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Chapter 1

Introduction

Eve 1 Brounyavia Tov ohoxANewuévmy xuxhwudtoy eCelicoeTot, o aptdude twy Teov-
Ciotop ot éva ohoxAnpwuévo xxhopo auidvetal e Bdon Towv vouo tou Mouvp. Tapdi-
Anha, 1) oLy VOTNTA ToL POAOYLOV eEEMGoETAL PE TOAD YOopYOUS puluole. Autd cuvéPBouve
UEYEL TIC dpy€C Tou 21ou auva, OTAY Ol UXPOETELEQYAUCTES EPTACAY OE EVOL PUVOUEVO
mou ovoudletar "Power Wall”. H xotavdhwon evépyelag o o et Teployy| etvor
TEPLOPIOUEVT] YL ApXETOUG AOYOUS, xUplwe AOYw Tng Tapaywyrg Yepudtntoag. To padn-
HOTIXO LOVTEAD TNG XUTOVIAWONG EVERYELNS OTOUC UXPOETEEEQYAUCTES UTOBEWVOEL OTL
av ouveylooupe vo avZdvoude To TAYOC TwV TEavlioTOP XEATMVTAC TH GLYVOTNTO ol
N Tdom Aertoupyiog oTadepd TOTE Ol UXPOETELERYACTEG OE UEQLXS YpoVia Vol PTAcOUY

va €youv power density avtloToryo TV TUENVIXGOY AVTIOEUC THRMV.

ITohhol uixpoenelepyactég €youv VepUinole BLOXOTTEC TOU UELDVOLY axapLola TNV
OPUC TNELOTNTO TOU XUXAOUATOS OF TER(MTWOT UTEPVEPUAVOTC, UELOVOVTAC TN TAOT AEL-
Toupyiag xou T ouyvoTnTa. Lougeve ue to BiBilo “Computer Architecture: A Quan-
titative Approach” twv A.Patterson xau J.Hennesy: "H xatovédhiworn evépyelog elvor
EVOC UTO TOUG UEYUADTEPOUS TEEQLOPLO TIXOUE TORAYOVTES GTY GUYYQEOVT| YPN 0T TWY TEAV-

LioTop [1].

Hapatnenvtag to o anAd godnuatind povtédo 1.1 yio T xoTavaIAmon evEpYELIg

P=CxV*«f (1.1)
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BAémouye 611 uévo 8o amd Toug TEElS Tapdyovieg enneedlouy GUECH TNV ETBOOT
eVOC EMEEERYAOTN, TO YWENTIXG POPTIO Xou 1) CUYVOTNTA, O TEITOC TaEdYOVTaS, 1) TAOT),
ennpedlel povo €upeca TNy enidoor), Aoyw Tou 6Tl UTEEYEL €va 6plo oTN TdoT Yia Xdie
oLYVOTNTA AelToupY oG XdTw amd TO OO0 0 XATAOHEVUC TG TOU ENEEEPYAUOTH BEV EYYU-

dton TN oo T Aettovpyiot Tou, AdYe ToL xVBUVOU Yiol A&l ypoviouol ota TpaviioTop.

Apxetol epeuvntéc tar TeEheuTala YpoVIX TEOTEIVOLY TEOTIOU AELTOURYIUC TWV ULXPOE-
TECEPYUCTWV UE TAGELS AELTOURYIOC Xt omd ToL OPLAL TWV XUTAOXEVACTGY. H Srodixo-
olo auTh Bev elvon TETPYUEVT agol 1 Acttovpyia TV TpavlioTop ot €va OMOXANPWUEVO
HOUAOUOL UE TAOT %t amd Tar dpto unopel var tpoxahécel Addn yeoviouol xon anpdAe-
T GUUTEPLPORE. TOU XUXADUATOS, XdTL To ontolo TeEneL var To Adfouue unddy poc. To
%(€pd0¢ amd TN Aettovpyla UE TAom dTw and To Opla ebvar OTL 1) XUTAVIAWCT) EVERYELG
TOU UIXPOETECERYUOTH UEWWVETOL parydaio ool e€opTdton amd To TETPAYWVO TNS TAoT
Aertovpriog.

Enopévwe afiomotol unohoylopol x4te and avollomoTeg oUVIXES elvol 1) ETOUE-
V| TEOXANON Yo TV emoTNHovix xowdtnTa. [o var emtevydel Evag t€Tolog oToy0g
véa epyaheior avdhUoTE TNG CUUTERLPORAS TV Aadwv Ot EN{TEdO UAIXOU Xl AOYLoUx00
meenel vo dnuoveyioly. H avdiuorn twv Aadov urnopel vo pog Bonidfoel var xotaoxeu-
dooupe o tepopyior amd Yovddee Tou eneepyaocTy| Tou ypeetdlovTal evicyuorn Yo va
TeTOYoLY TNV a&lomoTio.

