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On the Sample Complexity of Cancer

Pathways Identification

FABIO VANDIN,1,2,4 BENJAMIN J. RAPHAEL,2,3 and ELI UPFAL2

ABSTRACT

Advances in DNA sequencing technologies have enabled large cancer sequencing studies,
collecting somatic mutation data from a large number of cancer patients. One of the main
goals of these studies is the identification of all cancer genes—genes associated with cancer. Its
achievement is complicated by the extensive mutational heterogeneity of cancer, due to the
fact that important mutations in cancer target combinations of genes (i.e., pathways). Recently,
the pattern of mutual exclusivity among mutations in a cancer pathway has been observed, and
methods that find significant combinations of cancer genes by detecting mutual exclusivity
have been proposed. A key question in the analysis of mutual exclusivity is the computation of
the minimum number of samples required to reliably find a meaningful set of mutually ex-
clusive mutations in the data, or conclude that there is no such set. In general, the problem of
determining the sample complexity, or the number of samples required to identify significant
combinations of features, of genomic problems is largely unexplored.

In this work we propose a framework to analyze the sample complexity of problems that
arise in the study of genomic datasets. Our framework is based on tools from combinatorial
analysis and statistical learning theory that have been used for the analysis of machine
learning and probably approximately correct (PAC) learning. We use our framework to
analyze the problem of the identification of cancer pathways through mutual exclusivity
analysis. We analytically derive matching upper and lower bounds on the sample complexity
of the problem, showing that sample sizes much larger than currently available may be
required to identify all the cancer genes in a pathway. We also provide two algorithms to
find a cancer pathway from a large genomic dataset. On simulated and cancer data, we show
that our algorithms can be used to identify cancer pathways from large genomic datasets.

Key words: cancer pathways, exclusivity, PAC learning, VC dimension.

1. INTRODUCTION

H igh-throughput sequencing technologies now allow the measurement of somatic mutations in

cancer genomes from many individuals with different cancer types (Cancer Genome Atlas Network,

1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
2Department of Computer Science, Brown University, Providence, Rhode Island.
3Center for Computational Molecular Biology, Brown University, Providence, Rhode Island.
4Department of Information Engineering, University of Padova, Italy.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 23, Number 1, 2016

# Mary Ann Liebert, Inc.

Pp. 30–41

DOI: 10.1089/cmb.2015.0100

30



2012; Cancer Genome Atlas Research Network et al., 2013). One of the main objectives of large-scale cancer

studies such as The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network, 2008) is to

identify all the cancer genes responsible for the development of cancer, and to distinguish these from genes

containing only random, passenger mutations not associated with the disease.

Several approaches have been developed to predict cancer genes from the mutations measured in a

collection of cancer samples. Popular methods (Dees et al., 2012; Lawrence et al., 2013) identify significant

recurrently mutated genes, but while these methods have identified a number of novel cancer genes in

different cancer types (Cancer Genome Atlas Research Network et al., 2013), accurate detection of cancer

genes through recurrent gene analysis has two limitations. First, it requires a reasonable estimate of the

background mutation rate. Unfortunately, this rate varies across cancer types (Kandoth et al., 2013), across

patients, and across regions of the genome (Lawrence et al., 2013). Second, cancers exhibit extensive

mutational heterogeneity, with mutations in different cancer genes occurring in different patients

(Vogelstein et al., 2013; Garraway and Lander, 2013). The mutational heterogeneity of cancer is due, in

part, to the fact that cancer mutations target signaling, regulatory, and metabolic pathways (Vogelstein and

Kinzler, 2004). Therefore different individuals may have mutations in different genes within the same

cancer pathway. Thus, an alternative to single-gene analyses is to identify recurrent groups of mutations in

known pathways or protein interaction networks (Vandin et al., 2011; Ciriello et al., 2012; Shrestha et al.,

2014; Vandin et al., 2012a). However, such approaches require accurate knowledge of the interactions

between genes/proteins, and this information is only partially available (Raphael et al., 2014).

Ideally, one would like to identify sets of mutated genes de novo, without any prior knowledge of

pathways, interactions, or background mutation rates. Unfortunately, the number of possible sets of genes,

even of moderate size, is enormous, making exhaustive evaluation of these sets impossible due to multiple

hypothesis testing considerations. Recently, it has been observed that mutations in a cancer pathway tend to

be mutually exclusive (that is, a cancer pathway rarely has more than one mutated gene in a sample) (Yeang

et al., 2008). Algorithms that identify sets of genes with mutually exclusive mutations have been introduced

and used successfully to identify parts of cancer pathways de novo from mutation data from a large number of

samples (Vandin et al., 2012b; Leiserson et al., 2013; Miller et al., 2011; Szczurek and Beerenwinkel, 2014).

