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Abstract

Sequence alignment lies at the heart of many evolutionary and com-
parative genomics studies. However, the optimal alignment of multiple
sequences is NP-hard, so that exact algorithms become impractical for
more than a few sequences. Thus, state of the art alignment methods
employ progressive heuristics, breaking the problem into a series of
pairwise alignments guided by a phylogenetic tree. Changes between
homologous characters are typically modelled by a continuous-time
Markov substitution model. In contrast, the dynamics of insertions
and deletions (indels) are not modelled explicitly, because the compu-
tation of the marginal likelihood under such models has exponential
time complexity in the number of taxa. Recently, Bouchard-Côté and
Jordan [PNAS (2012) 110(4):1160–1166] have introduced a modifica-
tion to a classical indel model, describing indel evolution on a phylo-
genetic tree as a Poisson process. The model termed PIP allows to
compute the joint marginal probability of a multiple sequence align-
ment and a tree in linear time. Here, we present an new dynamic
programming algorithm to align two multiple sequence alignments by
maximum likelihood in polynomial time under PIP, and apply it a in
progressive algorithm. To our knowledge, this is the first progressive
alignment method using a rigorous mathematical formulation of an
evolutionary indel process and with polynomial time complexity.

1 Introduction

Multiple sequence alignments (MSAs) are routinely required in the early
stages of comparative and evolutionary genomics studies. Not surprisingly,
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accuracy of MSA inference affects subsequent analyses that rely on an MSA
estimates [13]. MSA estimation is among the oldest bioinformatics problems,
yet remains intensely studied due to its complexity (NP-hard [5, 1, 12]). The
progressive alignment approach has allowed to reduce the overall computa-
tional complexity to polynomial time by breaking the MSA problem into a
series of pairwise alignments guided by a tree representing the evolutionary
relationship of sequences. Today most popular alignment programs employ
the progressive approach (e.g., ClustalW [10], MAFFT [6], MUSCLE [4],
PRANK [7] and T-Coffee [3, 9] among others).

All state of the art MSA programs nowadays use an evolutionary model
to describe changes between homologous characters, providing a more real-
istic description of molecular data and thus more accurate inferences. How-
ever, a mathematical formulation of the insertion-deletion (indel) process
still remains a critical issue. Describing the indel process in probabilistic
terms is more challenging: unlike substitutions, indels often involve several
sites, vary in length and may overlap obscuring the underlying mechanisms.
Instead, the popular PRANK program adopts a pragmatic approach; it uses
an outgroup to distinguish insertions from deletions during the progressive
alignment procedure, so that they are penalised differently [8]. As a result,
PRANK produces exceptionally accurate alignments, notably with densely
sampled data and given an accurate guide tree. Still the method lacks a
mathematical model describing the evolution of indels. Indeed, the compu-
tation of the marginal likelihood under the classical indel model TKF91 [11]
is exponential in the number of taxa due to the absence of site independence
assumption.

A recent modification of the TKF91 describes the evolution of indels
on a phylogenetic tree as a Poisson process, thus dubbed the Poisson in-
del process or the PIP model [2]. Consequently, standard mathematical
results, particularly the Poisson thinning, allow to achieve linear time com-
plexity for computing the joint marginal probability of a tree and an MSA.
This includes analytic marginalisation of unobservable homologous paths
which occur whenever an ancestral character is inserted and subsequently
deleted, and consequently cannot be detected in the extant sequences. For
a given MSA and a tree, a likelihood score under PIP can be computed
in linear time. This score can be used to find the maximum a posteriori
tree-alignment solution. Remarkably, this breakthrough allows for a neces-
sary rigorous way of combining models of substitutions and indels, and a
tractable computation of the marginal likelihood function. Nevertheless, at
the moment the algorithm has been applied in a Bayesian framework via
tree-alignment space sampling.

Here we propose a new progressive algorithm to estimate an MSA under
the explicit model with substitutions and indels. We have re-framed the orig-
inal PIP equations into a dynamic programming (DP) approach. It aligns
two MSAs (represented by their homology paths on the tree) by maximum

2

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/123513doi: bioRxiv preprint first posted online Apr. 3, 2017; 

http://dx.doi.org/10.1101/123513


likelihood (ML) in polynomial time. The progressive algorithm traverses a
guide tree in post order; at each internal node the DP is applied to align
the two sub-alignments at the child nodes. The procedure terminates at
the root of the guide tree, with the complete MSA and the corresponding
likelihood, which by construction is the likelihood under the PIP model. We
have implemented the progressive MSA algorithm in a prototype program
and verified its correctness by simulation. To our knowledge, this is the first
progressive MSA algorithm using a rigorous mathematical formulation of an
indel process and with polynomial time complexity.

The remainder of this manuscript is organized as follows. We first in-
troduce notation and the PIP model. Then, we describe our DP algorithm
and provide the simulation results.

