
Simulation Infrastructure for the Study of

Performance / QOS / Energy Efficiency Trade-offs

Υποδομή προσομοίωσης για τη μελέτη της

σχέσης μεταξύ επίδοσης / ποιότητας υπηρεσίας

/ ενεργειακής αποδοτικότητας.

by

Georgios Ioannis Kopanas

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Diploma of Computer and Communication Engineering

at the

UNIVERSITY OF THESSALY

February 2016

c© University of Thessaly 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

15 February, 2016

Certified by. .
Christos D. Antonopoulos

Assistant Professor
Thesis Supervisor

Certified by. .
Nikolaos Bellas

Associate Professor
Thesis Supervisor

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/159408051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Contents

1 Introduction 9

2 Introduction 13

3 Background 17

3.1 Dependability . 17

3.1.1 Factors of Dependability . 18

3.1.2 Methods of Unreliable Computing under Unreliable Environment 18

3.1.3 Methods of Decreasing Power Consumption 19

3.2 Analysis of Instruction-level Vulnerability 20

3.3 Gem5 Simulator . 20

3.3.1 Gem5 Features . 20

3.3.2 GemFI, a Fault Injection extension 21

3.4 Power Consumption Model . 22

4 Related Work 23

4.1 Fault Tolerant Architectures . 23

5 The Simulator 25

5.1 Fault Model . 25

5.1.1 Time Overhead . 28

5.2 Check-pointing . 29

5.3 Calculating Power Consumpion . 30

3

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

6 Running Experiments 33

6.1 Setting up the Workstations . 33

6.2 Sobel Filter Experiment . 36

6.2.1 The mathematical formula . 37

6.2.2 Fault Injection Results . 38

4

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

List of Figures

5-1 GemFI Overhead . 28

5-2 Block diagram of the McPAT framework 30

6-1 The control flow of the coordinator script 34

6-2 Optimize the speed of the experiment by switching CPUs 36

6-3 Sobel Operation example . 37

6-4 Image (a) is the output of Sobel that we used for the experiments

campaign without any fault injected. Image (b) is an example output

that is corrupted because of the fault injection, if you look closely you

can see a horizontal black line that is not supposed to be there. . . . 39

6-5 . 39

5

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

6

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

List of Tables

7

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

8

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 1

Introduction

Ενώ η βιομηχανία των ολοκληρωμένων κυκλωμάτων εξελίσσεται, ο αριθμός των τραν-

ζίστορ σε ένα ολοκληρωμένο κύκλωμα αυξάνεται με βάση των νόμο του Μουρ. Παράλ-

ληλα, η συχνότητα του ρολογιού εξελίσσεται με πολύ γοργούς ρυθμούς. Αυτό συνέβαινε

μέχρι τις αρχές του 21ου αιώνα, όταν οι μικροεπεξεργαστές έφτασαν σε ένα φαινόμενο

που ονομάζεται ”Power Wall”. Η κατανάλωση ενέργειας σε μια μικρή περιοχή είναι

περιορισμένη για αρκετούς λόγους, κυρίως λόγω της παραγωγής θερμότητας. Το μαθη-

ματικό μοντέλο της κατανάλωσης ενέργειας στους μικροεπεξεργαστές υποδεικνύει ότι

αν συνεχίσουμε να αυξάνουμε το πλήθος των τρανζίστορ κρατώντας τη συχνότητα και

τη τάση λειτουργίας σταθερά τότε οι μικροεπεξεργαστές σε μερικά χρόνια θα φτάσουν

να έχουν power density αντίστοιχο των πυρηνικών αντιδραστήρων.

Πολλοί μικροεπεξεργαστές έχουν θερμικούς διακόπτες που μειώνουν ακαριαία την

δραστηριότητα του κυκλώματος σε περίπτωση υπερθέρμανσης, μειώνοντας τη τάση λει-

τουργίας και τη συχνότητα. Σύμφωνα με το βιβλίο “Computer Architecture: A Quan-

titative Approach” των A.Patterson και J.Hennesy: ”Η κατανάλωση ενέργειας είναι

ένας από τους μεγαλύτερους περιοριστικούς παράγοντες στη σύγχρονη χρήση των τραν-

ζίστορ [1].

Παρατηρώντας το πιο απλό μαθηματικό μοντέλο 1.1 για τη κατανάλωση ενέργειας

P = C ∗ V 2 ∗ f (1.1)

9

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Βλέπουμε ότι μόνο δύο από τους τρείς παράγοντες επηρεάζουν άμεσα την επίδοση

ενός επεξεργαστή, το χωρητικό φορτίο και η συχνότητα, ο τρίτος παράγοντας, η τάση,

επηρεάζει μόνο έμμεσα την επίδοση, λόγω του ότι υπάρχει ένα όριο στη τάση για κάθε

συχνότητα λειτουργίας κάτω από το οποίο ο κατασκευαστής του επεξεργαστή δεν εγγυ-

άται τη σωστή λειτουργία του, λόγω του κινδύνου για λάθη χρονισμού στα τρανζίστορ.