A key question in mutual exclusivity analysis is to determine the number of samples that are required to

identify (with high probability) a set of mutually exclusive mutations in the data. More generally, the problem

of computing the sample complexity, or the number of samples required to reliably identify meaningful

combinations of features in genomic data, is largely unexplored. This problem is analogous to power cal-

culations that are performed for simple and commonly used statistical tests (Whitley and Ball, 2002). One

result on this problem is the work of Ein-Dor et al. (2006) that addressed a similar question for the identi-

fication of gene expression signatures in cancer. The work of Perkins and Hallett (2010) provides a bound for

the problem of inferring regulatory relationships from gene expression time-series data. While we focus here

on the sample complexity of mutually exclusive sets of mutations, our work outlines a general framework for

rigorously addressing a key question in computational biology—is the sample size sufficient for accepting or

rejecting a postulate hypothesis on the association between genomic variation and a phenotype.

1.1. Contributions

In this article, we propose a framework to analyze the sample complexity of problems that arise in the study

of genomic datasets. Our framework is based on tools from statistical learning theory (Mohri et al., 2012;

Abu-Mostafa et al., 2012) and combinatorial analysis, which has been used for the mathematical analysis of

machine learning and probably approximately correct (PAC) learning (Valiant, 1984). We instantiate our

framework to study the problem of finding a cancer pathway from genomic data, where we define a cancer

pathway to be a set of genes with mutually exclusive mutations in a collection of samples. Thus, in each sample,

the binary variables defining the mutation status of genes in a cancer pathway satisfy the exclusive or (XOR)

function. Measurements errors as well as passenger, random mutations are easily captured by our framework.

We analytically derive matching upper and lower bounds on the number of samples required to reliably

identify all genes in a cancer pathway from genomic data, showing that sample sizes much larger than those

currently available in TCGA and other studies (International Cancer Genome Consortium et al., 2010) may

be required. Our upper bound is based on an analysis of the Vapnik-Chervonenkis (VC) dimension of the

set of exclusive or (XOR) functions, and our lower bound is based on a second moment argument quan-

tifying the effect of random sequencing errors; both may be of independent interest.
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Since our analysis shows that conclusive results require the processing of a large number of samples,

we also provide two algorithms to identify the cancer pathway de novo from large sequencing data. The

first algorithm is based on an integer linear problem formulation (ILP) for the problem of finding the

XOR function (of k variables among n) that is satisfied by the largest number of samples. The second

algorithm is a polynomial time algorithm that identifies the cancer pathway through careful covariance

analysis, provided that the number of samples in the dataset satisfies the general upper bound that we

derive. We note that while we focus here on exact XOR functions, previous work, including ours (Vandin

et al., 2012b; Leiserson et al., 2013; Vandin et al., 2012c; Zhao et al., 2012), considered heuristic

approaches that use scoring functions for gene sets to approximate the XOR function considered in

this work.

We run our algorithms on simulated and real cancer data, showing that for certain combinations of the

problem’s parameters the ILP algorithm identifies the cancer pathway using a number of samples that is

near the number that may soon be available. On thyroid cancer data, our ILP algorithm identifies a set of

genes that overlaps with a key pathway in the pathogenesis of thyroid cancer.

2. METHODS AND ALGORITHMS

2.1. Model

Let G be the set of genes, with jGj = n. Let P � G be a cancer pathway, that is, a set of genes whose

mutations cause cancer. For every cancer sample, we assume that its mutations are generated as follows,

independently of all other events:

1. with probability f, exactly one gene in P is mutated, and the probability that g 2 P is the (only)

mutated gene is fg, with f =
P

g2P fgp1 (with probability 1 - f the number of mutated genes in P
is s1);

2. for each gene g 2 GnP, g is mutated with probability pg independent of other events.

The model above captures errors in the mutation calling process, due to sequencing errors as well as to

false positives/negatives in mutation calls (that may lead a sample to have no mutations in P). Moreover,

the model allows for random passenger mutations (not associated with the disease) for genes in GnP (i.e.,

pg’s capture the passenger mutation rate) as well as for genes in P (i.e., when f < 1 there may be multiple

mutations, including passenger ones, in P).

2.2. Upper bound on the sample size

Our goal is to use mutation data from the model above to identify P. We study this problem in the

probably approximately correct (PAC) learning framework. For a gene g 2 G, we define a 0-1 variable

xg. Mutations in a sample S define an assignment x(S) of the variables fxg : g 2 Gg, with x(S)
g = 1 if g is

mutated in S, and x(S)
g = 0 otherwise. Given a set C = fg1‚ g2‚ . . . ‚ gkg of k genes in G we define the

k-XOR function hC of the corresponding k 0-1 variables. Let hC(S) be the XOR function defined on C
evaluated on the assignment x(S) : hC(S) = XOR(x(S)

g1
‚ x(S)

g2
‚ . . . ‚ x

(S)
gk ). We say that sample S satisfies hC if

hC(S) = 1.

