
embedded world Conference 2014

Simultaneously Connecting Devices through
Bluetooth Smart

Andreas Rüst, Mirco Gysin, Andreas Müller
Zurich University of Applied Science (ZHAW)

Institute of Embedded Systems (InES)
Winterthur, Switzerland
andreas.ruest@zhaw.ch

Martin Würms
MSR Electronics GmbH

Seuzach, Switzerland
m.wuerms@msr.ch

Abstract — Modern data loggers record and store large
amounts of data from many different types of sensors. This
enables their use in various applications to capture different
measurands. However wireless access to the recorded data opens
countless possibilities for novel and innovative applications, for
example in the health monitoring of humans or livestock. In
many of these applications a central device connects
simultaneously to several data loggers. This paper discusses the
experiences made during the design, implementation and test of
an energy efficient wireless interface to a data logger. The
implemented system serves as an application example for
Bluetooth Smart. It allows a user to monitor ongoing
measurements of several data loggers through a smartphone.
Additionally the recorded data of several loggers can be
simultaneously uploaded to a central gateway. The available
Bluetooth Smart chips and software stacks place limitations on
usable bandwidth as well as on the number of simultaneous
connections. Although most modern smartphones include
hardware for Bluetooth Smart, implementations differ widely
across platforms, thus creating additional effort for the app
programmer. This paper presents measurement results and
introduces the implemented approaches to optimize these
parameters.

Keywords — Bluetooth Smart, Bluetooth Low Energy, data
loggers, wireless, sensors

I. INTRODUCTION

Data loggers such as the MSR145WD from MSR
Electronics GmbH [1] are electronic devices that record and
store data measured from different types of sensors. A
microcontroller is used to control the sensor measurements and
to log the collected data together with a time stamp in a flash
memory. Typical measurement quantities include humidity,
temperature, pressure, acceleration (e.g. vibration, shock
events), voltage, light and others. The rate of data collection
can be as low as 2 Bytes/s when measuring temperature or as
high as 400 Bytes/s in case a 3-axes accelerometer is used. As
the measurements are typically carried out simultaneously on
several sensors over several hours or days, the recorded data
can easily encompass several megabytes.

Traditionally the recorded data is read out using a USB
connection. However in many applications it is not possible to
connect the data logger through a wire while the measurements
are ongoing. Examples are monitoring applications for health,
rotating machinery or shipping containers. In such cases a
wireless access to the data logger enables a direct access to the
recorded data while the measurements are still ongoing.

The wireless access through a smartphone can be used in an
online mode to observe recent measurement results and to
verify that the device is capturing the parameters correctly. E.g.
that the sensor is in the desired place and that the measurement
results are within the expected range. This can avoid having to
repeat a measurement. Without wireless access a failed
measurement is often only detected after many hours or days
when the data logger is removed from the application and
connected through USB to an analysis tool.

In addition to an online mode the wireless connection
enables configuration of the data logger and reading of the
complete flash memory with all the recorded measurements.
This can either be done through a smartphone or alternatively
through a central gateway (i.e. a personal or embedded
computer) with a USB Bluetooth Smart dongle. Although the
wireless connection offers a lower data rate compared to the
USB, a wireless read-out of the flash memory is very attractive
in many applications. It allows the upload to a database to take
place in parallel to an ongoing data measurement.

II. PROJECT

A. Choice of Technology

The presented project was launched at the beginning of
2012 with the goal of adding a wireless interface to the existing
data logger device of MSR Electronics GmbH. As the logger is
battery-powered a low power transceiver was a central
requirement. It was important that the chosen technology
would allow direct data access both from a smartphone app and
from software running on a central gateway. For both cases it is
mandatory that simultaneous connections to several data logger
devices are possible. With its growing deployment in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/159414905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

smartphones, Bluetooth Smart or Bluetooth Low Energy (BLE)
was a natural choice which in retrospect has turned out to be a
good solution. Fig. 1 shows the possible connection options for
a wireless data logger.

Fig. 1. Connection options for a data logger: (1) BLE to smartphone,
(2) BLE to PC, (3) BLE to embedded computer (BOX) and (4) USB to PC.

B. Implementation

On the data logger side a Bluetooth Smart Module has been
connected to the field proven MSR logging device through a
Universal Asynchronous Receiver Transmitter (UART). The
Bluetooth Smart Module has an integrated microcontroller and
transceiver. The microcontroller runs the stack software
supplied by the semiconductor vendor and an application that
has been developed specifically for the present application. Fig.
2 shows a photograph of the data logger with Bluetooth Smart.