Αρκετοί ερευνητές τα τελευταία χρόνια προτείνουν τρόπου λειτουργίας των μικροε-

πεξεργαστών με τάσεις λειτουργίας κάτω από τα όρια των κατασκευαστών. Η διαδικα-

σία αυτή δεν είναι τετριμμένη αφού η λειτουργία των τρανζίστορ σε ένα ολοκληρωμένο

κύκλωμα με τάση κάτω από τα όρια μπορεί να προκαλέσει λάθη χρονισμού και απρόβλε-

πτη συμπεριφορά του κυκλώματος, κάτι το οποίο πρέπει να το λάβουμε υπόψιν μας. Το

κέρδος από τη λειτουργία με τάση κάτω από τα όρια είναι ότι η κατανάλωση ενέργειας

του μικροεπεξεργαστή μειώνεται ραγδαία αφού εξαρτάται από το τετράγωνο της τάση

λειτουργίας.

Επομένως αξιόπιστοι υπολογισμοί κάτω από αναξιόπιστες συνθήκες είναι η επόμε-

νη πρόκληση για την επιστημονική κοινότητα. Για να επιτευχθεί ένας τέτοιος στόχος

νέα εργαλεία ανάλυσης της συμπεριφοράς των λαθών σε επίπεδο υλικού και λογισμικού

πρέπει να δημιουργηθούν. Η ανάλυση των λαθών μπορεί να μας βοηθήσει να κατασκευ-

άσουμε μια ιεραρχία από μονάδες του επεξεργαστή που χρειάζονται ενίσχυση για να

πετύχουν την αξιοπιστία.

Για να πετύχουμε υψηλή κατανόηση των προηγούμενων φαινομένων, νέα εργαλεία

πρέπει να κατασκευαστούν και να επεκταθούν τα ήδη υπάρχοντα. Η κύρια συνεισφορά

αυτής της διπλωματικής εργασίας είναι η ανάπτυξη μιας ρεαλιστικής υποδομής προσομο-

ίωσης εισαγωγής λαθών που παίρνει υπόψιν τη κατανάλωση ενέργειας και την σύνθεση

των εντολών της εφαρμογής.

Με σκοπό, λοιπόν τη μελέτη των αποτελεσμάτων των λαθών χρονισμού σε διάφορες

εφαρμογές και συστήματα αρχιτεκτονικής, έχει αναπτυχθεί προσομοιωτής, επεκτείνοντας

τον Gem5 [2], στον οποίο ο χρήστης έχει τη δυνατότητα να παρέχει ένα αρχείο εισόδου

στο οποίο καθορίζει ποιες εντολές και τι είδους λάθη προκύπτει να εισαχθούν στην

εκτέλεση. Οι περιορισμοί αυτής της προσέγγισης είναι ότι δεν λαμβάνεται υπόψιν ο

έλεγχος ροής η αναλογίες διαφορετικών εντολών της εφαρμογής για να παραχθούν πιο

10

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

ρεαλιστικές πιθανότητες. Το πρόβλημα δημιουργείτε λόγο του ότι ο χρήστης καθορίζει

στατικά πριν τη προσομοίωση τα λάθη. Για παράδειγμα αν μια εντολή πολλαπλασιασμού

βρίσκεται σε ένα επαναληπτικό βρόγχο που το πλήθος των επαναλήψεων καθορίζεται

από τα δεδομένα είσοδο, δεν υπάρχει τρόπος να καθοριστεί πριν το χρόνο εκτέλεσης το

μείγμα εντολών

Το πρώτο μέρος αυτής της διπλωματικής εργασίας ήταν η επέκταση του προανα-

φερόμενου συστήματος παρομοίωσης και η δημιουργία εργαλείου που δυναμικά εισάγει

λάθη κάτω από ρεαλιστικές πιθανότητες σε όλο το pipeline μιας ARM αρχιτεκτονικής.

Πρώτων μεταφέραμε την ήδη υπάρχουσα λειτουργικότητα εισαγωγής λαθών στο ARM

ISA . Δεύτερων δώσαμε στον χρήστη τη δυνατότητα να επιλέγει διαφορετικές πιθανότη-

τες εισαγωγής λαθών για κάθε pipeline stage και για κάθε κλάση εντολών στις οποίες τα

λάθη θα εισάγονται δυναμικά κατά τη διάρκεια του χρόνου εκτέλεσης. Επίσης ταιριάξαμε

το εργαλείο που φτιάξαμε με τις δυνατότητες DVFS του Gem5 για να προσομοιώσουμε

ετερογενείς αρχιτεκτονικές με διαφορετικές τάσεις λειτουργείας σε κάθε πυρήνα ώστε

να υπάρχουν διαφορετικές πιθανότητες λαθών ανά πυρήνα. Το τελευταίο μέρος ήταν να

υπολογίσουμε τον κατανάλωση ενέργειας χρησιμοποιώντας στατιστικά δεδομένα από τη

προσομοίωση χρησιμοποιώντας το McPAT, ένα εργαλείο με μαθηματικές μεθόδους που

προσεγγιστικά υπολογίζει την κατανάλωση ενέργειας πολυπύρηνων αρχιτεκτονικών.

