View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by ZHAW digitalcollection

Honey-Copy - A Concept and Prototype of a Generic Honeypot System

Olivier Favre*, Bernhard Tellenbach*, Jan Alsenz!
*Zurich University of Applied Sciences, Switzerland
Oneconsult AG, Switzerland

email: {favr, tebe}@zhaw.ch*, jan.alsenz@oneconsult.com!

Abstract—In this paper, we present Honey-Copy, a concept and
prototype for a honeypot system that can pinpoint modifications
caused by attacks or intrusion for any honeypot. To achieve this,
we track modifications without having to install any additional
tools on them. We make use of cloning to identify whether or
not a modification has been caused by the honeypot itself or an
attacker or intruder. We briefly present our initial prototype and
discuss the challenges to be solved toward a more complete and
feature rich version of our prototype.

Keywords—Honeypot; Detection; Security; Monitoring;

I. INTRODUCTION

Honeypots are decoy computer resources whose value lies
in being probed, attacked or compromised [1]. The main
difference between a normal computer resource and a honeypot
is that the honeypot is not part of the production infrastruc-
ture [2]. One notable exception is the concept of Shadow
Honeypots presented in [3]. As a consequence, attack detection
methods do not have to cope with arbitrary production activity
and the extraction of traces of attacks or intrusions is much
simpler. After all, the traces do not submerge in production ac-
tivities [2]. Honeypots are therefore a valuable tool to improve
detection and reaction. However, since they do not protect a
production infrastructure directly, they must be integrated with
traditional security controls [4].

The lack of off-the-shelve products and solutions that allow
automated and easy creation and monitoring of honeypots
might be one of the reasons why the list of security controls
used by a company does rarely contain one. Another reason
might be that even though there exists many different kinds of
honeypot systems and methodologies to analyze data produced
by them, there is no system that satisfies all of the following
four properties [2]: (1) the honeypots are not recognizable as
such, (2) they are easy to configure and deploy, (3) the system
reports activities related to attacks and intrusions only, (4) the
core mechanisms (deployment, reporting of activities) work for
any honeypot. Properties one and three are probably the most
important ones. If these are not met, the system is of limited
use since it would be easy to detect and it would be difficult to
extract useful information from its reports. Properties two and
four are relevant from an operational and business perspective.
One of the major challenges is finding a solution to the
problem of reporting activities related to attacks and intrusions
without having to craft honeypot-specific algorithms or rules.
At first glance, assuming that any activity on the honeypot is
suspicious and should therefore be reported seems like a simple
solution to this problem. After all, there is no production
activity on a honeypot. While this often-made assumption
might hold for activities like incoming network connections,
it does not fit activities like the creation of a process or the
modification of a file. Depending on the honeypot itself, we
might see a significant amount of activity even on an idle”

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

system. This includes things like automated software updates,
an application-specific timed or event-based tasks (e.g., sync
or cleanup tasks) or log entries from arbitrary scheduled tasks.
Furthermore, when considering property four, the assumption
about incoming network connections might be wrong too - a
honeypot might do updates using active FTP or it might run a
distributed service that sees incoming connections from other
parts of the service from time to time. It is therefore crucial
to have a generic way to distinguish between activities of type
self and third party with the former including any activity
triggered (or expected) by the honeypot itself.

In this paper, we present the main idea and concept of
Honey-Copy, a system that should overcome most of the
limitations of today’s honeypot systems. Our main contribution
is a generic method to distinguish between activities of type
self and third party and its integration in a general concept for
a honeypot system. First, we provide an overview of Honey-
Copy and discuss the basic idea of our generic approach to
identify whether or not an activity is triggered by the honeypot
itself or a third party (Section II) and we explain why an
implementation of such a system is likely to be limited to
high-interaction honeypots. Next, we introduce our prototype
and discuss its implementation and evaluation (Section IIT). We
then conclude our paper with a section on the challenges and
next steps toward a more advanced version of our prototype
(Section IV). A discussion of relevant related work can be
found at the end of the paper (Section V).

