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Abstract— The last years have seen a proliferation of the use 
of wireless communication in different applications. The systems 
range from simple 2-nodes communication to complex mesh 
systems capable of covering vast areas. Debugging such systems, 
especially large mesh networks can be a daunting task. There are 
few tools that can help. In this paper, we present and discuss the 
results of a monitoring tool we are developing. The system is 
modular, based on a deterministic multicore processor. In the 
proof of concept, each monitoring probe is equipped with several 
IEEE802.15.4 transceivers, making it possible to monitor several 
wireless channels at the same time and to implement a mitigation 
of diversity issues in the monitoring.  The transceivers could also 
be used to generate test frames for the system under test if 
necessary. The parallel architecture makes it easy to add new 
modules and to synchronize the sniffers with the most 
appropriate methods.  In this phase of the work, we used DCF77 
to synchronize the nodes. The collected data is sent to a common 
host for analysis with appropriate tools. The results show that the 
architecture is appropriate and that synchronization should be 
improved.  

Keywords—802.15.4; ZigBee; microcontroller; XMOS; parallel 
processing; antenna diversity; sniffer; mesh networks;6LoWPAN; 

I.  INTRODUCTION AND MOTIVATION  
Properly debugging wireless mesh networks such as those 

based on IEEE802.15 can be a very challenging task. Reliable 
observation of the communication frames is needed. Near a 
good software analysis tool, a front-end for the reliable capture 
of the traffic is vital. Several tools exist, but they are limited to 
the immediate surroundings of the transmitting nodes. Mesh 
networks can cover large areas. The propagation difficulties 
and variations associated with wireless communications dictate 
the use of several monitoring devices at the right places. The 
monitoring probes must be fast enough to capture as many 
important details as possible. To allow a correct time 
interpretation, those monitors should also have the same time 
reference. 

We present a monitoring tool we are presently developing 
and discuss the first results. The system is based on a multicore 
processor. Each sniffer is equipped with many transceivers, 
giving it the ability to monitor several wireless channels at the 
same time and to mitigate RF diversity issues. The transceivers 

can also be used to generate test frames for the system under 
test. The parallel architecture makes it easy to add new 
modules and to synchronize the sniffers with the most 
appropriate methods. The collected data is sent to a common 
host for analysis with appropriate tools.  

In our teaching and R&D work in the past years, we have 
often been confronted to the problem of good, easy to deploy 
and reliable wireless sniffers. With existing tools one also often 
misses important details because monitoring is slow or because 
of interference or multipath issues.  

• It is important to equip our teaching laboratories with 
a device where students can observe the traffic of the 
different wireless systems that are used. The nodes 
can be placed at crucial locations and the sniffed data 
sent on a main server for visualization by all that have 
the authorization. This will obsolete the need of 
student having an individual sniffer tool. It will also 
enable all to see the same thing. 

• In the case of our research activities, a tool that can 
easily be configured to deal with new wireless 
systems will have much value. The coverage of large 
areas will also help in the developing of mesh network 
strategies and help make the right decisions for the 
energy optimization of low power nodes. 

• Because of the nature of wireless, repeaters are often 
needed. Determining their position is no easy task. A 
scaled down version of the distributed sniffer will also 
be useful for the installation/debugging of wireless 
networks in different industrial and commercial 
applications.  

The rest of this document is divided as follows:  

• A short paragraph will give references to similar 
works or tools. 

• We will present the design in general terms, showing 
how modularity has been achieved. 

• We will describe the proof-of-concept system. 

• The last part will deal with the results of some tests. 
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II. PREVIOUS WORKS 
There have been several attempts to develop tools for 

monitoring wireless traffic. An interesting analysis can be 
found in reference [14]  

There are some commercial tools that can be used to 
monitor wireless WPAN traffic. However, we do not know of 
any commercial instrument that can really achieve a distributed 
monitoring of WPAN with the flexibility that we need.  