΄Ολα αυτά τα βήματα έγιναν με στόχο να δημιουργήσουμε μια υποδομή προσομοίωσης

που μπορεί να χρησιμοποιηθείς για τη μελέτη της σχέσεις μεταξύ επίδοσης / ποιότητας

υπηρεσίας / ενεργειακής αποδοτικότητας για διαφορετικές ετερογενείς αρχιτεκτονικές

που υποστηρίζουν μη-έμπιστους πυρήνες.

Αυτό το έγγραφο αποτελείτε από δύο μέρη. Το πρώτο εισάγει τον αναγνώστη στο

θεωρητικό υπόβαθρό και το δεύτερο περιγράφει το σύστημα προσομοίωσης και τη πει-

ραματική μελέτη. Στο πρώτο μέρος, τα κεφάλαια 1-3 παρουσιάζουμε την έννοια του

δεπενδαβιλιτψ, το μοντέλο των λαθών που πρόκειται να χρησιμοποιήσουμε και σχετική

δουλειά που έχει γίνει από άλλους. Στο δεύτερο μέρος, κεφάλαια 4-5, περιγράφουμε

το σύστημα προσομοίωσης και τη πειραματική μελέτη παρουσιάζονται τα αποτελέσματα

των μετρήσεων που κάναμε.

11

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

12

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 2

Introduction

While the CPU industry is evolving, the number of transistors inside the integrated

circuit are being driven by the well know Moore’s Law. Simultaneously, the clock

frequency is very rapidly increasing. This was the case until the start of the 21st

century, when the CPU manufacturing reached a phenomenon called “Power Wall”.

The power consumption in a small area that we can produce is limited for various

reasons, mainly, because of heat emission. The power consumption equation indicates

that if we keep increasing the crowd of the transistors and the frequency in which

they are operating by keeping the voltage constant, then CPUs are going to reach the

power density of a nuclear reactor in a matter of years.

A lot of microprocessors have thermal switches which drop instantly the activity

of a chip in case of overheating by reducing the voltage operating point and frequency.

According to the A.Patterson and J.Hennesy book “Computer Architecture: A Quan-

titative Approach”: Power consumption is the greatest limiting factor in the modern

use of transistors [1].

By observing the most simple mathematical model 2.1 of power consumption

P = C ∗ V 2 ∗ f (2.1)

we can see that only two of the three factors affect directly the performance of a

microprocessor, the capacitive load (symbol C) and the frequency (symbol f), the

13

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

third factor, voltage (symbol V), affects performance only indirectly, because there is

a threshold voltage for every operating frequency of a given microprocessor in which

the behavior of the chip is guaranteed without the danger of timing errors. A lot

of research in the past years is suggesting ways to operate microprocessors in below-

nominal voltage values. This is not trivial since in below-nominal voltage values the

transistors may come to timing errors and have unpredicted behavior, which we must

take into account. The gains of this below-nominal operation of the microprocessor

is that the power consumption drops rapidly since it depends by the square of the

operating voltage.

Reliable computing under unreliable circumstances is one of the next challenges

the computing community must solve. To achieve such a difficult task we need to per-

form a thorough analysis of the way hardware faults manifest errors to architectural

components and how on their turn affect the applications behavior. The analysis

of the faults may help us construct a hierarchy of target-modules that need to be

enhanced in order to achieve robustness.

To achieve a high grasp of the previously mentioned phenomenon new tools had

to be constructed and the existing ones to be extended by adding new functional-

ities. The main contribution of this thesis is to provide a realistic fault injection

infrastructure which takes into account the power consumption and the application’s

instruction mix.

In order to study the effects of timing faults on various applications we have

developed such a framework on top of Gem5 [2], in this framework the user is able to

provide a set-up file which determines the specific instructions and the type of of faults

that are going to be injected. The restrictions of this approach is that you cannot

take into consideration the control flow and the instruction mix of the application to

provide realistic probabilities of faults, since they are statically determined before the

simulation i.e if a multiplication instruction is to be executed inside a loop which the

iterations depend in the input data, there is no easy way to determine the instruction

mix.

The first part of this diploma thesis was to extend this framework and create a tool

14

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

which dynamically injects faults under realistic probabilities throughout the pipeline

of an ARM architecture. Firstly, we imported the previously existing fault injection

functionality in the ARM instruction set. Secondly, we provided the user an interface

and a functionality to pick different probabilities per pipeline stage and per instruction

class in which the errors are going to be manifested dynamically during run-time. Also

we coupled the tool that we created with the DVFS functionality of Gem5 to simulate

heterogeneous cores with different voltage levels that have various fault injection

probabilities per core. The last part was to compute the power consumption by using

statistical data of the simulation by using McPAT [3], a tool that has mathematical

functions which approximately computes the power performance of many core and

multi-core architectures.

All these steps where made so we can have a simulation infrastructure that can

be used to study the performance/QOS/Energy efficiency trade-offs of different het-

erogeneous architectures that have unreliable cores.