II. HONEY-COPY - BASIC CONCEPT

The core idea of Honey-Copy is to make a clone of a
honeypot and to put it behind a firewall that blocks incoming
network connections. Since the clone cannot be accessed by
third-parties, it exhibits activities of type self only. It should
therefore be possible to identify and filter those activities from
the reports of the honeypot system exposed to the attackers.
Unfortunately, things like applications that create (temporary)
files with random filenames or software updates that happen
at different points in time make it difficult to implement an
accurate and timely matching. This is why Honey-Copy can
make up to n clones of a honeypot. By comparing them,
patterns like random filenames can be identified and the chance
that honeypot and clone(s) exhibit a certain activity of type self
within a short time span can be increased. Hence, it should be
possible to satisfy property (3).

Figure la shows the basic building blocks and setup of
Honey-Copy. It consists of physical machines that make use
of virtualization to run a host system and potentially many
guest systems. The use of virtualization enables Honey-Copy
to clone and deploy anything that can be provided in the
form of a virtual machine image. This meets property (4)
with respect to deployment. But this is not the only benefit of


https://core.ac.uk/display/159414043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

Host System
Host System Copies
VM Snapshot mﬂ
Taker
.
Network . S
Traffic Dumper
Honeypot
— »
mni= ¢
Deployment, Management and Analysis
Image Snapshot | Network
Repository Archive | Traffic Data

(a)

prepare
system image

(from image db or
custom image)

install
application(s) cloning
(.msi, .rom, .deb, ...)

v

data collection
(network traffic,
filesystem,,...)

compare
data

YES
y

deployment

.

shutdown and
archive

classification &
notification

N
NO
@ YES

()

Figure 1. (a) Shows the basic setup of the Honey-Copy system and (b) the basic procedure it uses to deploy and manage a honeypot.

virtualization. Its use enables us to do the tracking of activities
in the guest systems without installing any additional software
and change to their configuration. In contrast to other honeypot
systems, the honeypots deployed can be virtually identical to
the production system they pose as. Hence, Honey-Copy can
be said to satisfy property (1); the honeypot system itself does
not make its honeypots more recognizable as such by itself.

The other two components running on the host system
are the VM Snapshot Taker and the Network Traffic Dumper.
The former can take snapshots of the guest systems, for
example file-system or memory snapshots. The later can dump
information about their network activity, for example full
packet traces or flow level information only. This data can
be captured and added to the Snapshot Archive or the Network
Traffic Data Archive. It is then analyzed by the Deployment,
Management and Analysis component, the heart of Honey-
Copy. With the data available about the systems, different kinds
of information like file or registry changes, running processes
or network traffic can be checked for changes. From a data
analysis point of view, the problem of identifying activities of
type self by comparing this data from the firewalled clones
and the honeypot itself is largely independent of the actual
honeypot. The component has to learn or identify activities of
type self from the clones and filter them from those reported
by the honeypot. Hence, since the deployment mechanism as
well as the activity-reporting works for any honeypot, Honey-
Copy can be said to satisfy property (4).

In addition to the analysis task, it is also responsible
for managing an Image Repository and for customizing and
deploying images upon request. Unfortunately, it seems diffi-
cult to implement this in a generic and easy-to-use way for
arbitrary honeypot types and configurations. One option to
satisfy property (2) is to implement Honey-Copy for high-
interaction honeypots only. In contrast to low- and medium
interaction honeypots, these are real systems and not (partially)
emulated or simulated ones. It seems, for example, practical
to create a repository of images for many different operating
systems and to use their software packaging and configuration
mechanisms to quickly make and deploy a system that is
a copy of a production web server or any other server or

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

computer in a company network. In a corporate environment
it would also be possible to use production server templates
and mechanisms as a basis for this process.

Figure 1b illustrates the basic procedure to setup and
manage an arbitrary high-interaction server honeypot in the
Honey-Copy system. The first step is to choose an image from
the Image Repository or to provide a custom image via an
upload function. Next, additional applications and services can
be installed and configured by providing them as package in
the packaging format of the operating system, for example .msi
for Windows or .deb for Debian Linux images or by using the
configuration or packaging tool used by the organization. The
packaging must allow for a fully automated installation of the
application or service. Now that the image is ready, it can be
cloned n-times and the honeypot and its clones can be deployed
on the same or multiple physical hosts as outlined in Figure 1a.
Data collection starts at the same time as the honeypot and its
clones are turned on and does not stop until this honeypot is
shutdown. In regular intervals, the data collected by the clones
and the honeypot is compared and if deviations are found, they
are classified and notifications are sent to those that subscribed
to them. It is then checked whether the deviation found requires
taking the honeypot offline, for example because it was hacked
and the intruder started to attack 3rd parties in the Internet.

