

Agile Success Factors
A qualitative study about what makes

agile projects successful

Prof. Martin Kropp

University of Applied Sciences and Arts
Northwestern Switzerland

Andreas Meier

Zurich University of Applied Sciences
Switzerland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/159414658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Authors

Andreas Meier
Zurich University of Applied Sciences (ZHAW)
Winterthur

Prof. Martin Kropp
University of Applied Sciences and Arts
Northwestern Switzerland (FHNW)
Windisch

Publisher: FHNW and ZHAW

Date of publication: May 2015

Website: www.swissagilestudy.ch

ISSN: 2296-2476

http://www.swissagilestudy.ch/

 3

1 Management Summary .. 4

2 Introduction.. 5

3 Acknowledgment ... 6

4 Overwiew of the Interview Study .. 7

5 Results of the qualitative study .. 9

6 Other Findings .. 14

7 Conclusion .. 16

8 References .. 17

9 Contact ... 18

11 Appendix A - Theory of Complex Adaptive Systems and Agile Competences 19

12 Appendix B – Project Report Forms ... 22

1 MANAGEMENT SUMMARY
Various studies show great improvements
in software projects when agile software
development is applied. However, there
are still remaining problems and there are
also reports about project failures in the
agile community. This raises the question
of what factors distinguish successful agile
software projects and teams from less
successful ones?

The authors of the Swiss Agile Study
wanted to shed some light on these ques-
tions. We conducted a qualitative inter-
view study with eight successful agile IT
companies. We asked them about the
essential success factors in their agile pro-
jects. The findings are divided into three
different categories: Engineering practic-
es, management practices and the values,
or culture, they live.

On the engineering level it was found that
these companies apply many technical
practices in a very disciplined way, with a
strong emphasis on quality assuring prac-
tices like unit testing, continuous integra-
tion and automation, and clean coding.

On the management level it was pointed
out that clear requirements, which are
verified and validated in very close collab-
oration with the customer, are essential.
The same was true for very close commu-
nication within the team. The third aspect
that was found, was that in each success-
ful team there was a kind of Agile Cham-

pion who motivated and inspired the team
to use agility.

On the value level we found that success-
ful agile teams live a culture of openness
and transparency. They establish an agile
culture at least on the team and organiza-
tional level (we found only one company
who had established the agile method in
the whole company). Third, they live an
attitude of craftsmanship, being proud of
their work and striving for high quality
work.

Finally we noticed, that while putting high
emphasize on the above practices, mature
agile teams start adapting these practices
and the agile process to their needs, when
they notice that some of the practices do
not work or that following the recipe is
insufficient. A constant probing, sensing
and appropriate responding was ob-
served. This is the typical pattern for mov-
ing forward in complex adaptive systems.
Applying a sense-making methodology like
the Cynefin framework, theoretically ex-
plains the observations in the present
study. Companies should therefore be
aware, that software projects are often
located in the complex domain, i.e. can be
modeled as complex adaptive systems.
These kinds of problems rather require
emergent practices instead of good or
best practices and an understanding of the
implications of complexity theory is of
merit.

 5

2 INTRODUCTION
2.1 Motivation

The Swiss Agile Study, an online survey on
the state of software development in
Switzerland, was conducted in 2012 and
2014. The studies clearly show significant
improvements as compared to traditional
approaches, i.e. faster time-to-market,
improved change management, and high-
er satisfaction with the overall process.
However, the studies also show, that a
significant part of the agile projects fail
due to various reasons, though most of
the recommended good practices for agile
development were applied. So the studies
also raised new questions. The predomi-
nant question was: What makes agile
teams successful? Which factors distin-
guish successful software projects and
teams from unsuccessful ones?

2.2 Scope and Goal of the Study

With the new study the authors wanted to
find out, what the essential factors for
successful agile projects are. For this they
conducted an interview study among eight
Swiss IT companies about their most suc-
cessful agile projects.

The main goals of the study were to find
out:

 What the essential criteria are that
make an agile software project suc-
cessful

 If patterns of behavior can be identi-
fied for successful projects

 If these patterns can help others con-
duct successful projects

6

3 ACKNOWLEDGMENT
The authors would like to thank the Swiss
Hasler Foundation, www.haslerstiftung.ch,
which has generously funded the Agile
Success Factors project. In 2012, the Has-
ler Foundation also funded our first Swiss
Agile Study, a quantitative study on soft-
ware development in Switzerland, which
has run now in a bi-annual survey. The
Swiss Agile Study was the inspiration for
this project.

We would also like to thank all the partici-
pating companies of the study for taking
the time and their willingness to answer
all our questions. Last but not least we
would like to thank Jenny C. Ivarsson for
proofreading and improving our study.

4 OVERWIEW OF THE INTERVIEW STUDY
4.1 Interview Method

The aim of our study was to show by ex-
ample how agility is successfully realized
in various kinds of projects and different
kinds of companies and branches. To do
this we conducted an interview study
among eight Swiss IT companies that have
adopted agile methods in their software
development. The companies were asked
to provide a written description in ad-
vance of their most successful agile pro-
ject, including a reasoning why they con-
sidered the described project as successful
– from their own point of view and from
their customers’ point of view.

We conducted eight semi-structured indi-
vidual interviews and used a self-
developed interview guide. We structured
our interview questions according to the
Agile Competence Pyramid (see Figure 1)
with the three different competence lev-
els engineering, management and agile
values, as formulated in [7]. Since all in-
terviews took place in the German speak-
ing part of Switzerland, all interviews were
conducted in German.