Let D be the probability distribution on the assignment x(S) defined by the mutation model of section 2.1.

Note that by the definition of the model PrD[hP(S) = 1] = f .

Theorem 1. Assume that pg < 0.5 for all g 2 G, and let C � GnP. Then PrD[hC(S) = 1]<0:5.

Proof. The proof is by induction on k = jCj. Let’s assume that k = 2, and let C = fg0‚ g1g. Without loss of

generality, let pg1
� pg0

. Then

PrD[hC(S) = 1] = pg0
(1 - pg1

) + pg1
(1 - pg0

) = pg0
+ pg1

(1 - 2pg0
):

Now let pg0
= 0:5 - e for e > 0. Then

PrD[hC(S) = 1] = pg0
+ pg1

(1 - 2pg0
) = 0:5 - e + 2epg1

� 0:5 - 2e2 < 0:5:
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Now assume that PrD[hC(S) = 1] < 0:5 for all C � GnP with jCj < k. Consider C � GnP with jCj = k.

Consider g = arg ming ˛C pg, and let C0 = Cnfgg. Let pC0
= PrD[hC0

(S) = 1]; by inductive hypothesis,

pC0
< 0:5. Then we have:

PrD[hC(S) = 1] = pC0
(1 - pg) + pg(1 - pC0

) = pC0
+ pg(1 - 2pC0

): (1)

Analogously to the case k = 2, we have PrD[hC(S) = 1] < 0:5: -

Let p� = minfpg : g 2 GnPg. Let f * be the minimum contribution to f of a gene in P, that is,

f � = ming2Pffgg. We have the following.

Theorem 2. Assume that pg < 0.5 for all g 2 G, and that f - f � = 1
2

+ c for c > 0. Then maxC6¼P‚ jCj= k

PrD[hC(S) = 1] � maxff - f � - 2cp�‚ 0:5g.

Proof. Consider a set C 6¼ P, and let CP = C \ P and CG = C \ (GnP). Note that the probability that CP
has exactly 1 mutation in a sample S from D is at most f - f *, and that the probability that CG has exactly 1

mutation in a sample is at most 0.5 (by Theorem 1). Also note that mutations in CG and in CP are inde-

pendent. Let pCG
(resp., pCP ) be the probability that CG (resp., CP) is mutated in a sample. The PrD[hC(S) =

1] = pCP + pCG (1 - 2pCP ) � f - f � - 2cp�. Moreover, if CP = ;, then PrD[hC(S) = 1]<0:5 by Theorem 1, and

the result follows. -

From the above, we can conclude that if1 f > 0.5, with enough samples from D we will be able to identify

the set P by identifying the set of k genes whose XOR function is satisfied by the largest number of samples

(due to the concentration of binomial random variables). In the following we estimate the number of

samples required to identify P. In order to estimate the number of samples required to identify P, we bound

the VC dimension of the set of k-XOR functions on n variables.

We define a range space as a pair (X, R) where X is a set and R is a family of subsets of X. Given I � X, the

projection PR(I) of R on I is defined as PR(I) = fr \ I : r 2 Rg. if PR(I) = 2I (or, equivalently, jPR(I)j = 2jIj),
then I is said to be shattered by R.

Definition 1 (Vapnik and Chervonenkis, 1971). Let H = (X, R) be a range space. The VC dimension

VC(H) of H is the maximum cardinality of a shattered subset of X. If there are arbitrary large shattered

subsets, then VC(H) = N.

Let XORn,k be the set of n
k

� �
k-XOR functions on n variables. We define the range space H = (X, R) where

X is the set of all Boolean vectors on n variables, and each r ˛ R is a set of vectors in X that satisfy a given

k-XOR function. Note that jXj = 2n and jRj = jXORn‚ kj = n
k

� �
.

Theorem 3. The VC dimension VC(H) of H = (X, R) is Y(k log n - k log k).

Proof. Upper bound. Assume that ‘ vectors are shattered, then there is a distinct k-XOR function for

each of the 2‘ subsets of the ‘ vectors. Thus, 2‘ � n
k

� �
, or ‘ � log2

n
k

� �
= O(k log n - k log k).

Lower Bound. We construct a set of ‘ = k log n - k log k vectors, and a set of k-XOR functions that

shatters this set of vectors. Let C = fv1‚ . . . ‚ v‘g be the set of vectors. We partition the set C into k disjoint

sets C1‚ . . . ‚ Ck, each with c = log n - log k vectors. Let S1
i = ;‚ S2

i ‚ . . . ‚ S2C
i be all the 2C = n

k
subsets of the set

Ci. The vectors v are constructed as follows:

1. v has 0 in position 1 + (i - 1) n
k

for i = 1‚ . . . ‚ k;
2. for each set S

j
i such that v 2 S

j
i‚ v has a 1 in position (i - 1)( n

k
- 1) + j.

