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Abstract A one-dimensional numerical model for the simulation of organic semiconduc-
tor devices such as organic light-emitting devices and solar cells is presented. The model
accounts for the energetic disorder in organic semiconductors and assumes that charge trans-
port takes place by a hopping process between uncorrelated sites. Therefore a Gaussian
density of states and the use of the Fermi-Dirac statistics are introduced. The model includes
density-, field- and temperature- dependent mobilities as well as the generalized Einstein rela-
tion. The numerical methods to solve the underlying drift-diffusion problem perform well in
combination with the novel physical model ingredients. We demonstrate efficient numerical
techniques that we employ to simulate common experimental characterization techniques
such as current-voltage, dark-injection transient and electrical impedance measurements.
This is crucial for physical model validation and for material parameter extraction. We also
highlight how the numerical solution of the novel model differs from the analytical solution
of the simplified drift-only model.

Keywords Numerical simulation · Organic light-emitting device · Small signal analysis ·
Extended Gaussian disorder model

1 Introduction

While organic LEDs have started to succeed commercially in displays and lighting, further
progress in terms of efficiency and lifetime is still needed. One valuable approach is to elab-
orate and refine physical models and numerical methods. Theoretical models for describing
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charge transport and recombination have been introduced (Scott and Malliaras 1999; Crone
et al. 2000; Blom et al. 1996; Ruhstaller et al. 2001, 2003) several years ago. Electrical
characterization of devices and materials is essential as it helps to elucidate the underlying,
physical models of charge carrier transport in disordered, organic semiconductors. Besides
the commonly used current-voltage curves (van Mensfoort et al. 2008), dark-injection mea-
surements and impedance spectroscopy offer additional ways to validate models for organic
LEDs and extract model parameters. By means of a one-dimensional numerical OLED model
we are able to simulate these different operating conditions. In this paper, we present numer-
ical methods in the physical and numerical framework of reference (Knapp et al. 2010) and
solve directly for both the steady- and transient state. Further, we conduct a numerical small
signal-analysis for OLEDs. The drift-diffusion equations are solved in a coupled manner.
The disordered nature of organic semiconductors affects the density of states (DOS), the
mobility model, the Einstein relation as well as charge injection. These novel physical model
ingredients are integrated in the numerical solver.

2 Transport model

2.1 Governing equations

To simulate charge transport in organic semiconductor devices we use the continuum
approach and solve the semiconductor drift-diffusion equations (Van Mensfoort and
Coehoorn 2008). Since our analysis is restricted to hole transport, we can describe
Poisson’s (1) by the electric potential ψ and the hole densities p. The elementary charge
is denoted by q , the permittivity by ε. To describe the conservation of charge carriers, we
use the continuity (2)

Fψ(ψ, p) = ∇ · (ε∇ψ)− q(−p) = 0, (1)

Fp(ψ, p) = −∇ · Jp = q
∂p

∂t
. (2)

The hole current in (3) can be split in a drift current due to the electric field and a diffusion
current

Jp = −qpμp∇ψ − q Dp∇ p. (3)

The mobility μp is field-, temperature- and density-dependent. The diffusion coefficient Dp

is also density-dependent and described by the generalized Einstein relation.

2.2 Physical model of organic semiconductors

As opposed to inorganic semiconductors transport in polymers and small molecules is
assumed to occur via a hopping process between uncorrelated sites. Therefore the density
of states of mobile charge carriers for organic semiconductors is represented by a Gaussian
DOS

NGauss(E) = N0√
2πσ 2

exp

[
−

(
E − E0√

2σ

)2
]

(4)

with the site density N0, the width of the Gaussian σ and the reference energy level E0. In
contrast to inorganic semiconductors where in unconfined systems parabolic bands describe
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the DOS, organic semiconductor are more likely to become degenerate (Preezant et al. 2002).
Thus the Fermi-Dirac statistics is applied instead of the Boltzmann approximation. The shape
of the Gaussian DOS in (4) affects the mobility of charge carriers and the diffusion coeffi-
cient. Therefore a generalized Einstein relation must be considered (Roichman and Tessler
2002) for disordered organic materials. Van Mensfoort and Coehoorn (2008) introduced
a density-dependent enhancement function g3(p, T ) which is multiplied to the diffusion
coefficient

D(p, F, T ) = kT

q
μ(p, F, T )× g3(p, T ). (5)

Especially at high carrier densities and high disorder parameter σ , the generalized Einstein
relation differs significantly from the classical Einstein relation D = μkT/q .

