-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk
provided by ZHAW digitalcollection

Evaluation of Query Processing with Impala
for Mixed Workloads

Melanie Imhof, Jonas Looser, Thierry Musy, Kurt Stockinger
Zurich University of Applied Sciences
Switzerland

1 Introduction

In this paper we evaluate the query performance of Impala for mixed query
workloads in a multi-user multi-node environment. In particular, we show the
performance results of multi-dimensional point, range and aggregation queries
both for numerical and string attributes. The workloads are inspired by a real
commercial application.

2 Experimental Setup and Data Loading

In this section we describe the system architecture as well as the query
workloads that we used for our measurements.

2.1 System Architecture

Our benchmarks are based on a 4-node Impala system as shown in Figure 1.
Each of our nodes has 192 GB of main memory and 32 cores and a 1 TB disk.
Note that in our experiments the master can also be considered as worker 0 and
takes part in parallel computations.

@’%a,:_sdamp

@’%%gaap

Master
Hive Metastore Worker 1 Worker 2 Worker 3
Impala Statestore Workload/Querles
l
cloudera cloudera cloudera cloudera
IMPALA IMPALA IMPALA IMPALA

@l%a,:_sdaap

TableZ L Llls

@l%a’:_sdaap

Table 1 Table 1 Table 1 Table 3
Namenode Datanode Datanode Datanode

Hadoop Distributed File System

Figure 1: System Architecture.

https://core.ac.uk/display/159415243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2 Data Sets

Our data set consists of one table with 38 different numerical and string
attributes. In order to perform scalability measures, we generated tables with
different sizes, i.e. different numbers of rows, and loaded them into HDFS and
Impala by using the default replication factor of 3. The results are shown in Table
1.

File and Table Number of Raw Data Approx. Size Storage Time to
Names Rows Size of CSV- in Impala Format in Create
File Impala Parquet
Table2
parquet100k 100000 33 MB 14.11 MB PARQUET 2.55s 3.87s
parquetlm 1‘000°000 332 MB 133.73 MB PARQUET 15.61s 7.19s
parquet10m 10000000 3.36 GB 1.30 GB PARQUET 165.62s 37.55s
parquet100m 100000000 33.9GB 12.98 GB PARQUET 1130.28s 322.31s
parquet300m 300000000 102 GB 38.95 GB PARQUET 3178.91s 825.76s

Table 1: Size of data sets and load times.

Let us now analyze these results in more detail. Colum 2 shows the number of
rows of the generated table ranging from 100’000 to 300°000°000. Column 3
shows the size of the generated raw stored as CSV-files ranging from 33 MB to
102 GB. Column 4 shows the size of the corresponding data stored in Impala
using the “parquet” storage format, i.e. column-wise storage. We can observe a
compression of about a factor of 3. The last two columns show the time to load
the CSV-file into HDFS and afterwards creating the “parquet” tables. For instance,
loading the 300 million-rows-table into HDFS takes 3178.91 seconds, which
corresponds to roughly 53 minutes. Creating the parquet takes 825 seconds,
which corresponds to roughly 14 minutes.

Note that the loading time into HDFS highly depends on the performance of the
disk subsystem and needs to be put in perspective. For instance, reading the
entire 102 GB file and writing it into HDFS takes 53 minutes, which corresponds
to an insert rate of 32 MB/second. The write performance of the disk is 40.2
MB/second and the read performance is 126 MB/second. Since HDFS needs to
distribute data to other needs as well as read and write the data, an insert rate of
32 MB/second is nearly optimal.

2.3 Query Workloads

For each query we have randomly chosen 1 to 4 attributes (dimensions) out of
38. In addition, we have randomly chosen the query range (normalized between
1 and 100) as well as the string attributes. For each experiment we generated
100 different queries. A representative subset of the query workload is given in
Table 2.

1 Time measured on a 4 node cluster with a default replication factor of 2 for external CSV-files
2 Time measured on a 4 node cluster with a default replication factor of 3 for parquet tables files

Description Example: 1 Dimensional Example: 2 Dimensional
R Integer and SELECT count(*) FROM SELECT count(*) FROM
float range <tableName> WHERE al <27 <tableName> WHERE a2 > 4727
queries AND a3 =19
S String queries SELECT count(*) FROM SELECT count(*) FROM
<tableName> WHERE s1 LIKE <tableName> WHERE s2 LIKE
"%ahx%' '%index' AND s3 LIKE '%j8%'
G Group by- SELECT al, count(*) FROM SELECT a2, a3, count(*) FROM
queries <tableName> GROUP BY al <tableName> GROUP BY a2, a3
M Mixed queries SELECT parse_url(s1, 'HOST'), SELECT s2, parse_url(s1, '"HOST'),

including R, S
and G queries

count(*) FROM <tableName>
WHERE al = 3 AND s2 LIKE
'%86%' GROUP BY parse_url(s1,
'HOST')

count(*) FROM <tableName>
WHERE al <-63 AND s2 LIKE
"%pcn%' GROUP BY s2, parse_url(s1,
'HOST")

Table 2: Query Workload.

