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Abstract

The production of synthetic datasets has been proposed as a statistical disclosure
control solution to generate public use files out of protected data, and as a tool to cre-
ate “augmented datasets” to serve as input for micro-simulation models. Synthetic data
have become an important instrument for ez-ante assessments of policy impact. The per-
formance and acceptability of such a tool relies heavily on the quality of the synthetic
populations, i.e., on the statistical similarity between the synthetic and the true popula-
tion of interest. Multiple approaches and tools have been developed to generate synthetic
data. These approaches can be categorized into three main groups: synthetic reconstruc-
tion, combinatorial optimization, and model-based generation. We provide in this paper
a brief overview of these approaches, and introduce simPop, an open source data synthe-
sizer. simPop is a user-friendly R package based on a modular object-oriented concept.
It provides a highly optimized S4 class implementation of various methods, including cal-
ibration by iterative proportional fitting and simulated annealing, and modeling or data
fusion by logistic regression. We demonstrate the use of simPop by creating a synthetic
population of Austria, and report on the utility of the resulting data. We conclude with
suggestions for further development of the package.

Keywords: microdata, simulation, synthetic data, population data, R.

1. Introduction

Recent years have seen a considerable increase in the production of socio-economic data and
their accessibility by researchers. Statistical agencies are making more of their household
survey and census microdata available, government agencies are publishing more of their
administrative data, and the private sector has become a major provider of big data. As
computational power keeps increasing and new methods and algorithms are being developed,
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opportunities present themselves not only for conducting innovative research, but also for
designing better social and economic policies and programs through micro-simulation and
agent-based modeling.

This, however, comes with a variety of legal, ethical, and technical challenges. First, privacy
protection principles and regulations impose restrictions to access and use of individual data,
and standard statistical disclosure control methods do not always suffice to protect the confi-
dentiality of the data. Second, it is increasingly becoming the exception rather than the rule
that one specific dataset meets all the needs of the analyst. Typically, analysts will make use
of data available of different types (e.g., microdata and aggregated data) and scattered across
multiple sources. For example, information on the geographic distribution of a population
may be obtained from census tables, and detailed information on household and individual
characteristics will be available only in sample survey microdata, but representative only at
the level of large regions. Third, datasets are not exempt from quality issues, which may result
from design shortcomings or from sampling or non-sampling errors. For many applications,
the analyst may have to solve issues of data acquisition, data editing — including imputation
of missing values, fixing outliers, sample calibration, and other issues — and data fusion, to
obtain the necessary coherent set of data. The production of synthetic population datasets is
one possible solution to achieve these objectives.

Creating a synthetic dataset consists of applying algorithms to extract relevant information
from multiple data sources and constructing new, anonymous microdata with the appropriate
variables and granularity. The synthetic dataset must be realistic, i.e., statistically equivalent
to the actual population of interest, and present the following characteristics (Miinnich et al.
2003; Miinnich and Schiirle 2003):

e The distribution of the synthetic population by region and stratum must be quasi-
identical to the distribution of the true population.

o Marginal distributions and interactions between variables — the correlation structure of
the true population — must be accurately represented.

o Heterogeneities between subgroups, especially regional aspects, must be allowed.

e The records in the synthetic population should not be created by pure replication of units
from the underlying sample, as this will usually lead to unrealistically small variability
of units within smaller subgroups.

o Data confidentiality must be ensured.

Synthetic population datasets are not intended to replace traditional datasets for all research
purposes, and will certainly not reduce the need to collect more and better data. But they
are increasingly used for multiple practical applications. Synthetic data generation makes the
dissemination and use of information contained in confidential datasets possible, by creating
“replacement datasets” that can be shared as public use files for research or training. Syn-
thetic data generation also allows the creation of new, richer or “augmented” datasets that
provide critical input for micro-simulation (including spatial micro-simulation) and agent-
based modeling. Such datasets are particularly appealing for policymakers and development
practitioners, who use them as input into simulation models for assessing the ex-ante distri-
butional impact of policies and programs. Examples are found in multiple sectors, including
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health (Barrett, Eubank, Marathe, Marathe, Pan, and Swarup 2011; Brown and Harding 2002;
Tomintz, Clarke, and Rigby 2008; Smith, Pearce, and Harland 2011), transportation (Beck-
man, Baggerly, and McKay 1996; Barthelemy and Toint 2013), environment (Williamson,
Mitchell, and McDonald 2002), and others.

The idea of generating synthetic population data is not new. Rubin (1993) suggested generat-
ing synthetic microdata using multiple imputation, and the synthetic reconstruction technique
was proposed by Beckman et al. (1996). But the methods and algorithms are in constant
evolution. The public availability of tools like the R package simPop (Meindl, Templ, Alfons,
and Kowarik 2017) presented in this paper facilitates their application and contributes to
further assessments and improvements of the techniques.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the
main approaches for generating synthetic populations. In Section 3, we present the simPop
package and provide an overview of alternative tools. We demonstrate the use of simPop by
generating a synthetic population of Austria in Section 4. We assess the utility — or “closeness
to reality” — of this dataset in Section 5, and conclude by providing suggestions for further
work in Section 6.

2. Main approaches to synthetic population data generation

Multiple approaches have been proposed for the generation of synthetic population data,
which can be classified into three broad categories: synthetic reconstruction, combinatorial
optimization, and model-based generation of data.

2.1. Synthetic reconstruction

Synthetic reconstruction techniques are the most frequently used methods. The approach
consists of combining information from two sources of data. The first source typically con-
sists of aggregated data in the form of census tables. It provides the marginal distributions
of relevant categorical socio-demographic variables covering the whole population of inter-
est. These variables and distributions are referred to as the target or control variables and
distributions. The other source, typically a survey micro-dataset representative of the pop-
ulation of interest, contains information on the same variables for a sample of individuals,
and is referred to as the seed. The synthetic population dataset is generated using a two-step
procedure:

Estimation: A joint distribution is estimated using both sources of data. The correlation
structure of the seed should be preserved.

Selection: Individuals are randomly selected from the seed dataset and added to the syn-
thetic population so that the joint probabilities calculated in the previous step are
respected.

These two steps are the foundation of the synthetic reconstruction approach. Their practical
implementation may differ in how the estimation and/or selection are performed. The iterative
proportional fitting (IPF) technique (Deming and Stephan 1940), also known as matrix raking,
is commonly used.
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The IPF algorithm fits an n-dimensional table with unknown entries to a set of known and
fixed marginal distributions. It is an iterative process in which, for each dimension in turn, the
inner cells are adjusted to match the totals for the given dimension. The process is repeated
until convergence and until the n-dimensional table fits all margins. More precisely, sample
weights are calibrated according to known marginal population totals. Based on initial sample
weights, new weights are computed by generalized raking procedures. Let us denote S; = 1 if
individual ¢ is sampled with a given probability sampling scheme, S; = 0 otherwise. Consider
the problem of estimating the population total Y = Zi]\il y; for a finite population of size N.
Then the weighted (Horwitz-Thompson) estimator is an unbiased estimator for Y given by

Yo=Y diy, (1)

ZSlil

with d; = 1/m; the inverse of the first order inclusion probability of individual 7 in the
population. If an auxiliary variable x is available from the sample with the condition that
the population total X = SN, 2; is known, usually 3. s,=1 diz; # X. The aim is to find new
(calibrated) weights w; with Y, = >ins,—1 Wiy where 35, ¢ wiw; = X and 30, g w; = N.
Once the expected number of individuals has been estimated for all groups in the contingency
table, each individual in the sample dataset is given a probability of selection according to
the original sampling weights and the expected number of similar individuals that need to be
added to the synthetic population. Then individuals are randomly selected from the sample
until the expected number of persons in each group is reached. For each individual added to
the synthetic population, all attributes — not only those controlled for in the first step — are
automatically selected.