References [12, 18] list some systems and analysis tools 
that can sniff several 802.15.4 (or Ble) channels. They rely on 
existing USB dongles. Several dongles can be connected on a 
hub in order to allow a local monitoring of many channels. The 
time synchronization is achieved by using a dongle to generate 
a master time. These tools might do for monitoring devices that 
are in the vicinity of the hub. But they do not support 
distributed monitoring. 

Various chip manufacturers such as Texas Instruments, 
Atmel or Microchip also have tools that can be used to monitor 
1 channel of 802.15.4 traffic, or Ble traffic [3,4,11]. 

The commercial device in [19] allows a broadband 
monitoring of all Ble channels, but does not allow distributed 
sniffing. 

In some research projects, elements that go in the direction 
that interests us have been developed. However, they do not 
have the flexibility or reliability or precision we require 
[14,15,16].  

Some projects have been done at our own Institute, to 
prepare the way for this work [13,20,21,22]. 

The closest to what we need comes from [17]. They have 
built elements that can be used for distributed sniffing, 
achieving a synchronization in the order of 1µs with the use of 
PTP. This however requires appropriate network switches in 
the Ethernet network. The monitoring probes rely of FPGA 
hardware, which somehow restricts the flexibility.  

III. REQUIREMENTS 
Some requirements have been identified as important for 

the whole system.  

Needed is a modular architecture allowing monitoring 
probes to be placed wherever is needed, in order to “sniff the 
communication” and report it back. 3 main elements are 
required for each monitoring probe: 

• One or several elements capable of reading the 
information exchanged by communicating nodes. This 
will normally be a receiver. In order to deal with 
different WPAN systems, it should be possible to 
easily replace the radio or even to mix radios to allow 
the simultaneous monitoring of different WPAN.  
This could be useful to observe the impact of 
interferences in the same environment.  

• The system should allow the easy integration of one 
or more elements for time synchronization. This 
flexibility will make it possible to synchronize the 

sniffers using the most appropriate method in a given 
setting.  

• A way of sending data to the central analysis tool. 
Optionally, a way of receiving data/commands from 
that tool. This can be wired, wireless or even be a 
logger. 

Each probe should support the monitoring of several 
channels and allow a channel to be monitored on several 
receivers. This will help counter some RF effects like diversity. 

IV. GENERAL CONCEPT 
The general concept can be summarized as a “network of 

sniffers” (NS). Each sniffer (SF) is made up of one or more 
monitoring probes (MP), allowing it to monitor identical 
channels, different channels or a mixture. The probes are built 
as peripherals of a parallel processor (sometimes called XMOS 
here). Several XMOS processor boards can be connected 
together on the same sniffer in order to increase the number of 
monitoring probes. Each sniffer has a local timer that keeps 
time for each probe. Each sniffer also incorporates a network 
time synchronizer (TS) that allows the different timers to be 
synchronized. Each sniffer sports a communication channel 
that is used to send collected data to the data processing server 
(PS) for computing and visualization. The processing server 
can also send configuration information and commands to the 
different elements in the sniffer network. In many cases, the 
data will be transported via Ethernet. It is however also 
possible to use another communication interface for the host or 
even to save data on local mass storage. 

The monitoring probes are communication transceivers. 
They can be exchanged to support different wireless standards 
or even mixed to allow the simultaneous monitoring of 
different WPAN communication systems. Especially targeted 
are systems in ISM bands (2.4 GHz and 868 MHz), 802.15.4 
based schemes (6LoWPAN, ZigBee …) Ble, proprietary 
systems. 

The synchronization module can also be adapted according 
to the environment. For instance, GPS modules could be used 
if the reception of the signals is good enough. One could also 
implement PTP (IEEE1588) in each sniffer if this is fitting with 
the network that is used for the data transfer. In this work, we 
decided to try the use of the DCF77 radio clock.  Thanks to the 
use of low frequency carrier, it is a good option for areas that 
are poorly covered by GPS. 