Further, the mobility model consists of a field-, temperature- and density-dependent part.
This model is called Extended Gaussian Disorder Model (EGDM) (Van Mensfoort and
Coehoorn 2008; Pasveer et al. 2005) and can be written as a product of a mobility pre-factor
μ0(T ) and the density-enhancement function g1(p, T ) and the field-enhancement function
g2(F, T ) as given in (Van Mensfoort and Coehoorn 2008):

μ(p, F, T ) = μ0(T )× g1(p, T )× g2(F, T ) (6)

where p denotes the density, F the electric field and T the temperature. The enhancement
functions g1(p, T ), g2(F, T ) and g3(p, T ) are nonlinear and increase more strongly, the big-
ger the disorder in the organic material is. For the application of the EGDM three parameters
are to be specified in case of single-carrier transport: the site density N0, the width of the
DOS σ , and the mobility pre-factor μ0(T ).

3 Numerical method

The drift-diffusion equations (1–2) with the organic model ingredients are discretized with
the finite volume method, the current expression (3) with the Scharfetter-Gummel discretiza-
tion (1969). The resulting system of discretized equations is then solved in a coupled manner
with Newton’s algorithm (Knapp et al. 2010) for the transient as well as the steady-state case.
In the coupled algorithm (Newton) the components (1–2) are solved simultaneously for all
degrees of freedom. For the steady-state the time-dependent right-hand side of (2) is set to
zero. For the transient case the implicit Euler method is applied to solve the time-dependent
equations. We assume Dirichlet boundary conditions for the density and the potential for all
simulation examples presented here.

Regarding the small-signal analysis, the steady-state voltage V0 is modulated with a
sinusoidal voltage of amplitude V ac and with angular frequency ω: V = V0 + V aceiωt .
The potential ψ and the hole densities p can be expanded into a steady-state and harmonic
term under the assumption of the small-signal analysis

ψ(x, t) = ψ0(x)+ ψac(x)eiωt (7)

p(x, t) = p0(x)+ pac(x)eiωt (8)

where the ac components are complex-valued. To solve the following small-signal equations,
the solution of the dc problem for V = V0 needs first to be calculated. The above quantities
(7–8) are then inserted into the semiconductor equations (1–2) which can be transformed
into a linear system of equations for the unknown ac components ψac and pac. From the
solution of the linear system the ac current density J ac

p can be determined. The displacement
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Fig. 1 Energy level diagram of
the symmetric hole-only device:
The HOMO energy level is
aligned with the work functions
of the anode and cathode and
allows a good hole injection

Table 1 Simulation parameter
set of the hole-only device for the
three operating conditions

Parameter Value Units

N0 8.5 × 1026 m−3

σ 0.15 eV

μ0 (T ) 10−10 m2V−1s−1

p (0) 0.5 × N0 m−3

p (L) 0.5 × N0 m−3

current J ac
D = ε ∂Eac

∂t is added to the current component which results in a spatially constant
total current density J ac. From the complex admittance Y = J ac/V ac, the small-signal
capacitance C and conductance G can be obtained. This method offers a fast and efficient
calculation of the admittance as for each frequency only a linear system of equations for the
ac components needs to be solved.

4 Simulation results

4.1 Device structure and simulation parameters

In the following a symmetric hole-only device as shown in Fig. 1 is simulated under three
different operating conditions. The highest occupied molecular orbital (HOMO) of the device
is aligned with the work functions of the anode and cathode. Therefore, we obtain a well-
injecting anode and cathode. The high barrier for injection of electrons from the cathode
to the lowest unoccupied molecular orbital (LUMO) level essentially leads to a hole-only
device.

In Table 1 we list the parameters used in the following simulations. The hole charge den-
sities at the anode and cathode (p(0) and p(L)) are set to half of the density of chargeable
sites N0, i.e. the Gaussian DOS is half-filled at either side due to the energy level alignment
at the electrodes.