3 Query Performance

3.1 Multi-Node, Single-User Queries

In our first set of experiments we executed 100 range queries against tables of
various sizes (see query types R in Table 2). The goal of these experiments was
to compare the performance of a single-node cluster compared to a four-node
cluster. Let us first analyze the query performance on a single-node (see Figure
2). Here we can see average response times of 0.67 and 1.67 seconds for 100
million rows (parquet100m) and 300 million rows (parquet300m), respectively.

25}

Time [s]
in

05F

Average Query Execution Time

Experiment Parameters
Query File:R_Dim1_NoQ100.qry
Number of Users:1
Number of Nodes:1

1
datal00mparquet
Table

1
data300mparquet

Figure 2: Response times for 1-dimensional range queries on 1 node.

Next, we measured the performance of queries on a four-node-cluster (see
Figure 3). Let us focus on the two right-most results, i.e. for tables with 100
million and 300 million rows. We can see that the average query response time
drops to 0.49 and 0.75 seconds, respectively. Compared to our results on a one-
node-cluster, we can observe a performance improvement of a factor of 1.4 and
2.2, respectively, for the four-node-cluster.

Average Query Execution Time

1.1F Experiment Parameters e
Query File:R_Dim1_NoQ100.qry |
Number of Users:1 |
1+ Number of Nodes:4 |
|

03} —— — §

1 1 1 1
parquet100k parquetim parquetlOm parquet1l00m pargquet300m
Table

Figure 3: Response times for 1-dim range queries on 4 nodes.

In the previous experiments we measured the average response time of 100
range queries. Next, we want to analyze all query response times for each single
query (as opposed to the average query response time). Figure 4 shows the
response times of all 100 queries on parquet300m data sets. We can observe a
slight variation of 0.5 seconds in the response times of these queries. The reason
is that we generated 100 different queries where each query has a randomly
chosen attribute with slight variations in the data distribution.

Query Execution Time

Experiment Parameters
Table:parquet300m
12F Query File:R_Dim1_NoQ100.qry
Number of Users:1
Number of Nodes:4
1.1F
1+
=
g 09F
=
08F
07F
06F
05 1 1 1 1 1 1 1 1 1]
0 10 20 30 40 50 60 70 80 90 100

Queries

Figure 4: Response times of 100 range queries on parquet300m with 4 nodes.

In the previous experiments we measured range queries. Next we analyze the
response times of different query types (R: range, S: string, G: group by; M:
mixed). The results are shown in Figure 5.

Average Query Execution Time

T T T T

16 % Experiment Parameters B
Table:parquet300m

+ Number of Users:1

145 Number of Nodes:4

0]

Bl +]
— I

il = T

2t " 1 ==

| ==

D C 1 1 1 1 -
R_Dim1_NoQ@100 S_Dim1_NoQ100 G_Dim1_NoQ100 M_Dim1_NoQ100
Table

Figure 5: Response times of 100 mixed queries on parquet300m with 4 nodes.

We can see that for range and string queries the average response times are less
than one second. For group by and mixed queries the average response times are
5.49 and 2.15 seconds, respectively. Also note that for the latter two query types,
we can see outliers with query response times of up to 16 seconds. We
discovered that these outliers are due to the usage Impala built-in functions such
as parse_url(s1, '"HOST").

To avoid using these built-in functions, we added a new column to the Impala
table by preprocessing the data. As a consequence, the query response time in
the investigated example decreased from 1.04 seconds to 0.63 seconds. In
general, the built-in function of Impala works properly but should be used with
caution since it has a negative impact on the query performance.

Figure 6 shows the response times for multi-dimensional queries of different
types. We observe that the number of query dimensions only has a slight impact
on the query performance. The higher response times for group by queries are
again due to overhead of the Impala built-in functions.

Average Query Execution Time

o] O 1-dim
o 2-dim
25+ Experiment Parameters C 4-dim
Table:parquet300m
Number of Users:1
Number of Nodes:4
20+
@
2 15+ -
= O
10+
o
5t
| g o
D<> 1 1]
Range String Group by Mixed

Table

Figure 6: Response times of 100 multi-dimensional queries of various types on
parquet300m with 4 nodes.

3.2 Multi-Node, Multi-User Queries

Next we performed several tests to show the performance of the Impala multi-
node cluster when multiple users access the system at the same time. All
experiments are executed on four nodes.

In a first step we assumed that a fixed number of users (2, 4, 8, 16, 32, 64) sends
queries to the Impala server in parallel. We further assumed that each user sends
the next query as soon as her previous query has finished. In other words, there
is no delay between query x and query y of user u.

In a second step, we introduced a sleep time between the queries. Hence, the users
wait a predefined amount of time before they send another query request to the
server. This sleep time simulates the minimal time a user needs to interact with
the system. For the tests we increased the sleep time in small steps.