Consider a dichotomy on the set C, and let D be the set of vectors for which the value of the

dichotomy is 1. We construct an XOR function that expresses that dichotomy as follows: for each

i = 1,.,k,

1While f > 0.5 may not be satisfied by all cancer pathways, it is a reasonable assumption for the most important
cancer pathways (Ciriello et al., 2013).
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1. if D \ Ci = ; then add X(i - 1)n
k

+ 1 to the XOR; otherwise

2. if D \ Ci = S
j
i then add X(i - 1)(n

k
- 1) + j to the XOR.

The XOR has exactly k variables. Consider a vector v 2 Ci. The 1’s in v are in the range (i - 1)( n
k

+ 2) to

i( n
k

- 1) - 1. If v 2 S
j
i � D then v has a 1 in the location (i - 1)( n

k
- 1) + j and the value of the XOR is 1,

otherwise it’s 0. -

We also generalize the result above to the case of functions that are AND or OR of multiple XOR

functions. Let AXORn,k,h (respectively, OXORn,k,h) be the set of n
k

� �� �h
functions on n variable, where each

function is an AND (resp., OR) of h k-XOR functions on n variables. Let (X, R1) (resp., (X, R2)) be a range

space, where X is the set of all Boolean vectors on n variables, and each r ˛ R1 (resp., r ˛ R2) is a set of

vectors in X that satisfy a function in AXORn,k,h (resp., OXORn,k,h). We have the following.

Theorem 4. The VC dimension of the range space (X, R1) and of the range space (X‚ R2) is

Y(hk log n - hk log k).

Proof (sketch). We provide the proof for the range space (X, R1). The proof for the range space (X, R2)

is analogous.

Upper bound. Assume that ‘ vectors are shattered, then there is a distinct (h, k)-AXOR function for each

of the 2‘ subsets of the ‘ vectors. Thus, 2‘ � n
k

� �� �h
, or ‘ � h log2

n
k

� �
= O(hk log n - hk log k).

Lower bound. We construct a set of ‘= hk log n - hk log k - hk log h vectors, and a set of (h, k)-AXOR

functions that shatters this set of vectors.

The construction is similar to the one in the proof of the previous theorem, only here we partition the ‘
vectors to hk disjoint sets of n

hk
vectors each. Let C = fv1‚ . . . ‚ v‘g be the set of vectors. For i = 1‚ . . . ‚ k and

j = 1‚ . . . ‚ h let Ci‚ j denote the sets, each with c = log n - log hk vectors. Let S1
i‚ j = ;‚ S2

i‚ j‚ . . . ‚ S2c

i‚ ji be all the

2c = n
hk

subsets of the set Ci‚ j.

The construction of the vectors is the same as before with the exception that if a vector is not in [k
i = 1Ci‚ j,

for some j, then the position corresponding to S1
1‚ j is set to 1 (so the corresponding AND gives 1). -

Let T be a collection of m samples from the model of section 2.1. Let T̂ be the probability distribution

on the assignment x(S) defined by taking a sample S uniformly at random from T . The following result

bounds the difference between the fraction of samples in T that satisfy hC and the probability that a random

sample from D satisfies hC.

Theorem 5. With probability ‡ 1 - d the following are satisfied for all C � G‚ jCj = k simultaneously:

� jPrD[hC(S) = 1] - PrT̂ [hC(S) = 1]j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n

kð Þ+ log2
d

2m

q
;

� jPrD[hC(S) = 1] - PrT̂ [hC(S) = 1]j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VC(H)(1 + log m) + log4

d
m

q
;

� jPrD[hC(S) = 1] - PrT̂ [hC(S) = 1]j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VC(H)(1 + log 2m

VC(H)) + log 1
4d

m

q
.

Proof. For a given set C � G and the corresponding function hC, define the in-sample error Ein =
1
m

P
S2T ‘[hC(S) 6¼ 1] where ‘[�] is the indicator function. Define the out-of-sample error Eout = PrD

[hC(S) 6¼ 1]. Note that PrT̂ [hC(S) = 1] = 1
m

P
S2T ‘[hC(S) = 1] = 1 - 1

m

P
S2T ‘[hC(S) 6¼ 1] = 1 - Ein and that

PrD[hC(S) = 1] = 1 - PrD[hC(S) 6¼ 1] = 1 - Eout. Then jPrD[hC(S) = 1] - PrT̂ [hC(S) = 1]j = jEin - Eoutj, and the

results follow directly from known (generalization) bounds (Bousquet et al., 2003; Mohri et al., 2012; Abu-

Mostafa et al., 2012) on jEin - Eoutj. -

Combining Theorem 2 and Theorem 5, we show that if T consists of m = O(k log n - k log k) samples,

with high probability the XOR function that is satisfied by the largest number of samples in T is given by

the pathway P.