Central to the whole concept is the parallel processor 
architecture developed and commercialized by the firm XMOS 
[5]. That architecture allows a deterministic use of the CPU 
resources in parallel processes. This is crucial for the tasks 
needed in the sniffer and the flexibility that we want.  There are 
several versions of that processor architecture that would allow 
sniffers with more or less resources to be built. It is also 
possible to connect several XMOS together and use their 
special features for data or time sharing. 

The distributed sniffer architecture described above allows 
many options. For a practical proof of concept, we built a 
system to monitor IEEE802.15.4 networks. We based it on a 
development board from XMOS, available on the market [6]. 
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That board has some restrictions, but is good enough for the 
first steps in implementing the network sniffer. That system is 
continually improved. The results will be used at a later stage 
for the implementation of a better version.  

We will first describe the main elements of the basic sniffer 
and then present some tests results. 

 
Fig. 1. Block diagram showing the monitoring system as a whole. 

A. The XMOS processor board 
Every sniffer is built in a modular way, equipped with 1 or 

more slicekit boards (SK). The slicekit we used integrates a 
XS1-L16-128 XMOS processor [5,6]. It can accommodate 4 
slices. A slice is a hardware part that can be plugged into a SK 
board. Every SK board has 4 slots to extend the board with 
slices. There is also an additional interface for programming or 
debugging. In this project we have used the following slices: 

• The Ethernet slice (max one per sniffer). This is used 
to enable an Ethernet connection and send the sniffed data to 
the server.  

• The time synchronization slice (max one per sniffer). 
This is used to synchronize the different sniffers. In a first 
version, the time synchronization uses a DCF77 receiver. 

• The radio slice (any number per sniffer). Radio slices 
contain an 802.15.4 radio, used to listen to the wireless 
communication traffic. Every radio slice can monitor only 1 
channel at the time. The radio slice in this project use the 
Atmel RF233 transceiver [2]. They were developed in an 
earlier work [10]. 

SK boards can be cascaded. The second SK can be plugged 
into the special slot of the first one through its debugging / 
programming jack. In this way, it is possible to chain an 
arbitrary number of boards. Since each of these boards has free 
slots for two more radio slices, it is possible to add as many 
radios to a sniffer as channels that should be sniffed. It is also 
possible to sniff a channel with more than one radio slice. 

A large number of sniffers can be connected to the server. 
In practice, we can have 255 since we use 1 byte in the 
protocol for sniffer identity. This can easily be increased by 
modifying the protocol and allowing for say 2 address bytes. It 
is evident that the network needs to be fast enough to allow the 
transfer of all sniffed data.  

The user is completely free to set a single sniffer with 
several radio slices up and to place sniffers wherever he wants, 

as long as the needed Ethernet connection and signal for 
synchronization are available.  

An IPv6 network is used to deliver the sniffed data to the 
server [9]. IPv4 is also possible for the XMOS processors. This 
should be good enough for most cases where an Ethernet 
network is available. It will also be possible to implement 
another physical communication channel for the link between 
sniffers and the host controller (CAN, WLAN, Wireless …). 
What would be needed is the corresponding slice and 
appropriate firmware. 

A Linux computer can be used as server. It should run 
python and Wireshark. The data received from the sniffers is 
processed and piped. In Wireshark, this pipe is set as network 
interface and every processed packet appears on the well-
known Wireshark GUI. Wireshark can handle large amounts of 
data, comes with powerful filter functions and will present the 
data in an acceptable way. 

B. The XMOS processor 
The 32-bit microcontroller we used has two physical cores, 

each with 8 logical cores. Every core can execute independent 
instructions.  

Fig.2 shows the block diagram of the XS1-L16-128-QF124. 
The two physical cores effectively run in parallel, while the 
eight logical cores on them run in time slices, organized by a 
hardware scheduler. This guarantees a minimum number of 
MIPS per logical core, which defines the XMOS as a 
deterministic system. The minimal number of MIPS per logical 
core is equal to the total available 1000 MIPS divided by the 
number of active logical cores. However, no logical core can 
get more than 125 MIPS (8 of 16 cores active).  