IPF has some attractive features. Ireland and Kullback (1968) showed that the application of
IPF minimizes relative entropy and preserves cross-product ratios. Therefore, the resulting
adjusted n-dimensional table not only satisfies all the marginal constraints but is also the
most similar to the initial, starting table. IPF also preserves odds ratios (i.e., the interaction
structure) of the sample (Mosteller 1968). Furthermore, IPF results in a maximum likelihood
estimator of the true multi-dimensional table (Little and Wu 1991).

While it is possible with IPF to produce synthetic populations that match external margins
exactly, the results obviously rely on the data quality. It is particularly critical to have
an initial, representative sample of the true population at hand. Another issue is that the
procedure deals with a single n-dimensional table, which does not allow accounting for control
variables on individual and household levels at the same time. This means that, using IPF, it
is possible to generate a population that matches the joint distribution either at the individual
or household level, but not both.

To overcome this limitation of IPF, the iterative proportional updating (IPU) technique was
proposed by Ye, Konduri, Pendyala, Sana, and Waddell (2009). IPU controls for individual-
and household-level control variables at the same time by solving a mathematical optimization
problem heuristically.

First, equal weights are assumed for all households in the sample. Iteratively, for each house-
hold constraint, the weights are adjusted until they match the desired distribution. Then IPU
continues to adjust all specified individual-level constraints, which results in household-level
constraints again not matching the required totals. One iteration is finished after weights
have been adjusted for all constraints. After each iteration, the fit of the criteria is assessed —
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based on relative differences between weighted sums and corresponding constraints for each
— to evaluate the improvement achieved in the current iteration. The procedure stops if the
improvement of the fit criteria is considered negligible. The authors also mention that it is
possible to set the convergence criteria to a good compromise between computation time and
the desired rate of fit.

For the second general step — the selection of individuals or households into the synthetic
population — some adjustments compared to IPF are required. Due to differences in person
attributes, households may obtain different final weights, so the probability of a household
being selected equals its weight divided by the sum of weights of all households belonging to
the same household type. Weights are rounded to the nearest integer value.

This usually results in a synthetic population having fewer households than indicated on the
household distribution. To overcome this problem, the authors suggested a heuristic solution
in which they compared joint distributions for household control variables from the synthetic
population to those of the samples, calculated differences in cell values, and arranged the
cells by differences in descending order. Finally, they selected an additional household for the
n-top ranked cells (with n being the number of differences between households in the sample
and the synthetic population). The number of households in the synthetic population should
then match the number of households in the sample for each household control variable.
While IPU has a significant advantage over IPF in that it allows simultaneous matching of
household- and individual level attributes, it is obvious that the total number of constraint
totals in the joint distributions is important with respect to the quality of the final weights.
The higher the number of constraint totals, the smaller the values of adjusted weights. And
if these values are small, it is very difficult to match person-level attributes exactly.

2.2. Combinatorial optimization (CO)

Methods based on combinatorial optimization (CO) are not as widely used as the methods
based on synthetic reconstruction. The approach has been used to create synthetic popu-
lations (Huang and Williamson 2001; Voas and Williamson 2000). A key advantage of CO
methods is that data requirements are less restrictive than those for synthetic reconstruction.
The data requirements are a microdata file containing the variables to be included in the
synthetic population, and cross-tabulations for a subset of these variables.

The main idea of CO is to divide the population into exclusive, non-overlapping groups,
typically representing small geographic areas, for which cross-tabulations of selected variables
are available. The approach consists of drawing from the microdata file a separate combination
of households for each group, which will provide the best fit to the known constraints provided
by the cross-tabulations. Practically, a certain number of individuals is randomly drawn from
the microdata to form a group of the required size, and the fitness of the selected population
to the known cross-tabulations for the group is estimated. One individual is then randomly
swapped with another from the microdata file and the goodness-of-fit is re-calculated. If the
fitness has improved, the new individual is kept in the synthetic data. Otherwise, the swap is
undone and the process is repeated with another randomly drawn individual. This procedure
continues until a certain threshold of goodness-of-fit is reached, until an arbitrarily fixed
number of iterations has been reached, or until a processing time limit has been reached.
To measure goodness-of-fit, Huang and Williamson (2001) propose using relative sums of
squared Z-scores. This statistic is easy to interpret and has the advantage of allowing a
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measurement of the fit of a current population against a number of tables (i.e., distributions),
simultaneously. Because it is performed independently for each group, the implementation of
CO algorithms can easily be parallelized.

Simulated annealing (SA; Kirkpatrick, Gelatt, and Vecchi 1983; Cerny 1985) is a special case
of the general algorithm described earlier. This heuristic procedure is used to find a good
approximation to a complex optimization problem. SA prevents getting trapped in local
optima. The main idea of the algorithm is to create a thermodynamic system while searching
for an optimal solution by using a temperature variable. At the beginning of the algorithm,
the temperature is hot and the system cools down gradually. A fundamental property of the
algorithm is that — depending on the current temperature — worse solutions may be accepted
when the individual is switched. The higher the temperature, the higher is the probability
that a solution will be accepted that has worse fit than it had before an individual is switched.
When the system cools down and becomes more stable, the likelihood that it will accept worse
solutions decreases. The algorithm terminates when convergence has been reached or the
system has completely cooled down. Harland, Heppenstall, Smith, and Birkin (2012) created
synthetic populations at different spatial scales using deterministic re-weighing, conditional
probabilities, and SA. In their setup, SA outperformed the other methods.

2.3. Model-based generation

The model-based generation of synthetic data is a flexible and diverse approach. It consists
of first deriving a model of the population from existing microdata and ancillary information,
then of “predicting” a synthetic population.

To address the confidentiality problem connected with the release of publicly available micro-
data, Rubin (1993) proposed the generation of fully synthetic microdata sets using multiple
imputation. The method is discussed in more detail by Raghunathan, Reiter, and Rubin
(2003), Drechsler, Bender, and Réssler (2008) and Reiter (2009). A weakness of their ap-
proach is that synthetic individuals are generated by replicating individuals from the source
microdata, i.e., it does not allow generation of combinations of variable categories that are not
represented in the original sample data. Also, they do not investigate the possible generation
of structural zeros in combinations of variables.

The generation of population microdata for selected surveys that form the foundation for
Monte Carlo simulations is described by Miinnich et al. (2003) and Miinnich and Schiirle
(2003). Their framework, however, was developed for household surveys with large sample
sizes that primarily contain categorical variables. All steps of the procedure are performed
separately for each stratum of the sampling design.

A different approach is proposed by Alfons, Kraft, Templ, and Filzmoser (2011). Their
approach makes use of microdata from a representative sample of the population of interest,
which is the only required input. In an initial step, the household structure (by age and
sex, and possibly other key variables) is created. This is achieved by first estimating the
number of households of each size in the population of each stratum, taking into account the
sample weights, then by randomly resampling the necessary number of households of each
size from the sample. Additional categorical variables are then simulated using multinomial
logistic regression models by random draws from observed conditional distributions within
each combination of stratum, age or age group, and gender. Combinations that do not occur
in the sample but are likely to occur in the true population can then be simulated. In the
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third step, continuous and semi-continuous variables are generated. One approach consists of
imputing a discretized category of the continuous variable using multinomial logistic regression
models, followed by random draws from uniform distributions within the imputed categories.
For the largest categories, tail modeling based on the generalized Pareto distribution can be
performed. Another approach involves two-step regression models combined with random
error terms. If necessary, the synthetic continuous variables can be split into components
using an approach based on conditional resampling of fractions.