Corollary 1. If m = O(k log n - k log k), with high probability: PrT̂ [hP(S) = 1]>PrT̂ [hC(S) = 1] for all

C 6¼ P‚ jCj = k.

Proof (sketch). Consider bound (1) in Theorem 5. Let e = f * + 2p*(f - f *- 0.5), and m � 4
log n

kð Þ
e2 . Then

by Theorem 2: PrD[hP(S) = 1] - PrD[hC(S) = 1] > e for all C 6¼ P‚ jCj = k. By Theorem 5, with probability

at least 1 - O 1
n

� �
we have PrT̂ [hP(S) = 1] > PrD[hP(S) = 1] - e=2 and for all C 6¼ P‚ jCj = k : PrT̂ [hC(S) = 1]

< PrD[hC(S) = 1] + e=2, and the result follows. Similar derivations apply for bounds (2) and (3) of

Theorem 5. -

34 VANDIN ET AL.



2.3. Lower Bound on the minimum sample size

Using the VC dimension, which is a combinatorial property of the set of functions, one can obtain a lower

bound on the sample complexity (matching the upper bound of Corollary 1) that applies to the worst case

input distribution (Mohri et al., 2012). In this section we show that O(k log n - k log k) samples are required to

identify the cancer pathway P even for the special case of input distribution defined by our model. In

particular, we show that with a dataset of smaller size with high probability there is a set C of k genes from

GnP whose function hC is satisfied by at least fm samples, and thus cannot be distinguished from P.

Theorem 6. Let T be a dataset of m = o(k log n - k log k) samples. Then with high probability there

exists C � GnP‚ jCj = k such that hC is satisfied by at least fm samples, that is: PrT̂ [hC(S) = 1] � fm.

Proof. To simplify the presentation we assume that there are n nonsignificant genes, all mutated

randomly with the same probability 0 < p < 1/2. We also assume k = O(1). In our model, for a set of

nonsignificant genes C‚ a = PrD(hC(S) = 1) = kp(1 - p)k - 1 < 1=2.

We now define a collection of n
k

� �
Bernoulli random variables ZC, for each C � G, such that ZC = 1 if the

function hC is satisfied by at least fm samples, and ZC = 0 otherwise. Then Pr(ZC) =
Pm

j = fm
m
j

� �
aj(1 - a)m - j

qam. Denote the expected number of sets whose functions are satisfied by at least fm samples by

l(m) = E
P
C�G ZC

� �
= n

k

� �
Pr(ZC = 1). Note that since a < 1/2 and f >1/2, the expectation l(m) is mono-

tonically decreasing in m. Furthermore, since Pr(ZC = 1)qam, there is a constant c1 > 0 such that for

m = c1(k log n - k log k)‚ l(m) > 2. For our proof we use m = c(k log n - k log k) where c = min[c1, c3], for a

constant c3 > 0 defined below.

Next, we will apply the second moment method (Mitzenmacher and Upfal, 2005) [Theorem 6.7] to

bound the probability that
P
C�G ZC = 0. To apply this method we define for each set C the neighborhood set

of C : I(C) = fC0jC \ C0 6¼ ;‚ jC0j = jCj = kg. If C0 62 I(C) then ZC and ZC0 are independent.

Applying Mitzenmacher and Upfal (2005) [Lemma 6.9]:

Var
X
C2G

ZC

" #
pl(m) +

X
C

X
C0 6¼C2I(C)

E[ZCZC0 ]:

For two sets C and C0 such that jC \ C0j = k - ‘ : Pr(hC0 (S) = 1jhC(S) = 1) = k - ‘
k

(1 - p)‘ + ‘
k
‘p(1 - p)‘- 1

p ‘
k
(1 - p)‘.

Assume that ZC = 1 and ZC0 = 1, then among the fm samples that satisfy hC there are t samples that satisfied

both functions, and there is an additional set of fm - t samples, such that each of these samples satisfies hC0 .
Therefore,

E[ZCZC0 ] � Pr(ZC = 1)
Xfm
i = 0

fm

t

	 

m - fm

fm - t

	 

(kp(1 - p)k - 1)fm - t(

‘

k
(1 - p)‘)t

= (Pr(ZC = 1))2
Xfm
i = 0

fm

t

	 
 m - fm
fm - t

� �
m
fm

� � ‘
k
(1 - p)‘

kp(1 - p)k - 1

 !t

� (Pr(ZC = 1))2
Xfm
i = 0

(fm)t

t!

f

1 - f

	 
t
1

kp(1 - p)k - 1

	 
t

� (Pr(ZC = 1))2eC2
m
k

for C2 = f 2=((1 - f )p(1 - p)k - 1).
Let C3 = 1=2C2. With our choice of m,

X
C

X
C0 6¼C2I(C)