 

 
Fig. 2. Block diagram of the XMOS processor used 
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C. Start-up 
When a sniffer is powered on, the time synchronization part 

starts receiving the DCF77 time signal. While waiting for a 
valid DCF time to be received, a local timer is started. It is used 
to timestamp the arriving packets. At the same time, the 
Ethernet part connects to the server whose IP address is read 
from the settings on the sniffer. 

Upon receiving a wireless frame, the receiver gets a time 
stamp from the time synchronization slice and delivers the 
received data together with the time stamp to the Ethernet slice. 
The Ethernet slice sends all the received data to the processing 
server using TCP. Finally the server converts the raw data and 
the corresponding time stamp to blocks that can be understood 
by Wireshark. This is written in a pipe on which Wireshark is 
listening. 

D. Synchronisation 
Synchronizing the sniffers is an important aspect. The goal 

is a time synchronisation with 1µs (or less) accuracy. Although 
this could be achieved with GPS, we chose to work with 
DCF77 in order to gain some experience with that method and 
compare it with others.  The main advantage of DCF77 is the 
fact that the signal can be received in places where it is not 
possible to get GPS signals. DCF77 is basically very accurate 
(1 second lost in every 20’000’000 years [8]). It is not 
worldwide available, but covers most of Europe (2’000 
kilometers around Frankfurt am Main [7]). Similar systems 
exist in other areas.  The DCF signal delivers a rising edge 
every second.  

Several problems appeared during the implementation of 
the DCF time synchronisation. One of them is the jitter of 
about 10ms on the rising edges of the second pulse that is used 
to adjust the internal timer of a sniffer (our own measurements) 
Reference [8] gives 30ms while considering other parameters. 
Despite its accuracy, the DCF77 signal reception can be marred 
with delays. One reason is the architecture used by low cost 
receivers. Propagation issues also play a role.  It is clear that 
this affects the synchronisation of sniffers.  

There are ways to minimize the effects of this problem. For 
example with a digital signal processing (DSP) based solution. 
This solution delivers an accuracy of ± 250 µs [23].  

We tried an averaging method to reduce the effect of jitter. 
However, in this phase of the work, we decided to first 
concentrate on the architecture issues of the distributed sniffer 
network.  

 
Fig. 3. Difference of the second start edge between two independent DCF 

receivers (Min: -9.987 ms, Max: 9.983 ms). 

E. Data structure 
When data is received it will be saved in a local buffer 

immediately, in order to remain ready for the next packet. The 
radio process can receive 3 frames (3 receivers are connected). 
Data are kept in a buffer that is large enough to allow the use of 
TCP. (See Fig.6 Data flow) 

Every received packet is stored in the frame buffer with the 
structure shown in Tab. IX (packet structure table). 

The timestamp contains the whole DCF time of the 
received packet. The value of the internal timer is used to get to 
the microsecond level. ED is the Energy Detection information 
that can be read from the radio. LQI gives information about 
the quality of the reception. As it is possible to add more 
sniffers in a distributed network, a sniffer and radio identity is 
added to have information about who received the displayed 
frame. The whole results in an overhead of 13 Bytes for every 
packet. 

V. MEASUREMENTS AND RESULTS 
In order to test the system, measurements were made at 

several levels.  

In a first category, tests were done on the SK board to 
measure the performance of the embedded system. Since time 
stamping and the discharge of the receiver FIFO is done under 
firmware control, it is important to establish the limits of the 
system. This helps to determine the local time stamping delays 
in function of the number of receivers connected and shows 
how many receivers one could realistically expect to attach to 
current hardware. 

In a second category of tests, different configurations of the 
sniffers and monitoring probes were tried. Data was captured 
and sent to the monitoring PC for display using Wireshark. 

