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Abstract Compositional tables – a continuous counterpart to the contin-

gency tables – carry relative information about relationships between row

and column factors, thus for their analysis only ratios between cells of a ta-

ble are informative. Consequently, the standard Euclidean geometry should

be replaced by the Aitchison geometry on the simplex that enables decompo-

sition of the table into its independent and interactive parts. The aim of the

paper is to find interpretable coordinate representation for independent and

interaction tables (in sense of balances and odds ratios of cells, respectively),

where further statistical processing of compositional tables can be performed.

Theoretical results are applied to real-world problems from a health survey

and in macroeconomics.
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1 Introduction

The statistical analysis of a relation between two discrete random variables

(factors) is popularly performed using contingency tables. Their cells contain

counts resulting from a random sample. An extension of this basic problem

setting is to analyze a sample of tables, where each table is a realization

of a discrete bivariate distribution. Thus they represent a particular case

of distribution-valued variables (?), where individual observations are sum-

marized by distributions to preserve their intrinsic variability and enable to

analyze statistically groups of individuals in a meaningful way. As an exam-

ple we can mention a sample of tables containing the joint distribution of

animals and vegetation in different plots of a survey area (see ?, p. 387) or

the social vs. the economic structure of population in EU countries. Such

a sample of tables is now subsequentially expressed as the term composi-

tional tables (??). A compositional table itself represents one observation in

a sample of distribution-valued variables with some (not necessary known)

continuous multivariate distribution. On the other hand, a contingency ta-

ble already collects results from n independent observations. Its cells contain

counts as realization of discrete multinomial distribution. Obviously, compo-

sitional tables frequently appear in practice. However, up to now a concise

methodology for their statistical treatment was not available. Although one

possible approach to treat a sample of contingency tables statistically is to

consider three-way contingency tables (?), where the third factor would be

used to construct the sample of tables. However, this approach does not

inherently contain the case of tables with continuous origin of entries (like

for the first mentioned example) as well as a possibility of a random sample

of tables. Correspondence analysis is another approach to analyse contin-

gency tables (see, e.g., ?, for details) But again this method is not primarily

designed for a sample of tables.
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As a way out, compositional tables can be considered as a special case

of D-part compositional data (??). These are multivariate observations con-

sisting of relative information that express a relationship between two (row

and column) factors. Thus they form a continuous analogy to the well-known

contingency tables. As in the case of D-part compositions, cells (parts) of

compositional tables are all strictly positive and represent their contribu-

tions to the whole. Consequently, for the analysis of compositional tables

the magnitudes of their parts are not taken into account and the whole in-

formation is contained in ratios between the parts. This information will

not change if all parts are multiplied by some positive constant, and thus

compositions could be represented in proportions or in percentages (exactly

as in the case of distributional data). For example, the total population in

the European countries varies, but this is not relevant if we are interested

only in the relative information on social vs. political structure of the pop-

ulation. The proportional representation is useful for comparison purposes

of compositional data (compositional tables). It should not alter the results

of any meaningful statistical analysis. However, this does not hold when

standard methods are applied for statistical analysis of compositional tables.

The reason is that contrary to standard multivariate observations (and the

corresponding statistical methods) that rely on the Euclidean geometry in

real space, compositional tables are characterized by their specific geometric

nature, represented by the Aitchison geometry on the simplex (???).

As in the case of contingency tables, the aim of the analysis of compo-

sitional tables usually is to study relations between factors. Unfortunately,

standard tests of independence, like the well-known Pearson χ2 test as well as

other popular confirmatory and exploration tools (?), are not suitable. They

follow the general assumption that the table of independent classifications

for the observed table is built up by multiplying the standard marginals of

the observed table (arithmetic marginals). This assumption can be inter-
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preted in the sense that there is an optimal (minimum) distance between

the observed table and the product of arithmetic marginals. Nevertheless,

there is no geometrical background that would enable us to proceed with fur-

ther reasoning in this direction using metrical concepts as well as orthogonal

projections and linear subspaces that would assist for the purpose (?).

Taking into account the relative character and the specific geometry of

compositional tables (together with replacing the arithmetic marginals by the

geometric ones), this analysis can be performed advantageously through a de-

composition of the original table into its independent and interactive parts

in the above described optimal sense (??). In particular, the interaction

table conveys the key information for understanding the sources of associ-

ation between both factors. In order to apply standard statistical methods

like principal component analysis or discriminant analysis to the sample of

decomposed compositional tables and extract possible sources of association

between the row and column factors, it is convenient to express them in or-

thonormal coordinates with respect to the Aitchison geometry. As there is no

canonical standard basis of the simplex, the crucial point (and the main goal

of the paper) is to introduce an interpretable set of coordinates that could be

used for representation of the interaction tables. The new coordinates can

be interpreted in terms of odds ratios, forming an inherent part of statistical

analysis of contingency tables.

The paper is organized as follows: Section 2 presents the general prop-

erties of D-part compositional data, which are applied to the special case of

I × J compositional tables. The next two sections contain methodology for

compositional tables analysis, based on the Aitchison geometry of composi-

tional data. This section includes the decomposition of compositional tables

into independent and interactive parts and representation of the interaction

tables in interpretable coordinates. Finally, theoretical results are applied

to a real-world problem in Section 5. Another example with an economic
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motivation is included as supporting information.