3. simPop, an open source R package

3.1. Overview of simPop

simPop (Meindl et al. 2017) is a flexible R package for the generation of synthetic popu-
lations, distributed as open source software under the GPL-2/GPL-3 license. The pack-
age can be downloaded from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=simPop. It extends the archived package simPopulation
(Alfons and Kraft 2013), which was entirely rewritten to improve computational speed. The
package supports an object-oriented S4 class structure (Chambers 2008). Parallelization is
applied by default, taking into account the number of available CPUs and the structure of
the dataset to be generated.

simPop includes all methods implemented in simPopulation, and additional ones. The main
functions are listed in Table 1. All functionalities are described in the help manual, and
executable examples are provided. Although most of the functions in simPop are applicable
to data frames, their implementation will typically make use of objects of specific classes, in
particular:

‘dataObj’: Objects of this class contain information on the population census and survey data
to be used as input for the generation of the synthetic population. They are automati-
cally created with specifyInput (). They hold information on the variables containing
the household and person IDs, household size, sampling weights, stratification informa-
tion, and type of data (i.e., sample or a population).

‘simPop0bj’: Objects of this class hold information on the sample (in slot sample), the pop-
ulation (slot pop), and optionally some margins in the form of a table (slot table).
Objects in slot sample and pop must be objects of class ‘dataObj’. Most methods that
are required to create synthetic populations can be applied directly to objects of this
class.

A special functionality is available in simPop to apply corrections in age variables. In par-
ticular, the Whipple index (Shryock, Stockwell, and Siegel 1976) and the Sprague index (see,
e.g., Calot and Sardon 2004) are implemented with functions whipple () and sprague(), re-
spectively. A detailed description of this functionality is out of the scope of this work, but the
help pages available at 7whipple and ?sprague provide details and running examples. The
application of all other functions is discussed in Section 4, after the corresponding methods
are described.
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Function Aim Note
manageSimPopObj accessor to ‘simPopObj’ objects get and set variables
tableWt weighted cross-tabulation
calibSample generalized raking procedures; cali-
brate the sample to known margins
addWeights add  weights (e.g., calibrated
weights) to a ‘simPopObj’ object
ipu iterative proportional updating calibrate for given individual and
household margins
sampHH households are drawn/sampled and mostly used internally for SA
new IDs are generated
specifyInput create a ‘dataObj’ object
simStructure simulate the household structure ‘data0bj’ object as input
simCategorical simulate categorical variables methods "multinom",
"distribution", "ctree",
"cforest" and "ranger"
simContinuous simulate continuous variables multinomial log-linear models or
two-step regression models; ran-
dom draws (with probabilities
from the model fit) from the re-
sulting categories
simRelation simulation of categorical variables take relationship between house-
hold members into account
simComponents  simulate components of (semi-) con-
tinuous variables
addKnownMargins add known margins (table) to
‘simPop0bj’ objects
calibPop calibrate a synthetic population to margins are provided by
known margins using SA addKnownMargins ()
simInitSpatial Generation of smaller regions given an existing spatial variable
and a table
sampleQbj query or replace slot sample of a
‘simPop0Obj’
pop0bj query or replace slot pop of a
‘simPop0bj’
tableObj query slot table of a ‘simPopObj’

spCdf, spTable

spCdfplot,
spMosaic

object

weighted cumulative distribution
function and cross-tabulation of
expected and realized population
sizes

plot expected and realized popula-
tion sizes

Table 1: Most important functions of simPop listed in order based on a typical workflow.
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3.2. Dependencies on other packages

The simPop package has multiple dependencies. The object-oriented implementation relies
on package methods (R Core Team 2017). Internal data manipulation is facilitated by pack-
ages Repp (Eddelbuettel and Frangois 2011) and data.table (Dowle and Srinivasan 2017);
data.table allows for highly efficient aggregation and merging of large data sets. Functions
from plyr (Wickham 2011) are used, as well as help functions from laeken (Alfons and Templ
2013). A tail modeling function written in C from the package POT (Ribatet 2016) has been
integrated into simPop. Modeling functionalities in simPop exploit packages €1071 (Meyer,
Dimitriadou, Hornik, Weingessel, and Leisch 2017), nnet (Venables and Ripley 2002), and
MASS (Venables and Ripley 2002). Parallel computing is implemented using packages par-
allel (R Core Team 2017), foreach (Kane, Emerson, and Weston 2013) and doParallel (Rev-
olution Analytics and Weston 2015) — the last two specifically for the Microsoft Windows
operation systems. Imputation of missing values relies mostly on package VIM (Kowarik and
Templ 2016). Graphics are produced using graphics (R Core Team 2017), lattice (Sarkar
2008) and ved (Meyer, Zeileis, and Hornik 2006), with package colorspace (Thaka, Murrell,
Hornik, Fisher, Stauffer, and Zeileis 2017) providing additional functionality for color control.

3.3. Other related software applications

We briefly introduce other tools used for the generation of synthetic populations.

PopGen (SimTRAVEL Research Initiative 2007) is an open source synthetic population gen-
erator developed by the SSImTRAVEL Research Initiative of Arizona State University, which
implements the IPU algorithm (see Ye et al. 2009).

VirtualBelgium is a project that explores the evolution of the Belgian population using sim-
ulation of demographics, residential choice, activity patterns, mobility, and other aspects. A
synthetic population is created using a slightly modified iterative proportional fitting algo-
rithm. Households are created by sampling from the individuals. More information can be
found in Barthelemy and Toint (2013).

R package sms (Kavroudakis 2015) provides facilities to simulate microdata from given area-
based macrodata. A simplified version of SA is used to best satisfy the available description
of an area. The package does not provide facilities to work with data containing a hierarchical
structure, such as individuals contained within households.

MoSeS (Modelling and Simulation for e-Social Science) attempts to build a synthetic popu-
lation for real urban and regional systems. A population reconstruction model for the United
Kingdom is implemented based on a genetic algorithm. Further information is given in Birkin,
Turner, and Wu (2006b,a); Turner (2011).

R package synthpop (Nowok, Raab, and Dibben 2016) uses regression trees to generate vari-
ables for a synthetic population. The package cannot deal with complex data structures,
such as samples drawn from sophisticated sampling designs, hierarchical, or cluster struc-
tures (e.g., individuals within households). Thus, the package is of limited use for simulating
socio-economic synthetic populations.

TRANSIMS (TRANSIMS Project Team 2008) is a transportation analysis simulation system
developed by researchers at the Los Alamos National Laboratory in the United States. It
includes a population synthesizer module. Synthetic populations are generated by IPF, based
on data from public use census microsamples.
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Synthia (Synthia Project Team 2012) is a web-based application developed by RTI Interna-
tional that helps build a synthetic population for a user-defined study area with user-defined
variables.

SMILE is a static spatial micro-simulation model that produces a micro-level synthetic dataset
for the whole population of Ireland. It contains demographic, socio-economic, labor force, and
income variables for individuals and households. Morrissey, O’Donoghue, Clarke, Ballas, and
Hynes (2012) discuss the statistical matching technique used to match the Irish Census of
Agriculture to the Irish National Farm Survey (NFS) and produce a farm-level static synthetic
population of Irish agriculture. SA has been used for the match/calibration task.

4. Generating a synthetic population: Methods and code

We demonstrate in this section how simPop can be used to generate a synthetic population of
Austria, using publicly available survey microdata and tabulated census data. Our approach,
described in Section 4.2, exploits the IPF, model-based generation, and SA methods.

4.1. Input data

The main sources of data are the 2006 European Union Statistics on Income and Living Con-
ditions (EU-SILC) microdata from Austria. EU-SILC is a panel survey conducted annually
in EU member states and other European countries. It is primarily used as data basis for
the calculation of the Laeken indicators, also known as social inclusion indicators (cf. Atkin-
son, Cantillon, Marlier, and Nolan 2002). For confidentiality reasons, we include a slightly
modified version of this dataset, using the name eusilcS, in simPop.

Table 2 lists and describes the EU-SILC variables used for generating the synthetic population.
Some categories of economic status and citizenship, respectively, have been combined due to
their low frequency of occurrence; the combined categories are marked with an asterisk (x).
The variables hsize, age and netIncome are not included in the original EU-SILC dataset.
hsize has been computed by counting the number of persons in each household, age is derived
from the year of birth, and netIncome is the sum of the income components. A complete
description of EU-SILC variables can be found in Eurostat (2004).