The interviewed companies operate na-
tionally, internationally and globally. The
following table gives an overview of the
industry branches covered.

Table 1. Branches covered in study

Branches # Companies

Product Development 2

Public Service 1

Manufacturing 2

Insurance 1

IT Supplier 2

The interviews were conducted with a
total of nine participants (at one company,
we had two interviewees). The partici-
pants were mostly project leaders, group
leaders, or department leaders. The inter-
view duration was between one and al-
most two hours. All interviews were audio
recorded and later transcribed. The tran-
scription facilitated the evaluation of the
interviews with a statistical text-analysis
tool.

Figure 1. Pyramid of Agile Competences (from [7])

8

4.2 Organizational Level of Agility

In this paper we use the terms team, or-
ganization and company to describe on
which organizational level Agility was in-
troduced:

Team refers to the software developers,
testers, Scrum Masters, Product Owners
etc., i.e. the people who are directly in-
volved in the software development. All
the teams in the study follow an agile
methodology like Scrum.

Organization refers to the team plus other
people who are involved in the project, i.e.
customers, end-users, and management
sponsors. They work together with the
team in an agile or non-agile environment.
In the former case, the team supports the
organization in becoming agile. In the lat-
ter case, the team provides an “interface”
to facilitate the communication between
the different environments.

Company refers to the enterprise within
which the software development project
is executed. Currently, most of the com-
panies we questioned are not agile. In our
interviews, we had seven non-agile com-
panies where at least one team or organi-
zation was agile.

In seven of the eight companies the agile
approach was applied either for one or
more organizations within the company or
on the team level for the project teams. In

these companies, agile methodologies
were either introduced bottom-up or top-
down. This means that those team where
typically embedded in a classical, hierar-
chical organization within its own compa-
ny. In one company, agile methodology
was introduced in the whole company, i.e.
was applied also on management level.

4.3 Interview Questions

In preparation for the interview the inter-
viewees were asked to send us a short
description of the selected project, includ-
ing some basic information like duration,
effort, and team size. Additionally, they
had to answer the following questions:

 What makes the project successful
from your point of view?

 What makes the project successful
from your customer’s point of view?

In the one-hour interview (in average), the
interviewee had to provide further infor-
mation about the company and the pro-
ject (industry sector, company size, in-
house/contract work/product develop-
ment, main project technology).

We asked the questions listed in Table 2
about the topics, Success, Engineering,
Organization and Management, Culture
and Values, and Improvements.

 9

5 RESULTS OF THE QUALITATIVE STUDY
5.1 Basic Project Figures

Table 3 shows an overview of the basic pro-
ject figures. The projects ranged from
small projects to intermediate sized pro-
jects, and covered in-house projects, em-
bedded software projects and product
development. The team size ranged from
5 to 12 persons; the latter being organized

as scrum-of-scrum teams.

5.2 What is Success in Projects?

The question about why the selected pro-
ject was considered successful was an-
swered in very many different ways.

TABLE 3. PROJECT FIGURES

 P1 P2 P3 P4 P5 P6 P7 P8

Type of
Project

Product In-house Product Product Product In-House In-House Product

Company IT Solution Public
service

Manufactur-
er

Manufac-
turer

IT Service
Provider

Insurance IT Solution Manufac-
turer

Method Scrum Scrum Scrum Scrumban Scrum Scrum Scrum Scrum

Size 24 PM 30 PM 30 PM 100 PM 30 PM 12 PM 72 PM > 120 PM

Duration 3 M 10 M 12 M 9 M 10 M 8 M 24 M >

Team 5 P 10 P 5 P 3 x 4 P 6 P 8 P 5 P 5 (current)

TABLE 2. INTERVIEW QUESTIONS

Success

1. What makes the project successful from your point of view?

2. What makes the project successful from your customer’s point of view?

3. What are the reasons for the success from your point of view?

Engineering

4. How much do the engineering practices (according to [7]) contribute to the success?

5. Which engineering practices do you apply regularly?

Organization/Management

6. How much do the management practices (according to [7]) contribute to the success?

7. Which management practices do you apply regularly?

Culture & Values

8. How much do the cultural aspects / values (according to [7]) contribute to the success?

9. Which cultural aspects / values do you apply regularly?

Improvements

10. What would you change to make the project even more successful?

10

The most frequent answers were:

 Very good communication in the team

 Continuous delivery

 Delivery on time

 Very few bugs

 Satisfied customers

 No overtime

When asked for the reasons for the suc-
cess, the following main aspects were
mentioned:

 All team members were committed

 Continuous and extensive testing

 Requirements were very clear

 Very close communication with and
intensive feedback from customers

 Team workshops for team building

5.3 Engineering Practices

In the interviews, all teams reported that
they emphasize applying engineering
practices. These practices are seen as very
important and as a kind of foundation,
which ensures that software can be devel-
oped in short iterations with the required
quality. There is a constant process of im-
provement and refining of these practices.
Depending on the maturity of the team
and organization, this is triggered by the
agile champion (see below), the team
members or, in the case of an agile com-
pany, even by the management. This can
happen ad hoc or formalized. Engineering
practices are mostly well-known good or
best practices. Many of them have been
popularized in eXtreme Programming [8].
A quantitative overview can be found in
[1], [3].

Refactoring, automated tests, continuous
integration and deployment, pair pro-
gramming, test-driven development [18],
etc. are the tools of the trade [19]. Unit
testing, continuous integration and clean
coding were mentioned as the core and

most important practices in most organi-
zations.