A. General set up 
For testing purposes a wireless (802.15.4) node was 

programmed to send 2 types of payloads. In one case, frames 
as short as 5 bytes were used. In a second case, frames built 
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with the maximum of 127 bytes were used. In both cases, test 
could be made with a minimal Inter Frame Spacing of 228 µs. 

Although frames as of 5 bytes do not seem to make much 
sense, we used them to observe the reaction of the system to 
frames coming at high speed. The minimal frame spacing of 
228 µs was dictated by the limits of embedded system node 
used to generate the frames.  

B. Single radio unloading performance. 
The receiving process runs on one soft core of the SK 

processor. It can react directly to the end-of-frame event. It 
immediately starts unloading the frame, over SPI. The SPI 
clock speed was set to 6.25 MHz.  This speed is sufficient to 
get the packet and additional information before a next frame 
arrives (receiving time includes the writing of data in the local 
buffer). 

Payload IFS (µs) unloading time (µs) 
5 Bytes 228  27  
127 Bytes 228  222.5  
TABLE I.    

 

At maximal payload length of 127 Bytes the XMOS needs 
almost all the IFS time to read out the packet via SPI. An 
overlap with the next incoming packet is not a problem as long 
the readout is faster. 

 
Fig. 4. Block diagram showing the monitoring system as a whole. 

C. Single radio unloading multi-frame performance. 
Multi-frame performance tests were made by sending 

several frames containing a payload of 5 bytes. The same was 
also done with frames containing a payload of 127 bytes. 
Frames were separated by 228µs. The packets were sent to the 
sniffer on channel 26. 10’000 frames were sent and the number 
of received frames counted. 

We used our sniffer to collect the results. 2 other sniffers 
found on the market were used to monitor the same channel. 

The Atmel AVR RZ USBstick sniffer [3] and the TI 
CC2540 sniffer [11]  

The results are shown below (Table II). 

Frames 
sent 

Payload 
(bytes) 

xmos 
Sniffer 

TI sniffer Atmel 
sniffer 
 

10000 127 10000 5000 9998 
10000 5 10000 10000 1179 
TABLE II.   

 

It can be clearly seen that the 2 other sniffers (from TI and 
Atmel) are not capable of unloading the received frames fast 
enough. For that reason, some frames are lost. 

At maximal payload, the TI CC2540 seems to drop every 
second packet. The AVR RZ USB Stick has troubles with the 
short inter frame interval when small frames are sent. The 
XMOS sniffer received all packets as expected. 

D. Multi-radio configuration. 
Extending the sniffer with one additional radio is easily 

done. One additional logical core is needed to run the 
corresponding process. It runs independently of the other 
processes. 

In the worst case configuration, two (or more) radio on the 
same sniffer will receive the same packet at the same time 
(same 802.15.4 channel). The two receiving processes 
influence each other on two points. Firstly, both have to take 
the timestamp at (nearly) the same time. Secondly, they have to 
copy the packet into the data buffer. This can be a source of 
delays. 

E. Time delay in time stamping for multi-radio configuration. 
When a frame arrives on a sniffer, the start-of-frame 

interrupt is activated and a timestamp is immediately saved. It 
is later attached to the radio frame. To save the timestamp 
immediately, the receiving module asks the synchronization 
module for time information. Saving the actual timestamp 
takes less than 1µs. What happens if several radios receive a 
packet at exactly the same time and the receiving tasks ask the 
synchronization module for a timestamp? We attempted to 
create such a scenario and investigate the behavior of the 
system.  

Two receivers on the same sniffer were configured to 
monitor the same channel so that every packet on this channel 
should be registered twice (once on each radio). The 
measurements on Fig. 5 shows the duration from the request to 
save the actual time (rising edge) until the time is saved (falling 
edge). 

Receiver0 (yellow) requests the timestamp before receiver1 
(green). The timestamp for receiver0 is saved immediately, but 
receiver1 has to wait until the synchronisation module has 
processed all data for receiver0. The delay between the time 
stamp request of receiver1 to the completion of the request 
amounts to about 2.55µs.  