The sampling weights stored in eusilcS (variable rb050) have been divided by a factor 100
to make the package compile more quickly. We use these reduced sampling weights in this
contribution to ensure fast execution of the scripts. Simulating only 1/100 of the population
of Austria allows the code in this reproducible manuscript (using knitr; Xie 2013) to run
in less than one minute. If we were to simulate a population of the size of Austria (> 8
million individuals), it would require us to first multiply the sampling weights by 100. The
processing time would be significantly higher, in particular due to the SA procedure described
in Sections 2.2 and 4.9.

In the following example, the eusilcS dataset is saved under the name origData to indicate
that it provides the original data used as the starting point when constructing the synthetic
population. The dataset contains data on 11,725 individuals and 4,641 households (variable
db030 is the household unique identifier):

R> set.seed(1234)
R> library("simPop")
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Variable Name Possible outcomes
Region db040 1 Burgenland
2 Lower Austria
3 Vienna
4 Carinthia
5 Styria
6 Upper Austria
7 Salzburg
8 Tyrol
9 Vorarlberg
Household size hsize Number of persons in household
Age age Age (for the previous year) in years
Gender rb090 1 Male
2 Female
Self-defined current pl030 1 Working full-time
economic status 2 Working part-time
3 Unemployed
4 Pupil, student, further training, or unpaid work experi-
ence or in compulsory military or community service*
5 In retirement or in early retirement or has given up busi-
ness
6 Permanently disabled or/and unfit to work or other in-
active person*
7 Fulfilling domestic tasks and care responsibilities
Citizenship pb220a 1 Austria
2 EU*
3 Other*
Personal net income netIncome Sum of income components listed below
Employee cash py010n 0 No income
or near cash income >0 Income
Cash benefits or losses  py050n <0 Losses
from self-employment 0 No income
>0 Benefits
Unemployment benefits py090n 0 No income
>0 Income
Old-age benefits py100n 0 No income
>0 Income
Survivor’s benefits pyl10n 0 No income
>0 Income
Sickness benefits py120n 0 No income
>0 Income
Disability benefits py130n 0 No income
>0 Income
Education-related py140n 0 No income
allowances >0 Income

* combined categories

Table 2: Variables selected for the simulation of the Austrian EU-SILC population data.
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Dataset name

Description

Comments

origData Original survey data Included in the package as eusilcS;
weights are modified by factor 100 to
simulate realistic large populations
census Census data used to produce Produced as one realization of a pop-
margins; usually such margins ulation with different seed as the syn-
are available from registers thetic population; needed to produce
tables for calibration on gender x re-
gion X economic status
totalsRG Known population totals on re- Obtained from Statistics Austria’s
gion x gender website; used for calibration purposes
districts, Finer geographical location tab as table holding district x region
tab information; simulated and added to
census; used for spatial calibration of
the population
synthP Simulated synthetic population  simulated from given datasets
synthPadj Calibrated synthetic population  simulated from given datasets

Table 3: Datasets used and simulated in this work. The survey sample origData is central to
produce the synthetic population synthP; all other datasets are used for calibration purposes.

R> data("eusilcS", package = "simPop")
R> origData <- eusilcS
R> dim(origData)

[1] 11725 18

The number of households is:

R> length(unique (origData$db030))
[1] 4641

We also make use of the population numbers by region and gender from the Austrian cen-
sus, available from the website of Statistics Austria (http://www.statistik.at/), and also
included in simPop. Table 3 provides a list of all input and output datasets used in the paper.

4.2. Approach used to generate the Austrian synthetic data

We generate the Austrian synthetic population data using multiple techniques, following the
schema presented in Figure 1. This workflow is an adaptation, proposed by Alfons et al.
(2011), of the framework of Miinnich and Schiirle (2003). As a first step, sampling weights
in the survey data are calibrated using the IPF technique to match population numbers in
the census tables. The household structure of the synthetic population is then created by
extrapolating the calibrated sample. Categorical and continuous variables are added to that
structure using a modeling approach. Then the synthetic population is distributed among
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Figure 1: Workflow for simulating the population.

small(er) geographic areas. As a last step, the population dataset is re-calibrated, this time
using the SA technique.

The proposed framework proceeds in a stepwise fashion, generating categorical variables first,
then continuous variables. This sequence is not imposed by simPop and can be modified.
Categorical and continuous variables can be simulated in any order, allowing for simulated
continuous variables to be used as predictors for simulating categorical variables.

Before simulating variables, we create an object of class ‘dataObj’ that will hold all infor-
mation needed to construct the synthetic population. Objects of this class are generated
with specifyInput(). We identify the survey microdata to be used as input, and the vari-
ables providing information on clustering (here: households), household size, subpopulations
(allowing in this case to account for heterogeneities across regions — db040), and sampling
weights (variable rb050).

R> inp <- specifyInput(origData, hhid = "db030", hhsize = "hsize',
+ strata = "db040", weight = "rb050")

A summary of the content of this ‘dataObj’ object is displayed using the print method.
R> print(inp)

survey sample of size 11725 x 19
Selected important variables:

household ID: db030

personal ID: pid

variable household size: hsize
sampling weight: rb050

strata: db040

13
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4.3. Calibration of the sample

Assuming that the sample microdata used as input have not been previously calibrated to
the population totals provided by census tables, we calibrate the sample weights by iterative
proportional fitting using function calibSample(). Because we are using weights reduced
by a factor of 100, as mentioned in Section 4.1, we also divide the population totals by 100.
Population totals can be provided either as a data frame or as an n-dimensional table (in
our example, a two-dimensional table); both will produce identical results, as shown in the
following example.

R> data("totalsRG", package = "simPop")
R> print (totalsRG)

rb090 db040  Freq
1 male Burgenland 140436
2 female Burgenland 146980
3 male Carinthia 270084
4 female Carinthia 285797
5 male Lower Austria 797398
6 female Lower Austria 828087
7
8
9

male Salzburg 702539
female Salzburg 722883
male Styria 259595

10 female Styria 274675
11 male Tyrol 595842
12 female Tyrol 619404

13 male Upper Austria 353910
14 female Upper Austria 368128
15 male Vienna 850596
16 female Vienna 916150
17  male Vorarlberg 184939
18 female Vorarlberg 190343

or as a n-dimensional table (in this example, a 2-dimensional table).

R> data("totalsRGtab", package = "simPop")
R> print(totalsRGtab)

1 db040

2 rb090 Burgenland Carinthia Lower Austria Salzburg Styria Tyrol
3 female 146980 285797 828087 722883 274675 619404
4 male 140436 270084 797398 702539 259595 595842
5 db040

6 rb090 Upper Austria Vienna Vorarlberg

7 368128 916150 190343

8 353910 850596 184939
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R> totalsRG$Freq <- totalsRG$Freq / 100

R> totalsRGtab <- totalsRGtab / 100

R> weights.df <- calibSample(inp, totalsRG)

R> weights.tab <- calibSample(inp, totalsRGtab)
R> identical(weights.df, weights.tab)

[1] TRUE

The resulting calibrated weights are added to the ‘simPopObj’ object inp using function
addWeights ().

R> addWeights(inp) <- calibSample(inp, totalsRGtab)

4.4. Creating the household structure of the synthetic population

Using the calibrated sample dataset as an input, the household structure of the synthetic
population is built by resampling households from the survey microdata. The household
structure contains a set of user-defined “basic variables”, typically the age, sex (rb090),
and geographic location (rb090) of household members. The data that are added to the
synthetic population at this stage are thus data obtained from actual survey respondents.
This approach prevents the creation of unrealistic household structures. It is recommended
for confidentiality reasons to include as few variables as possible in this phase.

Alias sampling (Walker 1977) is well suited for our purpose, as it is very fast for a large
number of sampled elements.

