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Abstract

How will coastal soils in areas newly flooded with seawater function as habitat for benthic

marine organisms? This research question is highly relevant as global sea level rise and

coastal realignment will cause flooding of soils and form new marine habitats. In this study,

we tested experimentally the capacity of common marine polychaetes, Marenzelleria viridis,

Nereis (Hediste) diversicolor and Scoloplos armiger to colonize and modify the biogeochem-

istry of the newly established Gyldensteen Coastal Lagoon, Denmark. All tested poly-

chaetes survived relatively well (28–89%) and stimulated carbon dioxide release (TCO2) by

97–105% when transferred to newly flooded soils, suggesting that soil characteristics are

modified rapidly by colonizing fauna. A field survey showed that the pioneering benthic com-

munity inside the lagoon was structurally different from the marine area outside the lagoon,

and M. viridis and S. armiger were not among the early colonizers. These were instead N.

diversicolor and Polydora cornuta with an abundance of 1603 and 540 ind m-2, respectively.

Considering the species-specific effects of N. diversicolor on TCO2 release and its average

abundance in the lagoon, we estimate that organic carbon degradation was increased by

219% in the first year of flooding. We therefore conclude that early colonizing polychaetes

modify the soils and may play an important role in the ecological and successional develop-

ments, e.g. C cycling and biodiversity, in newly flooded coastal ecosystems. Newly flooded

soils have thus a strong potential to develop into well-functioning marine ecosystems.

Introduction

Future sea levels are predicted to rise 2–16 mm yr-1 as a consequence of climate change, imply-

ing 0.2–1.2 m higher average sea levels by year 2100 [1]. Inevitably, some low-lying coastal

areas will be permanently flooded in the future [2]. These include coastal soils with low eleva-

tion and gentle slopes towards the inland and areas that are currently below mean sea level and

kept dry by drainage and dikes. Engineering techniques such as coastal realignment [3] may

be implemented to protect valuable assets in coastal zones, which will also result in the forma-

tion of newly flooded habitats. Only few studies have, until now, illustrated how such newly

flooded coastal areas will develop as habitat for marine organisms [4,5]. This research question

is nevertheless highly important for the future management of coastal zones. For instance, it is
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critical to know if flooded areas will remain barren for an extended time, or if they will rapidly

develop into productive ecosystems with high ecological and recreational value. Knowing the

fate of coastal areas after flooding may provide decision makers with sufficient knowledge for

either implementing appropriate mitigation measures, or allowing nature to run its course.

Benthic macrofauna such as polychaetes and bivalves are the foundation for food webs and

ecological functioning in coastal marine ecosystems [6–8]. Various organisms, including fish,

crustaceans and birds, depend on benthic macrofauna as a food source [9,10]. The rate of

development of benthic macrofaunal communities in newly flooded areas can, therefore, be

expected to exert a critical control on total biodiversity [4,9,10]. Furthermore, marine benthic

macrofauna have been shown to modulate sediment composition and biogeochemical pro-

cesses through bioturbation activities [11]. Bioturbation is well known to influence ecosystem

functionality [12,13] by altering redox-driven microbial pathways [14,15] with consequences

for organic matter degradation [16,17], and exchange of O2, CO2 and nutrients between sedi-

ment and overlying water [7,18,19]. Thus, it is likely that pioneering benthic macrofauna may

modulate overall ecological developments in newly flooded coastal soils, with significant

impacts on primary and secondary productivity as well as succession trajectories.

Previous studies imply various levels of benthic macrofauna colonization and succession in

constructed marine wetlands depending on larval dispersion strategy, species eco-physiology

and local environmental conditions. The most critical environmental factors controlling the

colonization and succession of benthic fauna are distance to water exchange (i.e. water circula-

tion) and characteristics of the substratum [4,20]. On constructed mudflats devoid of vegetation

and open to lateral migration of juveniles and adults, initial colonization may occur within days

and macrofauna communities may reach stable composition within months [21,22]. In restored

saltmarshes, benthic macrofauna colonization can also be rapid, with benthic fauna communi-

ties corresponding to ambient conditions within a time scale of months to a few years [23,24],

but in other cases it may take several years to decades [4,25]. For instance, Garbutt et al. [20]

noted that benthic macrofauna colonization in a 21 ha salt marsh created on flooded agricul-

tural soil occurred rapidly in newly accreted sediments, while parts of the saltmarsh without

sediment accretion and with agricultural remains were azoic for an extended time. Accordingly,

there is no consensus on how initial colonization of benthic macrofauna develops to a stable

community structure and how species behave in different types of flooded terrestrial soils.

In this study, we combine experimental results and field observations to assess the capacity

of various macrofauna species to colonize and modify newly flooded coastal habitats. In labo-

ratory experiments, we tested how selected species of polychaetes with different behavioral

traits survive and perform basic functions (e.g. bioirrigation) in terrestrial soils shortly after

flooding with seawater. In the field, we followed the early succession of benthic fauna within

the first year after flooding of the Gyldensteen Coastal Lagoon on Northern Fyn, Denmark

and compared the results to communities in the adjacent marine area. The behavior of experi-

mental species was then related to their success or lack hereof during the first year of macro-

fauna colonization in two sites in the newly flooded lagoon. The species-specific impact of

successful polychaete pioneers on soil chemistry was assessed, and formed the basis for an eval-

uation of how these species can promote further succession of macrobenthic communities and

ecological functioning in newly flooded habitats.