5.3.1 Testing

In almost all the organizations automated
testing on unit level is well established and
is seen as an absolute must for providing a
good software quality. More mature or-
ganizations also apply automated testing
on acceptance testing level using new ap-
proaches like Automated Acceptance Test-
ing (ATDD) and Behavior Driven Develop-
ment (BDD).

5.3.2 Continuous Integration

Continuous integration is seen as an abso-
lute must for being able to deliver soft-
ware with high frequency. Thus all organi-
zations have established an automated
build and test environment, which pro-
vides immediate feedback to the develop-
ers about the quality of the system being
built. Some organizations already strive
for continuous delivery to automate the
delivery process for faster and safer deliv-
ery to customers with less effort.

5.3.3 Clean Code

Continuously paying attention to writing
good code from the very beginning is con-
sidered more and more important. Some
of the organizations started applying the
Clean Code [13] approach with the goal of
establishing a constantly high code quali-
ty. These teams also apply further practic-
es like continuous quality control, regular
or even institutionalized code reviews, and
regular pair programming.

5.4 Management and Organization
Practices for Success

The success criteria on management level
that were mentioned most often were the
short iterations (typically two weeks) and
the self-organization of teams. Other im-
portant issues mentioned were User Story
Grooming meetings during the Sprint;

 11

close communication with externals; open
office. Management support was also ar-
gued to be very important by one compa-
ny. For one company, that has remote
teams, daily meetings with visual commu-
nication tools like Skype was very im-
portant.

In the eight observed projects, many dif-
ferent practices and paradigms were used.
Their usage depended on the size and
domain of the project but also on the cul-
ture of the respective company. We found
a small but powerful set of underlying
characteristics common in all agile pro-
jects. The interviewed companies especial-
ly emphasized the following management
aspects:

5.4.1 Customers and Requirements

In all the interviews, it was pointed out
that an intensive and frequent communi-
cation with the customer was of utmost
importance.

Successful agile teams are implicitly or
explicitly aware of the fact, that technolo-
gy sometimes brings solutions previously
unknown to the users. Because of this,
gathering user requirements can be a
problem. The users cannot know they
want something if they do not even know
that it exists. It is important to note that
software is developed in a co-evolutionary
system with technology.

In all the successful projects there was a
very good understanding of the needed
requirements by all team members.

Communication solely with the Product
Owner is unsatisfying. Developers feel the
need to communicate directly with and
get feedback from the end-users.

User Stories [16] were the premier meth-
od used to express functional and even

non-functional requirements on cards in
the interviewed companies.

5.4.2 Agile Champion

Leaders on all levels of agile organizations
need to adopt a Catalyst Leadership style.
These leaders thrive by inspiring others
without losing the cohesion within the
entire system. They know they can trust
the organization and its individual mem-
bers. Most importantly they know, at least
by own experience, that software devel-
opment takes place in several domains
(see appendix A) at the same time.

In the interviews we found, that in all the
projects there was at least one person
who was championing agility and we
therefore use the term Agile Champion to
refer to the role of that person. Why is
such a role needed? When an organization
wants to become agile, change is inevita-
ble. Of course, it would be nice if positive
change happened magically with no effort.
Unfortunately, experience shows that it
does not. On the contrary, change is very
challenging.

What is the role of the agile champion?

 To lead and inspire agility

 To help define which change is neces-
sary

 To convince and bring on board oth-
ers to support the change

 To help show that the change is hap-
pening and is bringing good results

 To avoid “cowboy” agility and back-
sliding to the former approach (e.g.
waterfall)

 To lead modifications to the change

 To remove impediments from the
change

 To lead the people to the next level, if
it starts to plateau

12

This all requires huge amounts of talking
to people. The role of the agile champion
is not to tell them what to do, but to in-
spire them with a vision of where they and
the project could be. It is more a role of
pulling than of pushing.

5.4.3 Collaboration and Communication

Intensive and open communication among
all stakeholders is seen to be one of the
key elements for successful agile projects.
In our interviews we identified the follow-
ing three major communication scenarios.
Firstly, the team members themselves
must communicate intensively with each
other. Secondly, the team as a whole must
communicate with the customers and
end-users, and finally the team must es-
tablish good communication with the
management (which is often organized in
a classical hierarchical way).

To foster communication in teams, almost
all organizations implement co-located
teams in an open office environment.
Most communication is then carried out
informally at the desks. This helps to re-
duce official meeting time significantly and
make the necessary meetings much more
efficient.

Regular communication with the custom-
ers is established through short iterations
with reviews and continuous feedback
loops. However, developers have a clear
need to communicate directly with the
end-users instead of the product owners.

Communication and collaboration with
remote teams is always seen as challeng-
ing. Companies invest a lot in establishing
a good communication between these
teams. Means are regular chat sessions,
remote participation in meetings, and vid-
eo conferencing. Despite its high costs,
some companies value bringing the peo-
ple together physically at regular intervals.
A week of common work usually “refresh-

es” relationships for about 5-6 weeks, and
then the next physical meeting is due.

5.5 Agile Values

All interviewed organizations realized that
developing agile is not only a matter of
changing processes, but foremost, a
change of the culture in an organization.
Thus values become more important.
Scrum defines the following five Scrum
values [17] (in no particular order): Com-
mitment, Focus, Openness, Respect and
Courage. Extreme Programming [8] de-
fines the values a bit differently: Simplici-
ty, Communication, Feedback, Respect and
Courage. In the Agile Manifesto [12] the
four core values are: Individuals and their
interactions, delivering working software,
customer collaboration and responding to
change. Of course there are also other
important values like trust, safety, securi-
ty, quality-of-life etc.