2 Compositional tables and the Aitchison ge-

ometry

Since I × J compositional tables represent a special case of D-part compo-

sitional data, the general concepts can be easily adapted for compositional

tables and used to derive the corresponding specific issues. A (random) D-

part composition is defined as a row vector x = (x1, x2, . . . , xD), where xi > 0

for all i, and each part describes quantitatively its relative contribution to

the whole (?). Thus the absolute values of the parts are not important, since

all the relevant information in the composition is contained in the ratios be-

tween parts. Consequently, the composition could be rescaled (closed) to a

prescribed constant sum representation κ > 0 (i.e. to 1 in case of proportions

and 100 for percentages); formally, we refer to a closure operation and denote

C(x) =

(
κ · x1∑D
i=1 xi

,
κ · x2∑D
i=1 xi

, . . . ,
κ · xD∑D
i=1 xi

)
.

The sample space of representations of D-part compositional data to a pre-

scribed constant sum constraint κ is the simplex, a (D−1)-dimensional subset

of RD, defined as

SD =

{
x = (x1, x2, . . . , xD)| xi > 0, i = 1, 2, . . . , D;

D∑
i=1

xi = κ

}
.

The definition of compositional data induces four main conditions that

should be fulfilled to ensure their meaningful (not just statistical) analysis

(?). The first of them is the scale invariance, which means that the results

of the analysis should not depend on the particular sum κ of compositional

parts. Scale invariance is also related to the property of relative scale of
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compositions, since ratios should express the differences between observa-

tions rather than absolute distances. Another condition is subcompositional

coherence. As in standard statistics the results obtained from a composition

with D parts should not be in contradiction with results that are obtained

from a subcomposition containing d parts, d < D. The final basic principle

of compositional analysis is permutation invariance, which means that the

analysis output should not depend on the order of parts in the composition.

For the purpose of compositional tables this principle could be restated as

follows: The result of the analysis should not depend on the order of rows

and columns in the table.

Specifically, if a IJ-part composition

x = C(x11, . . . , x1J , . . . , xI1, . . . , xIJ) (1)

carries primarily information about a relation between two factors, then it is

convenient to reorder it into a form of a I × J compositional table

x = C


x11 · · · x1J
...

. . .
...

xI1 · · · xIJ

 ,

which represents relationship between these two factors with I and J values,

respectively, displayed now in rows and columns. Contrary to contingency

tables, a compositional table could be considered as a result of a single ob-

servation in a sample of tables with multivariate continuous distribution,

and its analysis thus requires a different approach. Analogously for a sub-

composition of D-part compositional data, a subtable (or partial table) of

I×J compositional table can be defined as resulting from omitting the whole

row(s) and/or column(s) of the original table. Similarly as in the general case

of compositional data, I × J compositional tables can be assumed to follow

the Aitchison geometry on the simplex that takes the above requirements
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into account. The sample space of compositional tables is a subset of IJ

part simplex, but formed only by compositions of type (??). The algebraic-

geometrical structure of the Aitchison geometry is formed by operations of

perturbation and power transformation. According to ?, these operations

result for I × J compositional tables x and y and a real number α in com-

positional tables

x⊕ y = C


x11y11 · · · x1Jy1J

...
. . .

...

xI1yI1 · · · xIJyIJ

 , α� x = C


xα11 · · · xα1J
...

. . .
...

xαI1 · · · xαIJ

 ,

respectively. Here n = C


1 · · · 1
...

. . .
...

1 · · · 1

 denotes the neutral element in the

(D − 1)-dimensional vector space (SD,⊕,�). The Aitchison inner product

of two compositional tables x and y is defined as

〈x,y〉A =
1

2IJ

∑
i,j

∑
k,l

ln
xij
xkl

ln
yij
ykl

. (2)

Then, from the Euclidean vector space properties of the Aitchison geometry,

‖x‖A =
√
〈x,x〉A and dA(x,y) = ‖x	 y‖A

(x	 y = x⊕ [(−1)� y]) represent the Aitchison norm of a table x and the

distance between two compositional tables x and y, respectively.

Standard statistical methods that rely on the Euclidean geometry in

real space (?, Chapter 2) should not be applied to raw compositional data

(compositional tables). It is convenient to assign the orthonormal coor-

dinates to a composition x = C(x1, . . . , xD) ∈ SD through an isometric

(ilr) logratio transformation (??). This results in a (D − 1)-dimensional

real vector z = h(x) = (〈x, e1〉A, . . . , 〈x, eD−1〉A) = (z1, z2, . . . , zD−1), where

7



ei = C(ei1, . . . , eiD), i = 1, . . . , D− 1, form an orthonormal basis on the sim-

plex. The real vector z represents orthonormal coordinates in the real space

RD−1. For compositions x1,x2,∈ SD and α, β ∈ R the following properties

hold,

h(α� x1 ⊕ β � x2) = α · z1 + β · z2, 〈x1,x2〉A = 〈z1, z2〉 . (3)

Thus the ilr transformation forms an isometric isomorphism from SD to

RD−1. Obviously, orthonormal (ilr) coordinates z depend on a particularly

chosen orthonormal basis of SD. A sequential binary partition (SBP) (?)

represents one possibility to construct interpretable orthonormal coordinates.