4.2 Steady-state current-voltage curves

In a first step, we calculate the steady-state for different voltages and obtain current-voltage
characteristics as shown in Fig. 2. We compare the steady-state results for the EGDM and
the constant mobility case with the analytical solution which is given by Mott and Gurney
(1938)

J (V ) = 9

8
εε0μ0

V 2

L3 (9)

where L denotes the length of the device, V the applied voltage and μ0 the mobility. All of
the analytical solutions in the following are obtained by neglecting the diffusion and only
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Fig. 2 Current-voltage curve for a hole-only device for a constant mobility and diffusion coefficient, the
EGDM and the analytic solution (Mott-Gurney)

taking the drift in (3) into account. We observe the effect of diffusion especially at low
voltages where the current is increased. In the regime of high bias the analytical solution
and the constant mobility case merge whereas the EGDM solution moves away due to the
field- and density-dependence of the EGDM and the slope of the EGDM curve is increased.
Generally, the current density of the EGDM is higher due to the enhancement functions
g1(p, T ), g2(F, T ) and g3(p, T ). The EGDM has recently been successfully applied to cur-
rent-voltage curves by van Mensfoort et al. (2008). A comprehensive analysis of the effects of
the EGDM and its components for the steady-state is conducted in reference (Van Mensfoort
and Coehoorn 2008).

4.3 Dark-injection transients

We now turn to the analysis of the time-dependent response to a step voltage. We perform
transient simulations for the same device as above shown in Fig. 3. The dark-injection tran-
sients are simulated from 2 to 12 V in steps of 2 V. For the initial rise of the transient response
the analytical solution is described by Helfrich and Mark (1962)

J (t) = 2Lεε0

μ

1

(2τSC F − t)2
(10)

where the space-charge-free transit time is defined as τSC F = L2

μV . In the SCLC at the transit
time τt = 0.786τSC F the maximum current is obtained and reaches a value of J (τt ) =
1.21Jc where Jc stands for the stationary current from Mott-Gurney’s law (9). The value of
J (τt ) = 1.21Jc is marked in Fig. 3 with a star. Note that the slope of the line connecting these
stars is minus two which can be explained with (9). The relatively low charge mobility of
organic semiconductors leads to space-charge limited transport. In this regime the transient
response exhibits a cusp that relates to the transit time and thus the charge mobility. This has
been the motivation for carrying out dark-injection transient experiments.

We notice that the peak position for the constant mobility case coincides well with the
analytical solution, especially at high bias where the drift current is the dominant part of
the total current. At low voltage the agreement becomes worse due to the diffusion current.
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Fig. 3 Dark-injection transients for a hole-only device for a constant mobility and diffusion coefficient, the
analytical solution and the generalized Einstein solution (GER). The transients were simulated from 2 to 12 V

Fig. 4 Dark-injection transients for a hole-only device for the EGDM at different voltages

By introducing the generalized Einstein relation (GER) we see an increased current. However,
the position of the peak is not remarkably shifted.

If we also consider the enhancement functions for the EGDM as shown in Fig. 4, the peak
positions shift to shorter times due to the enhanced mobility and the current density is vastly
increased. In the EGDM case no formulas are available that would relate the peak position in
the current with EGDM mobility parameters. Therefore, we have to rely on numerical fitting
of the model parameters.
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Fig. 5 Frequency dependence of the normalized capacitance at 0.5 V in a hole-only device for a constant
mobility and diffusion coefficient, the EGDM and the analytical solution

4.4 Impedance analysis

As a third step, we investigate the response of the device to a voltage modulation. We obtain
therefrom the impedance Z(ω)which is related to the admittance Y (ω) as Y (ω) = 1

Z(ω) . The
admittance is decomposed into an equivalent parallel conductance and capacitance Y (ω) =
G(ω) + iωC(ω). We analyze the normalized capacitance at 0.5 V in Fig. 5 and at 8 V in
Fig. 6. In both, the low and the high voltage case, we varied the energetic disorder parameter
σ which is the main EGDM model parameter. We compare our numerical simulation results
with the analytical solution for the drift-only case. For the small signal analysis the analytical
solution for the impedance Z(ω) is given by Shao and Wright (1961)

Z(ω) = 6

g0(iωτ0)3

[
1 − iωτ0 + 1

2
(iωτ0)

2 − exp (−iωτ0)

]
(11)

where τ0 = 4
3

L3

μV and g0 = 3
τ0

ε
L . We also calculated the solution for the constant mobility

case. The drift-only model provides a quite accurate solution for the constant mobility case
at 8 V. At 0.5 V however, the drift-only model differs significantly from the constant mobility
model. We observe that the oscillations at high frequencies are damped out when diffusion is
present. Also due to diffusion, the capacitance at low frequencies is increased from the typical
value 3

4 Cgeom of the drift-only solution, even more in case of the EGDM. In the EGDM the
peak position is additionally shifted to higher frequencies.