This document is constructed in two blocks. The first one introduces the the-

oretical background and the second describes our framework and the experimental

evaluation. In the first part, chapters 1-3 we discuss the concept of dependability , the

fault model that we are going to use and related work done by others. In the second

part chapters 4-6 we describe the framework that we created and the experimental

evaluation by displaying the result of some experimental campaigns.

15

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

16

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 3

Background

As mentioned in the previous chapter we need achieve reliable computing under un-

reliable circumstances. In order to do that we need to set up systems that are highly

tolerant to faults. Measuring the fault tolerance of a system is not trivial. In this

chapter we will introduce definitions which will be used to help us categorize faults,

measure fault tolerance and connect these to power consumption.

3.1 Dependability

Dependability is a generic concept including as special case such attributes as relia-

bility, availability, safety, integrity, maintainability. The original definition of depend-

ability is the ability to deliver service that can justifiably be trusted. An alternate

definition is the ability of a system to avoid service failures that are more frequent and

more severe than is acceptable[4]. The second definition of dependability suits more

in our needs. For the purpose of clarification we will formally define the attributes

that dependability encompasses

• availability: readiness for correct service;

• reliability: continuity of correct service;

• safety: absence of catastrophic consequences on the user(s) and the environ-

ment;

17

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

• integrity: absence of improper system alterations;

• maintainability: ability to undergo modifications, and repairs.

3.1.1 Factors of Dependability

We will generalize the reasons why a system may not perform as it is intended to.

The causes and the reasons that a system deviates from it’s intended behavior are

called factors of dependability[5].

• Fault is a physical defect, imperfection, or flaw that occurs within some hard-

ware or software component;

• Error is a deviation from accuracy or correctness and is the manifestation of a

fault;

• Failure: is the non-performance of some action that is due or expected.

We have to mention here that there is a confusion in the bibliography between

terms, fault and error, which can be used vice - versa. In our study faults have

secondary importance since we don’t take into consideration the reasons errors occur,

but we evaluate systems based on the manifestation of these faults, for that reason

we will refer only to errors from now on, even if they are mentioned as faults.

3.1.2 Methods of Unreliable Computing under Unreliable

Environment

As mentioned in [6], fault tolerance uses methods to ensure that faults do not cause

failure. Such methods are:

• Detecting Errors: is primarily dependent on redundancy, including natural

redundancy (e.g. error detecting codes in hardware, executable assertions in

software) and artificial redundancy (e.g. modular redundancy in hardware and

N-version programming in software);

18

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

• Assessing Damage: This step involves assessing the extent of the damage

caused by the fault on the state of the computation, and making a decision on

what recovery action must be taken;

• Error Recovery: This step involves correcting the current state of the compu-

tation according to the findings of the damage assessment step, and resuming

the computation;

• Fault Removal: While the three preceding steps deal with the current com-

putation and are performed on-line for the sake of salvaging the current com-

putation, this step deals with the system itself, and can be performed off-line.

It consists of identifying the fault that caused the error and removing it.

These methods are based on traditional architectures. In the past decade more

modern and exotic architectures [7] and programming models are assuming that pro-

cessors can function in two states, reliable and unreliable, in the reliable state the

processor takes all necessary precautions to run the code reliably, but the power con-

sumption and the speed are secondary goals. With this assumption, abusing the

programmers knowledge on assessing in which areas of the code faults are acceptable,

makes system utilize their hardware much more efficiently.

3.1.3 Methods of Decreasing Power Consumption

• Dynamic frequency scaling (also known as CPU throttling) is a technique

whereby the frequency of a microprocessor can be automatically adjusted ”on

the fly,” either to conserve power or to reduce the amount of heat generated by

the chip.

• Dynamic voltage scaling is a power management technique, where the volt-

age used in a component is increased or decreased, depending upon circum-

stances. Dynamic voltage scaling to increase voltage is known as overvolting;

dynamic voltage scaling to decrease voltage is known as undervolting, in order to

19

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

conserve power. Overvolting is done in order to increase computer performance

or reliability.

• Dynamic voltage and frequency scaling (DVFS) is the combination of the

previous techniques and it is widely used in modern CPUs.

From equation 2.1 the reader can easily deduce, firstly that decreasing frequency

linearly decreases power consumption while the execution time becomes longer. Sec-

ondly, decreasing voltage exponentially decreases power consumption by affecting

reliability since timing errors of the transistors become more probable.

3.2 Analysis of Instruction-level Vulnerability

Recent studies show that errors don’t manifest uniformly during the execution of

different instructions. In fact, instruction level vulnerability studies partition instruc-

tions into three equivalent classes based on their error probabilities while varying the

voltage and the temperature[8]. Based on these studies, all exercised instruction in

the integer pipeline of ARM ISA are partitioned into three classes for the full range

of operating condition: (i) the logical and arithmetic instructions, (ii) the memory

instructions, and (iii) the multiply and divide instructions.