The procedure of SBP includes D − 1 steps as follows. In the first step of

the partition all compositional parts are divided into two groups and in the

following steps, each group is splitted again into two new subgroups, one with

u parts marked by +, and the other with v parts marked by −. This process

continues until all groups of parts consist of only one single part. The result

of each step is a basis vector ei with elements eij = exp
(
(1/u)

√
uv/u+ v

)
,

if j-th unit of x was marked as +, eij = exp
(
−(1/v)

√
uv/u+ v

)
, if j-th

unit was marked as −, and eij = 1, if the j-th part was not involved in the

partition in the i-th step, i = 1, . . . , D − 1, j = 1, . . . , D. The basis vectors

are used for construction of the resulting coordinates

zi = 〈x, ei〉A =

√
uv

u+ v
ln

(xj1xj2 . . . xju)1/u

(xk1xk2 . . . xkv)1/v
, (4)

where {j1, j2, . . . , ju} and {k1, k2, . . . , kv} are indices of parts of x which were

splitted in the i-th step of the partition into the first or second subgroup, re-

spectively. The orthonormal coordinates, obtained using SBP, are also called

balances, and the entire partition is usually recorded in a table. Note that

different ilr coordinate systems are linked through an orthogonal transforma-

tion (?).
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Balances can be easily interpreted in the general case of D-part com-

positional data (??). This is also true for 2 × 2 compositional tables, see

? for details. Compositional tables require another approach to provided

interpretation. Here it would be preferable to have coordinates that follow

odds ratio interpretation of contingency tables (?, p.44). Nevertheless, to

construct such coordinates a deeper insight into the geometrical properties

of compositional tables is necessary and will be provided in the next section.

3 Geometrical properties of I × J composi-

tional tables and their decomposition

Since the analysis of compositional tables is based on projections of the ta-

ble onto subspaces with specific interpretation (?), such projections shall be

introduced before we proceed to construction of any reasonable orthonormal

coordinates.

Various projections are used for different purposes in the case of com-

positional tables. At first, projections of a compositional table x onto row

subspaces SIJ(rowi), for i = 1, . . . , I, each with dimension J − 1, are con-

sidered. These projections are denoted by rowi(x) and according to ? they

result in

rowi(x) = C



g(rowi[x]) g(rowi[x]) · · · g(rowi[x])

· · · · · · · · · · · ·
xi1 xi2 · · · xiJ

· · · · · · · · · · · ·
g(rowi[x]) g(rowi[x]) · · · g(rowi[x])


,

where g(rowi[x]) denotes the geometric mean of elements in the i-th row of x.

The projection onto the subspace, formed by the i-th row of the compositional

table x, rowi[x] = C(xi1, . . . , xiJ) ∈ SJ , i = 1, . . . , I, is thus a I × J table
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rowi(x) whose entries consist of the i-th row itself and the rest elements are

equal to geometric mean of rowi[x].

Analogously, also projections of the compositional table x onto its columns,

colj[x] = C(x1j, . . . , xIj) ∈ SI , j = 1, . . . , J , forming subspaces SIJ(colj) with

dimension I−1, can be constructed. Similarly to the case of projections onto

rows, the resulting projected compositional tables colj(x) are given by the

j-th column of x and its geometric mean in the other parts of the table.

Orthogonality between rowi(x) and rowi′(x), i 6= i′, or between colj(x)

and colj′(x), j 6= j′, can be proven directly using the Aitchison inner product

or the isometric properties of the clr transformation (??) (?).

The projection onto the subspace of the i-th row results in a composi-

tional table rowi(x) that explains the relative information (ratios) exclusively

for this row. In order to complete the information about the original com-

positional table x, it is necessary to introduce a projection that explains the

remaining ratios between parts in different rows (?). In other words, a projec-

tion onto the subspace of dimension I− 1 that forms the orthogonal comple-

ment to row subspaces SIJ(rowi), i = 1, . . . , I, needs to be constructed. This

subspace will be denoted as SIJ(row⊥) and projection onto this subspace as

row⊥. Analogously as before (??) we get a compositional table

row⊥(x) = C


g(row1[x]) g(row1[x]) . . . g(row1[x])

g(row2[x]) g(row2[x]) . . . g(row2[x])

. . . . . . . . . . . .

g(rowI [x]) g(rowI [x]) . . . g(rowI [x])

 , (5)

formed by row geometric means of the original table. Similarly, projection

of x onto subspace orthogonal to column subspaces, SIJ(col⊥), of dimension

J − 1 that carries information about ratios between different columns of the
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original compositional table, results in

col⊥(x) = C


g(col1[x]) g(col2[x]) . . . g(colJ [x])

g(col1[x]) g(col2[x]) . . . g(colJ [x])

. . . . . . . . . . . .

g(col1[x]) g(col2[x]) . . . g(colJ [x])

 . (6)

From their construction, projections row⊥(x) and col⊥(x) are orthogonal to

all row or column projections, respectively, and even to each other (see ? for

proof). This fact is crucial for compositional tables analysis as will be shown

later.