3.3 Multi-Node, Multi-User Queries — No Delay

Figure 7 shows the results of the first step without delays between the queries. In
particular, we see the response times for 16 concurrent users where each user is
modeled as a thread. We notice that the query response times are equally
distributed among the different users and centers around 2 seconds.

Average Query Execution Time
T 1 Experiment Parameters T T T
4+ Query File:R_Dim1_NoQ100.qry + 4
Number of Users:16
Number of Nodes:4
35F Sleep Time:0.0 4

Table:parquet100m + +
o+
3Pt o+ _ o S N
I S t + * T
- - - _ ~ T - T _ -
w256FT 1T ooy T T]
2 L
£
¢ . 0000Hp0dpDBA0HBEE0E
e L 1
ar + + 7
F + + + + T
+
+ +
I + 4
05F + + .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 3 4 5 B 7 8 9 10 11 12 13 14 15 16
Threads

Figure 7: Query response times for 16 concurrent users. Each thread shows the
response time of one user query (range queries).

Next we measured the average query response time for various numbers of
concurrent users. Figure 8 shows the response times for up to 64 users. We
notice that average response time increases linearly with the number of users
and ranges between 0.5 and 8 seconds for 1 to 64 users, respectively.

Query Execution Time

9~
o]
gt
7k
6+
@
i
£ 5F
-
@ o Experiment Parameters
© 4+ B Table:parquet100m
g’ Query File:R_Dim1_NoQ100.gry
<L Sleep Time:0.0
3r Number of Nodes:4
Number of Threads:1 2 4 8 16
2t @ 32 64
1+ 0]
o ©
D 1 1 1 1 1 1]
0 10 20 30 40 50 60 70
#Threads

Figure 8: Average query response for various numbers of concurrent users.

3.4 Multi-Node, Multi-User Queries — With Delay

Next we measured the impact of increasing the delay between queries. With 16
concurrent users and 100 queries per user, the server has to handle in total
1,600 queries in parallel (see left most boxplot in Figure 9). Without any delay
between the queries, the system seems to be overloaded, thus the average
response time is at 2.1 seconds.

With a minimal sleep time of 0.2 seconds the average response time drops to 1.4
seconds. With a sleep time of 2 seconds (see right-most boxplot in Figure 9), the
response time drops to 0.58 seconds. The average response time is similar to the
optimum of one thread (user) and without any delay time. Thus, the queries can
be handled sequentially again.

32 concurrent users result in 3,200 queries that have to be handled by the
system (see Figure 10). Even with a sleep time of 2 seconds between the

requests, the average response time is 2.13 seconds (roughly 4 times higher than
the optimum).

Average Query Execution Time Average Query Execution Time

é
§

Experiment Parameters
Query File:R_Dim1_NoQ100.gry
Number of Users:32
Number of Nodes:4
Table:parquet100m

:

Experiment Parameters
Query File:R_Dim1_NoQ100.qry 5F
Number of Users:16
35+ Number of Nodes:4 45
Table:parquet100m

=
+

Time [s]

:
!

. v A
SE+ -H-+HH-[—————D:J——~|-
oF mmm%l—————m:l——q 1

:
i
|

ot 1 :
5| | 15
0sb + § % # % i %l % = * ! 7 12 20-

1
Sleep Time [s]

e}
-
g
g
“al
3
:
o)

Figure 9: Increasing sleep time with 16 Figure 10: Increasing sleep time with 32
users. users.

Next we plotted the response times for each user and each query. A system with
16 users and a sleep time of 2.0 seconds can handle the queries with a response
time near the optimum (see Figure 11). In comparison, a system with 32 users
and a 2.0-second sleep time cannot handle the workload (see Figure 12).

At the beginning of the scenario the workload is increasing, since the users start
sending their requests to the server. At some point, we reach the systems
maximum capacity and, as a consequence, the average response time increases
by a factor of 4.

Query Execution Time Query Execution Time

Experiment Parameters
Table:parquet100m
1k Query File:R_Dim1_NoQ100.qry 351 ‘
Number of Users:16

Sleep Time:2.0

Time [s]
Time [s]

'
Experiment Parameters
Table:parquet100m
Query File:R_Dim1_NoQ100.gry
Number of Users:32
Slleep Time:2.0

. 1 | | . 1 | | . i .
10 20 30 40 50 60 70 80 90 100] 10 20 30 40 50
Queries Queries

Figure 11: System with 16 concurrent Figure 12: System with 32 concurrent
users and a 2.0s sleep time. users and a 2.0s sleep time.

5 Conclusions

In this paper we evaluated the performance of Impala for various query
workloads. Our results show that in a multi-user multi-node environment the
query response time increases with the number of concurrent users. However, in
case a certain delay time between the concurrent queries is introduced, the
query response time drops down to the expected optimal execution time of a

single user.

Acknowledgements

This work was funded as an applied research project / proof of concept by

LinkResearchTools: http://www.linkresearchtools.com