3.3 Gem5 Simulator

For the development of our simulator we extended Gem5[2], a popular open-source

system simulator. Gem5 is a versatile tool that proved to have all the features that

we need for the simulation part of the infrastructure we are setting up.

3.3.1 Gem5 Features

In this section we will present some of the key features that Gem5 encompasses. For

a detailed documentation the reader is redirected to the official websites.

20

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

• Multiple interchangeable CPU models. Gem5 provides four interchange-

able CPU models: a simple one-CPI CPU; a detailed model of an in-order CPU,

and a detailed model of an out-of-order CPU. The CPU models use a common

high-level ISA description. In addition, gem5 features a KVM-based CPU that

uses virtualisation to accelerate simulation.

• Homogeneous and heterogeneous multi-core. The CPU models and caches

can be combined in arbitrary configurations, creating homogeneous, and het-

erogeneous multi-core systems. This features is one of the important tools that

make simulating exotic architecture that where described in earlier sections to

be simulated in an accurate manner.

• Multiple ISA support. Gem5 decouples ISA semantics from its timing CPU

models, by that enabling different CPU models is ISA-independent. Currently

gem5 supports the Alpha, ARM, SPARC, MIPS, POWER and x86 ISAs.

• Power and energy modeling. Gem5’s objects are arranged in OS-visible

power and clock domains, enabling a range of experiments in power and energy

efficiency. With out-of-the-box support for OS-controller Dynamic Voltage and

Frequency (DVFS) scaling, gem5 provides a complete platform for research in

future energy-efficient systems.

3.3.2 GemFI, a Fault Injection extension

GemFI[9] is a fault injection tool based on Gem5, a cycle accurate full system simu-

lator. It provides fault injection methods with a predefined set of faults by the user

with an input file. Every fault is defined as a set of three attributes, the number of

the instruction that the fault is going to be injected, the pipeline stage and the type

of fault. GemFI supports 3 kind of faults:

1. ”stack-at-one” and ”stack-at-zero”, which sets all the bits of a value to 0 or 1

2. ”flip bit” which flipping the running value at bit locations

21

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

3. ”immediate value” which assigns an immediate value provided by the user.

It also supports multiple processor models and allows fault injection in both func-

tional and cycle-accurate simulations. Moreover, it facilitates the parallel execution of

campaign experiments on a network of workstations. GemFI is developed using C++

and Python. Currently it fully supports only the Alpha instruction set architecture.

One key contribution of this thesis is extending GemFI to ARM ISA.

3.4 Power Consumption Model

To assess the gains of unreliable computing in power consumption we need a model.

We are going to use McPAT[3], a well-known framework for power, area and timing

modeling that supports comprehensive design space exploration for multicore and

manycore processor configurations ranging from 90nm to 22nm and beyond. During

the experimental process we observed that McPAT is a tool that will provide the

user a generic sense on the magnitude of power consumption and not predict the

actual power consumption a processor is going to have, although since our study is

comparative McPAT model is fitting it’s purpose.

22

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 4

Related Work

Fault tolerant systems is a concept that needs the development of new architectures

and programming models. In this chapter we will present the reader, firstly, the most

recent work that has been done in the computer architecture field, and secondly, the

already developed tools for simulating executions that incorporate fault injection.

4.1 Fault Tolerant Architectures

While researchers tried to solve the problem of unreliable computing they designed

fundamentally novel architectures which make sure either to detect and resolve all

errors either to make sure that errors happen only in non-critical parts of the execution

which will give error acceptable by the user.

In the first case a trademark architecture is RAZOR which ensures error detection

and correction of timing errors of the critical path due to near-threshold operation

of the processors [10]. The main idea behind this is coupling each flip-flop in the

design with a so-called shadow latch which is controlled by a delayed clock. When

error is detected from the shadow latch an error signal is raised, the circuit is delayed

for one cycle so the next pipeline stage will take input from the latch instead of the

miss-calculated flip-flop.

For the second case, ERSA architecture[7] is featuring a combination of cheap,

unreliable compute power together with a small fraction of reliable processor cores

23

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

for running system software, controlling application flow, and recovering from errors

generated on unreliable cores.

24

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 5

The Simulator

5.1 Fault Model

In this section we will present the Fault model that we chose as the base for our

implementation. During our study we wanted to focus on errors that occur during

voltage and temperature variations. We want to assess how processors and applica-

tions behave in below-nominal voltage values, in result, these kind of errors simulate

better our case of study.

In general, proving the sufficiency of a fault model is very difficult. It is more

realistic to assume that a fault model is sufficient and justify this assumption to the

greatest extent possible with experimental and historical data or results published in

literature. That is the reason that lead us to create our fault model based on the

experimental research[8], which was the first that introduced the notion of instruction-

level vulnerability(ILV) to expose variation and its effects to the software stack. To

compute ILV, they quantified the effect of voltage and temperature variations on

the performance and power of a 32-bit, RISC, in-order processor in 65nm TSMC

technology at the level of individual instructions. Results show 3.4ns (68FO4) delay

variation and 26.7x power variation among instructions, and across extreme corners.