Orthogonality of all row/column subspaces allows to reconstruct the orig-

inal compositional table x using decompositions

x = row⊥(x)⊕
(

I⊕
i=1

rowi(x)

)
= col⊥(x)⊕

 J⊕
j=1

colj(x)

 .
As mentioned above, projections row⊥(x) and col⊥(x) carry information

exclusively about ratios between parts of different rows and columns, re-

spectively. This information is sufficient for the reconstruction of the com-

positional table, when row and column factors are independent (motivated

by the probabilistic sense of the formulation). This corresponds to the case

when the original table can be expressed as a product of row and column

(geometric) marginals of x (??), similarly as for contingency tables (?). The

resulting I × J compositional table xind = row⊥(x) ⊕ col⊥(x), obtained as

a perturbation of these two projections, is called independence table with

related parts

xindij =

(
I∏

k=1

J∏
l=1

xkjxil

) 1
IJ

. (7)

xij denote parts of the original compositional table x. Since the dimensions

of subspaces SIJ(row⊥) and SIJ(col⊥) are I − 1 and J − 1, respectively,

dimension of the subspace of independence tables SIJind equals I + J − 2.
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The remaining information about the original table, i.e. about the relations

between row and column factors, is contained in the interaction table xint,

which is orthogonal to xind and results in the decomposition

x = xind ⊕ xint . (8)

The interaction table can be obtained from (??) as xint = x 	 xind. It also

forms an I × J compositional table and its parts can be computed from the

original table x by

xintij =

(
I∏

k=1

J∏
l=1

xij
xkjxil

) 1
IJ

. (9)

From Equation (??) and orthogonality between xind and xint it follows that

the dimension of the subspace of interaction tables, SIJint, equals I ·J−1−(I+

J − 2) = (I − 1)(J − 1). In the following section, interpretable orthonormal

coordinates for interaction tables will be of particular interest.

4 Compositional tables analysis

As in the case of contingency tables, the goal of compositional tables analysis

is primarily to study the relationship between row and column factors and

to answer the question whether these factors are independent. The analysis

of independence is simplified a lot through the decomposition of the orig-

inal table into its independent and interaction parts (??). Note that this

decomposition has no counterpart with similar geometrical properties in the

standard analysis of independence in contingency tables, provided by Pear-

son’s χ2-statistic. In case of independence between row and column factors

in a compositional table, the whole information about the original table x

is concentrated in the independence table xind, while the interaction table

xint just equals the neutral element n. On the other hand, the importance

of the interaction table increases if the relationship between factors becomes
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stronger. A deeper investigation of the interaction table can yield infor-

mation about the sources of association between row and column factors.

Thus, interpretable coordinates are useful also for the exploratory analysis

of a sample of compositional tables. In order to provide additional statistical

inference about independence and to apply standard statistical methods for

structural analysis of compositional tables (like principal component anal-

ysis or correlation analysis), it is also convenient to express compositional

tables in orthonormal coordinates. Although the coordinates of an interac-

tion table seem to be of primary interest, the general task is to express all

compositional tables (x,xind,xint) in their ilr coordinates (z, zind, zint) and

then proceed with statistical analysis.

As mentioned in Section 2, the interpretation of orthonormal coordinates

depends on the methodology used for their construction. Since different sys-

tems of orthonormal coordinates are just orthogonal rotations of each other,

for the well-known Hotelling test about mean value of a random sample (in

case of normality), or discriminant analysis, interpretation is not of primary

interest. Nevertheless, this is not the case of correlation analysis or principal

component analysis, where interpretable orthonormal coordinates are cru-

cial. For compositional data, sequential binary partition (SBP) seems to be

a proper way to obtain coordinates with interpretation in terms of ratios of

the original compositional parts (??). However, SBP becomes quite complex

for representation of compositional tables in coordinates, in particular for the

interaction table. A naive approach would be to derive coordinates for the

interaction table using expression (??) first and then proceed to SBP using

formula (??). Obviously, this would lead to quite tedious computations and

when the size of the compositional table grows, it becomes difficult to find an

easily interpretable set of coordinates. Furthermore, using SBP we will ob-

tain usually more nonzero coordinates than the dimension of the subspace of

the interaction table ((I−1)(J −1)), which will lead to singularity problems
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for most of standard statistical methods.

In a second, preferable, approach, the goal is to compute the set of coor-

dinates of the interaction table directly from the original compositional table

x. For deriving the main formula for coordinates of the interaction table, it

is first necessary to construct (I − 1) coordinates of SIJ(row⊥) (to explain

ratios between different rows of x) and (J − 1) coordinates of SIJ(col⊥) (for

columns). From SBP it is easy to see that one such choice of balances would

lead to the generating vectors erow
i , i = 1, . . . , I−1, and ecol

j , j = 1, . . . , J−1,

with parts

erowkj = exp (0) for k = 1, . . . , i− 1, j = 1, . . . , J,

erowkj = exp
(√

I−i
J(I−i+1)

)
for k = i, j = 1, . . . , J,

erowkj = exp
(
−
√

1
(I−i+1)(IJ−iJ)

)
for k = i+ 1, . . . , I, j = 1, . . . , J,

and

ecolil = exp (0) for i = 1, . . . , I, l = 1, . . . , j − 1,

ecolil = exp
(√

J−j
I(J−j+1)

)
for i = 1, . . . , I, l = j,

ecolil = exp
(
−
√

1
(J−j+1)(IJ−jI)

)
for i = 1, . . . , I, l = j + 1, . . . , J.