Let xfij and x,[{ij denote the value of person i from household A in variable j for the sample
and population data, respectively, and let the first p; variables contain the basic information
on the household structure. For each population household h € H ,g , a survey household
neH ,fl is selected with probability wy />, S Wh and the household structure is set to

xf[{ij:mg/ija i=1,...,0L, j=1,....,;p1 . (2)

The inp object previously generated is used as input for simStructure(). The function
generates the structure of the synthetic population using a replication approach that au-
tomatically takes sampling weights into account. The resulting object (synthP) is of class
‘simPop0bj’.

R> synthP <- simStructure(data = inp, method = "direct",
+ basicHHvars = c("age", "rb090", "db040"))

4.5. Adding categorical variables

Using the household structure information and the calibrated weights, categorical variables
are added to the synthetic population. Our preferred approach is to construct categorical
variables by model-based simulation. Models are fit to the sample data and used to “predict”
the new variables (see also Alfons et al. 2011; Meindl, Templ, and Kowarik 2014). Synthetic
reconstruction provides the following alternative solution.

15
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Model-based simulation of categorical variables

Miinnich et al. (2003) and Minnich and Schiirle (2003) propose an approach to simulate
categorical variables by estimating conditional distributions directly from a rather large sam-
ple. Their method does not allow combinations that do not occur in the sample dataset to
occur in the synthetic population dataset (Kraft 2009). As a large number of combinations
of categories found in the actual population will usually not be found in the sample data,
the resulting synthetic population is unlikely to reproduce the variation of combinations. To
overcome these shortcomings, Alfons et al. (2011) propose a method that estimates condi-
tional distributions using multinomial logistic regression models. One categorical variable is
simulated as follows.

(i) The variable to be simulated (response) is selected from the sample S. The variables
(including the household structure variables) used as predictors must be present in both
the sample S and the population U. Other variables (rest) can be simulated afterwards.

predictors response  rest

T1,1 X120 Tlj Tl 4+l L1542

sample S = T21 X222 - T2 T2+1 L2542
Tnl Tn,2 " Tnyj Tpj+l Tnj+2

(ii) The model matrix is built from the predictors available in the sample S. A multinomial
logistic regression is modeled for the sample data with the variable to be simulated as
response. This results in the fit of the regression coefficients 3.

(iii) For every individual of the selected variable, predict the outcome category &; j11, @ =
1,..., N by using a multinomial regression model.

For each outcome %; 11, ¢ =1,..., N, its conditional probabilities for each R category
is estimated by

N 1
pi1 = = e —
1+ s exp(Bor + Bordin + .- + Bjriiy)
]5' L eXp(ﬁOT + 507’«%1‘,1 + ...+ 5j7“£'i,j)
wr

1+, exp(Bor + B[)ri'i,l +...+ Bjrfi,j)’

with r = 2,... R and Bor, .. .,5’]-_17r are the estimated coefficients from a multinomial
model. The new values, i“fj 41, are drawn given these probabilities. Schematically, this
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is:

A Sk

Bx pred. ~ Xjt1

/—/H
. . N

11 T2 ot Xlg Ty
2, 2, 2, ok

) T2,1 X22 v X245 Ty

population U =

N . N ax

ITN1 TN2 ' IN,j T 41

Using multinomial logistic regression models to estimate conditional distributions allows for
combinations that do not occur in the sample but are likely to occur in the true population to
be created. Such combinations are called random zeros as opposed to structural zeros, where
their occurrences are not possible (e.g., Simonoff 2003).

Categorical variables are simulated using the household structure of the synthetic popula-
tion and the sample microdata as input. Both are included in the synthP object of class
‘simPop0bj’ previously generated. In our example, we generate categorical variables on eco-
nomic status (variable pl030) and citizenship (variable pb220a) by applying the function
simCategorical (). The variables to be simulated are specified in argument additional.

R> synthP <- simCategorical (synthP, additional = c("pl030", "pb220a"),
+ method = "multinom", nr_cpus = 1)

Accepted values for argument method are "multinom" (i.e., estimation of the conditional
probabilities using multinomial log-linear models and random draws from the resulting dis-
tributions); "distribution" (i.e., random draws from the observed conditional distributions
of their multivariate realizations); "ctree" and "cforest" (classification trees and classifi-
cation using random forest, both from the R package party, Hothorn, Hornik, and Zeileis
2006; Strobl, Boulesteix, Kneib, Augustin, and Zeileis 2008); and "ranger" (random for-
est from the R package ranger, Wright and Ziegler 2017). Many additional options can
be specified and are described in the help file, ?simCategorical. The function argument
regModel may be discussed in more detail. It allows to specify variables or a model (for
each variable to be simulated) that is used when simulating additional categorical variables.
If regModel = "basic" (default), only the basic household variables are chosen as predic-
tors. If regModel = "available" all available variables are used as predictors. For example,
regModel = list("basic", "available") of simCategorical would use the basic vari-
ables (from simStructure) for simulating (in the previous code listing) the variable p1030
and all available variables (structural/basic ones plus already simulated variables) are used
to simulate pb220a. Note that for each variable to simulate, also a formula can be specified.
If a formula or a list of formulas are provided, checks are performed if all required variables
are available.

Parallel computing is automatically applied. The number of used cores is equal to 1) the
number of strata (if specified in specifyInput()), if the number of strata is lower than the
number of available CPUs, or 2) the number of cores minus one if the number of strata is equal
to or higher than the number of available CPUs. Alternatively, the number of cores for parallel

17
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computing can be specified directly using function argument nr_cpus (see ?simCategorical).
Note that running the code repeatedly on the same number of cores gives the same results,
however changing the number of cores will change the random results.

The print method displays basic information about the current synthetic population.

R> print(synthP)

synthetic population of size
85057 x 9

build from a sample of size
11725 x 19

variables in the population:
db030,hsize,age,rb090,db040,pid,weight,pl030,pb220a

In the previous example, we assumed that categorical variables can be predicted independently
for each household member. This assumption is not always realistic. The characteristics of
an individual will often depend on the characteristics of other members of the same house-
hold. For example, the religion of children and other household members will typically be
similar to the religion of the head of the household. To take the relationships between house-
hold members into account when simulating categorical variables, simPop provides function
simRelation().

Synthetic reconstruction

We show here how a categorical variable representing the economic status (p1030) is created
using the synthetic reconstruction approach. We use eusilcS as the known probability table
(in a real application, this information would likely come from a census). We first show how
the method is applied to predict values for a specific household.

R> censusInfo <- eusilcS[, c("age", "rb090", "pl030")]
pl030 is a variable with seven possible categories.

R> stat <- as.numeric(levels(censusInfo$pl030))
R> stat

(1] 1234567

We generate the conditional probabilities of these categories conditional on age and gender
(variable rb090):

R> tabl <- prop.table(table(censusInfo))
R> probs <- reshape2::dcast(as.data.frame(tabl),
+ formula = rb090 + age ~ pl030, value.var = "Freq")



Journal of Statistical Software 19

For each combination values of age and rb090, probs contains the conditional probability for
each of the 7 categories of p1030. We show the information related to the first household:

R> pop <- subset(eusilcS, eusilcS$db030 == 1, select = c("age", "rb090"))
R> pop

age rb090
9292 72 male
9293 66 female

We want to sample economic status given age and rb090 and known probabilities. As shown
in the following code, we need to merge objects pop and probs on variables age and rb090.
Then it is possible to draw — for each individual — a value for economic status given the
conditional probabilities which are then available in the merged dataset.

R> pop <- merge(pop, probs, all.x = TRUE)

R> pop$status <- sapply(l:nrow(pop), function(x) {

+ pp <- poplx, -c(1:2)]

+ ifelse(all(pp == 0), NA, sample(stat, 1, prob = pp))
+ })

R> pop <- popl[, c("age", "rb090", "status")]

R> pop

age 1rb090 status
1 66 female 7
2 72 male 5

This concept is implemented in function simCategorical() using "distribution" as value
for argument method. In the following, the code for a real application using synthetic recon-
struction is presented in which a new object synthRec of class ‘simPop0bj’ is created.