III. PROTOTYPE

In theory, the Honey-Copy concept meets all of the four
desired properties. However, it is unclear whether or not it can
be put into practice. To understand the related problems and
challenges better, we built a an initial prototype of Honey-

Copy.

A. Implementation

Our prototype consists of some Python scripts and a set of
tools orchestrated by them. To manage and deploy the honey-
pots and their clones, we make use of Vagrant [5], a tool that
is often used to create and configure lightweight, reproducible,
and portable development environments. To deploy a honeypot,
we first create a configuration file that specifies the type of
machine to be used, the software that needs to be installed, and



ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

the way to access it. Based on this file, Vagrant can then create,
deploy and launch an image for VirtualBox [6], a hypervisor
that integrates well with Vagrant. When doing so, our prototype
makes sure that the honeypot is cloned and that data capturing
and the processes to detect activities other than self are in
place and started.

For now, data capturing consists of recording full packet
traces with tcpdump and snapshots of the file systems ev-
ery T=3600 seconds. This interval of one hour was chosen
mainly to investigate the longer-term deviations between the
clones and provide examples for activities of type self. For
an actual detection setup, a much smaller interval is expected
to be put in place. Whenever a new set of snapshots has
been taken, the file systems of the honeypot and the clones
are reconstructed, mounted and then scanned for differences
using rsync. The reconstruction is required because we take
differential snapshots to save storage space. In parallel to the
file-system analysis, Pyshark with custom filters and rules (IP-
Addresses, DNS-Names) is used to scan the network traffic
dumps to extract communication partners that have not been
seen by the clones. The result of the detection process is a
report consisting of the differences in the file systems and the
communication parters that are unique to the honeypot.

B. Evaluation

For an initial evaluation of our prototype, we deployed and
tested the system with Linux and Windows based clones of
typical web servers. For the evaluation, we compare the current
status of the system to a perfect implementation of the Honey-
Copy concept in terms of stealthiness, ease of deployment,
attack detection and generic core mechanisms:

Stealthiness: The only two limitations of the prototype
are that taking a file system snapshot of a virtual machine
requires to suspended it and that the honeypots and clones are
not physical but virtual machines. An attacker could detect the
former using well-timed queries to the machine and the later
might be achieved using fingerprinting methods like [7]. But
the virtualization solution also supports snapshots of running
machines, which could be implemented to mitigate the first
limitation and as most organizations are using virtual machines
at least in parts of their production infrastructure, this fact
cannot be used as a sole indicator for a honeypot. Additionally,
the only trace of Honey-Copy in the guest system is Puppet,
an open-source software configuration management tool for
Windows and Unix-like systems which is installed on them
by Vagrants provisioning system. However, unlike honeypot
specific logging and monitoring tools, its presence is not telling
very much and it can be easily replaced with other tools. Other
limitations exist but they are not introduced by the prototype
itself but depend on how the system and its environment is
configured and operated. For example, a public hostname like
honeypot.company.com could be suspicious when used for a
web server. And a system running a discussion forum with
no activity in it might also look suspicious. As these factors
are outside of the control of our solution and can be highly
application specific, we consider them as out of scope for the
prototype.

Ease of deployment: The prototype comes with the basic
mechanisms and capabilities required to implement a user-
friendly and easy-to-use interface to configure and deploy hon-
eypots. However, for now it, the only interface is a command

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

line interface. Furthermore, the Image Repository contains a
few base images only.

Attack detection: The current mechanisms used for fil-
tering activities of type self produces a significant number
of false positives. One reason for this is that the prototype
compares the file systems of the honeypot and its clones using
the most recent snapshot only. For example, we observed many
false positives because of automated software updates that
did not happen or finish within the same snapshot interval.
Another reason is that the comparison uses exact file matching.
This turns files that are semantically the same but that have
a different filename (e.g., temporary files with random file-
names) or content (e.g., logfiles) into false positives. Another
limitation is linked to the report generated from comparing
the network traffic to the honeypot and the clones. This report
lists communication partners seen by the honeypot but not its
clones. Unfortunately, it contains a lot of entries that are not
really interesting. This includes for example legitimate partners
like search engine bots or Shodan [8] or illegitimate ones doing
reconnaissance using known methods and tools. Furthermore,
because the comparison of communication partners is done
using exact matching, it cannot cope well with endpoints like
content distribution networks.