These vectors lead to coordinates

zrowi =

√
(I − i)J
I − i+ 1

ln
(xi1 . . . xiJ)1/J

(xi+1,1 . . . xIJ)1/(IJ−iJ)
, i = 1, . . . , I − 1

(for rows), and

zcolj =

√
I(J − j)
J − j + 1

ln
(x1j . . . xIj)

1/I

(x1,j+1 . . . xIJ)1/(IJ−Ij)
, j = 1, . . . , J − 1

(for columns), respectively. These I+J−2 orthonormal coordinates express

nonzero coordinate representation for the independence table and their num-

ber reflects the dimension of SIJind. Because of the mutual orthogonality of

the subspaces corresponding to tables row⊥(x), col⊥(x) and xint and decom-

position (??), the remaining (I − 1)(J − 1) coordinates of xind are equal to
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zero. Conversely, a coordinate representation of the interaction table results

in zero coordinates of the corresponding independence table.

Following Section 3, the next step is to form a new basis, orthonormal

to the basis corresponding to the first I + J − 2 nonzero coordinates of

independence table. Moreover, this basis should determine the non-zero co-

ordinates of the interaction table. Among other options (and after tedious

calculations), a stepwise procedure to asses the basis looks most convenient.

Accordingly, the method firstly assigns a basis compositional vector to table

given only by the parts x11, x12, x21 and x22. This basis element compares

parts at the main diagonal x11, x22 with parts at the minor diagonal x12, x21

of the 2× 2 partial table and thus the first basis composition has the form

e22 = exp
(

1

2
,−1

2
, 0, . . . ,−1

2
,
1

2
, 0, . . .

)
,

where the upper index expresses the dimension of the current partial table.

Obviously, an odds-ratio interpretation of the resulting coordinate is possible.

In the next step the third column is added to the previous partial table and

the basis vector e23 deals with the new partial table with r = 2 rows and s = 3

columns and parts x11, x12, x13, x21, x22, x23. The corresponding basis element

compares again parts at the main diagonal of a virtual 2×2 table with parts

at the minor diagonal, when these diagonals are formed by geometric mean

of x11 and x12 (that thus merges information on the employed components

together) and part x23, and by geometric mean of x21 and x22, and part x13,

respectively. This results in

e23 = exp

(
1

2
√

3
,

1

2
√

3
,− 1√

3
, 0, . . . ,− 1

2
√

3
,− 1

2
√

3
,

1√
3
, 0, . . .

)
.

In general, in each step the method extends the partial table by one row

or column. The basis composition ers compares parts at the main diagonal

(formed by geometric mean of all parts at rows of order smaller than r and

column of order smaller than s and by part xrs) and parts at the minor
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diagonal (formed by geometric mean of first s− 1 parts of the r-th row and

by geometric mean of first r − 1 parts of the s-th column). This resulting

basis vector has the elements

ersij = exp
(√

1
rs(r−1)(s−1)

)
for i = 1, . . . , r − 1, j = 1, . . . , s− 1,

ersij = exp
(
−
√

r−1
rs(s−1)

)
for i = r, j = 1, . . . , s− 1,

ersij = exp
(
−
√

s−1
rs(r−1)

)
for i = 1, . . . , r − 1, j = s,

ersij = exp
(√

(r−1)(s−1)
rs

)
for i = r, j = s,

ersij = exp (0) , otherwise,

where the upper index represents the particular choice of r = 2, 3, . . . , I and

s = 2, 3, . . . , J . This procedure continues until r = I and s = J and so we get

a system of (I − 1)(J − 1) basis vectors, orthogonal to basis of coordinates

zrowi and zcolj , for i = 1, . . . , I − 1, j = 1, . . . , J − 1. The basis of I × J

compositional tables is formed by these three systems of basis vectors.

For example, the basis of 2×3 compositional tables contains compositions

e22 = exp (1/2,−1/2, 0,−1/2, 1/2, 0) ,

e23 = exp
(
1/2
√

3, 1/2
√

3,−1/
√

3,−1/2
√

3,−1/2
√

3, 1/
√

3
)
,

erow
1 = exp

(
1/
√

6, 1/
√

6, 1/
√

6,−1/
√

6,−1/
√

6,−1/
√

6
)
,

ecol
1 = exp

(
1/
√

3,−1/2
√

3,−1/2
√

3, 1/
√

3,−1/2
√

3,−1/2
√

3
)
,

ecol
2 = exp (0, 1/2,−1/2, 0, 1/2,−1/2) .