4.5 Trap charge dynamics

In admittance spectroscopy an enhanced capacitance that differs heavily from Fig. 6 at low
voltage can often been observed. The increased capacitance can be modeled by introducing
an additional trap density of states or trap level. In the following, we look at the effect of a
single trap level that is added to the HOMO. In Fig. 7 the additional hole trap level is indicated
on top of the HOMO. For simplicity, we assume a constant mobility model and neglect the
enhancement factors g1(p, T ), g2(F, T ) and g3(p, T ). The trap dynamics are described by
the following equation
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Fig. 6 Frequency dependence of the normalized capacitance at 8 V in a hole-only device for a constant
mobility and diffusion coefficient, the EGDM and the analytical solution

Fig. 7 Illustration of a hole trap
level on top of the broaden
HOMO and LUMO

∂pt

∂t
= cp(Nt − pt )− ept (12)

where c is the capture and e the escape rate, pt the density of trapped holes and Nt the total
number of trap states. The trapped charge carriers also appear in Poisson’s equation which
is then of the following form:

Fψ(ψ, p, pt ) = ∇ · (ε∇ψ)− q(−p − pt ) = 0, (13)

The charge continuity equation (2) is also extended by the trap dynamics (12). The small-
signal analysis is then conducted for the trap enhanced equations. Additional parameters for
trap dynamics are shown in Table 2.
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Table 2 Additional simulation
parameters for the inclusion of
slow and fast traps, other
parameters remain the same as
shown in Table 1

Parameter Value Units

cslow 10−20 m3/s

cfast 10−18 m3/s

Etrap E{HOMO} + 0.2 eV

Ntrap 1024 m−3

Fig. 8 Frequency dependence of the normalized capacitance in a hole-only device with fast and slow traps
at 2 V

We define fast traps in the following way: quasi-equilibrium between trapped and free
carriers is maintained, the transit time is longer than the trapping time whereas for slow
traps the transit time is shorter than the trapping time. In Fig. 8 we show the simulated nor-
malized capacitance for slow and fast traps at different frequencies. Slow traps enhance the
capacitance at low frequencies while fast traps follow the dynamics of the trap-free case.

For determining the mobility of charge carriers in an organic device the negative differ-
ential susceptance representation is commonly used where

−
B(ω) = −ω(C(ω)− Cgeom) (14)

describes the negative differential susceptance with Cgeom corresponding to the geometrical
capacitance. In this representation a peak frequency fmax can be found which is linked to the
transit time of the carriers and thus to the mobility. For the assumption of drift-only transport
this leads to

μ = 1.85
fmax L2

(V − Vbi )
. (15)

It is important to see that the peak positions in Fig. 9 and therefore the apparent mobilities
in this representation vary strongly if slow or fast traps are present. In the presence of fast
traps there is a quasi-equilibrium between the trapped and free carriers. The trap dynamics are
on a different time scale. Therefore the the peak position is shifted to lower frequencies, thus
leading to a lower apparent mobility. However, for slow traps the result changes significantly
at low frequency. We observe an increased capacitance at low frequency while the apparent
mobility does not change a lot.
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Fig. 9 Frequency dependence of the negative differential susceptance at 2 V for a hole-only device with fast
and slow traps

5 Conclusion and outlook

We have investigated the influence of the EGDM, its components and the Gaussian density of
states on the current-voltage curves, the dark-injection transients and the frequency response
for a polymer device. All three characterization curves change significantly, if the disor-
der model ingredients are taken into account. Since we also show the analytical and constant
mobility solutions, the deviations from simplified models are clearly visible and show the lim-
itations of the analytical solutions obtained by the simplified drift-only model. The numerical
model can be extended by a trap density of states. In this paper we have shown the influence of
traps on the capacitance and the negative differential susceptance. This numerical framework
provides the basis for further model validation and parameter extraction. Model parameters
will be efficiently extracted from measurements with the aid of optimization algorithms.
The parameters obtained for one operating condition will be checked for consistency with a
different operating condition. Our numerical framework can straightforwardly be applied to
more general multilayer devices that feature bipolar transport and exciton dynamics (Perucco
et al. 2010).
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