Materials and methods

Study area

The Aage V. Jensen Nature Foundation purchased 616 ha of land at Gyldensteen Strand on

northern Fyn, Denmark in 2011 (Fig 1). Most of the land had been reclaimed around 1870 and
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used for agricultural purposes for more than 140 years [26]. A shallow marine lagoon with a

total surface area of 214 ha was restored as a managed coastal realignment project, where new

dikes were constructed along the inland perimeter and flooding occurred through three north-

ern openings in the original dikes (Fig 1). Before flooding, the area was primarily composed of

cultivated soils, but with small uncultivated patches near the western seaward dikes. The

uncultivated soil had never been used for agriculture due to its low elevation and lack of drain-

age. Wild grasses and herbs were allowed to grow and a dense root layer penetrated down to 5

cm depth. The soil below the root layer was densely packed clay. The cultivated soil was in

Fig 1. Map of the study area. I: Map of Denmark with location of study area (red circle: 55.574˚N, 10.140˚E) indicated. II: Gyldensteen Coastal

Lagoon area in its original state (upper) redrawn from a 1780 map; just after land reclamation in 1871 (middle) with locations of the 2014 soil

sampling sites: uncultivated (UC) and cultivated (C); and the area after flooding in 2014 (lower) with indications of macrofaunal sampling

stations: outside west (OW), west (W), outside east (OE) and east (E) stations.

https://doi.org/10.1371/journal.pone.0196097.g001
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2013 largely used for grass seed production with perennial ryegrass (Lolium perenne). Analysis

of soil cores collected at several stations in the cultivated area revealed that agricultural activi-

ties, i.e. ploughing, were evident down to 0.5–1 m depth [27]. The soil in this layer had a

homogenous texture. The Gyldensteen Coastal Lagoon was flooded on 29 March, 2014. The

resulting coastal lagoon is shallow (mean depth about 0.5 m) and microtidal (about ± 20 cm

compared to mean sea level), but larger water level fluctuations (up to ± 100 cm) may occur

during exceptional wind events. The salinity in the lagoon follows the salinity in the ambient

marine environment in Kattegat (20–30) and there are no freshwater inputs to the system,

except for a few minor drainage channels in the southern part.

Laboratory experiment to evaluate fauna colonization potential

Soil cores were sampled from two stations inside the Gyldensteen Strand area in March 2014,

four weeks before the area was flooded (Fig 1). One station was located in uncultivated soil

(UC) and the other in cultivated soil (C). The large difference in the structure of the two soil

types was evident from the higher porosity (0.82–0.97) and carbon content (16%) in UC com-

pared to C (porosity: 0.53–0.58 and carbon content: 1%) in the upper 2 cm [27]. Fifteen soil

cores were sampled randomly to a depth of 20 cm at each station using 30 cm long and 8 cm

internal diameter transparent acrylic core liners and closed in both ends with rubber stoppers.

Vegetation protruding more than 0.5–1 cm from the surface in UC cores was cut-off right

after sampling. Seawater for the experiment (salinity of 29) was collected in the marine area

adjacent to Gyldensteen Strand (Fig 1).

Soil cores were randomly divided in the laboratory into four groups, one for each species

treatment and another for defaunated controls, which were placed into four separate 70 L

tanks filled with seawater. Each group consisted of three UC and three C cores. The water res-

ervoir in each tank was vigorously aerated by air pumps and about 20% was renewed with

fresh seawater every week during the experiment. The flooded soil cores were left to acclima-

tize for 28 days in darkness at constant temperature (15˚C) to facilitate seawater percolation

into the soil. Hereafter a light source was mounted over the soil cores (12/12 hours light/dark-

ness, ca. 600 µE m-2 s-1 at the soil surface) to stimulate growth of benthic microalgae as a

potential food source for polychaetes during the experiment.

Three species of polychaetes with different functional traits, Marenzelleria viridis, Nereis
(Hediste) diversicolor and Scoloplos armiger, were used in the experiment. M. viridis is an inva-

sive species in Europe, which has spread via pelagic larvae [28,29]. It is a head-up deposit

feeder inhabiting 10–30 cm deep J-shaped blind-ended burrows [17,30]. N. diversicolor is a

known pioneer species after disturbance or restoration of shallow marine habitats through dis-

persal of benthic larvae and juveniles [24,31,32]. It is a surface deposit or suspension-feeder

inhabiting 10 cm deep and usually U-shaped burrows with two openings [33]. S. armiger is a

cosmopolitan species found in widely different habitats ranging from shallow brackish estuar-

ies to the deep sea [34]. It is a head-down deposit feeder inhabiting 5–15 cm deep I-shaped

blind ended burrows [35,36]. The three species were chosen because they are early colonizers

and common in the shallow marine areas outside Gyldensteen Coastal Lagoon. A pilot study

conducted in April 2013 with 6 stations along the coast showed average abundances ± SE

(n = 4) of 772 ± 168, 552 ± 220 and 48 ± 30 ind m-2 for M. viridis, N. diversicolor and S. armiger,
respectively.

Intact and healthy polychaetes were collected 31 days after flooding of soil cores and

weighed before they were added to the cores the following day. Each of the three polychaetes

species were added to three core replicates for each of the two soil types. Time of polychaete

addition is referred to as t = 0. M. viridis and N. diversicolor were added in the same abundance
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(6 ind per core = 1194 m-2), and due to its smaller size, the abundance of S. armiger was twice

as high (12 ind per core = 2387 m-2). Accordingly, we aimed for similar polychaete biomass in

all treatments (171–217 g m-2; Table 1).

Soil O2 uptake (SOU), release of TCO2 = H2CO3 + HCO3
- + CO3

2-), and exchange of dis-

solved inorganic N (DIN = NH4
+ + NO3

- + NO2
-) and P (DIP = PO4

3-) by the soil were mea-

sured 4 days before addition of polychaetes and regularly (1–2 times per week) over the

following 4 weeks. Initial water samples were taken from the headspace of all cores, before they

were sealed and incubated for ca. 4 hours in darkness under constant water circulation. The

cores were then opened and final water samples were taken. Samples of 3 mL were preserved

with saturated HgCl2 (10 µl per mL) and analyzed for TCO2 by flow injection analysis [37].

Samples for DIN and DIP were stored frozen (-20˚C) until analysis on Flow injection Ana-

lyzer. O2 change in the headspace was measured with a fiberoptic O2 dipping probe. Area spe-

cific (core surface area in m2) SOU TCO2, DIN and DIP fluxes were calculated from

concentration changes over time in overlying water during flux incubations (mmol m-2 d-1).

The bioirrigation activity of the polychaetes was determined by Br- tracer incubations [38].

The water reservoir in every tank was enriched with NaBr to a final concentration of ~8 mM

two days before the experiment was terminated. The area-specific bioirrigation volume was

calculated from the accumulated porewater Br- inventory corrected for molecular Br- diffusion

measured in defaunated control cores [17,39]. The maximum bioirrigation depth (i.e. maxi-

mum burrow depth) was determined as the deepest layer where the concentration of Br- was

significantly elevated above the background.