R> data("eusilcS", package = "simPop")

R> inp <- specifylInput(data = eusilcS, hhid = "db030", hhsize = "hsize",
+ strata = "db040", weight = "db090")

R> synthRec <- simStructure(data = inp, method = "direct",

+ basicHHvars = c("age", "rb090"))

R> synthRec <- simCategorical(synthRec, additional = "pl030",

+ method = "distribution", nr_cpus = 1)

[1] nagen nrbogoll
The first step creates the required input; the second step computes a synthetic population

consisting only of basic variables; and the third step generates the additional categorical
variable p1030.
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4.6. Adding continuous variables

In our example, we will add information on personal net income (variable netIncome) to the
synthetic dataset synthP.

Two approaches to simulate continuous variables are implemented in simPop. The first in-
volves fitting a multinomial model and random drawing from the resulting categories. This
approach is based on the simulation of categorical variables described in the previous section,
whereas first the continuous variable is categorized and the multinomial model is estimated,
as in the previous section. In the last step, random draws are taken from the intervals of
the categories into which predictions at population level fall. In that case, values from the
largest categories could be drawn from a generalized Pareto distribution, since the values are
not expected to be uniformly distributed.

The second approach is based on a two-step regression model with random error terms. In
the first step of this approach, a logistic regression is applied. In the second step, a linear
regression is applied only to observations for which the prediction of the logistic regression is
closer to one than to zero. This is necessary when considering semi-continuous distributions,
otherwise only the linear regression imputation is applied. A random error value is added
to avoid all individuals with the same set of predictors receiving the same value for the
predicted variables, which would underestimate the variance. Random draws can be based
on the normal assumption or, preferably, taken from the regression residuals.

Continuous variables are generated using simContinuous(). Prior to applying the func-
tion, the basic household structure and possibly other categorical predictors must have been
simulated using simStructure() and simCategorical(), respectively. An object of class
‘simPop0bj’ is provided as input. The continuous variables to be generated are specified in
function argument additional. The function takes additional arguments, which are described
in the help file; see ?simContinuous.

The following example implements the multinomial model with a random draws approach (the
default option for the simContinuous() function). Variables age category, gender, household
size, economic status and citizenship are used as predictors of personal net income. A model
is computed separately for each region. For the categorization of personal net income, zero
is a category of its own since personal net income is a semi-continuous variable. Breakpoints
for the positive values are chosen as their weighted 1%, 5%, 10%, 20%, 40%, 60%, 80%, 90%,
95% and 99% quantiles. Also, the only three negative values are used as breakpoints for
negative income. Values in these categories — the two largest breakpoints — are drawn from a
truncated generalized Pareto distribution.

R> synthP <- simContinuous(synthP, additional = "netIncome", upper = 200000,
+ equidist = FALSE, imputeMissings = FALSE, nr_cpus = 1)

In the EU-SILC data, net income values are conditioned on the age of respondents, and
individuals aged less than 16 years do not have an income. We therefore set this variable
as missing for the population below an age of 16 years by extracting the information from
the ‘simPop0Obj’ object, imputing the values as missing, and overwriting the object. The
population below an age of 16 years is thus not considered in regression models estimating
net income of the population aged 16 years and above.

R> ageinc <- pop(synthP, var = c("age", "netIncome"))
R> ageinc$age <- as.numeric(as.character(ageinc$age))
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R> ageinclage < 16, netIncome := NAJ
R> pop(synthP, var = "netIncome") <- ageinc$netIncome

Alternatively to the multinomial model, the two-step regression model approach could be
used, in which case the code would be as follows:

R> synthP <- simContinuous (synthP, additional = "netIncome", method = "lm",
+ nr_cpus = 1)

In this case, random draws from the residuals are used. Positive values in the sample data
are trimmed with parameters a; = ag = 0.01 and log-transformed in the second step of the
procedure. Trimming is used since this performed better (results not shown, cf. Kraft 2009).
To simulate negative income values, a multinomial model can be used in the first step. For
negative income values, again, the only three existing values are used as breakpoints and the
simulated values are drawn from uniform distributions in the corresponding classes.

4.7. Simulation of components

In household surveys, information on net individual income is typically not collected, but
derived from other variables (e.g., from information collected on income by source). A syn-
thetically generated continuous variable can be broken down by its components using function
simComponents ().

As input, the function requires the sample microdata (which must contain variables represent-
ing the components of the variables to be split) and the synthetic data containing household
structure, categorical variables, and the continuous variable to be split. This information
is contained in the object of class ‘simPop0Obj’ previously generated using simStructure(),
simCategorical() and simContinuous().

The simulation of components of continuous variables of population data is performed by
resampling fractions using the survey data at hand. The following code shows how to create
income components of variable netIncome. First, we categorize netIncome for use as a
conditioning variable.

R> sIncome <- manageSimPopObj (synthP, var = "netIncome", sample = TRUE)
R> sWeight <- manageSimPopObj (synthP, var = "rb050", sample = TRUE)

R> pIncome <- manageSimPopObj (synthP, var "netIncome")

R> breaks <- getBreaks(x = sIncome, w = sWeight, upper = Inf,

+ equidist = FALSE)

R> synthP <- manageSimPopObj (synthP, var = "netIncomeCat",

+ sample = TRUE, set = TRUE, values = getCat(x = sIncome, breaks))
R> synthP <- manageSimPopObj (synthP, var = "netIncomeCat",

+ sample = FALSE, set = TRUE, values = getCat(x = pIncome, breaks))

We now simulate net income components.

R> synthP <- simComponents (simPopObj = synthP, total = "netIncome",

+ components = c("py01i0n", "py050n", "py090n", "py100n", "py110On",

+ "py120n", "py130mn", "py140n"), conditional = c("netIncomeCat", "pl030"),
+ replaceEmpty = "sequential", seed = 1)



22 simPop: Synthetic Data Simulation

We print the information of the synthetic population, which shows that the income component
variables have been added.

synthetic population of size
85057 x 19

build from a sample of size
11725 x 20

variables in the population:
db030,hsize,age,rb090,db040,pid,weight,pl030,pb220a,netIncomeCat ,netIncome,
py010n,py050n,py090n,py100n,py110n,pyl20n,pyl130n,py140n

4.8. Allocating the population in small areas

At this stage, the only information available on the geographic location of the synthetic
households is that provided by the strata variable used in the first step of the procedure
(the regions, in the case of Austria). This population may be distributed across smaller
geographic areas (districts, in the case of Austria) if the distribution of the population at
this lower level is available. We simulate smaller regions using function simInitSpatial().
In the current implementation of simPop, the function requires at least one of two tables
as input, the tables must have exactly three columns. The first two columns contain the
identification of the broader (first column) and smaller (second column) geographic areas.
The third column contains the known population of the smaller area (as number of persons if
provided for parameter tspatialP or as number of households for parameter tspatialHH). A
future improvement will allow users to specify n-way tables holding distributional information
of large and small areas together with other variables, e.g., the population by region, district,
and age group (note that in the absence of such an option, calibration after allocating districts
can be performed using function calibPop() to achieve a similar objective).

Since the EU-SILC data used in this work do not contain information on districts, we gener-
ate districts randomly to demonstrate the functionality of simInitSpatial (). We randomly
distribute the EU-SILC population to districts assigned to regions. For each region, a num-
ber between 10 and 90 is randomly drawn that determines the number of districts in the
corresponding region.

R> simulate_districts <- function(inp) {

hhid <- "db030"

region <- "db040"

a <- inp[!duplicated(inp[, hhid]), c(hhid, region)]

spl <- split(a, al, region])

regions <- unique(inp[, region])

tmpres <- lapply(1:length(spl), function(x) {
codes <- paste(x, 1:sample(10:90, 1), sep = "")
spl[[x]]$district <- sample(codes, nrow(spl[[x]]), replace = TRUE)
spll[[x]]

+ + + + + + + + +
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+ i)

+ tmpres <- do.call("rbind", tmpres)

+ tmpres <- tmpres[, -2]

+ out <- merge(inp, tmpres, by.x = hhid, by.y = hhid, all.x = TRUE)
+ invisible (out)

+ }

R> data("eusilcS", package = "simPop")
R> census <- simulate_districts(eusilcS)
R> head(table(census$district))

11 110 111 112 113 114
20 6 9 19 45 28

Based on this, we generate two tables, one containing the counts of persons by region and the
other with the household population by region. (db040) and district.