2 The PIP model

Let τ = (V, E , b) represent a rooted binary phylogenetic tree withN leaves. τ
is a directed, connected, labelled acyclic graph, with a finite set of branching
points V of cardinality |V| = 2N − 1 and a set of edges E ⊂ V × V. Leaves
L ⊂ V denotes N observed taxa, represented by strings of characters from
a finite alphabet Σ (nucleotides, amino acids or codons). There are N − 1
internal vertices v ⊂ V whereof the root Ω is the most recent common
ancestor of all leaves. Branch length b(v) associated with node v ∈ V spans
from v to its parent node pa(v). The total tree length ‖τ‖ is a sum of all
the branch lengths.

The PIP model describes a string-valued evolutionary process along the
branches of τ . We denote the Lebesgue measure on τ , i.e. the distance from
the root to a given point on the tree, by the same symbol τ . Atomic inser-
tions are Poisson events with rate measure ν(dt) = λ(τ(dt) + µ−1δΩ(dt)),
where λ is the insertion rate, µ the deletion rate, and δΩ(·) Dirac’s delta
function, which is one at the root Ω and zero everywhere else. This for-
mulation guarantees that the expected sequence length remains constant
during the whole evolutionary process. Point substitutions and deletions
are modelled by a continuous-time Markov process on Σε = Σ∪ ε, where ε is
the deletion (or gap) symbol. Accordingly, the process generator matrix Qε

of the combined substitution and indel process extends the instantaneous
substitution rate matrix Q by a row and a column to include ε, which is
modelled as an absorbing state as there can be no substitutions after a dele-
tion event. The quasi-stationary distribution of Qε is denoted by πε . Root
Ω has a virtual infinite length stem, reflecting the equilibrium steady state
distribution of the characters at the root.

The probability ι(v) of inserting a single character on branch pa(v)→ v
is proportional to branch length b(v). For v 6= Ω it is given by ι(v) =
b(v)/(‖τ‖+µ−1); at the root atomic mass point probability ι(Ω) = µ−1/(‖τ‖+
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µ−1) so that
∑

v∈V ι(v) = 1. The survival probability β(v) associated with
an inserted character on branch pa(v) → v is given by β(Ω) = 1 and
β(v) = (1− exp(−µb(v)))/(µb(v)).

The marginal likelihood pτ (m) of MSA m of length |m| is computable
in O(N · |m|) and can be expressed as

pτ (m) = ϕ(p(c∅), |m|)
∏
c∈m

p(c), (1)

where p(c) is the likelihood of a single column c, and p(c∅) is the likelihood
of an unobservable character history, represented by a column c∅ with a gap
at every leaf. The factor in (1)

ϕ(p(c∅), |m|) = ‖ν‖|m| exp(−‖ν‖(p(c∅)− 1))/|m|! (2)

is the marginal likelihood over all unobservable character histories, where
‖ν‖ is the normalising Poisson intensity.

The column likelihood can be expressed as p(c) =
∑

v∈V ι(v)fv, where
fv denotes the probability of c, given that the corresponding character was
inserted at v. This probability can be computed in O(N) using a variant of
Felsenstein’s peeling recursion. Let S be the set of leaves that do not have
a gap in column c, and A the set of nodes ancestral to S. Then

fv =


f̃v if v = Ω

1[v ∈ A]β(v)f̃v if c 6= c∅ and v 6= Ω

1 + β(v)
(
−1 + f̃v

)
otherwise (i.e. if c = c∅ and v 6= Ω),

(3)

where

f̃v =
∑
σ∈Σ

πε(σ)f̃v(σ)

and

f̃v(σ) =

{
1[c(v) = σ] if v ∈ L∑

σ′∈Σε
exp(b(v)Qε)σ,σ′

∏
w∈child(v) f̃w(σ′) otherwise,

and 1[·] is the indicator function.

3 Dynamic programming under PIP

Given an internal node v, our DP algorithm proceeds to align the two sub-
alignments obtained in the left and right sub-trees maximizing the likelihood
(Eq. 1) of the tree rooted at v. Let X and Y denote these sub-alignments,
respectively with NX and NY sequences and alignment lengths |X| and |Y|.
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If a sub-tree is a leaf then the sub-alignment, say X, is reduced to an input
sequence, i.e. NX = 1 and |X| corresponds the sequence length.

Note that the marginal likelihood function pτ (m) (Eq. 1) is not mono-
tonically increasing in the alignment length |m|. While the product of col-
umn likelihoods is monotonically increasing, the marginal likelihood of un-
observed histories ϕ(p(c∅), |m|) is non-monotonic. This means that pτ (m)
cannot be maximised by means of a standard two-dimensional DP approach
(in particular, because the alignment length is not known a priori). Our
algorithm accounts for the dependence on alignment length with a third
dimension.

The algorithm works with three three-dimensional sparse matrices SM,
SX and SY each of size (|X|+ 1)×(|Y|+ 1)×(|X|+ |Y|) with entries defined
as follows:

1. match cell SM
i,j,k contains the likelihood of the partial optimal MSA be-

tween X1 . . .Xi and Y1 . . .Yj of length k with the columns Xi and Yj

aligned. Consequently, all characters in the two columns are inferred
to be homologous.