The experiment was terminated 27–30 days after polychaete addition. The soil cores were

sectioned in 1 cm intervals to 6 cm depth and in 2 cm intervals to 18 cm depth. Every depth

layer was carefully searched to recover surviving polychaetes before the soil was used for other

analyses. A soil subsample of ~3–4 g from every depth was taken for the determination of soil

characteristics. Soil bulk density was determined as the dry weight of a known volume of soil

dried at 105˚C for 48 h. Water content and porosity were calculated based on the weight loss

after drying. Total organic matter was determined in 6 soil depths by loss on ignition (LOI)

after combusting dry sediment 5 h at 520˚C. Porewater from the remaining portion of wet soil

Table 1. Water content, density, porosity and loss on ignition (LOI) in control cores from uncultivated (UC) and cultivated (C) soils.

UC C

Depth (cm) Water

content

(%)

Density

(g cm-3)

Porosity LOI

(%)

Water

content

(%)

Density

(g cm-3)

Porosity LOI

(%)

0–1 72 ± 4 0.32 ± 0.06 0.83 ± 0.01 24.1 ± 2.7 33 ± 2 1.14 ± 0.07 0.57 ± 0.01 3.8 ± 0.3

1–2 65 ± 0 0.42 ± 0.01 0.79 ± 0.01 23.9 ± 1.2 25 ± 1 1.31 ± 0.03 0.44 ±0.02 3.1 ± 0.1

2–3 59 ± 2 0.53 ± 0.03 0.75 ± 0.01 n.a. 24 ± 1 1.43 ±0.01 0.44 ±0.02 n.a.

3–4 53 ± 2 0.61 ± 0.03 0.70 ± 0.03 21.1 ± 1.8 22 ± 1 1.45 ± 0.03 0.40 ± 0.00 2.9 ± 0.1

4–5 53 ± 3 0.64 ± 0.06 0.70 ± 0.03 n.a. 21 ± 0 1.50 ± 0.01 0.40 ± 0.01 n.a.

5–6 41 ± 2 0.86 ± 0.04 0.59 ± 0.03 n.a. 20 ± 0 1.51 ± 0.02 0.37 ± 0.01 n.a.

6–8 38 ± 1 0.90 ± 0.05 0.54 ± 0.01 10.3 ± 0.1 20 ± 0 1.50 ± 0.00 0.37 ± 0.01 2.9 ± 0.0

8–10 33 ± 1 0.93 ± 0.03 0.46 ± 0.01 n.a. 19 ± 1 1.45 ±0.04 0.34 ± 0.02 n.a.

10–12 31± 2 1.01 ±0.06 0.46 ± 0.03 n.a. 19 ± 1 1.47 ± 0.01 0.35 ± 0.02 n.a.

12–14 33 ± 1 1.00 ± 0.01 0.49 ± 0.02 7.6 ± 0.5 19 ± 1 1.39 ±0.01 0.33 ± 0.01 2.8 ± 0.1

14–16 38 ± 2 0.84 ± 0.01 0.51 ± 0.03 n.a. 20 ± 0 1.52 ± 0.02 0.37 ± 0.00 n.a.

16–18 36 ± 2 0.91 ± 0.03 0.52 ± 0.04 7.0 ± 0.3 21 ± 1 1.43 ± 0.04 0.39 ± 0.01 2.9 ± 0.1

Values are given as average ± standard error (n = 3). n.a.: not analyzed.

https://doi.org/10.1371/journal.pone.0196097.t001
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from each depth interval was extracted by centrifuging (10 min, ca. 500g) in double centrifuge

tubes equipped with a GF/C-filter. After centrifuging, the soil was sieved through 1 mm mesh

to check once more for presence of worms. Porewater was stored frozen (-20˚C) until analysis

for SO4
2- and Br- by liquid ion chromatography.

Initial macrofauna colonization in the Gyldensteen coastal lagoon after

flooding

Benthic macrofauna was sampled at two stations (W and E) in opposite ends inside the lagoon

and two stations outside the lagoon (OW and OE) (Fig 1). Stations W and E had cultivated soil

similar to C soil from the laboratory experiment, since the agriculture practice had been simi-

lar throughout cultivated area in the lagoon [27]. A total of 6 samplings were conducted at

both stations inside the lagoon during the first year after the flooding, monthly from July to

October 2014 and later on February and May 2015. Sampling was more occasional outside the

lagoon with station OW visited once before (October 2013) and three times after flooding

(April, September 2014 and September 2015). Station OE was only sampled on October 2013

and April 2015. Only a single fauna sampling was done in UC soil (October 2014). Four

macrofauna samples (>25 cm deep) were taken during each sampling using a 15 cm diameter

stainless steel sampler. The samples were sieved through a 1 mm mesh on site, and retained

material was transferred to plastic jars and preserved with 4% buffered formalin. Samples were

sorted in the laboratory and all recovered macrofauna was preserved in 70% ethanol. Macro-

fauna was identified to lowest possible taxonomic level and counted.

Calculations and statistics

To verify significant differences and interactions between the soil types (UC and C) and spe-

cies treatment (Defaunated Control, M. viridis, N. diversicolor and S. armiger), two-way

ANOVA was performed on solute exchange data from day 0 (after the addition of worms) and

onwards. The same test was adopted to verify differences in species recovery, burrow depth

and area/weight-specific bioirrigation, but without the control treatment. Normality of the

data and homogeneity of variances were checked before applying two-way ANOVA tests.