A5 bytes frame is unloaded via SPI in 27µs  
 (scale: 100µs/div)  
For 127 byte frame, 222.5 µs are needed 
 

Frame 
Rx Start 
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Fig. 5. Block diagram showing the monitoring system as a whole. 

This can lead to a difference of 1 to 3 us (worst case, 
because of microsecond rounded values) between the recorded 
timestamps for the two packets. It could also happen that 
receiver0 requests the timestamp first; this depends on the 
interrupt signal of the radio. The rising interrupt signals of the 
receiving radios are delayed by up to 1µs (different physical 
cores). This leads to the following worst case timestamp shift 
for the same packet on the same sniffer: 

MAX_SHIFT = Max time stamp completion time + Max 
interrupt delay = 3µs + 1µs = 4µs 

A measurement with 10’000 sent packets that were sniffed by 
two radios on the same sniffer is shown on table III 

Timestamp 
shift (µs) 

Number 
of packets 

Percentage  

± 0 0 0.00  
± 1 7185 71.85  
± 2 2814 28.14  
± 3 0 0.00  
± 4 1 0.01  

TABLE III.   
 

The table shows the local delay of time stamps taken for  
the same packet with the same sniffer but different radio 
modules. The results prove the calculation for the 
MAX_SHIFT. 

It seems logical, that the duration of the second timestamp 
should not take more time than two times the duration of the 
first timestamp. In fact, there is an overhead due to the XMOS 
internal communication which claims some time delay. 
Receiver1 is on another physical core than the synchronization 
module and receiver0. Therefore more internal communication 
and synchronization of the two processes across the physical 
cores is necessary for the timestamp of receiver1. 
Consequently, the timestamp completion of receiver1 takes 
1.35µs in minimum and that of receiver0 only 830ns. 

These delays can be reduced by optimizing the time 
stamping routine and by placing all radios on the same logical 
core. This will be done as work on the project progresses.  

F. Multi-radio configuration performance 
Timestamp that is saved at a start-of-frame event is copied 

and attributed to a frame only if the equivalent end-of-frame 
interrupt is seen. The packet is read out of the radio. The 
timestamp, sniffer information and information about reception 
quality are added to the data (13 Bytes overhead). The whole 
information block is then copied into the frame buffer (Fig.8). 

The packet is copied in the buffer before a new packet 
arrives. In the case of 127 bytes the start-of-frame interrupt 
arrives just after the copy (more time needed for larger frames). 
If more radios are added, the process will overlap an incoming 
packet. This is not a problem as long the end-of-frame does not 
occur before the packet is copied. In the case of 127 bytes, that 
happens more than 4ms later. 

The receiving procedure was tested with good results. 
10’000 packets were sent and received in both radios. This is 
shown by the total of received packets which is twice the 
number frames sent by the test generator. 

Packets 
sent 

Payload 
(Bytes) 

XMOS Sniffer (reception 
on both radios) 

10000 127 20000 
10000 5 20000 

TABLE IV.   

 

G. Multi-radio configuration: TCP Buffer performance 
All the data that is unloaded from the radios must be saved 

in a bigger buffer. The data buffer is a process that can be 
called by the radio software module. It gets all the packets and 
stores them in a 32kB buffer. The data buffer then calls the 
TCP process to send it out as fast as possible. 

Moving the packet in the data buffer must be faster than the 
receiving of new packets in the radios. Fig. 9 shows the time 
needed to copy packets received from 2 radios at the same 
time. The packets are updated with the extra information 
described in Packet structure. 

The XMOS memcpy instruction is very fast as soon as it is 
started. That is useful in the case of large frames. In the case of 
small packets, the processor is also busy communicating and 
waiting for the corresponding process to be ready. 

H. Sniffer total time performance 
The total time performance of the sniffer, from the end-of-

frame interrupt until the packet is in the Data Buffer ready to 
be sent by the TCP was measured. TCP is considered fast 
enough to handle the throughput of two receiving radios 
(2*250 Kbit/sec). 
 