The first setup on the central side uses a commercially
available Bluetooth Smart dongle connected through USB to a
gateway. The application software has been written in Python
and can run either on a personal computer (e.g. a laptop) or an
embedded Linux computer. It contains several test modes to
verify the link through long-term tests.

The second setup on the central side is a smartphone with a
logger app that has been developed within the project. When
the project started the Apple smartphones using iOS were the
only devices that provided a stable and well documented
development environment for Bluetooth Smart. Therefore this
has been the main smartphone development platform
throughout the project.

The system as described in [1] is in operation on selected
customer sites.

Fig. 2. MSR data logger with Bluetooth Smart

III. APPLICATION EXAMPLE

An important target market for MSR data loggers is the
monitoring of physical activity. The device can be used as a
personal health monitor to record the individual levels of
activity. The monitored person can wear the data logger
attached to a leg for a week or more before the battery needs
recharging. The recorded data is evaluated and interpreted by
dedicated PC software. The generated charts allow an
individual healthcare management or planning of
complementary fitness activities.

Similarly the data logger is used to monitor individual
livestock. Interpretation of the collected data allows monitoring
of the breathing, walking, standing and lying behavior of an
animal. For dairy cows the time of rumination can be
measured.

In both use cases a wireless read-out of the recorded data
starts as soon as the data logger is in the communication range
of a central gateway or base station. Such a base station is
usually located in a central location like an office or a cafeteria
for humans or a barn in the case of animals. Several base
stations can cooperate as shown in Fig. 3 to ensure coverage
for larger facilities. The base stations can be embedded PCs
with cable based Ethernet connections. The set-up allows read-
out without interrupting the ongoing measurements.

Fig. 3. Three Base Stations (BS) reading several data loggers

IV. EXPERIENCES (LESSONS LEARNED)

This section describes selected issues and experiences made
during the course of the project.

A. Data Rate Limitations

One of the key issues during the implementation of the
solution has been the limited data rate. Based on the Bluetooth
Low Energy standard [2] one could expect that the payload
data rate from a slave to a master could be as high as 230 kbit/s
(see calculations below). However when determining the
maximum achievable data rate in a specific implementation,
several additional limitations have to be considered. Depending
on the implementation, hardware resource constraints and
software performance restrictions can lower the actually
achieved data rate by more than a factor of 10 compared to the
expected rate. Moreover the situation is exacerbated if several
connections with the same master are taking place
simultaneously.

Although we are well aware that Bluetooth Low Energy has
been optimized for low power and therefore targets low data

embedded world Conference 2014

rate applications, there is a need for moderate data rates in
applications like data loggers. For the presented application a
twofold approach has been applied: On one hand we tried to
choose variable parameters as well as possible to optimize the
data rate. On the other hand the use cases have been adapted to
fit the limitations, e.g. for some use cases the online mode has
been used to substitute for the slow read-out of the complete
data memory.

The calculation of the maximum data rate or throughput
from the slave to the master is based on the definition of the
connection event in [2]. See Fig. 4. Variable parameters
include the length of the connection interval as well as the
number of packets within a connection event and the size of the
packets.

Fig. 4. Connection events and connection interval in [2].

For our calculation we assume that the master sends empty
Protocol Data Units (PDU) and that the slave sends its payload
data as an Attribute Protocol (ATT) notification, see Fig. 5 for
the packet format. For each packet an overhead of 10 octets
applies. This consists of preamble (1 octet), access address (4
octets), PDU header (2 octets) and CRC (3 octets). The length
for an empty PDU (containing only the PDU header) is equal
to the overhead, i.e. 10 octets. An ATT notification adds an
additional overhead of 7 octets, which consists of a (Logical
Link Control and Adaptation Protocol (L2CAP) header (4
octets) and the ATT opcode/attribute handle (3 octets).
Therefore an exchange from master to slave and back from
slave to master will use an overhead of 27 octets or 216 bits.
The nominal bit rate of Bluetooth Low Energy is 1 Mbit/s, i.e.
the duration of one bit cell is 1s. For each exchange we have
to add twice the time for the Inter Frame Space (IFS) which is
2 * 150 s = 300 s.

Fig. 5. BLE packet format for ATT notification showing the number of
octets

To calculate the upper bound of the data rate we assume a
connection event that fills the complete connection interval.
This will result in back-to-back connection events.

