o2« 55-2% —1 @ 2
Bs (5% -2*n + — )= 2“B5(25n + 18)  (mod 5°) (5.19)
and
2 o2« 3522+ —1 @ 2
Bs | 5% -2%n + — = 2%B5(25n +23)  (mod 5%). (5.20)

Congruence (1.30) readily follows from (5.18), (5.19), (5.20) and (5.8). This
completes the proof.
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