
4K HEVC Video Processing with GPU Optimization on Jetson TX1
Tobias Kammacher, Matthias Frei, Matthias Rosenthal

Learn how to capture and process 4K video (HEVC encoding, scaling, mixing) on the TX1 and how to integrate the powerful GPU for complex tasks. 4K video previously required custom hardware or high-
performance desktop processors. The heterogeneous system architecture of the TX1 allows to process these tasks on a single chip. The main challenges lie in the optimal utilization of the different hardware

resources of the TX1 (CPU, GPU, dedicated hardware blocks) and in the software frameworks.

Streaming Use Case and Video Capture Complex Video Processing and GPU OptimizationVideo Processing with GStreamer

Color
Space

Conversion
Scaling

Picture
in

Picture

Audio/Video
Mux

Encryption

Transport
Protocol
Packer

Forward
Error

Correction

Recorder

Video
Input

Ethernet

Output

Audio

2nd Video Source

H.264/H.265
Encoder

Gbps Mbps

In order to stream video a set of functions has to be applied to the captured video
input. These functions have to perform sufficiently to process data rates of multiple
Gbps in real time (for 4K video).

Captured video frames are passed to user space, where they can be processed by
any application supporting the V4L2 API. Nvidia primarily supports GStreamer, which
is a pipeline-based multimedia framework. Any audio/video processing application
can be put together by combining plugins. Each plugin performs one well-defined
task.

For complex video processing tasks, the Gstreamer plugins that are available by
default may not perform sufficiently. In our use case we want to scale and mix a 4K
and a 1080p video source. This can be done with the GStreamer compositor plugin,
but the CPU load is very high and the resulting performance is around 1 FPS. Using
OpenGL accelerated plugins, the performance can be improved to around 7 FPS.

The TX1 provides 12 MIPI CSI-2 lanes which are capable of processing up to 1.5 Gbps
of video input data per lane. The TX1 provides powerful hardware-accelerated video
scaling/conversion, a H.264/265 CODEC and the CPU/GPU for video processing.

Video
Input
12 x
CSI-2
Lanes

Max
1.5 Gbps each

Video CODEC
H.265 2160p30
H.264 2160p30
VP8 2160p30

Video Output
HDMI 2.0
4096x2160 60Hz

GPU
256 Core
Maxwell
CUDA, OpenGL

CPU

Gigabit
Ethernet

WIFI
802.1ac 2x2

Image: anandtech.com

In terms of software involved, video capturing is handled by the Video4Linux2 (V4L2)
framework as part of the Linux kernel. Three primary drivers are necessary:

• Camera Host Driver: tegra_vi2 (or vi2)
• Image Sensor / Subdevice Driver: tc358840
• Video Buffer: videobuf2

For our use case we had to capture 4K and 1080p simultaneously from two HDMI
sources. The Toshiba TC358840 is a HDMI-to-CSI bridge IC, which can convert 4K
HDMI inputs to 8 lanes CSI-2. Officially MIPI CSI-2 only supports up to 4 lanes in
parallel. Therefore it was necessary to expand the drivers and implement a 4+4 lane
«dual link» configuration.

On the basis of the Linux4Tegra kernel, «Avionic
Design» has developed a driver for capturing
1080p60 on the TK1. We have ported the capture
driver to the TX1 and also adapted the sensor
driver from the predecessor IC to the tc358840.
This allows us to capture 4K and 1080p60 at the
same time and further process the video with the
TX1 platform and our custom HDMI input board.

HW

SW

Nvidia provides hardware-
acceleration for video
scaling, format conversion
and rendering to HDMI out.
There are also general-
purpose plugins that use
OpenGL to provide GPU
acceleration for scaling,
conversions and rendering.

The method used for passing video buffers through the pipeline has a severe impact
on the overall performance. These methods are called IO-modes:

• MMAP: Memory allocated by driver and memory-mapped into user space
• Userptr: Memory allocated by user space and passed to driver (DMA required)
• DMAbuf: Memory allocated by one driver; accessible from a different driver

V4L2
Source

Format
Convert

Render
HDMI

Gstreamer Pipeline A simple example for a GStreamer pipeline is
capturing video from a HDMI source, (possibly
performing a format conversion) and rendering it.