The tests were made with the testing node sending as fast as 
possible (IFS of 228µs). All radios are listening on channel 26. 
The mean of all measurements were taken. In the case of two 
radios the worse value was taken. 
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Frame 
size 

(Bytes) 

Number of 
Radios on 

Sniffer 

Mean Process 
time 

Time between 
frame end 
interrupts 

5 1 26.8 µs 393 µs 
127 1 222.5 µs 4.28 ms 

5 2 34 µs 393 µs 
127 2 232.4 µs 4.28 ms 

TABLE V.   
In both cases, the sniffer has no problem to receive the next 

incoming packet. It is possible to add more radios to the system 
without having troubles reading the packet and storing it in the 
Data Buffer. 

Sending data to the host for display could also be a 
bottleneck. The data sender is connected to the TCP Slice of 
the XMOS processor. As soon as a radio delivers a packet in 
the Data Buffer, it will take the data and send it to the server. In 
case of heavy wireless traffic, problems can occur if the server 
is slow answering the request (> 1 ms). Especially in the case 
small payload (tested with 5 Bytes) the data buffer will 
overflow. This problem was solved by collecting the data and 
sending bigger packets of up to 1024 Bytes together to the 
server.  

I. Sniffer performance: Time difference between different 
probes. 
A frame received by different sniffers should theoretically 

show the same timestamp. However, due to the jitter of the 
DCF synchronization and the delay at time stamping, there is a 
difference. In order to verify this, 4 sniffers were placed in 4 
different rooms (Fig. 10). After all of the 4 sniffers received a 
valid DCF77 time, some traffic between the nodes in room0 
and room1 was recorded. All of the 4 sniffers received the sent 
packet. According to the timestamp, the frame was first 
received by sniffer3, then sniffer2. The displayed order relates 
to the way data were processed by the TCP part and piped to 
Wireshark. The last sniffer that received the package was 
sniffer1. The maximum difference between all the generated 
timestamps for this frame amounts to 2.532ms. This difference 
can be as high as 10ms as mentioned earlier in this document. 
It is mostly caused by the jitter in the DCF77 modules. 

Timestamp [s] Delta last [ms] Frame 
number 

Sniffer 
identity 

433.082443 … 0 X 
459.981012 26’898.569 1 2 
459.979224 -01.788 1 3 
459.981720 02.496 1 0 
459.981756 00.036 1 1 
460.017856 36.100 2 Y 

Min. timestamp 459.979224 s   
Max. timestamp 459.981756 s   
Delta for frame 1 2.532 ms   
Delays between sniffers   

J.   Diversity 
Since the sniffers can all accommodate several monitoring 

probes, it is possible to monitor one RF band on several probes 
of the same sniffer. If the distance between the antennas of the 

probes is properly chosen, it is possible to see frames that could 
otherwise not be seen by one probe because of multipath RF 
effects.  

 In an example (Table VI), both radios of Sniffer0 are set 
to the same channel. One node sends a COAP request. The 
other node responds with an acknowledgment that is only 
received correctly on one radio. Together with the time 
information the packet can be still identified. The energy level 
also shows that the signal of the Node in Room1 is very weak 
(data from Node1 to Node0). 

K.   Using one sniffer to monitor several channels 
The different probes that are on one sniffer can also be 

used to monitor a network working on different channels or 
networks active on different channels. 

In an example (Table VII), channel 25 has ZigBee traffic 
while channel 26 is used by a 6LoWPAN device sending a 
COAP information. Data from both networks are seen on the 
monitoring PC. 
 
Delta 
time 

Src. Dest. Info Ch ED 

0.208902 0.0001 Broadcast ZigBee 
Command 

25 48 

0.050025 0.0003 Broadcast ZigBee  
Command 

25 12 

0.944524 bbbb:: 
20c:29.. 

1111:: 
e2c9.. 

Coap,  
Confirmable 

26 31 

TABLE II.   
 