Because we each interpret the values dif-
ferently as individuals and as teams, we
need to take a look at each value and de-
cide as a team what that value means to
us. What is most important is that the
team behavior is aligned to the team val-
ues. Below we present an overview of the
most important findings.

5.5.1 Transparency and Openness

Transparency and openness are highly
valued in agile software development.
Different measures are taken by the team
in order to keep the organization as well
as the customer informed about progress
and to get feedback quickly. For instance,
in Scrum there is the Scrum board and the
daily standup meeting, where “the whole
world” is invited to attend.

In the study we found that in all projects
both aspects were very important. How-
ever, transparency can be either good or
bad. Sometimes, transparency can pre-

 13

vent people from innovating [9]. Agile
leaders know that for innovative ideas or
things to be created, sometimes privacy
and protection is needed, because other-
wise people outside the team may chal-
lenge the ideas and there is a risk that
they get prematurely rejected. Therefore,
they create protected spaces to allow for
new ideas to evolve. So, the right amount
of transparency depends on the context of
the project and the culture of the compa-
ny and should be carefully balanced by the
agile champion.

Openness of the individuals also means,
that the team members not only take re-
sponsibility for a dedicated area of the
project, e.g. requirements and compo-
nents, but are open and willed to under-
stand the system as a whole, to have the
big picture in mind. People in agile teams
take responsibility for what they do in the
context of the project as a whole.

Another aspect of openness is the will and
capability to learn. As the market place is
always changing, agile organizations deliv-
er value through the process of learning.
Any change in the organization is based
upon continuous learning through suc-
cessful and failing experiments. In other
words change happens as a sequence of
learning events that combine to create
paramount value, rather than by execut-
ing a master plan toward a static goal.

5.5.2 Organizational Culture

It is important how the organization and
the company that encompass the agile
team and project are organized. Principal-
ly there are three possibilities:

1. Agile team, organization and company
2. Agile team and organization, non-agile

company
3. Agile team, non-agile organization and

company

In the study, we found that seven projects
started out with the third option and after
some time and effort managed to move to
stage 2. In the eighth project both organi-
zation and company were agile (option 1).
In non-agile companies we observed some
tension between the different cultures.
Some of the typical problems are differ-
ences in hierarchy, responsibility, open-
ness, trust, reporting, management, com-
pensation, planning etc. For instance, if
agile values such as transparency and
openness lead to promotions and praise in
the company, those behaviors will be the
ones which individuals select. But if the
agile values are at odds with the organiza-
tional culture, they will not be reinforced,
and no agile culture can evolve.

Agile leaders know that they cannot
change the company, at least not in the
short term. We found that usually they
respond by creating an agile environment
within the company as well as possible
and proactively manage the boundaries.
This requires a lot of skills and patience
from the agile leader.

5.5.3 Craftsmanship

The idea of highlighting the importance of
software development practice was popu-
larized by R. Martin in [13]. The author
introduces the disciplines, techniques,
tools, and practices of software crafts-
manship. Craftsmanship is much more
than a technique: It is an attitude. The
author shows how to approach software
development with honor, self-respect, and
pride; work well and work clean; com-
municate and estimate faithfully; face dif-
ficult decisions with clarity and honesty;
and understand that deep knowledge
comes with a responsibility to act [14].

In our interviews, we found that members
of agile teams and organizations take
pride in their work. They seek mastery in

14

their (programming) skills. They know the
importance of producing high quality
software to increase the business value. In
the interviews, all the teams and organiza-
tions pointed out that craftsmanship, (or
the equivalent thereof), was important
and that most developers were highly mo-

tivated to become better experts. We
found that they challenge themselves and
their colleagues to continuously grow and
develop.

6 OTHER FINDINGS
6.1 Changing the process

When analyzing the interviews and exam-
ining how the teams organized themselves
and behaved in their successful projects,
we observed that all teams in our study
originally started with Scrum [17]. Howev-
er, most teams have carefully altered their
processes and practices over time and
customized them to the specific needs of
their organizations and projects.

Some of the changes and extensions we
noticed, are:

 Introducing User Story grooming

 Changing Sprint planning 1

 Installing Product Owner proxies

 Using Use Cases and User Stories to-
gether

 Establishing an Agile Champion

 Bringing distributed teams together

 Introducing testing days

6.2 Reasons for Changes

The ability to alter the process is im-
portant for the team for several reasons:

 It objectively allows the elimination of
impediments that hinders the team
from being efficient.

 Secondly, it becomes apparent that
Scrum is a good choice to start with,
but that it is not sufficient for all situa-
tions and thus should be customized
to the various needs [19]. Retrospec-

tive is a good example of how to han-
dle the dampening of the parts that
fail and the amplifying of the parts that
succeed.

 Thirdly, and also very important: the
team members get the feeling that
they are the masters of the process,
not vice versa.

6.3 From Best to Emergent Practices

It seems that a list of good or best practic-
es, which the team carefully follows, is not
sufficient. It takes more for a project to
become successful. Mature agile teams
adapt these practices and processes to
their needs. We observed a kind of con-
stant probing and sensing and appropriate
responses. In other words, the participat-
ing organizations do not see these practic-
es as a recipe to follow. They are merely a
collection of emergent practices (see ap-
pendix A). This is the typical pattern for
moving forward in complex adaptive sys-
tems [10] in complexity theory [5]. The
teams create safe to fail experiments and
act according to the outcomes. The ob-
served emergent practices may then be
useful as a starting point to create safe
to fail experiments in other projects.