E[ZCZC0 ] �
n

k

� �Xk - 1

‘= 1

k

k - ‘

	 

n - k

‘

	 

(Pr(ZC = 1))2eC2

m
k

� l(m)2 22k

n
eC

m
k = l(m)2O

1ffiffiffi
n
p
	 


:
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Var
P
C2G ZC

� �
�l(m) +

P
C
P
C0 6¼C2I(C) E[ZCZC0 ]� l(m) + l(m)2O 1ffiffi

n
p
� �

, and applying the second moment

method: Pr(
P
C2G ZC = 0) � Pr(j

P
C2G ZC - l(m)j � l(m)) �

Var[
P

C2G ZC]

l(m)2 � O 1ffiffi
n
p
� �

, and with probability

1 - O 1ffiffi
n
p
� �

there exists C � GnP of k genes whose XOR function is satisfied by as many samples as the

actual cancer pathway. -

2.4. An ILP to find the best XOR

The results of section 2.2 show that when enough samples are provided the best XOR (i.e., the one that is

satisfied by the largest number of samples) on k genes identifies the cancer pathway P. However, these

results do not provide an algorithm to identify the best XOR. We provide the integer linear program (ILP)

formulation for the problem of identifying the best XOR of k genes. Let Mi‚ j = 1 if gene j is mutated in

sample i, and Mi,j = 0 otherwise. Let xj be a 0-1 variable with xj = 1 if gene j is in the solution, and xj = 0

otherwise. Let yi be an auxiliary 0-1 variable, with yi = 1 if the solution contains at least one 1 in sample i,

and yi = 0 otherwise. Let zi = 1 be an auxiliary 0-1 variable, with zi = 1 if the solution contains more than one

1 in sample i, and zi = 0 otherwise. A solution to our problem then satisfies the following constraints:

1. k genes are included in the solution:
P

j = 1‚...‚ n xj = k;
2. for every sample, the solution is mutated in the sample if at least one of the genes in the solution is

mutated in the sample: 8i‚ 1 � i � m :
P

j = 1‚...‚ n Mi‚ jxj � yi;
3. for every sample i, if there is more than one mutation in the solution, then zi = 1 : 8i‚ 1 � i � m :

kzi � (
P

j = 1‚...‚ n Mi‚ jxj) - yi.

The objective function is max
P

i = 1‚...‚ m (yi - zi), counting the number of samples for which the solution has

exactly 1 mutation (i.e., yi = 1 and zi = 0). (This assumes that zi = 0 when the solution contains exactly 1

mutation in a sample that is not enforced by the constraints but is achieved when the objective function is

maximized.)

2.5. Polynomial time algorithm for identifying the significant pathway

We also provide a polynomial time algorithm (Algorithm 1) that identifies the cancer pathway P when

the number of samples is as derived in section 2.2. We consider a slightly more detailed model than the one

in section 2.1, that is, we assume that mutations in a sample are generated as follows, independently of all

other events:

1. with probability f, exactly one gene in P is mutated, and the probability that g 2 P is the (only)

mutated gene is fg, with f =
P

g2P fg � 1 (with probability 1 - f the number of mutated genes in

P is 6¼ 1);

2. for each gene g 2 G (not mutated in 1), g is mutated with probability pg independent of other events.

Note that a gene g 2 P has two chances to be mutated, once as a unique mutation in P, and once as a

random mutation. We require pg £ fg; that is, the error rate is no larger than the actual signal.

Algorithm 1: FindDriverPathway

Data: m vectors x1‚ . . . ‚ xm, where x‘i = 1 if gene i is mutated in sample ‘, otherwise x‘i = 0

Result: set O of genes

O);; for i = 1‚ . . . ‚ n do ri)
1
m

Pm
‘ = 1 x‘i ;

for i = 1‚ . . . ‚ n do

for j = 1‚ . . . ‚ n do

if i 6¼ j then Ci‚ j)
1
m

(
Pm

‘= 1 x‘i x
‘
j ) - rirj;

end

H ) k - 1 genes corresponding to the k - 1 smallest elements in fCi‚ j j i 6¼ jg (ties broken arbitrarily) ;

if
P

j2H Ci‚ j< -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ri(
P

j2Hr j
) log 2n

d
n - 1
k - 1ð Þð Þ

m

r
then O)O [ fig;

end

return O;
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The following theorem shows that when m is large enough, Algorsreithm 1 identifies P with high

probability.

Theorem 7. If m 2 O(k log n - k log k) , then O=P with probability ‡ 1 - d.