Their analysis shows that ILV is not uniform across the instruction set. In fact, ILV

data partitions instructions into three equivalence classes.

Based on that study we decided to implement a model in which the user had

25

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

the capability to provide different fault probabilities in each pipeline stage of the

following:

• Fetch: This fault corrupts the binary form of the instruction;

• Decode: This fault covers corruptions of the opcode field;

• Execution: The execution fault corrupts the results of the ALU unit, in arith-

metic instructions this means wrong operation results, in memory instructions

means wrong calculation of the next-PC;

• Memory(Load/Store): corrupts the read/write values of the memory;

That is not enough since ILV is not uniform across the instruction set, through

experimental studies we partitioned the instructions into three equivalent classes,

resulting that every class has different fault probability for every pipeline stage:

• Logical & Arithmetic: Includes all instructions of addition substraction log-

ical and binary operations;

• Multiplication & Division: Includes all instructions of multiplication and

division ;

• Memory: Includes all memory operations;

A user can provide the error probabilities in a very intuitive way through the

setup python script that Gem5 already uses to set-up the architecture of the system,

below we provide an example, which shows how the user can provide probabilities for

a 2-core system.

[. . .]

system . cpu [0] . p Iew ar ithm =0.021

system . cpu [1] . p Iew ar ithm =0.022

system . cpu [0] . p I e w l o a d s t o r e =0.023

system . cpu [1] . p I e w l o a d s t o r e =0.024

system . cpu [0] . p Iew muldiv =0.025

26

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

system . cpu [1] . p Iew muldiv =0.026

system . cpu [0] . p Lds ar ithm=0

system . cpu [1] . p Lds ar ithm=0

system . cpu [0] . p Lds l oad s to r e =0.029

system . cpu [1] . p Lds l oad s to r e =0.030

system . cpu [0] . p Lds muldiv=0

system . cpu [1] . p Lds muldiv=0

system . cpu [0] . p Decode arithm =0.031

system . cpu [1] . p Decode arithm =0.032

system . cpu [0] . p Decode loads to re =0.033

system . cpu [1] . p Decode loads to re =0.034

system . cpu [0] . p Decode muldiv =0.035

system . cpu [1] . p Decode muldiv =0.036

system . cpu [0] . p Fetch =0.037

system . cpu [1] . p Fetch =0.038

[. . .]

Since the Fetch stage is the same for all instructions the user cannot provide

different probabilities for the 3 classes.

As we explained in previous chapters to simulate dependability errors we need to

have different three kind of errors ”all-one, all zero”, ”immediate value” and ”flip bit”,

which we support, see section 3.3.2. For the shake of simplicity, without sacrificing

functionality we introduce equal probabilities for any of these kind of errors in the

execution stage, but we keep only ”1-flip-bit” errors in all other pipeline stages.

27

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Figure 5-1: GemFI Overhead

5.1.1 Time Overhead

When we finished developing the fault injection model, we wanted to evaluate the

time overhead that we added in the original Gem5 simulator. To do that we made 10

executions of 4 diffrent runs of a 32x32 matrix multiplication:

• Clean Gem5, Gem5 without any modifications

• GemFI without enabling our tool

• GemFI with enabled tool, but probabilies = 0

• GemFI with enabled tool and probabilities = 0.1

In the last case we need to mention that the fault injection were done in a way that

would not change the results so the application would run smoothly and not crash

so the time can be compared in a fair way. The results5-1 show that the overhead is

minimal, close to non existant when the tool is disabled something very critical as a

28

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

goal for our implementation, and when the probabilities are close to 0 the overhead

is satisfactory.

5.2 Check-pointing

Simulations offer many advantages: ease of use, portability, reproducibility, low cost

etc. One of those is the ability to retrieve a snapshot of the state of the system to

the hard drive and retrieve from that point whenever the user wants. This gives the

ability to the user to study in depth special cases of consecutive errors by reproducing

and take a deeper look to a specific series of faults that were introduced and led to a

specific program behavior. Although Gem4 already provided this kind of mechanism

there were limitations which did not suit our purposes.

Checkpoint on full system detailed simulation was achieved with two ways. For the

first method CPUS were switched from detailed to atomic mode create the checkpoint

and afterwards switching again from atomic to detailed mode in order to continue the

simulation. For this to be done the pipeline stages on the detailed mode where flushed

prior taking the checkpoint and thus there could be a potential accuracy loss in our

fault injection framework. The other method was achieved by simulating MOESI

hammer cache coherency protocol. This method did not switched between detailed

and atomic modes however the simulation time increased dramatically.

Due to the previous limitations we had to turn to a Linux based checkpoint package

which checkpointed the simulator’s state from an outer scope. DMTCP is distributed

under the terms of Lesser GNU Public License (LGPL) and supports checkpointing

the state of multiple of multiple simultaneous applications, including multi-threaded

and distributed applications.