Generic core mechanisms: Management and deployment
works with any honeypot that is based on Windows or a
Unix-like systems since these are the systems supported by
Vagrant/VirtualBox. The same is true for the data capturing
and comparison mechanisms since it does not depend on the
actual system run in VirtualBox. Note that Unix-like includes
most Linux distributions, Android and Mac OS.

IV. CHALLENGES AND NEXT STEPS

In summary, we can identify two main challenges that
the next version of our Honey-Copy must address. First, the
system must provide a user-friendly and easy-to-use interface
to configure and deploy honeypots. This can be done by writing
an graphical user interface that compiles settings like the base
images and the applications to be used by the honeypot into a
suitable Vagrant file. The second challenge is more difficult to
address. The mechanisms to identify files that are not modified
by activities of the honeypot itself have to be able to detect files
that are identical from a semantic point of view but that differ
in content and/or have a different file name. To achieve this,
generic heuristics that can detect patterns in file names or in
the content of the files could be used. Another option would
be to employ machine learning to search for such patterns.
Furthermore, to cope for changes that might happen at different
points in time on the honeypot and the clones, the mechanism
must consider multiple snapshots from different points in time.
What this means in terms of a delayed reporting and alerting
is an important point of the evaluation of such an approach.
While the focus is clearly on the file system part, there is
also room for improvement with respect to the communication
partners (attackers) reported by Honey-Copy. Endpoints like
Windows update servers should not be reported as problematic
because the honeypot and the clones use a different server for
the update. The main challenge here is to make the matching
mechanism aware of content distribution networks and similar
behavior, for example by using third party tools, domain name
resolution analysis or URL based heuristics to detect them.



ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

We plan to address these challenges in the next version of our
prototype.

When these have been addressed, there are still many more
ways that the Honey-Copy prototype could be improved. If
we consider that activities of category third party can be
subdivided further into benign, attack and intrusion, it becomes
clear that depending on the purpose of the honeypot, it could
be required that Honey-Copy can filter activities of type benign
and maybe even attack. benign activities are triggered acciden-
tally or without malicious intent. This includes scanning from
legitimate sources like Shodan HQ [8] or search engine bots,
connection attempts that are the result of someone mistyping
an IP address or URL and backscatter [9] traffic. Activities
of type attack are triggered by an attempt to compromise the
honeypot, for example using the Metasploit framework [10]
and those of type intrusion are triggered by a successful
compromise of the honeypot. To identify them, it could be
useful to correlate network and file system activities and to
employ an intrusion detection systems like Snort or Bro to
fingerprint known attacks. We plan to research whether and
how this could be done without having to sacrifice the generic
nature of Honey-Copy when moving toward the third version
of our prototype. Any other improvements like for example the
addition of memory snapshots to the sources of information,
is left to prototypes beyond version three.

V. RELATED WORK

High-interaction honeypot systems that have similar goals
in terms of stealthiness, attack detection, ease of deployment
and honeypot configurations (operating system, applications
etc.) are HI-HAT [11], HoneyBow [12], and Sebek [13]. Like
Honey-Copy, these systems are server honeypot systems. In
addition, we review a number of projects in the client honeypot
sphere that are interesting because of the way they approach
the problem of differentiating between real attacks and other
activities.

HI-HAT [11] implements a system which converts normal
PHP web applications into usable server honeypots. Their
solution mainly consist of two components: The first compo-
nent converts an arbitrary PHP application into a honeypot
by adding monitoring capabilities to functions that handle
requests from the outside. The second component consists
of a GUI which lets an operator analyze the data gathered
by the honeypot. To decrease the amount of false positives
(generated by web crawler or other legitimate requests) the
system makes use of white- and blacklisting based on general
attack patterns. Furthermore, it allows the creation of custom
filters to take into account different behavior of applications.
Similar to Honey-Copy, it implements a way to deal with false
positives generated by generic PHP applications.