Basis vectors ers lead to the following nonzero coordinates of the interac-

tion table (out of IJ − 1)

zintrs =
1√

r · s · (r − 1) · (s− 1)
ln

r−1∏
i=1

s−1∏
j=1

xijxrs
xisxrj

(10)

for r = 2, 3, . . . , I and s = 2, 3, . . . , J , since coordinates zrowi and zcolj , for

i = 1, . . . , I − 1, j = 1, . . . , J − 1, applied on xint are always zero. Although
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the above formula is advantageous for interpretation purposes, in practice it

is easier to compute coordinates of the interaction table from the following

modified formula with expanded products

1√
r · s · (r − 1) · (s− 1)

ln
x11x12 · · ·x1,s−1 · · ·xr−1,1 · · ·xr−1,s−1x(r−1)(s−1)rs

xr−1r1 · · ·xr−1r,s−1x
s−1
1s · · ·xs−1r−1,s

(11)

for r = 2, 3, . . . , I and s = 2, 3, . . . , J . Even though xij’s in both formulas

stand for parts of the original table x, the result would not change if they

are replaced by parts of the interaction table xint.

In fact, this coordinate representation contains also the nonzero coor-

dinates of the interaction tables of all tables with sizes smaller than the

considered I × J table. For example, the set of four nonzero coordinates of

3× 3 interaction table contains two nonzero coordinates of the 2× 3 table as

well as of the 3 × 2 table, and in turn both (as well as 3 × 3 table) contain

the only nonzero ilr coordinate of the 2× 2 interaction table.

The interpretability of new coordinates (??) is supported by their relation

to odds ratios of parts in the original table (?, p.44). This fact is obvious

directly from the form of (??). The I × J table contains
(
I
2

)
·
(
J
2

)
odds ratios

of type (xacxbd)/(xbcxad), where a and b are indices of rows and c and d are

indices of columns. All these odds ratios are contained in the set of coordi-

nates since each coordinate of the interaction table is formed by the sum of

logarithms of odds ratios which compare the cell of original table with the

position (r, s) with all cells that are north-west from the r-th row and s-th

column (this feature will be thoroughly analyzed in the first example). Of

course, permutation of rows and/or columns in the original compositional

table leads to a new set of coordinates. Table ?? compares features of co-

ordinate representations of the interaction table, computed using both SBP

(corresponding to the first approach) and the new presented formula (??).

Finally, nonzero coordinates of xind and xint (zrowi , zcolj and zintrs ) can be used
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for coordinate representation of the original compositional table.

Table 1 about here.

5 Example - relationship between age and

BMI index

The above methodology for coordinate representation of compositional ta-

bles is illustrated in an example analyzing the relationship between age and

BMI index in 18 European countries (??). For this purpose a sample of 3×4

compositional tables was collected. Each of the tables records the popula-

tion structure of a country in 2008 according to age and BMI index ((weight

in kg)/(height in m)2). The two factors to be considered correspond to the

age classes 25 − 44, 45 − 64, 65 − 84 and their BMI index in the categories

underweight, normal, overweight, and obesity, respectively. Note that finer

categories of age are available, but the chosen classes lead to better inter-

pretability. Table ?? shows an example of a compositional table from the

sample from Czech Republic.

Table 2 about here.

Applying Equation (??), the values of the independence table are

xind =


0.0061 0.1716 0.2218 0.1090

0.0039 0.1090 0.1409 0.0692

0.0020 0.0569 0.0736 0.0361

 .

Using Equation (??) the interaction table can be obtained,

xint =


0.1813 0.0973 0.0483 0.0387

0.0444 0.0707 0.0967 0.1085

0.0541 0.0632 0.0930 0.1037

 .
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Note that these tables follow the condition xind⊕ xint = x. If the factors

were independent, the interaction table would equal to the neutral element on

the simplex, i.e. all parts would be approximately 1/(IJ) = 1/12 = 0.0833.

In case of the Czech Republic it is easy to see that this condition does not

hold as well as in the case of the other countries. This feature is clearly visible

also from the mean interaction table (in sense of the Aitchison geometry)

xint =
1

n
�

n⊕
k=1

xint,k =


0.1483 0.0967 0.0589 0.0465

0.0554 0.0753 0.0917 0.1031

0.0604 0.0682 0.0922 0.1035

 .

The above findings lead to a preliminary conclusion that age and BMI in-

dex are not independent, nevertheless, further verification using statistical

analysis in coordinates is necessary in order to search for possible sources of

association between these two factors.

In order to express the independence table in coordinates, two SBPs ac-

cording to Table ?? were introduced.

Table 3 about here.

The steps of SBP1 result in the first two nonzero coordinates of the in-

dependence table that contain relative information (ratios) between differ-

ent rows of x. The next three coordinates result from SBP2 and separate

columns of the original compositional table. For example, the coordinates of

the independence table in case of the Czech Republic equal to

zind = (1.2713, 0.9189,−4.9160, 0.1399, 0.8703, 0, 0, 0, 0, 0, 0).

When both SBPs from Table ?? are applied to xint, the resulting coor-

dinates are equal to zero, as well as coordinates of SBP1 and SBP2 applied

to col⊥(x) and row⊥(x), respectively. Thus, because of decomposition (??),

the same coordinates would be obtained if SBPs from Table ?? were applied
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directly to the independence table xind from (??), or if SBP1 was applied to

row⊥(x) and SBP2 to col⊥(x), respectively. As a consequence of (??) and

(??), the coordinates of the independence table also form coordinates of the

original table x. The remaining coordinates of x equal to (I − 1)(J − 1) = 6

nonzero coordinates of the interaction table, and can be expressed using for-

mula (??). In case of the Czech Republic, these coordinates are

zint = (0, 0, 0, 0, 0, 0.5439, 0.8988, 0.8428, 0.1354, 0.4648, 0.4441) ,

where the first five zero coordinates refer to SBP1 and SBP2 applied to

xint. The relation of the coordinates of the interaction table to the partial

tables and odds ratios within them is illustrated in Figure ??. Their basic

descriptive statistics for the given data set are summarized in Table ??.