Pair-wise post-hoc Tukey tests were done after significant differences were detected by

ANOVA. Comparison of early colonizing macrofaunal communities (i.e. abundance and spe-

cies composition) from the stations inside (W and E) with those outside (OW and OE) were

based on non-metrical multidimensional scaling (MDS), where the distance between points

was defined by Bray-Curtis similarity ranking on squared root transformed data. One-way

analysis of similarity (ANOSIM) was performed to test differences in abundances and species

composition between groups formed in MDS analysis, i.e. stations inside and outside the

lagoon. Similarity analysis (SIMPER) was applied to identify the species that contributed most

to the differences between groups detected in MDS. Vertical profiles of soil density, water con-

tent, porosity, SO4
2- and Br- were not tested statistically, since they were determined for a

series of layers in individual replicate cores and therefore were not independent. Relationships

between bioirrigation intensity from Br- incubations and stimulation of total benthic metabo-

lism measured as TCO2 fluxes and SOU was explored by linear regressions. All statistical tests

were performed with a significance level of 0.05 using Sigmaplot 12.5 and Primer 6 package.
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Results

Soil characteristics

Bulk density was low (0.31–0.42 g cm3) in the upper 2 cm of UC soil, followed by a sharp

increase with depth reaching up to 1.0 g cm-3 below 5 cm (Table 1). Water content, porosity

and LOI in UC soil followed the same pattern and were higher in the upper 2 cm (65–72%,

0.79–0.83 and ~24%, respectively), reaching levels of 31–41%, 0.46–0.59 and 7.0–10.0%,

respectively below 5 cm depth (Table 1). There was less marked depth variation in the different

parameters in C soil (Table 1). From 0 to 18 cm soil depth, bulk density ranged from 1.1–1.5 g

cm-3, water content from 19–33%, porosity from 0.33–0.57and LOI from 2.8–3.8% (Table 1).

Polychaete survival and bioirrigation

Polychaete recovery at the end of the experiment was not different between soil types, but var-

ied according to species, with lower recovery for M. viridis (22–44%) than for N. diversicolor
(55–78%) and S. armiger (86–89%) (F2,17 = 69.0, p<0.001, Table 2). A search by the end of the

experiment revealed 15 living individuals of M. viridis, 3 of N. diversicolor and 2 of S. armiger
in the bottom of the incubation tanks. Unfortunately, it was impossible to identify whether

they escaped from UC or C treatments, since cores of both soil types were incubated in the

same tanks. Accordingly, a markedly higher proportion of M. viridis (42%) than N. diversicolor
and S. armiger (3–8%) escaped the cores at some point during the experiment, suggesting

slightly higher survival of M. viridis than indicated by the recovery reported in Table 1.

The Br- tracer experiment showed similar diffusion-controlled profiles in defaunated cores

of both soil types, with Br- decreasing rapidly from 5.5–6.0 to 0.7 mM between 0.5 and 3.5 cm

depth, and with constant Br- level of about 0.2 mM below (Fig 2). Maximum bioirrigation

depth based on Br- profiles varied from 4–5 cm in UC soil to 9–10 cm in C soil for all three

species (Table 2). Br- levels in the bioirrigated zone varied from 3 to 8 mM in C soil while con-

centrations ranged from 1 to 6 mM in UC soils (Fig 2). Accordingly, the area-specific bioirri-

gation was significantly higher in C compared to UC soil (F1,17 = 14.3, p = 0.003), but there

Table 2. Number and biomass (wet weight) of Marenzelleria viridis (Mar), Nereis diversicolor (Ner) and Scoloplos armiger (Sco) added to uncultivated (UC) and culti-

vated (C) soil cores. Recovery of polychaetes, maximum depth of burrows, area- and weight-specific bioirrigation rates for the three species o f polychaetes observed by

the end of the experiment.

UC C

Mar Ner Sco Mar Ner Sco
Added individuals (core-1) 6 6 12 6 6 12

Individual biomass (mg ind-1) 207 ± 23 178 ± 1 72 ± 3 211 ± 14 148 ± 14 74 ± 3

Total biomass (g m-2) 217 ± 31 213 ± 16 171 ± 4 204 ± 13 177 ±5 175 ± 5

Recovery (%) 28 ± 6Aa 56 ± 22Aa 89 ± 7Ab 44 ± 11Aa 79 ±6Aa 86 ± 3Ab

Max. burrow depth (cm) 3.8 ± 0.3� 5.3 ± 0.2� 5.2 ± 0.3� 14.3 ± 1.3� 9.0 ± 1.2� 10.3 ± 1.3�

Area-specific bioirrigation

(L m-2 d-1)

1.5 ± 0.8Aa 6.3 ± 1.1Aa 5.3 ± 2.0Aa 7.4 ± 0.3Ba 6.7 ± 0.8Ba 9.8 ± 1.1Ba

Weight-specific bioirrigation

(mL g-1 d-1)

207 ± 23� 178 ± 1� 72 ± 3� 211 ± 14� 148 ± 14� 74 ± 3�

Values are given as average ± standard error (n = 6–12 for average biomass and n = 3 for remaining statistics). Capital and lower case letters in right panels represent the

grouping of data obtained by 2-way ANOVA followed by Tukey post hoc analysis. Capital letters indicate significant difference between UC and C. Lower case letters

indicate significant difference between treatments (Con, Mar, Ner and Sco).

� indicates significant interaction between the factors soil type and core treatment.

https://doi.org/10.1371/journal.pone.0196097.t002
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was no significant difference between the rates of the three species (F2,17 = 3.8, p = 0.052,

Table 2).

Polychaete impact on soil biogeochemistry

The vertical distribution of SO4
2- in porewater was clearly impacted by the presence of poly-

chaetes; particularly in C soil (Fig 3). SO4
2- decreased in UC control cores, from ~23 mM in

surface soil to ~6 mM at 5 cm depth, coinciding with the transition from roots to dense clay,

and was constant below. The presence of polychaetes in UC soil elevated SO4
2- moderately in

the upper 7 cm compared to controls; highest for S. armiger and lowest for M. viridis. In con-

trol cores with C soil, SO4
2- decreased from ~23 mM at the surface to 5 mM at 12 cm depth.

Porewater SO4
2- in C soil with polychaetes was considerably higher than in controls for all

depths, and was almost similar to overlying water down to 7 cm depth and then decreased

gradually towards the bottom, with highest levels in N. diversicolor and lowest in M. viridis
treatments.