Alternatively the Userptr mode can be used, which has the advantage that buffers
are passed between GStreamer plugins without the need to copy the data.
Therefore CPU load is reduced drastically. An additional advantage is, that the X-
Server video sink can be used, which is able to directly process the UYVY format
(thus no format conversion is necessary).

gst-launch-1.0 v4l2src io-mode=2 ! 'video/x-raw, format=UYVY' !

nvvidconv ! 'video/x-raw(memory:NVMM), format=I420' ! nvoverlaysink

gst-launch-1.0 v4l2src io-mode=3 ! 'video/x-raw, format=UYVY' !

xvimagesink

A few examples for different methods have been compared. The first one uses the
MMAP mode and profits from the hardware-accelerated format conversion and
rendering. The disadvantage is that the video data needs to be copied to the
proprietary NVMM memory and can then not be modified easily.

R/W MMAP Userptr DMAbuf

xvimagesink
30 fps
100% CPU

20 fps
70% CPU

30 fps
30% CPU

20 – 30 fps
100% CPU *

videoconvert &
nvoverlaysink

Not supported
6 fps
180% CPU

30 fps
50% CPU

6 fps
180% CPU

nvvidconv &
nvoverlaysink (with
NVMM)

26 fps
80% CPU

30 fps
80% CPU

Not supported Not supported

nvvidconv(NVMM) &
nvvidconv &
xvimagesink

18 fps
85% CPU

20 fps
80% CPU

Not supported Not supported

GStreamer Version 1.2.4 1.2.4 1.8.0 1.8.0

100% CPU = 1 CPU core
* Some Buffers missed

Pipeline
IO Mode

For the example above for capturing 4K video and rendering it, an overview over the
CPU load is given in the table below. The best performance is achieved using the
Userptr mode and xvimagesink.

V4L2
Source

Format
Convert

Render
HDMI

Gstreamer Pipeline

Scale
Mix
(PiP)

V4L2
Source

To improve performance even
more, a custom plugin for mixing
two video sources can be
implemented using the GPU.

TX1

CPU GPU

DRAM 4GB

Global
Mem

Shared
Mem

Local
Mem

Regs

Memory Controller
Cache

L1 I/D
Cache

L2 Cache

Regs

On the TX1 platform the CPU and GPU share DRAM and all
memory access is handled by a common memory controller. The
different methods for accessing memory from the GPU/CUDA are:

• Unified Virtual Addressing
• Single virtual address space for CPU, GPU
• Memory copy required (Duplication)

• Zero Copy (Memory Mapped)
• Pinned memory accessed via GPU DMA

• Always uncached

• Unified Memory (Managed Memory Pool)
• Automatically migrate data between host and device
• Cache operations

An example plugin was implemented in C/CUDA for mixing a 1080p overlay on top of
a 4K video stream. The implementation was tested with different memory access
methods. The results for processing a single frame are given below:

Unified Virtual Addressing *
Step 1: cudaMemcpy() to GPU (12.5 ms)
Step 2: Execute kernel (9-11 ms)
Step 3: cudaMemcpy() to host (7.2 ms) -> Total: 30 ms

Zero Copy (Memory Mapped)
Step 1: cudaMallocHost(): Allocate memory on host **
Step 2: Execute kernel (23.5 – 25.7 ms) -> Total: 25 ms

Managed Memory
Step 1: cudaMallocManaged(): Allocate shared memory **
Step 2: Execute kernel (9-11 ms)
Step 3: synchronize with CPU (0.2 ms) -> Total: 10 ms

* Upload 4K + 1080p, Download 4K
** One time only operation

The example shows that the memory access method has a noticable influence on
performance and that the best method depends on the use case. For mixing two
video streams, Managed Memory is the preferred method. On the other hand for
while for overlaying a fix logo onto a video stream, UVA may be preferrable because
the logo image has to be uploaded to the GPU only once.

Color
Space

Conversion
Scaling

Picture
in

Picture

Audio/Video
Mux

Encryption

Transport
Protocol
Packer

Forward
Error

Correction

Recorder

Video
Input

Ethernet

Output

Audio

2nd Video Source

GPU

HW Block

CPU

H.264/H.265
Encoder

Gbps MbpsIn conclusion we found
that high data rate video
processing tasks are best
handled by the GPU.
Encoding can be done very
efficiently by the
hardware-accelerated
CODEC and for additional
functionality the CPU
provides the highest
flexibility at low data rates.

Zurich University of
Applied Sciences

High Performance
Multimedia and
Data Acquisition
Research Group

Our Custom HDMI-to-CSI converter
Board that plugs into the TX1

Data Flow for Processing / Streaming Video Input

Blog: blog.zhaw.ch/high-performance
Website: ines.zhaw.ch
E-Mail: rosn@zhaw.ch / kamm@zhaw.ch

Check out our Driver Implementation on Github:
github.com/ines-hpmm