R> tabHH <- as.data.frame (xtabs(rb050 ~ db040 + district,

+ data = census[!duplicated(census$db030), 1))

R> tabP <- as.data.frame(xtabs(rb050 ~ db040 + district, data = census))
R> colnames(tabP) <- colnames(tabHH) <- c("db040", "district", "Freq")

These tables are used as an input to add a variable district to the synthetic population
dataset. The function simInitSpatial() requires an object of class ‘simPopObj’ as input.
The procedure, applied independently to each region, adds a variable district to the syn-
thetic population (see last column in the following table).

R> synthP <- simInitSpatial(synthP, additional = "district",
+ region = "db040", tspatialHH = tabHH, tspatialP = tabP)
R> head(popData (synthP), 2)

db030 hsize age 1rb090 db040 pid weight pl030 pb220a
1: 1 1 53 female Burgenland 1.1 1 7 AT
2 1 37 male Burgenland 2.1 1 1 AT
netIncomeCat netIncome py0l0n py050n pyO90n pyl0On  pyliOn
1: (0,657] 174.1431 0.00 174.1431 0 0 0.000
: (1.79e+04,2.35e+04] 19598.5668 15441.29  0.0000 0 0 4157.273
py120n pyl130n pyl40n district
1: 0 0 0 19
2: 0 0 0 119

4.9. Post-calibration of the synthetic population

Although the sample used as input for the simulation of the synthetic population had been
calibrated to known marginals (see Section 4.3), the resulting synthetic population will not
exactly match these marginals due to randomness in the data-generation process. If a (quasi-
)perfect match to known marginals is a requirement, an SA procedure can be applied using
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function calibPop(). The algorithm consists of an iterative search for a (near) optimal
combination of households to populate the geographic areas. At each iteration, households
are swapped. The sum of absolute differences between target marginals and a synthetic
marginal is estimated and used as the objective function to assess whether the swap has or
has not resulted in an improvement.

In the following code, we calibrate the synthetic dataset to the known distribution of the
population by region, sex, and economic status. We obtain this distribution from a synthetic
census created for the purpose of our demonstration. In practice, margins will be obtained
from actual sources such as population censuses or administrative data. We simulate a census
population dataset, from where we derive the “known margins”:

R> census <- simStructure(data = inp, method = "direct",

+ basicHHvars = c("age", "rb090", "db040"))

R> census <- simCategorical(census, additional = c("pl030", "pb220a"),
+ method = "multinom", nr_cpus = 1)

We add these margins to our object synthP:

R> census <- data.frame(popData(census))

R> margins <- as.data.frame(xtabs(~ db040 + rb090 + pl030, data = census))
R> margins$Freq <- as.numeric(margins$Freq)

R> synthP <- addKnownMargins (synthP, margins)

We then calibrate to these margins using SA with calibPop().

R> synthPadj <- calibPop(synthP, split = "db040", temp = 1,
+ eps.factor = 0.00005, maxiter = 200, temp.cooldown = 0.975,
+ factor.cooldown = 0.85, min.temp = 0.001, verbose = TRUE, nr_cpus = 1)

The SA approach is a very intensive process that is typically applied to small datasets of a
few hundred or a few thousand observations, at most. A highly optimized implementation
in simPop makes the algorithm applicable to larger datasets. Parallel computing is applied,
exploiting a number of CPUs determined automatically, unless manually specified by the user
(see details in ?calibPop). But the computation time remains long and depends highly on the
chosen parameters. To assess the improvement resulting from the SA procedure, we compare
the population numbers by region, sex, and economic status before and after its application.
First, we extract population and synthetic population data:

R> pop <- data.frame(popData(synthP))
R> popadj <- data.frame(popData(synthPadj))

We generate the population tables to be compared and compute the differences. We observe
that the non-calibrated population numbers differ (comparing tab.census with tab.beforeSA),
while applying the SA algorithm results in a perfect match between the two tables (comparing
tab.census with tab.afterSA).

R> tab.census <- ftable(census[, c("rb090", "db040", "pl030")])
R> tab_afterSA <- ftable(popadj[, c("rb090", "db040", "p1030")])
R> tab.census - tab_afterSA
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pl030 1 2 3 4 5 6 7

rb090 db040
male  Burgenland 0 0 0 0 0 0 0
Carinthia 0 0 0 0 0 0 0
Lower Austria 0 0 0 0 0 0 0
Salzburg -1 0 -1 0 -100 -8 -5
Styria 517 26 70 0 627 12 4
Tyrol -1 -3 0 0 0 0 -1
Upper Austria 424 33 11 0 762 1 0
Vienna 0 0 0 0 0 0 0
Vorarlberg 0 0 0 0 0 0 0
female Burgenland 0 0 0 0 0 0 0
Carinthia 0 0 0 0 0 0 0
Lower Austria 0 0 0 0 0 0 0
Salzburg -241 -73 -20 0 -1818 -9 -171
Styria 248 163 2 1 892 0 380
Tyrol 0 -1 0 0 -553 0 0
Upper Austria 88 229 4 0 991 4 356
Vienna 0 0 0 0 0 0 0
Vorarlberg 0 0 0 0 0 0 0

5. Data utility of the simulated population

In a last and critical step, we assess the utility of the generated synthetic population. Data
utility can be assessed with two approaches (Reiter 2012): by quantifying some statistical dis-
tance between the distributions of the original data and the synthetic files; and by comparing
differences in specific models between the original and the synthetic data.

5.1. Data utility according to univariate and multivariate distributions

We first check how well univariate distributions are preserved. Given the example from
Section 4, we see that univariate distributions are preserved very well with the model-based
approach. In the following table, we consider variable pl030, the economic status. We
calculate the Horwitz-Thompson estimate of counts using the original, unmodified sample
data.

R> dat <- data.frame(sampleData(synthP))
R> tableWt(dat$pl030, weights = dat$rb050)

1 2 3 4 5 6 7
31320 6250 3010 4238 18425 853 6527

This can be compared with the counts of the synthetic population where the differences are
very small:
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Figure 2: Mosaic plots of gender, region and household size.

R> table(popData(synthP)$p1030)

1 2 3 4 5 6 7
33381 6395 3113 16299 18356 925 6588

The multivariate structure of the simulated categorical variables is evaluated by means of
graphical comparison.

R> tab <- spTable(synthP, select = c("rb090", "db040", "hsize"))
R> spMosaic(tab, labeling = labeling border (abbreviate = c(db040 = TRUE)))

Figure 2 contains mosaic plots visualizing the expected and realized frequencies of gender
(rb090), household sizes (hhsize), and region (db040).

Figure 3 shows a mosaic plot of gender (rb090) and economic status (p1030) with slightly
different graphical options.

R> tab <- spTable(synthP, select = c("rb090", "pl030"))
R> spMosaic(tab, method = "color")
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Figure 3: Colored mosaic plot of gender and economic status.

Function spTable() performs the cross-tabulation on the sample (Horwitz-Thompson esti-
mates) and population levels for selected variables. spMosaic() plots the frequencies; on
the left-hand side is the sample data, and on the right-hand side, values of the synthetic
population. We note that both plots show very similar structures for sample and population
data. While the two plots at the top of Figure 2 are nearly identical, closer inspection of the
two plots at the bottom reveals small differences, which result from the multinomial logistic
regression models.

In general, the following two points need to be kept in mind. First, expected frequencies of
different combinations are solely determined by the sum of the corresponding sample weights.
Second, multinomial models allow simulating combinations that do not occur in the sample
but are likely to occur in the population. Consequently, differences may be interpreted as
corrections of the expected frequencies.