The flux incubation performed before the addition of polychaetes confirmed that cores of

the same soil type had similar SOU and TCO2 and nutrient effluxes (Fig 4). SOU and TCO2

fluxes in control cores remained relatively stable over the whole experiment at average levels in

UC and C soil of 37 and 27 mmol O2 m-2 d-1, and 69 and 41 mmol CO2 m-2 d-1, respectively

(Fig 4). DIN fluxes in control cores showed a slow and gradual increase for both soils, from

slightly negative fluxes initially (-0.2 to -0.4 mmol m-2 d-1) to positive DIN efflux by the end

Fig 2. Depth profiles of Br- in uncultivated (UC) and cultivated (C) soils (upper and lower graphs, respectively) without (Con)

or with polychaetes added (Mar: Marenzelleria viridis, Ner: Nereis diversicolor and Sco: Scoloplos armiger). Dashed lines indicate

the sediment-water interface. Error bars indicate standard error (n = 3).

https://doi.org/10.1371/journal.pone.0196097.g002
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(1.2 to 1.6 mmol m-2 d-1). No exchange of PO4
3- between soil cores and overlying water was

detected in any treatment. The addition of polychaetes immediately stimulated SOU, TCO2

and DIN effluxes (Fig 4). While SOU remained stable throughout the experiment for faunated

UC and C soil, TCO2 and DIN fluxes decreased toward the end for both soil types. Time aver-

aged SOU and TCO2 fluxes from day 0 onwards were significantly higher in UC than in C soil

type (F1,142 = 52.4 and 26.7, respectively, p<0.001) (Fig 4 and Table 3). Fluxes of TCO2 in

both soil types were affected similarly by all three polychaete species (63–105%, F3,142 = 13.8, p

<0.001). However, SOU in both UC and C soils was affected more by N. diversicolor and S.

armiger (29–61%) than by M. viridis (F3,142 = 25.6, p<0.001) (Fig 4 and Table 3). DIN fluxes

had significant interaction (F3,142 = 4.3, p = 0.006) between the two tested factors (soil type and

core treatment) and therefore post hoc comparisons were not applicable. Despite the signifi-

cant interaction, it is important to mention that DIN fluxes in UC soil were highly stimulated

by N. diversicolor (342%), 2 to 6-fold higher than the DIN enhancement by other polychaetes

in UC and C soil (Fig 4 and Table 3).

Initial colonization of benthic fauna in the Gyldensteen coastal lagoon

Of the 12 pioneering benthic macrofaunal species entering the lagoon in 2014 and 2015, 8 spe-

cies were at times considered dominant (Fig 5). Colonization occurred rapidly during the first

year in the newly flooded lagoon with shifting dominance between different groups of marine

benthic fauna. Stations W and E showed similar colonization patterns, but colonization was

Fig 3. Depth profiles of porewater SO4
2- in uncultivated soil (UC) and cultivated soil (C) flooded with seawater, without

(Con) or with polychaetes added (Mar: Marenzelleria viridis, Ner: Nereis diversicolor and Sco: Scoloplos armiger). Error bars

indicate standard error (n = 3).

https://doi.org/10.1371/journal.pone.0196097.g003

Macrofauna bioturbation and colonization in newly flooded coastal habitats

PLOS ONE | https://doi.org/10.1371/journal.pone.0196097 April 25, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0196097.g003
https://doi.org/10.1371/journal.pone.0196097


delayed and abundances were generally lower at station E (Fig 5). Total fauna abundance at

station W varied from 3600 to 6800 ind m-2 while station E ranged from 1000 to 2300 ind m-2.

Bivalves (i.e. Cerastoderma glaucum, Mya arenaria and Mytilus edulis) were the first dominat-

ing group that occupied the lagoon at abundances of ~1500 (E) and ~3800 (W) ind m-2 (65–

76% of total benthic fauna) 4–5 months after the flooding. However, the bivalve community

crashed in September 2014, and subsequently their abundance never exceeded 350 ind m-2 in

the study period. Simultaneously, polychaetes proliferated and attained relatively stable

Fig 4. Sediment O2 uptake (SOU) and exchange of TCO2 and DIN in flooded uncultivated (UC) and cultivated (C) soil without (Con) and with added polychaetes

(Mar: Marenzelleria viridis, Ner: Nereis diversicolor and Sco: Scoloplos armiger, respectively). Left and middle panels show temporal patterns and right panels show

averages (from time of polychaete addition [t = 0] to end). Error bars indicate SE (n = 3). Capital and lower case letters in right panels represent the grouping of data

obtained by 2-way ANOVA followed by Tukey post hoc analysis. Capital letters indicate significant difference between UC and C. Lower case letters indicate significant

difference between core treatments (Con, Mar, Ner and Sco). � indicates significant interaction between the factors soil type and core treatment.

https://doi.org/10.1371/journal.pone.0196097.g004
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abundances of ~500 (E) and ~4000 (W) ind m-2 towards the end. Only two species of poly-

chaetes, Nereis diversicolor and Polydora cornuta, were consistently found in high numbers,

while species like Nereis (Alitta) virens, Nereis (Alitta) succinea, Pygospio elegans, and Capitella
capitata were less abundant. Few species were more abundant in station E than station W,

including the polychaete Heteromastus filiformis, the insect larvae Chironomus sp. and the

crustacean Corophium sp. The remaining species observed at both stations were only present

in low numbers and consisted of gastropods (Hydrobia sp. and Littorina littorea). The fauna

abundance in UC soil (890 ± 419 ind m-2) was comparable with station E, but lower than sta-

tion W. The fauna at UC was dominated by N. diversicolor (84%), followed by N. succinea (8%)

and N. virens (5%).

The benthic fauna communities outside the lagoon, stations OW and OE, consisted of 13

species and were dominated by polychaetes (~2600 ind m-2, 96% of total fauna). They were

mostly represented by N. diversicolor, M. viridis, C. capitata and H. filiformis with individual

abundances ranging from average 180 to 920 ind m-2. Other common species such as S. armi-
ger and A. marina were found in abundances up to 19 and 28 ind m-2, respectively. Other

invertebrate groups such as oligochaetes, bivalves, gastropods and crustaceans only accounted

for 1–2% of total fauna.

Table 3. Flux increase (%) for treatments with polychaetes added (Mar: Marenzelleria viridis, Ner: Nereis diversicolor and Sco: Scoloplos armiger) in relation to defau-

nated controls (Con).