If we now define the number of payload octets within the
notification as p, we have p*8 bits of payload per exchange.
The time required for one exchange can be calculated as

 T = TIFS + Toverhead + Tpayload = 300 + 216 + p*8 [s]

Based on (1) we can express the maximum achievable data
rate as

 dmax(p) = (p*8) / (516 + p*8) [kbit/s] (2)

According to the specification of Bluetooth Low Energy the
payload field in a data PDU can be no longer than 27 octets.
Considering the overheads mentioned above for L2CAP and
ATT this leaves room for at most p = 20 octets of data payload.
Therefore we can calculate the maximum data rate with (2) as
dmax(20) = 236 kbit/s.

In many real world implementations additional limitations
apply. Particularly these can be:

 Slave restrictions on the number of notifications per
connection event. The restriction can be as low as 3
notifications due to limitations on buffer space.

 Minimum length for a connection interval. In the
Bluetooth Low Energy standard the minimum time for a
connection interval is defined as 7.5 ms. However some
masters (especially smartphones) impose limits of 30
ms and above.

 Early termination of a connection event. E.g. due to two
consecutive CRC errors in the same connection event or
if either the master or the slave does not receive a
packet from the other side.

As a result if we assume 3 notifications per connection
event, a connection interval of 30 ms and a payload of 20 octets
we will get a data rate of only 60 payload octets per 30 ms
which corresponds to 16 kbit/s.

B. Number of Simultaneous Connections

One of the differentiating parameters on the central side is
the number of simultaneous connections that are available. On
the Apple iOS smartphones up to 8 simultaneous connections
have been successfully tested.

Using the USB dongle on the gateway the number of
simultaneous connections is currently limited to 3. The
limitation seems to be based on resource constraints inside the
microcontroller. However different BLE software stack
implementations using identical hardware seem to have
different upper limits on the number of simultaneous
connections. As a result in some use cases more than one
gateway is used to service all loggers. Of course, as a positive
side effect, an additional gateway also increases the aggregated
bandwidth.

C. Establishing Connections

Another important aspect during the course of the project
has been how data loggers are associated (or paired) with
central devices. There may be more data loggers within the
range of a central device than available simultaneous

connections. Therefore the central device has to carefully select
the connections to data loggers. It has to ensure that all the
required data loggers are given a fair chance to connect.
Selecting the connections based on a list of recently connected
data loggers prevents starvation of individual data loggers, i.e.
all loggers are able to transmit their data.

The data loggers communicate important parameters during
the advertisement process. These parameters include a network
identification, a device address, a “complete local name”, and a
unique series number of the data logger. The network
identification can be configured by the user and allows
operating several distinct networks in the same vicinity. The
other parameters support the described process to select the
next connection.

V. MEASUREMENT RESULTS

This section presents selected measurements of achieved
data rates in cases where a single master device maintains
simultaneous Bluetooth Smart connections with several slave
devices. The measurements have been done for different
master devices. On the slave side a publicly available CC2540
keyfob from Texas Instruments [3] has been used. The keyfob
runs a dedicated test application that uses the TI Bluetooth Low
Energy stack (version 1.3.2). The test application sends the
requested number of packets with a payload of 20 and 16 octets
respectively. Each packet contains one notification with a two
octet sequence number and the other octets set to zero.

A. Test Sequence

The tests are carried out with 5000 packets using the
following sequence:

 The master (i.e. the smartphone) scans for available
slaves

 Connections to all the slaves are established and
services and characteristics are discovered by the master

 Exchange of test parameters. E.g. the master sets the
desired number of packets and the slaves report the
selected connection interval for display in the app.

 The master sends a command to start the test and the
slaves start to transmit their test packets.

 The master logs the start time

 As soon as all packets have arrived, the master logs the
end time and performs the calculation to display the
achieved data rate. Packets that require retransmission
are reflected in the result as they increase the measured
time to transmit all the packets.

B. iOS (iPad 3/iPhone 4S)

TABLE I. shows the achieved data rates per slave for
simultaneous connections between an iPad 3 (version with Wi-
Fi + cellular) running iOS 7.0.4 and several keyfobs. For these
measurements notifications containing 20 payload octets have
been used. The Wi-Fi and cellular functions have been turned
off during the test. As far as possible no other applications
were running on the iPad.

The limiting factors for the data rate are (1) a connection
interval of 30 ms imposed by the iPad/iOS and (2) the
maximum of 3 notifications per connection interval given by
the keyfob. As a result 60 payload octets arrive every 30 ms,
which yields a resulting data rate of 16 kbit/s. These settings
could be clearly verified using a sniffer.

The data rate of 16 kbit/s can be sustained up to 5 slaves.
With 6 slaves the data rate starts to drop and with 8 slaves we
see connections with remarkably lower data rates.

