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Introduction and Goal
Measuring viscosity online is crucial to maintaining the quality of many chemical and
biological processes. Within this work, the response of the fluid-structure interaction
between sensor and viscous damping, which is induced by the surrounding fluid, is
used to determine the viscosity of the fluid. Common mechanical resonators used for
viscosity monitoring are probe style and create obstruction inside the piping system
thus disturbing the flow.
The goal of this study is to elaborate the working principle of a tube-style sensor.
Such a device will not create an obstruction nor a disturbance to the flow.
Tube or rod-style sensors, which underlie the same working principle, have 
experimentally been tested [1-3] for different applications. In case of the tube-style 
sensor, the flow is inside the tube/sensor which is part of the piping system and does 
not interfere with the flow. The first torsional mode is excited using an 
electromagnetic system. In order to get a deeper insight into the functionality of such 
a device, a mathematical model has been developed. It describes the mechanical 
vibration coupled with the fluid interaction. 

Any immersed mechanical resonator is subjected to shear stresses by the
surrounding fluid. These shear stresses scale with ߟ߱ߩ and induce viscous
damping as well as mass loading. If the tube-style sensor is excited torsionally near
the natural frequency of the mode of interest, the method of Eigenmode
decomposition can be used and the resonator can be described by a 2nd order ODE
for the temporal dependence.
This ODE describes the angular deflection with respect to a moment of inertia J,
spring stiffness c, internal damping k and two source terms for excitation and
viscous damping .

Fig 2: Amplitude dependency on viscous damping Fig 3: Phase shift due to viscous damping

Fig 2 & 3 show the response of the system to viscous damping.
In Fig 2 the amplitude is reduced with increasing viscosity at constant excitation-
force. In Fig 3 the slope of the phase curve becomes smaller as viscosity increases.
For the analysis, the slope of the phase curve has been considered, because it does
not depend on the amplitude of the angular deflection nor the excitation force.
It is approximated by: ȟ� = ߱ Ȱ = 135° െ ߱ Ȱ = 45°

The 1st torsional mode of the oscillating structure creates a tangential
harmonically oscillating velocity on the inner wall of the tube. The tangential
velocity amplitude (Fig 4) decreases exponentially with increasing distance from
the wall, where ߜ = ߟ/߱ߩ is the thickness of the boundary layer. If ߜ is very
small in comparison to the radius of the tube, i.e. 1000-times smaller, it can be
considered as flat and the velocity field can be determined analytically. Fig 4 & 5
show the comparison of the analytical solution to the CFD simulation in
OpenFOAM for the tube geometry. The velocity amplitude closed to the wall is
shown in Fig 4. Fig 5 shows the normalized velocity with respect to time at three
different locations. Because ߜ is very small, simulation and analytical solution are
almost identical.

Experiments have been conducted for different viscosities using the device shown
in Fig 1. The damping parameter ȟ݂ has been determined for the analytical flat
plate solution imposed at the wall of the tube, the CFD simulation in OpenFOAM
and experimental data. A correction coefficient ௞௢௥ܬ = 0.93 has been used to fit
the data to the computed results and to account for manufacturing tolerances,
see Fig 6. The analytical solution deviates at higher viscosity because the
curvature of the tube is not considered. However, both solutions match the
experiments quite well. The damping parameter ȟ݂ can be described for low
viscosities by the analytical solution:

ȟ݂ = 12 ڄ ଷݎ݈ ௞௢௥ܬߟ߱ߩ ڄ ଴ܬ + ௞௢௥ܬ݇ ڄ ߨ଴2ܬ

Fig 6: Damping of the tube-style sensor depending on the fluids viscosity-density product .ߟߩ
Comparison between analytical solution (red), CFD simulation (blue) and Experiments (fluid
S600, tube radius 5.5mm, length 180mm)

Fig 4: Normalized amplitude of tang. velocity Fig 5: Transient velocity field near the wall.

Fig 1: Experimental set-up of a tube-style sensor for measuring viscosity
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Experimental validation

A tube-style sensor can be used to measure the viscosity-density product of the 
contained fluid. Two models, one based on the analytical solution on a horizontally 
oscillating plate, the other on a CFD-simulation have been used to describe the 
viscous damping of the system.
For the validation, a correction factor for the moment of inertia of 0.93 has been 
introduced in order to account for manufacturing tolerances. The relative deviation 
in the viscous damping is 5.7% for the uncorrected and 2% for the corrected 
moment of inertia, see Fig 6. Since the overall agreement is in acceptable range, 
the models can also be used as a design tool. Furthermore, this study has shown 
that a tube-style sensor can be used for measuring viscosity. Interferences with 
flow passing through the pipe as well as Non-Newtonian effects will be subject of 
further studies. 
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