Figure 1 about here.

Table 4 about here.

The first nonzero coordinate zint22 is computed for r = s = 2 for all 18

European countries. From Table ?? it could be seen that the sample mean

equals to 0.3674, and the standard deviation is 0.1488. This coordinate could

be interpreted as a ratio of the chance that people with age between 25 and

44 years will be underweight rather than normal weight and the same chance

for people between 45 and 64. From (??) the mean odds ratio e2·0.3674 ≈ 2 is

obtained. Consequently, the chance that younger people are underweight is

about twice as high as for people with age between 45 and 64. Considering

also the small standard deviation of this coordinate, it can be concluded that

age and BMI index are not independent for this particular table (see also ?,

for further reasoning).

The next coordinate zint23 corresponds to a table for people aged between

25 − 44 or 45 − 64 being under-, normal, or overweight, respectively. From
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the estimates of the sample mean and standard deviation (Table ??) it can

be concluded that age and BMI index are again far from independence. This

coordinate could be also interpreted as sum of logarithms of two odds ra-

tios, divided by 2
√

3. The first odds ratio compares chances that people

underweight against overweight for age ranges 25 − 44 and 45 − 64 years,

respectively. The second odds ratio compares almost the same with the

only difference of taking normal weight instead of underweight. The sum

of logarithms of these odds ratios is 2
√

3 · 0.6096 = 2.1117 > 0 on average.

Consequently, at least one of the chances that one is underweight against

overweight, or the normal weight against overweight, respectively, is higher

for people between 25 and 44 years. This fact contradicts once again the

preliminary hypothesis that BMI index and age in this partial table are in-

dependent factors. Coordinate zint24 , which adds the column for obese people,

has almost the same interpretation.

The fourth coordinate zint32 corresponds to a partial table with three age

ranges (25−44, 45−64 and 65−84) and two weight possibilities (underweight

and normal weight). This coordinate is the only one whose true value could

be seriously considered zero since its sample mean equals 0.1057 and standard

deviation 0.2412. This might point to a conclusion that in this partial table

age and BMI are independent. In such a case also the other coordinates of

tables with lower sizes would need to have similar features, however, it does

not hold for the corresponding coordinate zint22 . The interpretation of zint32 is

analogous to the previous cases.

Since the remaining coordinates of the interaction table could be inter-

preted analogously as in the previous cases, they are only described using

Figure ?? and Table ??. Their values rather suggest a relation between both

factors than their independence. Furthermore, to summarize, the first three

nonzero coordinates of the interaction table carry information about odds

ratios, which compare chances of lower weight ranges to a higher one for age
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group between 25 and 44 years and group between 45 and 64 years. The first

coordinate compares underweight with normal weight. In the next coordi-

nate, these two groups are both compared with overweight. Finally, the third

coordinate compares groups with underweight, normal weight and overweight

with the group of obese people. The last three coordinates compare the same

chances, but now the first age group contains age ranges 25− 44 and 45− 64

together and the second group covers exclusively age range 65 − 84 years.

Quite interesting is the absence of negative values in the sample means of all

coordinates, lower weight categories are thus typical for younger population.

Figure 2 about here.

In order to extend the univariate conclusions to a multivariate one, the

coordinates of the interaction table as well as of the original compositional

table and the independence table are also analyzed using the well-known

biplot (?) of the first two principal components of the corresponding coor-

dinates. In Figure ?? biplots of the original, independence and interaction

tables are collected. The biplot of the original compositional table seems

to be dominated by high variability of the coordinates of the independence

table, thus here mainly the data structure (with Romania and Slovakia as

outlying observations) can be observed. The other two biplots provide fur-

ther information on the relations leading to independence and interaction

between the age and BMI factors.

The biplot of the independence table shows that its first two nonzero co-

ordinates (that carry relative information on relations between the rows of

the original table, i.e. age ranges) are strongly positively correlated, and also

negatively correlated with the remaining three nonzero coordinates (explain-

ing the relations between the columns representing BMI categories). From

the directions of arrows (loadings) we can observe that moving from the left

to the right side of the biplot, the values of the first two coordinates decrease
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and the next three coordinates increase. Also the locations of countries re-

sulting from the principal component scores provide interesting information

about the data structure, like cluster of countries Belgium, Denmark and

France with quite high values of coordinates zc1, z
c
2 and zc3. It means that these

countries contribute substantially to the independence between age and BMI

index, in particular due to the high relative contributions of underweight

people over all other age categories. Similarly, we can observe Romania as

an outlying observation, with particular importance of the positive ratio be-

tween overweight and obese people. Contrary, Poland and Lithuania lay in

the centre of the biplot. The centre represents an average behaviour of both

factors.