UC C

Con

mmol m-2 d-1
Mar

%

Ner
%

Sco
%

Con

mmol m-2 d-1
Mar

%

Ner
%

Sco
%

TCO2 flux 68.9 ± 8.7 34 86 64 41.4 ± 4.7 105 97 103

SOU 37.2 ± 5.1 18 58 29 26.8 ± 1.4 39 61 60

DIN flux 1.2 ± 0.1 53 342 160 1.3 ± 0.1 176 122 72

Values of flux rates are given as average ± SE (n = 3).

https://doi.org/10.1371/journal.pone.0196097.t003

Fig 5. Colonization of benthic infauna at the Western (W) and Eastern (E) stations after flooding of the Gyldensteen Coastal Lagoon. March 29, 2014 is point of

origin for all graphs. X-axis tick marks indicate start of March (M), June (J), September (S) and December (D).

https://doi.org/10.1371/journal.pone.0196097.g005
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There were no marked differences in macrofauna abundance and composition between sam-

pling times for all stations according to MDS multivariate analysis (Fig 6). Instead, a clear

Fig 6. Two-dimensional plots of MDS outputs based on Bray-Curtis similarity matrix. Panel (a): distribution of fauna dataset indicated by time and station. Time is

represented as month by the two first letters and year by the two last numbers. Sampling months: February, April, May, July, August, September, and October. Sampling

years: 2013 to 2015. Sampling stations: Western site inside the lagoon (W), Eastern site inside the lagoon (E), Western site outside the lagoon (OW), and Eastern site

outside the lagoon (OE). The dashed ellipses indicate the groups of stations tested by ANOSIM analysis: Group Out composed of stations located outside the lagoon and

Group In composed of stations inside the lagoon. Panels (b), (c) and (d): spatial and temporal abundance of species tested in the laboratory experiment.

https://doi.org/10.1371/journal.pone.0196097.g006
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grouping was observed of stations outside (Group Out: OW and OE) and inside (Group In: W

and E) the lagoon (Fig 6). Within Group In there was separation between stations W and E

(except in July and August 2014), while a corresponding separation between stations OW and

OE within Group Out was not clearly observed due to a lower number of sampling times. The

species composition of macrofauna between Group In and Group Out was significantly different

as indicated by ANOSIM (Global R = 0.805, p = 0.001). Accordingly, SIMPER analysis indicated

that Group Out and Group In had total average dissimilarity of 82%. The species that mostly

contributed to this dissimilarity (~50% of the total) were N. diversicolor, M. viridis, C. capitata
and P. cornuta. Group Out was dominated by the species N. diversicolor, M. viridis, C. capitata
and H. filiformis which contributed 91% of the cumulative similarity within the group (Table 4).

In Group In, N. diversicolor was also important and together with P. cornuta, C. glaucum, Chiro-
nomus sp. and M. arenaria also summed up to 91% cumulative similarity (Table 4). Further-

more, N. diversicolor was the only species selected for the laboratory experiment that succeeded

in colonizing the lagoon within the study period (Fig 6). Despite the presence of M. viridis and

S. armiger outside the lagoon, these species were not among the early colonizers (Fig 6).

Discussion

Polychaete behavior in flooded soil

Danish coastal marine sediments are typically homogenous to 10–20 cm depth and usually

consist of well-sorted fine-to-medium sands, with varying content of silt-clay particles and

medium porosities of 0.3–0.6 [40]. These characteristics fit well with those below the vegetated

surface of the flooded C soil at Gyldensteen Coastal Lagoon (Table 1), suggesting that physical

manipulation through ploughing throughout the land use period had not modified the soil

beyond recognition. The physical mixing and aeration also assured efficient organic matter

degradation, as organic carbon levels were relatively low and comparable with other marine

coastal areas [40]. However, the UC soil had over the same time frame developed a strong ter-

restrial structure, with a surface layer containing dense networks of plant roots and a dense

clay layer below.

Overall, the tested polychaete species showed good short-term survival and were capable of

forming burrows in both types of flooded soil, as no significant difference in recoveries was

detected between soil treatments. The 28–89% recovery found for all the species is within the

range typically found for similar laboratory experiments that add fauna to coastal sediments

[17,41]. Thus, none of the three species could be eliminated as potential colonizers of the

newly flooded lagoon. However, out of the three tested species, M. viridis was apparently the

Table 4. Abundance, average similarity (Av. Sim.) and contribution (Cont.) of the most important species to the similarity within Group Out and Group In based

on SIMPER analysis.

Group Out Group In
Species Abundance

(ind m-2)

Av. Sim.

%

Cont.

%

Species Abundance

(ind m-2)

Av. Sim.

%

Cont.

%

Nereis diversicolor 651 ± 116 16 32 Nereis diversicolor 1603 ± 280 14 31

Marenzelleria viridis 582 ± 106 15 32 Polydora cornuta 540 ± 88 11 25

Capitella capitata 924 ± 205 10 21 Cerastoderma glaucum 331 ± 80 6 12

Heteromastus filiformis 179 ± 62 3 6 Chironomus sp. 356 ± 69 5 12

Mya arenaria 506 ± 105 5 11

Total cumulative % 44 91 41 91

Abundance values represent mean ± standard error.

https://doi.org/10.1371/journal.pone.0196097.t004
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least likely colonizer as it showed a lower recovery (28–44%) and higher 42% avoidance behav-

ior (i.e. escaping number of individuals) when exposed to flooded soils. The high survival of N.

diversicolor in flooded soils corresponded well with its status as a pioneer species, capable of

inhabiting stressful habitats in estuaries and along the open coast [42,43]. Likewise, the high

survival of S. armiger in flooded soils is in agreement with its cosmopolitan distribution and

ability to dwell in contrasting substrata [34].