Figure 3 shows the relative differences of expected (i.e., estimated) and realized (i.e., sim-
ulated) population sizes for gender (rb090) X economic status (pl030). Only very small
differences occur for small categories, e.g., for males with economic status 6 or 7. The real-
ized population is slightly smaller (< 1.2%) than the estimated sample population size. For
additional results on the simulation of categorical variables in the case of EU-SILC, including
two goodness-of-fit tests, see Kraft (2009).

For simulating personal net income, two approaches were described in Section 4.6. In Figure 4,
we compare the cumulative distribution function (CDF) of personal net income (netIncome)
by gender (rb090) obtained from the synthetic population, with the empirical CDF from the
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Figure 4: Cumulative distribution functions of personal net income. For better visibility, only
the main parts of the data are shown.

original sample population.
R> spCdfplot(synthP, "netIncome", cond = "rb090", layout = c(1, 2))

Sample weights are taken into account by adjusting the step height. For better visibility of
differences in the distribution, the plot shows only the main part of the data, from 0 to the
weighted 99% quantile of the positive values in the sample. The CDFs indicate an excellent
fit.

Figure 5 uses box plots to compare the distributions of personal net income (netIncome) by
gender (rb090).

R> spBwplot(synthP, x = "netIncome", cond = "rb090", layout = c(1, 2))

Box and whiskers are adapted for semi-continuous variables; they are computed only for
the non-zero part of the data and the box widths are proportional to the ratio of non-zero
observations to the total number of observed values. For the sample data, sample weights are
taken into account when computing the box plot statistics and box widths. Figure 6 compares
the CDF of netIncome for the sample and population based on region (db040). Again, we
observe an almost perfect fit.

R> spCdfplot (synthP, "netIncome", cond = "db040", layout = c(3, 3))

These box plots suggest that the proposed approaches perform well. The proportions of zeros
and the distribution of non-zero observations seem to be well reflected in the simulated pop-
ulation. This underlines the good fit of the models and illustrates that the proposed methods
succeed in accounting for heterogeneities in the data. Additional results from simulations of
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Figure 7: Regression coefficients of the original survey including confidence intervals and the
corresponding coefficients from the synthetic population.

restricted to non-negative income, including correlation coefficients of the income components,
can be found in Kraft (2009).

5.2. Data utility according to model fitting

Another approach to assess the utility of synthetic datasets is to compare the results of
regression models applied to the original dataset with those obtained when the same model
is applied to the synthetic data. If the point estimates and standard errors of the regression
coefficients are close, the synthetic data have high utility. As mentioned by Reiter (2012), this
approach assesses the utility of the synthetic data for a specific regression model, i.e., for a
particular analytical purpose. Ideally, the assessment will be made by fitting multiple models
representing the diversity of possible uses of the data (see also Karr, Kohnen, Oganian, Reiter,
and Sanil 2006).

As an example, we assessed the utility of our Austrian synthetic data by running a linear
regression model predicting the individual’s total net income using all other variables available
in the synthetic data as predictors. Figure 7 shows the fit (i.e., regression coefficients) of the
model

netIncome ~ age + gender + region + citizenship + economic status +
household size + py010n + py050n + py090n + py100n

in which the last variables are income components (see Table 2).

The non-significant coefficients in Figure 7 are drawn with a circle. For many coefficients, the
value based on the synthetic data fall within the confidence interval of the values obtained
from the sample data, which indicates a good fit of the synthetic population.
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5.3. Confidentiality and synthetic data

Fully synthetic population datasets preserve confidentiality (Templ and Alfons 2010) and can
thus be shared as public-use microdata. While some re-identification might be possible, in
the sense that some combinations of selected variables in the synthetic data may correspond
exactly to true individuals, an intruder would not gain useful information from the data.
The model-based approach creates “uncertainty” in the re-identification process, and the
probability that all variables other than the variables used as (indirect) identifiers correspond
to the true values is extremely low. A discussion of the privacy protection aspect of synthetic
data is beyond the scope of this paper, but can be found in Templ and Alfons (2010).

6. Conclusions

Using the R package simPop (Meindl et al. 2017) and underlying calibration and model-based
methods, we generated a synthetic population that exhibits the same structure as the original
survey sample and other known marginals. Even the missing structure of the original sample
is reflected. The relationship between variables is relatively well preserved.

We evaluate the synthetic population by comparing the original sample with the synthetic
population using carefully selected utility measures (Section 5). Most of them are included
in simPop as they differ from standard estimates and plots. We showed two (small) com-
parison tables, and proposed the (weighted) mosaic plots to assess multivariate categorical
information. To assess continuous variables, (weighted) ecdf comparisons plots and boxplots
were used, and a regression model was fitted which generated coefficients that were com-
pared. Further assessment and comparisons are, of course, possible. More research is needed
on methods to compare complex sample datasets with synthetic population data. An on-
going Eurostat-funded project by INSEE, Statistics Austria, DeStatis, Statistics Hungary
and Statistics Finland, aiming to generate synthetic data using simPop, will soon propose
additional (descriptive) utility measures.

We have shown that simPop includes a user-friendly implementation of multiple methods.
As soon as an object which stores all the required and relevant information is created, most
methods can be directly applied on these objects with minimum syntax and complexity. Huge
effort has been taken into account to optimize the code in terms of computational speed.

Further improvements of simPop may include the following:

e The distribution of a synthetic population into a small geographic area is of particular
interest for micro-simulation applications. The procedure described in Section 4.8 should
be improved to allow for more complex conditional tables to be used as input, e.g., by
specifying population by age group and/or sex. Performing near-optimal allocation at
the household level using person-level covariates is challenging, however. This is a topic
for future research.

e The methods might be further tested to generate synthetic populations from survey
data that include a large amount of missing values.

e A detailed comparison of the performance of synthetic reconstruction and model-based
approaches would be of interest. Since both methods are implemented in simPop, the
task is relatively easy. In addition, the comparison in large simulation studies between
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iterative proportional fitting and iterative proportional updating, under a constraint
that sample weights be the same for all members of a same household (Sérndal 2008),
could be of interest.

o Last, the integration of additional modeling methods in simPop might be of further
interest. For example, random forests algorithms are known to perform well and could
be used to simulate variables; see Caiola and Reiter (2010).

Computational details

All computations in this paper were performed using

o R version 3.2.2 (2015-08-14), x86_64-apple-darwinl3.4.0
« Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils.
e Other packages: data.table 1.9.6, knitr 1.12.3, lattice 0.20-33, simPop 0.7.0, ved 1.4-1.

o Loaded via a namespace (and not attached): boot 1.3-17, car 2.1-2, chron 2.3-47,
class 7.3-13, codetools 0.2-14, coin 1.1-2, colorspace 1.2-6, DEoptimR 1.0-4,
digest 0.6.9, doParallel 1.0.10, e1071 1.6-7, evaluate 0.8, foreach 1.4.3, formatR 1.2.1,
highr 0.5.1, iterators 1.0.8, laeken 0.4.6, lme4 1.1-10, lmtest 0.9-34, magrittr 1.5,
MASS 7.3-43, Matrix 1.2-6, MatrixModels 0.4-1, mgcv 1.8-7, minqga 1.2.4,
modeltools 0.2-21, multcomp 1.4-2, mvtnorm 1.0-5, nlme 3.1-121, nloptr 1.0.4,
nnet 7.3-10, parallel 3.2.2, party 1.0-25, pbkrtest 0.4-4, plyr 1.8.3, quantreg 5.21,
Rcpp 0.12.4, reshape2 1.4.1, robustbase 0.92-5, sandwich 2.3-4, sp 1.2-3, SparseM 1.7,
splines 3.2.2, stats4 3.2.2, stringi 1.0-1, stringr 1.0.0, strucchange 1.5-1,
survival 2.38-3, TH.data 1.0-6, tools 3.2.2, VIM 4.4.1, zoo 1.7-13.
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