2. gapX cell SX
i,j,k contains the likelihood of the partial optimal MSA be-

tween X1 . . .Xi and Y1 . . .Yj of length k with the column Xi aligned
with a column of size NY containing gaps only. The characters in
the two columns do not share a common history, either because the
ancestor character had been deleted on the right subtree, or because
it had been inserted on the left subtree, below the node v.

3. similarly, gapY cell SY
i,j,k matches column Yj with a column of size

NX containing gaps only.

Forward phase

Each matrix SM, SX and SY is initialized with ϕ(p(c∅)), 0) at position
(0, 0, 0) and a zero in every other position. The DP equations are:

SM
i,j,k =

‖ν‖
k
· p
([

Xi

Yj

])
·max

{
SM
i−1,j−1,k−1,S

X
i−1,j−1,k−1,S

Y
i−1,j−1,k−1

}
for i = 1, . . . , |X| and j = 1, . . . , |Y| and k = 1, . . . , |X|+ |Y|, (4)

SX
i,j,k =

‖ν‖
k
· p
([

Xi

c∅

])
·max

{
SM
i−1,j,k−1,S

X
i−1,j,k−1,S

Y
i−1,j,k−1

}
for i = 1, . . . , |X| and j = 0, . . . , |Y| and k = 1, . . . , |X|+ |Y|, (5)
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SY
i,j,k =

‖ν‖
k
· p
([

c∅
Yj

])
·max

{
SM
i,j−1,k−1,S

X
i,j−1,k−1,S

Y
i,j−1,k−1

}
for i = 0, . . . , |X| and j = 1, . . . , |Y| and k = 1, . . . , |X|+ |Y|. (6)

The symbol c∅ in Eq.s 5 and 6 represents a column with gaps, respectively
of length NY and NX . The factor ‖ν‖/k successively constructs ϕ(p(c∅), k)
along the third dimension as columns are added into partial alignments.
Note that the column likelihoods p(·) can be computed in constant time
from the corresponding column likelihoods at the two children of v, by re-
using appropriate summands (defined by the set A in Eq. 3).

Backtracking

An optimal alignment is determined by backtracking along a matrix TR of
size (|X|+ 1) × (|Y|+ 1) × (|X|+ |Y|). In the forward phase, TR records
at position (i, j, k) the name of the DP matrix (“SM”, “SX”, or “SY”) with
highest likelihood at the same position (i, j, k). If the maximum is not unique
then a uniform random choice is made. The backtracking algorithm starts
at TR(|X|, |Y|, k0), where

k0 = arg max
k=max(|X|,|Y|)..(|X|+|Y|)

[
SM(|X|, |Y|, k),SX(|X|, |Y|, k),SY(|X|, |Y|, k)

]
is the length of the best scoring alignment. If k0 is not unique a random
uniform choice is made. TR is then traversed from (|X|, |Y|, k0) to (0, 0, 0).
Suppose the algorithm is at position (i, j, k). If TR(i, j, k) = “SM” then the
columns Xi and Yj are matched and all the indices are decremented, i.e.
i = i − 1, j = j − 1 and k = k − 1. If TR(i, j, k) = “SX” then the column
Xi is matched with a column of gaps of size NY and the indices i and k
are decremented, and, if TR(i, j, k) = “SY” then the column Yj is matched
with a column of gaps of size NX and the indices j and k are decremented.

4 Empirical verification of correctness

We have implemented our progressive algorithm in a prototype program.
To test the correctness of algorithm and implementation, we generated data
under PIP using a simulator provided by the authors 1 of PIP. We chose rel-
atively small trees and short sequences to be able to perform analytical tests
during algorithm design an program debugging. Specifically, we simulated
120 datasets in total, on trees with 4, 5, 6 and 7 leaves, using all the com-
binations of λ ∈ {0.1, 1} and µ ∈ {0.1, 1}. The resulting sequence-lengths
varied between 5 and 8 nucleotides.

1personal communication
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The simulated data was analyzed with our program using correct model
parameters and guide-trees. First, we confirmed the correctness of the like-
lihoods obtained with the DP algorithm, by scoring the resulting MSAs
with an independent implementation provided by the authors of PIP. In
all cases the likelihood matched. In a second test, we verified that the DP
generates optimal pairwise MSA alignments. To this end, all the possible
pairwise alignments were generated at each internal node of the guide-trees
and scored with the independent implementation. The DP algorithm always
reconstructed an optimal MSA.

5 Conclusion

We have developed and implemented a progressive alignment algorithm that
relies on PIP, and, thus, uses a continuous-time Markov model to describe
insertions, deletions, and substitutions. The core of our method is a new
DP algorithm for the alignment of two MSAs by ML, which exploits PIP’s
linear time complexity (in the number of taxa and the sequence length)
for the computation of marginal likelihoods. The overall complexity of the
progressive algorithm is O(Nl3), where N is number of taxa and l the se-
quence length. The cubic factor stems from the fact that the likelihood is
not monotonically increasing in the MSA length, so that the length has to
be incorporated as an extra dimension in the DP. However, empirical find-
ings show that the likelihood has exactly one maximum, suggesting an early
stop condition to the DP. We are currently optimising our implementation
in this and other time-critical aspects.
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