Proof. Let Xi = 1 if gene i is mutated in a random sample, else Xi = 0. For any pair of genes i 6¼ j, if

either i and/or j are not in P then Cov[Xi, Xj] = 0. If both i and j are in P then E[Xi] = fi + (1 - fi)pi, and

Cov[Xi‚ Xj] = fipj + fjpi + (1 - fi - fj)pipj - (fi + (1 - fi)pi)(fj + (1 - fj)pj) = - fifj(1 - pi)(1 - pj):

We need to show that with m = O(k log n - k log k) independent samples the empirical (observed) esti-

mates of the covariances are sufficiently concentrated to distinguish between the two cases. We cannot

prove that for individual pairs of genes, instead we use the linearity of the covariance. For each gene i, we

compare the sum of the k - 1 smallest empirical covariances (among the n - 1 covariances of gene i) to a

predefined threshold. We show that these values are sufficiently concentrated to identify the pathway.

The empirical estimate of E[Xi] is ri = 1
m

Pm
‘= 1 x‘i , and for the empirical estimate of Cov [Xi, Xj] we use

Ci‚ j = 1
m

Pm
‘ = 1 x‘i x

‘
j

� �
- rirj (dividing by m - 1 just complicates the calculation).

Let r = (r1‚ . . . ‚ rn). Fix a gene i and a set H of k - 1 other genes. Conditioned on r, we bound the

probability that the empirical estimate
P

j2H C(i‚ j) is far from the correct value of
P

j2H Cov[Xi‚ Xj] by

more than ti‚ H =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ri

�P
j2H

rj

�
log 2n

d
n - 1
k - 1ð Þð Þ

m

r
. Equivalently we bound the probability that the observed value ofP

j2H

Pm
‘ = 1 x‘i x

‘
‘ is far from its expectation by at least ti,H.P

j2H

Pm
‘= 1 x‘i x

‘
j is a sum of 0 - 1 random variables subject to the condition on r. When i is not in P, and

when i is in P and none of the genes in H is in P, the expectation of the sum is mri

P
j2H rj

� �
. Otherwise,

the expectation of the sum is less than that value.

For a given i and H, and �i‚ H =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log (2n n - 1

k - 1ð Þ=d)

mri(
P

j2H
rj)

r
,

Pr

	
j
X
j2H

C(i‚ j) -
X
j2H

Cov[Xi‚ Xj]j � ti‚ H



� 4e

- mri(
P

j2Hr j
)�2

i‚ H=3 � d

2n n - 1
k - 1

� � :
(To satisfy the conditioning on r we use a Chernoff bound on a Poisson approximation.)

Thus, with probability 1 - d/2 the above holds for all genes and all subsets of k - 1 covariances. In

particular, with that probability the algorithm does not include in the path any gene that is not in P.

To show that the algorithm chooses the correct genes to include in the pathway it remains to show that

for i and H in P : - fi(1 - pi)(
P

j2H fj(1 - pj)) + ti‚ H < - ti‚ H , or

fi(1 - pi)(
X
j2H

fj(1 - pj)) > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ri(

P
j2H rj) log (n n - 1

k - 1

� �
=d)

m

s
: (2)

Since we required for all i, pi £ fi: E[ri] = fi + pi - fipi £ 2fi. For m � 12
f � log 2n

d , we have for all i:

nPr(ri � 4fi) � e - mfi=12 � d
2
.

Let p̂ = maxg2Gfpgg. To satisfy Equation (2) we need

m = 4
3ri(

P
j2H rj) log (n n - 1

k - 1
=d)

(fi(1 - pi)(
P

j2H fj(1 - pj)))
2
� 4

48fi(
P

j2H fj) log (n n - 1
k - 1

� �
=d)

(fi(1 - pi)(
P

j2H fj(1 - pj)))
2

�
192 log (n n - 1

k - 1
=d)

f �(f - f �)(1 - p̂)4
= O(k log n - k log k):

-

3. RESULTS

In this section we present the results of our experimental analysis on simulated data and on data from

thyroid cancer. The ILP formulation was solved using CPLEX v12.3 with default parameters.
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3.1. Simulated data

We used the bounds obtained in section 2.2 to estimate the number of samples required to identify all genes

in the cancer pathway P. In particular, we considered the case of k genes in P for k = 5, 10, 25, 50, 100 [these

are reasonable values for cancer pathways (Vogelstein et al., 2013)], and a total of n genes analyzed. We

considered different values for the difference e between the probability of exclusive mutations in P and the

probability of exclusive mutations in any other set of genes of cardinality k. As from Theorem 5, e is a function

of the minimum frequency f * of mutation of a gene in P, the probability f that a sample has exactly one

mutation in P, and the minimum probability p* of mutation of any analyzed gene: e = f * + 2(f - f *- 0.5)p*.

For each pair (k, e) we estimated the number m of samples required to identify P with probability at least

1 - d when n total genes are considered, for values of d = 0.01, 0.05. We considered the cases n = 1000,

20000, corresponding to the case where the most mutated genes are analyzed and to the case where all

genes are analyzed, respectively.