L.   Monitoring a large area with several sniffers 
Table VIII shows measurement data recorded with 4 

sniffers. In the upper half of the table, there is a request that is 
send from a node in room0 to a node in room 1. This request is 
seen three times, namely by every sniffer that is in the vicinity. 
The energy detection (ED) value is much higher for the sniffer 
in the room where the sending node was placed. 

In the lower half of the table, one can see the answer of the 
receiving node. The answer was also seen by the sniffer in its 
room and the sniffers in neighbour rooms. Here also, it is 
logical that the sniffer in the same room records the highest 
ED value. 

This measurement shows not only the traffic between the 
nodes, but also where they could be placed. If a mesh network 
is operating, it is possible to find a bottle neck in the network 
and of course it is possible to sniff the whole range of the 
mesh network because an arbitrary number of sniffers could 
be placed where needed. 

Delta time Src. Dest. Size Info ED FCS 
0.1106300 Node0 Node1 94 Get 33 True 
-0.000001 Node0 Node1 94 Get 38 True 
0.055322 Node1 Node0 121 Ack 0 True 
0.000002 Node1 Node0 126 data 0 False 

TABLE I.   
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Delta 
time 

Src. Dest size Info ED FCS 

0.106108 Node0 Node1 94 Confirmable 
Get 

0 True 

0.005096 Node0 Node1 94 Confirmable 
Get 

7 True 

-0.003968 Node0 Node1 94 Confirmable 
Get 

31 True 

0.051889 Node1 Node0 121 ACK, 2.05 
Content 

0 False 

0.003451 Node1 Node0 121 ACK, 2.05 
Content 

0 True 

0.003967 Node1 Node0 121 ACK, 2.05 
Content 

12 True 

TABLE III.   
 

VI. CONCLUSIONS AND FUTURE WORK 
We have designed an architecture based on a parallel 

processor that has the needed flexibility for implementing a 
network of distributed sniffers. This architecture should allow 
the reliable monitoring of wireless traffic in simple and 
complex low power communication networks. The flexibility 
of the system opens the door to easy addition of modules 
suitable to different WPAN protocols. Likewise, different 
timing systems can be used for synchronization in order to 
match the requirements of the environment of use. The DCF77 
system used here needs some optimization for a better time 
synchronization (ideally under the microsecond).  

 

 

 

Future work will focus on 2 aspects:  

• We will first optimize the system that has been 
built, such as to understand the best trade-offs for 
a future version. 

• We will then rebuild the architecture to take 
advantage of the lessons learned. 
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Fig. 6. Data flow 

TABLE IV.  PACKET STRUCTURE TABLE 

 

 

 

 
Frame with 5 bytes: 27 us  

Frame with 127 bytes 222.5 us 
 

Fig. 7. Timing for radio receiving of short or long frames. 

 

 

Lenth Timestamp Data LQI Sniffer Nr Radio & Channel Nr ED and FCS 
1 byte 8 bytes <128 bytes 1 byte 1 byte 1 byte 1 byte 

Radio with local 
buffer 

Data Buffer 32k 

Data Sender 

TCP  

frame start SPI read packet SPI read packet 
 

frame start 
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Copy of a 5 bytes frame on both radios:  
4.8 us 

 
Copy of a 127 bytes frame on both radios: 
12.95 us 

Fig. 8. Timing performance with 2 radios 

 
 
5 bytes + 13 bytes Overhead: 10.9 us 
 

 
 
127 bytes + 13 bytes Overhead: 15.9 us 

Fig. 9. Buffer timing performance 

 

Copy in framebuffer 

Get Timestamp 

Copy in framebuffer 

Get Timestamp 
start next packet 
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Fig. 10. Test rooms and placement of sniffers and nodes 

 

 

 

 

 

 

Fig. 11. Xmos slice kit 

 

 

 

 

 

 

 

 

 

 

 

 

  

Room with 
Sniffer 0 

Room with 
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Room with 
Sniffer 1 

Room with 
Sniffer 2 
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        Room 
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