HoneyBow [12] on the other hand is a high-interaction
server honeypot which is designed for generic applications. It
makes use of virtual honeypots to automate the management
and monitoring of the system. In order to collect the necessary
data to detect an attack, it implements three different tools
(MwWatcher, MwFetcher, MwHunter) that search for malware
binaries in the virtual filesystem and the network flow. Similar
to the methods used in Honey-Copy, the MwFetcher compo-
nent compares the content of the honeypot filesystem to the one
of a clean copy that was taken at the start of an operation. The
files which were new or altered and are flagged as executables

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

are then further processed as malware. MwWatcher on the
other hand is installed on the honeypot itself and can detect
changes to the filesystem in real time. MwHunter finally in-
spects the network traffic for packages that contain executable
malware. Each of the tools used in Honeybow has its own
advantages and limitations. The MwWatcher component for
example can be easily detected and disabled by an attacker.
While this approach increases the chance of detecting an attack
it also decreases the number of attacks since the system can
be easily identified as a honeypot. Furthermore, it cannot deal
with updates on the honeypot since that would likely change
a number of executables compared to the clean copy.

Sebek [13] is another popular high interaction server hon-
eypot system. It provides a data capture tool which monitors
all actions of an intruder by capturing all sys_read calls.
Furthermore, it tries to capture and send the logged data as
stealthy as possible. Nevertheless, there have been a number
of publications, notably [14], which show a way to detect and
even disable Sebek. Another limitation of the tool is that there
is no filter for the captured data. A manual analysis is required
to distinguish a real attack from a false positive caused by
normal system activity.

In the area of client honeypots Capture-HPC [15] and
Capture Bat [16] present similar ideas. Both systems are high-
interaction honeypots that make use of exclusion and inclusion
lists. The former specifies acceptable non-suspicious activities
to be ignored by the detection mechanisms. The later contains
activities that are considered to be malicious. Such lists can be
created for resources like the Windows registry, the file system,
or processes. Capture-HPC also supports regular expressions
to group a number of exemptions together. Currently, these list
have to be created by hand and both systems run on Windows
only. Another limitation of the approach is that any change to
the honeypot (software updates, different mix of applications,
etc.) is likely to require a modification of the exclusion list.
UW-Spycrawler [17] on the other hand, makes use of trigger
conditions (blacklists) which are specific to the browser used
in the client honeypot setup. These conditions define activities
which cannot be caused by the browser itself. Similar to the
use of whitelists, these lists have to be created manually for
a specific application (browser). Shelia [18] on the other hand
takes a different approach to the problem without white- or
blacklisting. The researcher behind the project proposes a
system where the focus is on a reduction of false positives.
It gathers data of an attack by monitoring the registry changes
and file system actions generated by a process. The detection
of said attack is done by analyzing from which memory
address an API call was invoked. Once this address is obtained,
it is checked whether it points to an executable memory
location. If this is not the case an alarm is generated. This
method allows to detect buffer and heap overflows that are
exploited by an attacker. The downside of such a system
is that it produces a higher number of false negatives since
there are ways to circumvent the detection [19]. Pwnypot [20]
take this idea even further by implementing more methods
to detect arbitrary shellcode. It can detect ROP-Exploits and
ASLR/DEP-Bypasses used by attackers.

VI. CONCLUSION

The main contribution of this paper is a concept and an
initial prototype of Honey-Copy, a system that uses cloning

10



ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

to address the problem of distinguishing activities of the
honeypot itself from those of attackers. We explain why and
how our concept could be used to build a honeypot system
that comes close to a perfect one in terms of stealthiness, ease
of deployment, reporting of activities triggered by attackers
and independence of the core mechanisms from the actual
honeypots to be deployed. Other systems violate at least one
of these properties. Our evaluation of the prototype shows that
the basic mechanisms of our concept work and allow for a
stealthy and generic implementation of the system. However,
to satisfy all of the properties, the current method to compare
the state of the clones to the state of the honeypot has to
be replaced by a more sophisticated one and an easy-to-use
graphical interface to configure and deploy a honeypot has to
be developed.