Applying a sense-making methodology like
the Cynefin framework, explains the ob-
servations in the present study theoreti-
cally. Therefore, it is suggested that com-
panies be aware, that software projects

 15

are often located in the complex domain,
i.e. can be modeled as a complex adaptive
system. These kinds of problems rather
require emergent practices than good or
best practices and an understanding of the
implications of complexity theory is of
merit.

6.4 Theoretical Background

As mentioned in the previous chapter, the
observed behavior of successful agile
teams is typical for the behavior in com-
plex systems. Complexity theory deals
with understanding how organizations
cope with conditions, constraints and un-
certainty and how they adapt their behav-
ior accordingly [23].

The complexity theory of constraints dis-
tinguishes between chaotic systems,
where no constraints exist, complex sys-
tems, and ordered systems, which are
highly constraint. Depending on which
system your problem is in, the solution is
clear and you can either follow simple
recipes to solve your problem, or there is
no known solution and you have to exper-
iment to a large extent. Complex Adaptive
Systems are special kinds of complex sys-
tems in the sense that they adapt to the
changing environment (typical for soft-
ware projects) [10]. Based on the theory
of complex systems and Complex Adaptive
Systems, D. Snowden has developed the
Cynefin framework [5], which provides
some guidelines on how to behave in the
various system spaces. A more elaborate
discussion of the complexity theory and
how it relates to software development
can be found in appendix A.

6.5 CAS and Agile Competencies

We found that the Theory of Complex
Adaptive Systems and the Pyramid of Agile
Competences (Figure 1) are related. The
practices at the bottom of the pyramid are
typically in the ordered domain, i.e. obvi-

ous and complicated (see Cynefin frame-
work in appendix A). A lot of expert
knowledge is necessary to master the en-
gineering practices and that is the reason
why it takes a long time for the students
or developers to acquire it. For instance, if
the good practice of “Automated Unit
Testing” is properly applied, there is a re-
lation between cause and effect, i.e. the
more (good) tests you write, the higher
the quality of the software. Additionally,
the software is also easier to refactor. It is
well known that many of the XP-practices
like “Automated Unit Testing” and “Refac-
toring” positively reinforce themselves.
This causality has been well described in
[8]. In general, most engineering practices
are in the complicated domain where ex-
pert knowledge is required and good prac-
tices can be applied. However, some prac-
tices can be placed in the simple domain.
An example of this is “Clean code”.

Moving up the pyramid we get to the
management practices. On this level there
are more people involved and things are
more complex. Communication outside
the team, within the organization or with
customers becomes important. Customer
relationships are difficult to manage and
so there is a transition between the or-
dered and the complex domain. There are
no simple recipes to follow. Strategies that
worked in past projects might be useless
or even dangerous for the current project.
When the agile (project) leaders are aware
of this, they can take appropriate
measures and apply emergent practice in
order to adequately keep the project on
track.

On the top of the pyramid are the agile
values or culture. Cultural aspects are def-
initely not in the ordered domain but be-
long in the complex sphere. In this do-
main, the agile leaders and their teams
often learn by doing. Or more precisely,

16

they must dampen the parts that fail and
amplify the parts that succeed.

In [7] the authors argued that teaching
and learning the agile values on the top of
the pyramid is much more difficult than
the practices at the bottom. With the the-
oretical insight of the Cynefin framework,
it is not difficult to understand why. Mov-

ing up the pyramid means transitioning
from the ordered to the complex domain,
or if you are unlucky even to the chaotic
domain.

7 CONCLUSION
The study shows that software develop-
ment is a multi-domain problem, i.e. prob-
lems are in the ordered or complex do-
main. When different people or groups of
people are involved, we are typically deal-
ing with a complex (adaptive) system. In
such systems, there is no or only weak
causality. This means there are no recipes
for success. What worked in one project
might not work in the next one, or even
worse, it might be outright dangerous.
When people are not aware of this, they
tend to apply best practices or call in an
expert. Experts and best practices only
work in the ordered domain but not in the
complex domain. In the complex domain,
a different approach is required.

In the qualitative interviews we saw that
successful agile teams and team leaders
apply various strategies. They are - implic-
itly or (seldom) explicitly - aware that
software development is a multi-domain
problem and act accordingly. In practice,
they sometimes find that the agile method
they are following does not work and then
try to find a different solution strategy.
They amplify what works and dampen
what does not work.

Agile teams think differently about differ-
ent problems. There is no “one size fits all”
approach and the action they take de-
pends on which domain the problem is in.

 17

8 REFERENCES

[1] Version One. State of Agile Development
Survey results.
http://www.versionone.com/state_of_agile_d
evelopment_survey/11/,
Retrieved 14.11.2013

[2] S. Kaltenecker et. al. Successful Leadership in
the Agile World – a Study Report of PAM.
2011. (German only)

[3] Martin Kropp, Andreas Meier, Swiss Agile
Study - Einsatz und Nutzen von Agilen Metho-
den in der Schweiz. (German)
www.swissagilestudy.ch, 20.10.2013

[4] David J. Snowden, Mary E. Boone A Leader's
Framework for Decision Making. Harvard Busi-
ness Review, November 2007, pp. 69–76

[5] D. Snowden, C.F. Kurtz. The new dynamics of
strategy: Sense-making in a complex and com-
plicated world, IBM Systems Journal, Volume
42, Number 3, 2003, pp.462-483.