TABLE I. DATA RATES ON IOS 7.0.4 WITH N SLAVES USING 20
PAYLOAD OCTETS PER NOTIFICATION

N
Achieved Data Rate [kbit/s]

1 2 3 4 5 6 7 8 Avg.

1 15.9 - - - - - - - 15.9

2 15.9 16.0 - - - - - - 16.0

3 15.9 16.0 16.0 - - - - - 15.9

4 15.9 16.0 16.0 16.0 - - - - 16.0

5 15.9 15.9 15.9 15.9 15.9 - - - 15.9

6 14.0 14.1 14.0 14.0 14.0 11.3 - - 13.6

7 13.4 13.4 13.4 10.6 13.4 11.6 8.8 - 12.1

8 12.9 5.3 12.9 12.8 12.9 11.9 4.1 12.0 10.6

The measurements presented in TABLE II. used the same
set-up, but this time notifications with only 16 octets have been
used. Interestingly this results in slightly higher data rates. By
reducing the payload per notification we can increase the
achieved data rates. The shorter packet size allows the keyfob
on the slave side to send more than three notifications per
connection event. The number of notifications varies between
connection events, but can be as high as six. The effect is
caused by an improved usage of the FIFO buffers in the slave.

TABLE II. DATA RATES ON IOS 7.0.4 WITH N SLAVES USING 16
PAYLOAD OCTETS PER NOTIFICATION

N
Achieved Data Rate [kbit/s]

1 2 3 4 5 6 7 8 Avg.

1 17.0 - - - - - - - 17.0

2 17.0 17.0 - - - - - - 17.0

3 17.0 17.0 16.9 - - - - - 17.0

4 16.9 17.0 17.0 17.0 - - - - 17.0

5 16.9 17.0 16.9 17.0 17.0 - - - 17.0

6 15.3 15.2 15.2 15.2 15.3 15.2 - - 15.2

7 17.0 17.0 12.6 17.0 17.0 16.9 3.5 - 14.4

8 4.3 8.5 17.0 17.0 17.0 17.0 7.3 10.8 12.3

C. Android (Nexus 7)

The app has been ported to a Nexus 7, generation 2013
running Android 4.4 KitKat. The application establishes the
connections to several slaves and successfully exchanges the

embedded world Conference 2014

test parameters. However the Android callback only returns
notifications from a single slave, i.e. we have not yet been able
to successfully operate simultaneous connections on this
platform.

On the other hand it is possible to choose a much lower
connection interval compared to the iPad. This allows
achieving substantially higher data rates. The achieved data
rates for a single slave are shown in TABLE III.

Assuming a connection interval of 7.5 ms and three 20
octet notifications per connection event results in 60 payload
octets each 7.5 ms. This corresponds to a data rate of 64.0
kbit/s. The measured data rate is slightly below at 57.2 kbit/s.
Analysis with the sniffer shows that this is due to early
terminated connection events.

TABLE III. DATA RATES ON ANDROID 4.4 KITKAT

Connection
Interval [ms]

Achieved Data Rate [kbit/s]

20 Payload Octets 16 Payload Octets

7.5 57.2 46.0

28.75 15.8 16.6

VI. CONCLUSIONS

This paper describes the application of Bluetooth Smart in a
wireless data logger device and discusses selected experiences

made during the design of the system. In particular it presents
measurement results for achieved data rates when
simultaneously transmitting data from several slaves to a
smartphone. It demonstrates that hardware dependent choices
of parameters like the number of payload octets can have an
effect on system performance. With Apple iOS sustainable data
transfers over up to eight simultaneous connections have been
demonstrated. With Android we were able to achieve a high
data rate but only on a single connection. Other smartphone
platforms like Windows 8 and Blackberry will be studied in
future work.

ACKNOWLEDGMENT

A special thank you goes to Marcel da Silva who laid the
foundation for this project with his great engineering work.

The presented project has been supported by the Swiss
Commission for Technology and Innovation (CTI).

REFERENCES
[1] MSR145WD Wireless Data Logger with BLE, Display & MSR

SmartCloud, Datasheet, MSR Electronics GmbH, 2013

[2] Specification of the Bluetooth System Version 4.1, Bluetooth SIG,
December 2013

[3] Bluetooth Low Energy; CC2540/41 Mini Development Kit; User’s
Guide. Document Number: SWRU270C; Document Version: 1.2;
Development Kit Part Number: CC2540DK-MINI; Texas Instruments,
January 2013