The main reason for choosing DMTCP was based on the ability to take checkpoints

not only inside of the simulator by calling functions given by the API of DMTCP but

also outside of the simulator. The ability to invoke DMTCP inside of the simulator

gave us the opportunity to keep the already existed checkpointing front-end of the

Gem5 simulator (special instruction added on ISA so that applications may call a

29

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Figure 5-2: Block diagram of the McPAT framework

checkpoint internally) and alter the back-end of the checkpointing method (use the

DMTCP API to checkpoint instead).

Another important feature DMTCP incorporates is the fact that can checkpoint

multiple applications that run simultaneously. A DMCTP enabled application con-

sists of all processes connected to a given coordinator. To have two simultaneous

DMTCP computations on the same host, you will need two DMTCP coordinators

listening to different port numbers. The command dmtcp coordinator generates a

new coordinator.

5.3 Calculating Power Consumpion

As we mentioned earlier we will use McPAT to calculate power consumption of our

simulation. McPAT is the first integrated power, area, and timing modeling frame-

work for multithreaded and multicore/manycore processors. It is designed to work

with a variety of processor performance simulators (and thermal simulators, etc.)

over a large range of technology generations. McPAT allows a user to specify low-

level configuration details. It also provides default values when the user decides to

specify only high-level architectural parameters. The block diagram provided by the

developers of McPAT gives a good sense of how that tool can be used and coupled

with simulators.5-2

30

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Eventhough McPAT provides a lot of functionality and gives the user intuitive

ways to provide input this tool is created in a generic way so it can work with all

availiable simulator that can provide the data that it needs to run.

So we modified a script to convert Gem5 simulation output statistics to McPAT

compatible Machine statistics inputs. We also created a template that gives all the

availiable information for an ARM A15 architecture with 2 cores as Architecture input

parameters to McPAT.

31

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

32

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Chapter 6

Running Experiments

After we finished the development of the tools that we mentioned in the previous

chapters, we run a series of experiments to validate and demonstrate the capabilities

of the infrastructure that we created.

6.1 Setting up the Workstations

As previously mentioned, one of the main disadvantages that fault injection simu-

lations has is the huge time consumption, which is measured close to 10.000 times

slower than a native execution. For the purpose of our experiments we need to run

2000 experiments.

To speed up the experiments we had in our disposal 22 computers from the lab-

oratory of the University of Thessaly. Each PC has an Intel processor (Xeon CPU

E5606) with four cores clocked at 2.13 Ghz and 6Gb of memory (RAM). All PC’s

have access to a Network File system(NFS) and a local file system(10-1). Since the

experiments are independent from each other, in the best case scenario we can run

88 experiments simultaneously, one in each core. To control the campaign of the

experiments we used multiple Linux tools, also python and bash script language.

First we used one of the computers as the main node of our computation. That

node compiled and setted up in NFS all the things that the simulation needs: scripts

,executable, image disks etc. Once these are ready the ”coordinator” script 6-1 is

33

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Figure 6-1: The control flow of the coordinator script

34

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

launched that copies all these files to the local HDD and runs 4 children which execute

the ”Run” script that is responsible for running an individual set of experiment in

the specific core.

Each set of experiments consists from one full simulation that is responsible to

boot the OS on the simulator and create a checkpoint just before the region of interest

in the code. Then we restart the simulation from that point as many times we need

to complete the number of experiments this core is responsible.

It is worth mentioning that a third script is running on the background which

checks periodically if an experiment is taking too long (stuck in an infinite loop), if

the output of the experiments exceeds some limits or if another user is logged in the

machine; on all cases the experiment is killed and a message is printed on the output.

On the last case additionally a checkpoint is created for each experiment in order to

respect the other user.

Besides the scripts the following linux tools where used to help the workstation

setup:

• Wake on Lan (WON): remotely boot each PC by sending a special Packet

to the Network card;

• Secure Shell (SSH): is a cryptographic (encrypted) network protocol to allow

remote login and other network services to operate securely over an unsecured

network.

• Secure File Transfer (SFTP): is a standard network protocol used to transfer

computer files between a client and server on a computer network.

Apart of running experiments in parallel we tried to reduce the duration of each

experiment individually. This was achieved by a major optimization. Gem5 has

developed a special instruction which allows to switch between CPU models. When

the instruction is executed the simulator pauses and a Python script initializes the

next CPU model and then restored the execution with the new CPU model. In some

cases except the of the CPU model the memory model is also switched (atomic -

35

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Figure 6-2: Optimize the speed of the experiment by switching CPUs

simple). In our case everything that is not happening with fault injection enable is

not a Region of Interest (ROI) so we run it on Atomic Simple mode and then we

switch when fault injection is enabled, similarly we switch when the ROI is over and

we want to export the results to the HDD. The process is described in the figure 6-2

6.2 Sobel Filter Experiment

The Sobel filter, is used in image processing and computer vision, particularly within

edge detection algorithms where it creates an image emphasizing edges. Technically,

it is a discrete differentiation operator, computing an approximation of the gradient

of the image intensity function. At each point in the image, the result of the Sobel

operator is either the corresponding gradient vector or the norm of this vector

36

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

(a) Input Image (b) Output Image

Figure 6-3: Sobel Operation example

6.2.1 The mathematical formula

The operator uses two 3×3 kernels which are convolved with the original image to

calculate approximations of the derivatives - one for horizontal changes, and one for

vertical. If we define A as the source image, and Gx and Gy are two images which at

each point contain the horizontal and vertical derivative approximations respectively,

the computations are as follows:

Gx =


−1 0 −1

−2 0 −2

−1 0 −1

 ∗ A Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ A

Where * here denotes the 2-dimensional signal processing convolution operation

and A is the image array. The x-coordinate is defined here as increasing in the ”right”-

direction, and the y-coordinate is defined as increasing in the ”down”-direction. At

each point in the image, the resulting gradient approximations can be combined to

give the gradient magnitude, using:

G =
√
G2

y + G2
x

An example Output of the Sobel Operation is shown in the figure 6-3

37

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

6.2.2 Fault Injection Results

In this section we will present the results from the experimental fault injection cam-

paign that we did by using a simple Sobel filter application that takes as an input a

black&white image with dimensions 512×512 and has as an output the filtered image

written in a headless raw binary file.

We partition our results in 4 categories:

• Crashed: Includes all experiments which fail to terminate successfully and

dont produce an output file;

• Inexact: Includes all experiments which have a visible alteration of the result,

we consider as visible alteration of the result a PSNR lower than 30db ;

• Correct: Includes all experiments that have alteration in the results but we

consider that it is not visible to the user, which means a PSANR greater than

30db;

• Bit-wise Exact: Includes all experiments which produce bit-wise exact results;

We did two series of experiments, the first one has the following error probabilities

in the ROI where the Fault Injection tool is enabled:

[. . .]

system . cpu [i] . p Iew arithm=1e−08 system . cpu [i] . p I ew l oad s t o r e=1e−08

system . cpu [i] . p Iew muldiv=1e−08 system . cpu [i] . p Lds arithm=0

system . cpu [i] . p Lds l oad s to r e=1e−08 system . cpu [i] . p Lds muldiv=0

system . cpu [i] . p Decode arithm=1e−08 system . cpu [i] . p Decode loadstore=1e−08

system . cpu [i] . p Decode muldiv=1e−08 system . cpu [i] . p Fetch=1e−08

[. . .]

The fault injection tool is enabled at the start of the computations for the So-

bel filter and we disable it the moment we finish. The output is written in a safe

environment without faults.

The distribution of the 2100 executions in the previously mentioned clashes are

shown in figure 6-5 (a)

In the second series of experiments we lowered the probability of error in the

following values:

38

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

(a) Golden Output Image (b) FI Output Image

Figure 6-4: Image (a) is the output of Sobel that we used for the experiments cam-
paign without any fault injected. Image (b) is an example output that is corrupted
because of the fault injection, if you look closely you can see a horizontal black line
that is not supposed to be there.

[. . .]

system . cpu [i] . p Iew arithm=1e−09 system . cpu [i] . p I ew l oad s t o r e=1e−09

system . cpu [i] . p Iew muldiv=1e−09 system . cpu [i] . p Lds arithm=0

system . cpu [i] . p Lds l oad s to r e=1e−09 system . cpu [i] . p Lds muldiv=0

system . cpu [i] . p Decode arithm=1e−09 system . cpu [i] . p Decode loadstore=1e−09

system . cpu [i] . p Decode muldiv=1e−09 system . cpu [i] . p Fetch=1e−09

[. . .]

Similarly for the new probabilities we ran 2100 executions and the results are

shown in figure 6-5 (b).

(a) Series of 2100 experiments with error
probability of 1e-08

(b) Series of 2100 experiments with error
probability of 1e-09

Figure 6-5

39

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

40

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

Bibliography

[1] J. L. Hennessy and A.Patterson, Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann; 4 edition, (September 27, 2006).

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[3] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009. MICRO-
42. 42nd Annual IEEE/ACM International Symposium on. IEEE, 2009, pp.
469–480.

[4] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” Dependable and Secure Com-
puting, IEEE Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[5] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection tech-
niques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004.

[6] H. H. Ammar, B. Cukic, A. Mili, and C. Fuhrman, “A comparative analysis of
hardware and software fault tolerance: Impact on software reliability engineer-
ing,” Annals of Software Engineering, vol. 10, no. 1-4, pp. 103–150, 2000.

[7] H. Cho, L. Leem, and S. Mitra, “Ersa: Error resilient system architecture for
probabilistic applications,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 31, no. 4, pp. 546–558, 2012.

[8] A. Rahimi, L. Benini, and R. K. Gupta, “Analysis of instruction-level vulnera-
bility to dynamic voltage and temperature variations,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2012. IEEE, 2012, pp.
1102–1105.

[9] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “Gemfi:
A fault injection tool for studying the behavior of applications on unreliable
substrates,” in Dependable Systems and Networks (DSN), 2014 44th Annual
IEEE/IFIP International Conference on. IEEE, 2014, pp. 622–629.

41

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on. IEEE, 2003, pp. 7–18.

42

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7