[6] R. Arell, J. Coldewey, I. Gat, J. Hesselberg,
Characteristics of Agile Organizations, Agile Al-
liance, 2012, http://www.agilealliance.org

[7] M. Kropp, A. Meier, Teaching Agile Software
Development at University Level: Values,
Management, and Craftsmanship, CSEE&T
2013, San Francisco

[8] Kent Beck, Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2004
ISBN 0-321-27865-8

[9] D. Snowden, Keynote: Making Sense of Com-
plexity, 5. Lean Agile Scrum Conference, LAS
2013, Zurich. http://www.lean-agile-
scrum.ch/wp-content/files/2013/ Ky-
note_Making%20Sense%20of%20Complexity%
20-%20Dave%20Snowden.pdf

[10] Complex Adaptive Systems
http://en.wikipedia.org/wiki/
Complex_adaptive_system,
Retrieved 18.Aug.2014

[11] http://commons.wikimedia.org/wiki/File:Cyne
fin_as_of_1st_June_2014.png,
Retrieved 18.Aug. 2014

[12] Agile Manifesto. http://agilemanifesto.org/,
Retrieved 20.Aug.2014.

[13] Robert C. Martin, Clean Code: A Handbook of
Agile Software Craftsmanship, 2009,
ISBN 0-13-235088-2

[14] Robert C. Martin, The Clean Coder: A Code of
Conduct for Professional Programmers, Pren-
tice Hall, 2011, ISBN 0-13-708107-3

[15] Mike Cohn, Agile Estimating and Planning,
2006, ISBN 0-13-147941-5

[16] Mike Cohn, User Stories Applied, For Agile
Software Development,
2004, ISBN 0-321-20568-5

[17] Ken Schwaber, Mike Beedle. Agile Software
Development with Scrum, 2001,
ISBN 0-13-207489-3

[18] Kent Beck, Test-Driven Development: By Ex-
ample. Addison-Wesley, 2003,
ISBN 0-321-14653-0

[19] Henrik Kniberg, Scrum and XP from the
Trenches. How we do Scrum. An agile war sto-
ry, 2007, ISBN: 978-1-4303-2264-1

[20] Alistair Cockburn, Jim Highsmith, Agile Soft-
ware Development: The People Factor, ACM
Digital Library, Computer, vol. 34, no. 11, pp.
131-133, November, 2001

[21] Cristiano Tolfo1, Raul Sidnei Wazlawick, Mar-
celo Gitirana Gomes Ferreira1, Fernando An-
tonio Forcellini1, Agile methods and organiza-
tional culture: reflections about cultural levels,
Journal of Software Maintenance and Evolu-
tion: Research and Practice Volume 23, Issue
6, pages 423–441, October 2011.

[22] Juhani Iivari, Netta Iivari, The relationship
between organizational culture and the de-
ployment of agile methods, Information and
Software Technology Volume 53, Issue 5, May
2011, Pages 509–520.

[23] http://en.wikipedia.org/wiki/Complexity_theo
ry_and_organizations, retrieved 30. April 2015

http://agilemanifesto.org/

9 CONTACT

Andreas Meier

Dozent für Informatik
Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)
Institut für angewandte Informationstechnologie
Steinberggasse 13, CH-8401 Winterthur
E-Mail: andreas.meier@zhaw.ch

Prof. Martin Kropp

Dozent für Informatik
Fachhochschule Nordwestschweiz (FHNW)
Hochschule für Technik – Institut für Mobile und Verteilte Systeme
Steinackerstrasse 5, CH-5210 Windisch
E-Mail: martin.kropp@fhnw.ch

Information

Website: www.swissagilestudy.ch

mailto:andreas.meier@zhaw.ch
mailto:martin.kropp@fhnw.ch
http://www.swissagilestudy.ch/

 19

11 APPENDIX A - THEORY OF COMPLEX ADAPTIVE
SYSTEMS AND AGILE COMPETENCES

11.1 Complexity Theory and Software
Development

In recent years complexity theory has
been widely discussed in the scientific
community. In this paper we argue that
some parts of software development pro-
jects should be treated as complex sys-
tems, i.e. the problems are in multiple
domains.

11.1.1 Ordered and Un-ordered Systems

There are different definitions of complex
systems. In this paper we use the defini-
tion of constraints [9]. Basically, there are
three different types or ontologies: chaot-
ic systems, complex systems and ordered
systems. A system consists of agents and
the interaction between these agents.
Agents interact within the system or on
the system. Examples of agents in soft-
ware development are: the project goal,
the project team, customers, the compa-
ny, the culture within the company, man-
agement, competitors, technology, market
place, etc. It is important to note that
agents are not usually single individuals.

In a chaotic system, the agents are not
constrained and thus independent of each
other. In an ordered system, the system
constrains the agents. These are the two
extremes of the spectrum. In between
there is the complex system. Such a sys-
tem slightly constrains the agents. The
agents modify the system by their interac-
tion with it and among each other.

11.1.2 Complex Adaptive System

A Complex Adaptive System (CAS) is a spe-
cial case of a complex system. Here the
constraints and agents co-evolve. Exam-
ples of CAS are the Internet, cyberspace,
stock markets, manufacturing businesses,

ant colonies, and any human social group-
based endeavor. A software development
project is therefore also regarded as a
complex adaptive system. [9]

Listed below are some of the characteris-
tics of complex adaptive systems [9]:

 A CAS is highly sensitive to small
changes. There is a danger that weak
signals are easily missed or even dis-
missed. Small changes can have un-
predictable consequences. This is also
known as the butterfly effect.