The measurements of bioirrigation intensity and inconsistent shape of porewater SO4
2- and

Br- profiles indicate that the two soil types may have led to diverging behavioral responses of

the fauna. The deeper penetration and higher SO4
2- and Br- concentrations in faunated C than

in UC soil shows faster porewater transport via well-functioning burrows in the former sub-

strate. Accordingly, the significantly higher area-specific bioirrigation at rates similar to those

reported from marine sediments [30,44] in C compared to UC soil, suggests that soil texture

and composition influenced the performance of the species. The lower organic content and

the sandy structure of the C soil, which is typical for coastal marine sediments, seemed to favor

the natural ecological behavior of the three tested species. In contrast, the compact clay layer at

5–10 cm depth in UC soil was clearly a physical barrier towards deep bioirrigation as indicated

by the narrow porewater SO4
2- and Br- profiles. Furthermore, the unconsolidated structure of

the upper peat-like root-layer in UC soil with high 70–80% water content and porosity of 0.8

probably posed an additional obstacle for construction of optimal burrows decreasing the

hydraulic resistance for efficient burrow ventilation [45].

Impacts of fauna on biogeochemical cycling in flooded soil

The flooding of cores in the experimental set-up undoubtedly led to a dramatic shift in soil

biogeochemistry, including a shift from oxidized to reduced conditions [33] since anaerobic

sulfate reduction dominate organic matter degradation in seawater saturated substrata [27].

Consequently, flooding annihilated obligate aerobic soil organisms, while microorganisms tol-

erant to anoxic and saline conditions prospered [27]. The relatively high metabolism in the

defaunated soil treatment about one month after flooding and onward suggests rapid organic

matter degradation by the newly developed heterotrophic microbial community. This is in

accordance with previous experiments showing that heterotrophic microbial communities in

soils and sediments respond within weeks to flooding with seawater and changes in porewater

SO4
2- concentrations [27,46–48]. Interestingly, the levels of SOU and fluxes of TCO2 in fau-

nated soils were comparable to in situ rates observed during spring (10–12˚C) in nearby estu-

aries such as Odense Fjord, while DIN efflux was 2–4 fold increased [7]. Species-specific

effects on solute exchange were more evident for SOU, where N. diversicolor and S. armiger
both tended to stimulate microbial activity more than did M. viridis. These results can be

explained by the performance of the species, since N. diversicolor and S. armiger were more

successful colonizers than M. viridis in both soil types. However, due to specific characteristics

of the soils, the different behavior of the worms did not always result in sharp species-specific

responses of the other solute fluxes.

The generally higher TCO2 fluxes and SOU in UC than C soil were likely caused by higher

content of labile organic matter in the former. More importantly, rates in all treatments with

polychaetes were stimulated (18–105%) compared with defaunated controls (Fig 4 and

Table 3), suggesting that the infaunal activity stimulated organic matter degradation regardless

of soil type. An ‘infaunal effect’ on benthic metabolism of the same magnitude has frequently

been observed in marine sediments [17,49,50]. Most (70–90%) of the stimulation is usually

due to enhanced microbial rates, while respiration by the fauna accounts for the rest [18,51].
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Stimulated microbial processes are a consequence of complex interactions coupled to bur-

row structures and ventilation behavior of the resident infauna [11]. Increased O2 availability at

depths where anoxic conditions otherwise prevail stimulates the degradation of refractory

organic matter, which otherwise is non-degradable under anoxic conditions [16,52]. Similarly,

ventilation driven solute transport affects the distribution of essential electron acceptors [53,54],

and the same effect was evident from the elevated porewater SO4
2- concentrations in soils with

polychaetes in this experiment. Burrow-dwelling polychaetes thus ensure that microbial degra-

dation can proceed at high rates and under non-limiting conditions in the entire bioturbated

zone. This is substantiated by the significant positive relationships between bioirrigation inten-

sity and TCO2 effluxes and SOU, suggesting that the presence of infauna exerts a critical control

on sediment metabolism and solute exchange through the overlying water (p = 0.003 and 0.029,

respectively; Fig 7).

Microbial degradation of organic N and P usually occurs in proportion to degradation of

organic C, reflecting the stoichiometric C:N:P ratios in the organic matter being degraded

[46,55]. Fauna stimulation of DIN fluxes in the newly flooded soils followed the overall trends

described for TCO2 fluxes (Fig 4 and Table 3). However, the enhancement of DIN fluxes

exceeded in most cases that observed for TCO2 fluxes. Thus, N. diversicolor stimulation of DIN

efflux in UC soil (342%) was four times higher than observed for TCO2 fluxes. The excess of

DIN fluxes is probably a consequence of substantial NH4
+ desorption and changes in nitrifica-

tion-denitrification coupling [56] due to ventilation-driven porewater flushing. No DIP efflux

was detected in any of the treatments, suggesting high P-retention in the flooded soils. In fact,

both soil types accumulated extremely high near-surface Fe(III) levels of ~60–160 µM cm-3

during the first year after flooding; one order of magnitude higher than levels normally found

in Danish coastal areas [27,57]. This Fe(III)-rich P-buffer in the soils is generated by oxidation

Fig 7. Linear regressions between the relative stimulation of TCO2 efflux and sediment O2 uptake (SOU) and bioirrigation intensity in flooded uncultivated (UC)

and cultivated (C) soils with polychaetes added (Mar: Marenzelleria viridis, Ner: Nereis diversicolor and Sco: Scoloplos armiger).

https://doi.org/10.1371/journal.pone.0196097.g007
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of dissolved Fe2+ diffusing towards the soil surface from the newly anoxic deeper layers where

soil Fe(III) has been reduced [58].

This study suggests that early colonizing polychaetes have significant stimulatory effects on

structure and biogeochemical processes in newly flooded soils. They may be crucial for the

development of essential ecological functions, since burrows and active bioturbation increases

the connectivity between the soils and the overlying water column. Burrow ventilation activi-

ties stimulate solute transport and enhance organic matter degradation, constituting a critical

control on soil chemical conditions, water column nutrient levels and overall productivity of

newly flooded ecosystems.

Benthic fauna colonization in the Gyldensteen coastal lagoon after flooding

The W and E stations sampled for fauna colonization in Gyldensteen Coastal Lagoon had soil

characteristics similar to the C soil from the laboratory experiment, where the three tested

polychaete species performed well. Nevertheless, only N. diversicolor successfully colonized the

lagoon within the first year. This species even managed to colonize UC soil in abundances

(749 ± 338 ind m-2) comparable to E. However, due to the lack of a temporal analysis, we can-

not confirm the colonization pattern of N. diversicolor and other benthic species in UC soil.