FIG. 1. Number of samples required to find all genes in the cancer pathwayP, obtained from analytical bounds. For every

pair (k ,e), with k = jPj and e = f * + 2( f - f *- 0.5)p*, where f is the probability that exactly one gene inP is mutated, f * is the

minimum frequency of mutation of a gene in P, and p* is the minimum probability of mutation of any analyzed gene, we

show the number m of samples required to identifyP with probability ‡1 - d when n total genes are analyzed. (a) Results for

d = 0.05, n = 1000. (b) Results for d = 0.05, n = 20000. (c) Results for d = 0.01, n = 1000. (d) Results for d = 0.01, n = 20000.

FIG. 2. Probability that the cancer pathway is identified by an algorithm, as function of m. k = 5, n = 1000 refers to a

model with k = 5 genes in P and n = 1000 passenger genes with the following parameters: f = 0.95, f * = 0.1, p* = 0.1,

p̂ = 0:2; Also, k = 10, n = 1000 refers to a model with k = 10 genes in P and n = 1000 passenger genes with the following

parameters: f = 0.95, f * = 0.01, p* = 0.01, p̂ = 0:05. ‘‘ILP’’ denotes the results obtained solving the ILP formulation,

while ‘‘Alg. 1’’ denotes the results with Algorithm 1. Probabilities are estimated using 100 permutations.
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The results (Fig. 1) show that even for small values of the pathway size k and for reasonable values of e
[e.g., if the probability that P contains exactly one mutation in a sample is 0.95, the minimum frequency of

mutation of a gene in P is 0.01, and only genes with mutation probability ‡0.01 are analyzed to focus on

clinically important frequencies (Lawrence et al., 2013), then e = 0.019] the number m of samples required

to reliably identify all genes in P is much larger than the sample sizes currently available (i.e., <1000

samples for a given cancer type). We also used simulated data to compare the ability of the ILP formulation

and Algorithm 1 to identify P. For different values of k and e, we estimated the probability that the best

XOR identifies P when m samples are provided, for different values of m; for the same values of k,e and m

we estimated the probability that Algorithm 1 identifies P (Fig. 2). The results show that the ILP for-

mulation requires less samples than Algorithm 1 to identify P. Moreover, for some choice of the pa-

rameters, even when the number of samples is much lower than provided by the analytical bounds, the ILP

formulation and Algorithm 1 are able to reliably identify P.

3.2. Cancer data

We analyzed cancer data from 399 samples of thyroid carcinoma from TCGA, available through the

International Cancer Genome Consortium data portal. We considered somatic mutations, discarding syn-

onymous variants, noncoding exon variants, and variants in intergenic regions. We only considered genes

mutated in at least 1% of the samples, for a total of 163 genes, and k = 4. Due to the relatively small sample

size, we only used the ILP algorithm. We identified the set of genes {BRAF,CSDE1,EIF1AX,HRAS} that

present perfectly exclusive (i.e., exactly 1) mutations in 72% of the samples ( p < 0.01 by permutation test

that preserves the frequency of mutation of the single genes). HRAS and BRAF are two well-known thyroid

cancer genes (Cohen et al., 2003; Kimura et al., 2003) while EIF1AX has not been previously reported in

thyroid cancer, but its recurrent mutation in other cancer types (Martin et al., 2013) suggests that EIF1AX

is a novel thyroid cancer gene.

4. CONCLUSION

In this article, we propose a framework to analyze the sample complexity of problems that arise in the

study of genomic datasets. Our framework is based on tools from combinatorial analysis and statistical

learning theory that have been used for the theoretical analysis of machine and PAC learning. Using our

framework, we derive matching analytical upper and lower bounds on the sample complexity of the

identification of cancer pathways using mutual exclusivity. To simplify the presentation we focus on the

sample complexity as a function of the two major factors, the total number n of genes analyzed and

the number k of genes in the cancer pathway; more elaborate calculations express the complexity also as a

function of the probability f of exclusivity in the cancer pathway and the passenger mutation probabilities

pg, and will be presented in the full version of this extended abstract. Our results show that sample sizes

much larger than those currently available in large cancer studies (e.g., TCGA) may be required. Our upper

bound relies on an analysis of the VC dimension of XOR functions, and we derive our lower bound using a

second moment argument that quantifies the impact of random sequencing errors on XOR functions; both

may be of independent interest. We also provide two algorithms for finding cancer pathways from large

sequencing data.

Directions for the extension of this work include the analysis of other problems that arise in the study of

genomic datasets using our framework, the analysis of more complicated and realistic models of mutations

in cancer pathways (e.g., including multiple pathways with mutual exclusive mutations, and copy number

aberrations), and the employment of more advanced statistical learning techniques (e.g., Rademacher

averages; see Koltchinskii, 2001) to study the sample complexity of finding cancer pathways.
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