 There is no (or very little) causality and
therefore hindsight does not lead to
foresight. In other words, a CAS is not
causal but dispositional.

 Retrospective coherence, i.e. the fact
that a system worked in a certain way
in the past does not mean it will work
the same way in the future.

 Proximity and connectivity are key

 There are dangers of confusing corre-
lation with causation and simulation
with prediction

 “Need to keep your options open”.
Premature convergence is the main
danger of complexity, i.e. converting
too quickly to a solution and not keep-
ing multiple possibilities open.

If we look at agile software develop-
ment projects as complex adaptive sys-
tems, there are a number of consequences
that follow [9]:

 CAS cannot be reset. Wherever you
are, is where you are, e.g. it is not pos-
sible to reset a sprint and start over.

 Relationships between agents are
more important than the agents them-
selves. It is more effective to improve
the relationships than to try to change

20

every agent, especially when the
agents are groups of individuals.

 Management of ordered and complex
systems or domains is important. The
team has to know, what kind of do-
main the project is in and how to re-
spond accordingly (see Cynefin
framework below)

 Praxis 1 makes perfect. Agile teams
value both theory and practice, e.g.
they do not only apply Scrum in prac-
tice but they also know the theory of
complex systems behind it.

11.2 Cynefin

Cynefin [4] is a decision-making frame-
work that recognizes the causal differ-
ences that exist between chaotic, complex
and ordered systems. It is valuable be-
cause it proposes different approaches to
decision-making in complex social envi-
ronments like those found in software
projects.

The name Cynefin, pronounced ku-nev-in,
is a Welsh word that signifies the multiple
factors in our environment and our expe-
rience that influence us in ways we can
never understand. “The name seeks to
remind us that all human interactions are
strongly influenced and frequently deter-
mined by the patterns of our multiple ex-
periences, both through the direct influ-
ence of personal experience and through
collective experience expressed as sto-
ries.“ [5]

The Cynefin framework is also a sense-
making framework. It is used to help de-
fine the system we have to deal with, i.e.
lays the problem at hand in the ordered or

1 There are different definitions of ‘praxis’. Here
‘praxis’ is defined as the combination of theory and
practice.

un-ordered domain. This is important be-
cause problems in the ordered domain
require very different strategies than the
ones in the unordered domain.

Its value is not so much in logical argu-
ments or empirical verifications as in its
effect on the sense-making and decision-
making capabilities of those who use it.
The Cynefin framework has been used for
knowledge management, project man-
agement, IT-design, strategy making etc.
Its purpose is to give decision makers (e.g.
the team members, agile leaders, man-
agement etc.) powerful new constructs
that they can use to make sense of a wide
range of unspecified problems. It also
helps people to break out of old ways of
thinking and to consider intractable prob-
lems in new ways [4], [5].

The Cynefin framework does not automat-
ically provide the right answer, but it will
help the agile team members to use their
skills and experience to look for it in the
right place.

11.3 The five domains of the Cynefin
framework

As can be seen in Figure. , the Cynefin
framework has five domains, four of which
are named, and a fifth, central area, which
is the domain of Disorder. The right-hand

Figure. 2. Cynefin domains (Source [11])

Figure 2. Cynefin domains (Source [11])

 21

domains (Obvious, Complicated) are those
of order, and the left-hand domains
(Complex, Chaotic) are those of un-order.

 Obvious Systems: In the obvious (aka
simple) domain, cause and effect rela-
tionships are obvious and predictable
in advance. The causality is self-
evident or obvious to any reasonable
person. In this domain we apply best
practice, i.e. established examples of
what works in a particular context. The
approach is to sense, categorize and
respond.

 Complicated Systems: In the compli-
cated domain we have an ordered sys-
tem where cause and effect relation-
ships exist but they are not self-
evident. There is a right answer, how-
ever, the answer is not self-evident
and requires analysis and/or the appli-
cation of expert knowledge. With the
right expertise, there can be several
different ways of doing things in this
domain. Applying good practice, i.e. a
range of examples of what works well
in a given context, works well in com-
plicated systems provided we have the
right expertise. The approach is to
sense, analyze and respond.

 Complex Systems: In the complex do-
main we have an un-ordered system
where the relationship between cause
and effect are only obvious in hind-
sight. The causality can only be per-
ceived in retrospect and the results are
unpredictable.
In this domain, we need to create safe
to fail experiments. And we do not at-
tempt to create fail-safe designs. We
cannot solve complex problems with
best or good practices alone. While
conducting safe to fail experiments,
the key is to dampen the parts that fail
and amplify the parts that succeed. In
this domain we get emergent order
and practice that is often unique. The

approach is to probe, sense, and re-
spond. In this domain we apply emer-
gent practice, i.e. new practice and
some combination of best and good
practice.

 Chaotic Systems: In the chaotic do-
main, no cause and effect relation-
ships can be determined. The ap-
proach is to act, sense, and respond. In
order to effectively understand and
function in a chaotic system, we must
act very quickly to either innovate or
stabilize the system and therefore
learn from it. In chaotic systems we
apply novel practice.

Depending on the system or ontology that
applies to the situation, we should think
and analyze accordingly. One size does not
fit all!

 Disorder: The central space in Figure.
is key. It is called Disorder, the state of
not knowing which system we are in.
The danger of being in Disorder, is that
we tend to interpret and assess the
situation according to the system we
are most comfortable with, i.e. we
compete to interpret this domain ac-
cording to our preference for action.
For instance, those people most com-
fortable with order seek to enforce
rules, and experts seek to conduct re-
search. This can be dangerous. Unfor-
tunately, it is not uncommon to be in
the domain of Disorder.