The interaction biplot shows some interesting features as well. In partic-

ular, the first three nonzero coordinates are strongly correlated and the last

three ones as well, but no correlation between these two groups is visible. This

means that odds ratios with the third row of the interaction table (age range

65−84 years) yield results different from those within the younger categories.

Also in this biplot, Belgium, Denmark and France are placed quite near to

each other and these western European countries together with Switzerland

and Austria represent states with lower values of all coordinates, thus with

rather smaller BMI (weight) growth for increasing age. On the other hand,

countries like Czech Republic and Estonia with high values of coordinates

zint22 , z
int
23 and zint24 indicate a substantial weight growth from the younger to

middle age generation, and thus contribute substantially to interaction be-

tween the factors. An interesting outlier is represented by Turkey with small

values of coordinates zint32 , z
int
33 and zint34 . This testifies that the weight growth

tends to be particularly small from 25−44 and 45−64 to 65−84 age group,

just conversely to Slovakia. Nearest to the origin are placed Poland and

Lithuania again, i.e. these countries do not contribute neither to interaction

nor independence between the age and BMI factors.

23



Interestingly, small correlation between coordinates zint22 , z
int
23 , z

int
24 and

zint32 , zint33 , zint34 remains unaltered when rows of the original compositional

tables are permuted, see Figure ??. This result indicates an independence

behaviour of single row factor values (age groups) with respect to BMI cat-

egories.

Figure 3 about here.

6 Conclusions

As far as we know, a concise methodology for statistical analysis of a sam-

ple of compositional tables was not available before. This paper takes the

very first steps in this direction. Its main aim was to introduce a coordinate

representation for decomposition of a two-way compositional table into in-

dependence and interaction tables and to show how they can be used for a

reasonable statistical analysis. In particular, coordinates for the interaction

table were constructed that can be interpreted in sense of odds ratios of el-

ements of the table. This interpretation is similar as for contingency tables,

and thus provides a natural generalization to the sample of compositional

tables. Moreover, the introduced coordinates can be also considered as a

starting point for development of more general representations of two-way

compositional tables. Finally, the way how the coordinates were obtained

motivates also the possibility of considering some higher dimensional gener-

alization of odds ratios for coordinate representation of k-way compositional

tables, k ≥ 2.

Coordinate representation of both independent and interaction tables also

enables their graphical visualization using a biplot of principal component

scores and loadings that can be used for further analysis of the data structure

and to observe relations between coordinates. This paper opens also further

questions, e.g., concerning interpretation of coordinates or the corresponding
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statistical inference. The coordinate representation of compositional tables

seems to provide counterparts to standard problems in contingency tables,

as represented by the test of symmetry or Stuart’s test. We hope that they

will be introduced in a near future.

Supporting information. Additional information for this article is

available online including an analysis of technology intensity and resource

efficiency in manufacturing.
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Table 1: Comparison of approaches for coordinate representation of xint.

SBP to xint Formula (??)

+ Interpretation in terms of balances. + Related with odds ratios in x.

− Procedure with several steps. + Quick computation directly from x.

− More nonzero coordinates than + Number of nonzero coordinates

dimension of SI×J(xint). equal to dimension of SI×J(xint).
+ Full-rank observations.

Table 2: Structure of population in the Czech Republic in 2008 according to

age and BMI index (in proportions).

CZE under normal over obesity

25− 44 0.0144 0.2196 0.1410 0.0554

45− 64 0.0022 0.1014 0.1792 0.0988

65− 84 0.0014 0.0473 0.0900 0.0493

Table 3: Sequential binary partitions used for expression of independence

tables in coordinates

SBP1 x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 u v

Step 1 + + + + − − − − − − − − 4 8

Step 2 + + + + − − − − 4 4

SBP2 x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 r s

Step 1 + − − − + − − − + − − − 3 9

Step 2 + − − + − − + − − 3 6

Step 3 + − + − + − 3 3
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Table 4: Sample means and standard deviations (according to the analyzed

18 European countries) of nonzero coordinates of the interaction table.

zint zint22 zint23 zint24 zint32 zint33 zint34

Sample mean 0.3674 0.6096 0.6494 0.1057 0.3624 0.3783

Sample st. dev. 0.1488 0.1357 0.1426 0.2412 0.2175 0.1945
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Figure 1: Relation of coordinates of the interaction table to the partial ta-

bles of x and odds ratios within them. In the first column the shades of

grey denote the parts of the compositional table x used for computation

of each coordinate; darker shade grades represent higher power of the cor-

responding parts in formula (??). The right part of the figure represents

the odds ratios contained in each coordinate. This gives a visual interpre-

tation of Equation (??) in case of 3×4 tables of age groups and BMI in-

dex in Example 1. Specifically, the second coordinate zint23 is computed only

from parts x11, x12, x13, x21, x22, x23 and this coordinate could be interpreted

as 1/2
√

3 of logarithm of two multiplied odds ratios, (x11x23)/(x13x21) and

(x12x23)/(x13x22).
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Figure 2: Biplots of coordinates of original, independence, and interaction

tables.
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Figure 3: Biplots of coordinates of the interaction table with rows in increas-

ing (25− 44, 45− 64 and 65− 84), decreasing (65− 84, 45− 64 and 25− 44)

and mixed (25− 44, 65− 84 and 45− 64) order of age categories.
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