REFERENCES

[11 L. Spitzner, “The Honeynet Project: trapping the hackers,” IEEE Secu-
rity Privacy, vol. 1, no. 2, Mar 2003, pp. 15-23.

[2] M. Nawrocki, M. Wihlisch, T. C. Schmidt, C. Keil, and J. Schonfelder,
“A Survey on Honeypot Software and Data Analysis,” e-print
arXiv:1608.06249, Aug. 2016.

[3] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis, “Detecting Targeted Attacks Using Shadow
Honeypots,” in Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14, ser. SSYM’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 9-9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251398.1251407

[4] E. Vasilomanolakis, S. Karuppayah, P. Kikiras, and M. Miihlhduser,
“A Honeypot-driven Cyber Incident Monitor: Lessons Learned and
Steps Ahead,” in Proceedings of the 8th International Conference
on Security of Information and Networks, ser. SIN ’15. New
York, NY, USA: ACM, 2015, pp. 158-164. [Online]. Available:
http://doi.acm.org/10.1145/2799979.2799999

[5] “Vagrant,” HashiCorp, URL: https://www.vagrantup.com/ [accessed:
2017-02-14].

[6] “VirtualBox,” Oracle, URL: https://www.virtualbox.org/ [accessed:
2017-02-14].

[71 C. Jamthagen, M. Hell, and B. Smeets, “A Technique for Remote
Detection of Certain Virtual Machine Monitors,” in Proceedings of the
Third International Conference on Trusted Systems, ser. INTRUST 11.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 129-137. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32298-3_9

[8] J. C. Matherly, “SHODAN the computer search engine,” URL:
http://www.shodanhq.com [accessed: 2017-01-30].

[91 D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring Internet Denial-of-service Activity,” ACM Trans. Comput.
Syst., vol. 24, no. 2, May 2006, pp. 115-139. [Online]. Available:
http://doi.acm.org/10.1145/1132026.1132027

[10] “Metasploit,” Rapid7, URL: https://www.metasploit.com/ [accessed:
2017-01-30].

[11] M. Mueter, F. Freiling, T. Holz, and J. Matthews, “High Interaction
Honeypot Analysis Tool,” URL: https://sourceforge.net/projects/hihat/
[accessed: 2017-02-14].

[12] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou,
“Collecting Autonomous Spreading Malware Using High-interaction
Honeypots,” in Proceedings of the 9th International Conference on
Information and Communications Security, ser. ICICS’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 438-451. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1785001.1785045

[13] “Know Your Enemy: Sebek, A kernel based data capture tool,”
The Honeynet Project, Last Modified: 17. November 2003, URL:
http://old.honeynet.org/papers/sebek.pdf [accessed: 2017-02-14].

[14] M. Dornseif, T. Holz, and C. N. Klein, “NoSEBrEaK - attacking hon-
eynets,” in Proceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004., June 2004, pp. 123-129.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

[15]

[16]

(17]

[18]

[19]

[20]

M. Puttaroo, P. Komisarczuk, and R. C. de Amorim, “Challenges in
Developing Capture-HPC Exclusion Lists,” in Proceedings of the 7th
International Conference on Security of Information and Networks, ser.
SIN ’14. New York, NY, USA: ACM, 2014, pp. 334:334-334:338.
[Online]. Available: http://doi.acm.org/10.1145/2659651.2659717
C. Seifert, “Capture-bat download page,”
https://www.honeynet.org/node/315 [accessed: 2017-02-14].

A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A Crawler-
based Study of Spyware in the Web,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2006, San Diego,
California, USA. The Internet Society, 2006.

J. R. Rocaspana, G. Portokalidis, P. Homburg, and H. Bos,
“Shelia: a client-side honeypot for attack detection,” 2009, URL:
http://www.cs.vu.nl/"herbertb/misc/shelia/ [accessed: 2017-02-14].

J. Butler, “Bypassing 3rd Party Windows Buffer Overflow Protection,”
URL: http://phrack.org/issues/62/5.html [accessed: 2017-02-14].

S. Jalayeri and T. Jarmuzek, “PwnyPot, High Interaction Client Honey-
pot,” URL: https://github.com/shjalayeri/pwnypot [accessed: 2017-02-
14].

URL:

11