12 APPENDIX B – PROJECT REPORT FORMS
The following tables contain the written project descriptions, which were given by the inter-
viewed companies in advance of the interviews. It especially contains the information about
what made the projects successful for the interviewees and what they think made it success-
ful for their customers.

Notes:

1. For confidentiality reasons the descriptions have been made anonymous and any con-
fidential information has been removed.

2. The written descriptions have been translated from German into English

Project P1

Company Type IT Solution Provider Project Type In-house

Methodology Scrum Project Size [PM] 24

Duration [M] 3 Team Size 5

What makes the project successful from your point of view?

 We had a dedicated team

 The team had the domain knowledge

 Highly motivated

 Strict timeframe

What makes the project successful for the customer from your point of view?

 The labels produced by the software could be directly used in the shops due to the
process.

 Deadline was reached.

 23

Project P2

Company Type Public service Project Type In-house

Methodology Scrum Project Size [PM] 30

Duration [M] 10 Team Size 10

What makes the project successful from your point of view?

 Direct communication among all stakeholder. Especially between the developer and
users

 Prototype as reference architecture

 Common focus on the main goal:
First payment on due-date for the whole region was successful

 Motto: Keep it strictly simple!

 Autonomy and self-responsibility to find solutions and in system design

 Very high identification of all stakeholders with the project goals (commitment)

What makes the project successful for the customer from your point of view?

 Agreed goals were all reached

 Efficient and in-budget

Project P3

Company Type Manufacturer Project Type Product

Methodology Scrum Project Size [PM] 30

Duration [M] 12 Team Size 5

What makes the project successful from your point of view?

 Much less hectic development phase

 Established refactoring process

 No more overtime

What makes the project successful for the customer from your point of view?

 Improved robustness

 Faster because focused on important features

24

Project P4

Company Type Manufacturer Project Type Product

Methodology Scrumban Project Size [PM] 100

Duration [M] 9 Team Size 3 teams with 4 per-
sons each

What makes the project successful from your point of view?

 Involve key accounts into prioritization/planning: Ensures that right features are ad-
dressed and we understand the requirements.

 External tests and early feedback from key accounts: we get better results faster. No
late, negative and expensive surprises!

 All time requirements and quality requirements were reached.

 At least the most important customer requirements were implemented

 The ambitious goals spurred the team, motivation and performance was improved

What makes the project successful for the customer from your point of view?

 Involve key accounts into prioritization/planning: The product contains the most im-
portant requested features.

 Frequent delivery of sprint versions: enabled tests and early feedback

 Frequent delivery of product increments: generates early value for the customer

 External tests and early feedback: Can take influence during the development. In
general goals are reached faster, better und more in the sense of the customer.

 Trust, that the product will contain the most important feature from the customer’s
point of view in due time.

 25

Project P5

Company Type IT Service Provider Project Type Product

Methodology Scrum Project Size [PM] 30

Duration [M] 10 Team Size 6

What makes the project successful from your point of view?

 Requirements Engineering

 Focus on quality during software development

 Very disciplined with respect to all aspects of the project

What makes the project successful for the customer from your point of view?

 Requirements Engineering

 Transparency

 High quality of solution

Project P6

Company Type Insurance Project Type In-House

Methodology Scrum Project Size [PM] 12

Duration [M] 8 Team Size 8

What makes the project successful from your point of view?

 The replacement of the old software system could be done, without any restrictions
for the end user.

 The teamwork was empowered.

What makes the project successful for the customer from your point of view?

 Reduction of the operation costs in the team, and thus

 More time for development of new features

 Reduction of annual costs of approx. 500‘000 CHF/year and thus higher profit

26

Project P7

Company Type IT-Solution Project Type In-House

Methodology Scrum Project Size [PM] 72

Duration [M] 24 Team Size 5

What makes the project successful from your point of view?

Through the usage of agile artifacts like:

 Backlogs

 Planning in 3 weekly sprints

 Frequent multi team telephone conferences (2x/week)

 3 weekly sprint plannings (face2face)

 3 weekly sprint reviews (feedback)

Very good team work (especially for problem solving)

Fast progress of project, progress was visible and measurable

What makes the project successful for the customer from your point of view?

 Customer was continuously involved during development process

 Provided transparency from development side generated trust in the project

 Customer saw results during the development phase and could give feedback

 27

Project P8

Company Type Manufacturer Project Type Product

Methodology Scrum Project Size [PM] >120

Duration [M] ongoing Team Size 5

What makes the project successful from your point of view?

Robustness

 Regression tests are executed for each created baseline

 Each baseline is shipped to the Product Management and a selected group of core
users for early feedback and detection of stability issues

User friendliness

 Agile development approach (Scrum) with deliverables for user feedback at an early stage
of the project

 User Feedbacks on usability collected via formal feedback channels and informal
feedback given by Key Stakeholders

Interoperability

 System Validation

Schedules – Time to Market

 Agile development approach with (approximately) 3 weekly baselines that cover an
agreed scope and functionality

Cost-Budget

 Tracking in project development report

Communication

 Proactive communication with Product Management, R&D Stecos

Scope of Delivery

 Early pilot projects defined with the Engineering Center brought proof that the scope
of the current release was met

What makes the project successful for the customer from your point of view?

 Reduced project execution costs by substantial engineering efficiency improvements

 Integral engineering process optimization serving the strategy of decentralized pro-
ject execution