The early colonizers of N. diversicolor in the flooded agricultural soils probably arrived as juve-

niles and adults via bedload transport from the adjacent marine environments [23,32,59],

while M. viridis and S. armiger were for unknown reasons not among the early colonizers. The

avoidance behavior of M. viridis adults, i.e. by swimming away from flooded soils in the experi-

mental set-up, may indicate that this species was deterred from entering the lagoon. Swimming

ability of Marenzelleria species has been observed before and is associated to worms reposi-

tioning themselves with regard to incompatible environmental conditions [60]. Furthermore,

M. viridis and S. armiger are known to live in close association to A. marina, which was not

found as colonizer inside the lagoon. A. marina is known as an ecosystem engineer and is a

typical member of the community outside the lagoon. It intensively reworks the sediment

forming well-sorted and permeable sand by burying coarse particles > 1 mm below 10–20 cm

depth and removing silt+clay by resuspension [61]. These mechanisms, together with down-

ward oxygen transport through vigorous ventilation, make conditions suitable for M. viridis
and S. armiger [43,62]. On the other hand, the laboratory experiment tested the performance

of adult individuals, while the colonizing stages of M. viridis and S. armiger polychaetes are

predominantly benthic or pelagic larvae [28,34,63]. Therefore, the reason why these species

were not among the early colonizers in Gyldensteen Coastal Lagoon could also be low toler-

ance of larvae and juveniles to newly flooded soils.

The flooded agricultural soils in Gyldensteen Coastal Lagoon did not impose a challenging

substratum for several other macrofaunal colonizers. The invasion by these occurred rapidly

in the first year and they reached similar or higher levels than outside the lagoon. This is prob-

ably a consequence of empty niches, excess resources and lack of competition, which cause

rapid population expansion of opportunistic species [64]. The initial dominance of juvenile C.

glaucum and M. arenaria is one example, as larvae of these bivalves settled almost immediately

after the flooding in spring and proliferated in an environment without potential predators

and with plenty of food. The settling corresponded exactly with the time when these species

have pelagic larvae [65–67]. Although abundance was higher at station W, early colonization

patterns at W and E stations were similar in terms of species composition. The lower abun-

dance and slower colonization at E was partly caused by longer distance from the main

entrance in the west and partly by anoxia, which was consequence of a massive bloom of green

macroalgae observed as a single event in E during summer 2014 [68].
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The polychaetes N. diversicolor, M. viridis and C. capitata were dominant and among the

species that contributed most to the structural difference outside compared with inside the

lagoon (Table 4). While N. diversicolor had 2-fold higher abundance inside than outside the

lagoon, C. capitata was found in low abundances and M. viridis completely absent inside the

lagoon. Successful establishment of M. viridis and C. capitata is thus critical for a benthic com-

munity with a structure and functioning comparable to ambient marine communities. The

dominance of N. diversicolor inside the lagoon corroborates with other findings of N. diversico-
lor as one of the first species of benthic infauna to colonize newly formed salt marshes and

tidal flats [9,22]. Although C. capitata and other capitellid species such as H. filiformis were

present in low abundances inside the lagoon, they should have the potential to develop into

higher abundances, as normally found for these rapid colonizers during early succession of

disturbed areas [69]. The small tube building polychaete Polydora cornuta is another typical

opportunistic species [70] that appeared as a dominant species during the early succession in

the lagoon (Table 4). In fact, P. cornuta and sibling species have often been identified as early

colonizers in restored salt marshes and mudflats [4,9,22,23].

The polychaete N. diversicolor with U-shaped burrows and vertical tube builders such as the

capitellids and Polydora are well-known to extend the depth of oxidized sediment and stimu-

late benthic metabolism, which improves environmental conditions for the recruitment of

other species [51,70,71]. The laboratory experiment showed that the successful early colonizers

N. diversicolor and S. armiger (with I-shaped vertical burrow) increased carbon mineralization

(i.e. TCO2 release) by 97–103% in C soils. Considering, for instance, the species-specific effects

of N. diversicolor on TCO2 release (i.e. TCO2 release per individual = 80 µmol m-2 d-1) and its

average abundance in the lagoon (1603 ind m-2), we estimate that organic carbon degradation

was increased by 219% in the first year of flooding. Furthermore, burrow ventilation by the

dominant N. diversicolor stimulates the degradation of aged, refractory organic matter [71]

and may influence the pools of organic matter buried in anoxic subsurface soils. These exam-

ples show that bioturbation of pioneering benthic fauna may play an important role by modi-

fying the chemical and organic conditions in soils, which is critical for the continued benthic

community succession in the newly flooded lagoon.

Conclusions

Several important conclusions regarding biological and ecological developments in newly

flooded coastal ecosystems can be made based on this study. Laboratory experiments showed

that adult polychaetes (three species tested: Marenzelleria viridis, Nereis diversicolor and Scolo-
plos armiger) can readily colonize, survive and perform vital functions (ventilation and bioirri-

gation) in terrestrial soils flooded with seawater. This conclusion was partly verified by in situ
observations in the newly flooded Gyldensteen Coastal Lagoon, where rapid colonization by

N. diversicolor and other benthic fauna species, including Polydora cornuta, was observed,

while M. viridis and S. armiger were not yet present. The early colonizers probably modify the

soil conditions before further benthic community succession, including M. viridis and S. armi-
ger, will be evident inside the lagoon. We therefore conclude that early colonizing polychaetes

exert a critical control on ecological developments in newly flooded coastal ecosystems, since

they provide the essential improvement of environmental conditions required for the recruit-

ment of other species. We expect that the functional effects of species succession, e.g. stimula-

tion of C cycling, will lead to increases in biodiversity and more complex food-webs with the

appearance of larger invertebrates (i.e. shellfish, crabs), fishes and birds [4,12,72]. As opposed

to other managed flooded wetlands, e.g. saltmarshes [4,72], a large part of Gyldensteen Coastal

Lagoon soil has similar water depth and its soil composition is relatively homogeneous due to
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its previously marine origin and many years of agricultural activity. This is probably an extra

advantage in terms of colonization and establishment of benthic fauna. Low-lying land and

reclaimed agricultural soils protected by dikes may thus have strong potential to become well-

functioning marine coastal lagoons with high ecological and recreational value.
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