[t vor TeThyoude UPNAT XaTOVONOT TV TEOTYOUUEVKDY (QUIVOUEV®Y, VEO EpYUAEld
TEETEL VAL XUTAGHEVACTOLY ot Vo emextadoly ta Ndn umdeyovia. H xdpla cuvelopopd
oUTAS TNEG SmAwpaTXG epyactag efvan 1 avamTUEN UL PEXMG TIXHG UTOBOUTE TPOCOUO-
lwong eloaywyhc haddv mou madpver UTOPY TN xaTaVAAWOT) EVERYELIS XaL THY oUVUEST
TWY EVIOA®Y TN EQURUOYTC.

Me oxomnd, hoimdv T HEAETN TWY ATOTEAECUATWY TKVY A®V YPOVIGUOU OE SLdPOPES
EQUPUOYES XOU CUCTAUATO AR YLTEXTOVXTNG, EYEL avamTLY Vel TpocououwThg, emexTelvOVTOg
tov Gemb [2], oTov onolo 0 YphoTNng €yel TN BuvaTOTNTOL VoL o YEL Evar 0Py Elo ELoGdOU
oto omnofo xadopllel moleg evToAéC xon TL €ldoug AdT mpoxUTTEL Vo ooy Yol oTNY
extéheorn. Ou meploplopol auTAC NG TEooEyylong eivon 6Tt dev houfdvetar Loy o

EAEY YOS POTC 1) AVAAOYIEC BLUPOPETIXGY EVIOA®Y TNG EQPUPUOYTHC Lot var ToparyYolv o
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ceohoTég mdavotneg. To mpdfinua dnutoupyeite Adyo tou 6Tl 0 yerotne xadoplle
OTUTIXG TPV TN TpocouolwaoT Tor A&, ot mapdderypa av ot EVTOAT) TOMAATAAGLAGHUO0
Beloxeton oe éva enovaAnmtind Pedyyo mou 1o TARdoc Twv enavariewy xodoptleton
oo To 0edoUEVaL €{0000, BEV UTERYEL TPOTIOG Vo X optoTEL TP TO YPOVO EXTEAECTC TO
uelypo eVTOhGY

To mpcdTo P€Pog aUTAC TNG BIMAWUATIXAC EQYUCIOG ATAV 1) ETEXTACT, TOU TEOVO-
(PEQOUEVOL CUCTAUATOS TAPOUOLWOTN Xal 1) dnutoupyio epyaheiou Tou duvouxd ElodyeL
A& %t and peohioTinég mbavotnteg o€ 6ho To pipeline pioag ARM opyttextovixc.
Hpwtwy yetagépaue TV 101 UTdEYOUGH AELTOLEYWOTNTA EloaywYhc Aaddy 6to ARM
ISA . Acltepwv dwoope oToV YeNoTh T BUVITOTNTA VoL ETAEYEL DLUPOPETIXES THavVOTT-
Teg eloaywyng hadwv yia xdie pipeline stage xou yio xdie xAdomn eviodoy 6Ti¢ omoleg o
A Yot elodryovton Suvoxd xatd T Sidpxela Tou yedvou extéheone. Eniong taupidoue
10 epyaheto mou gTidoue ye Tig duvatotnTeg DVES tou Gemd yia va tpocopoidcouue
ETEQOYEVEIG OPYITEXTOVIXES E OLUPOPETIXEG TAOELS AEtTovpYElag ot xdle mupva HOTE
vor uTdiEy oY BlapopeTég TiavotnTeg Aadwy avd tuprva. To tedeutaio uépog oy va
UTOAOYIGOUNE TOV XATAVIAWOT) EVEQYELIC YLPNOUOTOUMVTAS O TUTLO TiXd OEBOUEVA amtd TN
Tpocouoiwon yenoworowwvtag To McPAT, éva epyoaheio pe podnuatixéc yeddooug mou
TEOCEYYIo A UTOAOYILEL TNV XATAVEAWOT) EVEQYELIG TOAUTIURNVOY ARYLITEXTOVIXY.

‘Ohot owtd T Bripotar €Yoy e 0TOYO VoL ONULOVEYHOOUPE (Lo UTOBOUT TROCOUOIWoNE
Tou umopel v yenotponoinieic yior T UeAET Tne oyéoelc petall enidoone / motdtntag
umneeotog / EVEQYELAXTC AMODOTIXOTNTAC YId OLUPOPETIXEG ETEQOYEVELS UOYLTEXTOVIXES
ToL UTOOTNEILOUY UN-EUTIGTOUS TURTVES.

Autod 1o €yypago anoteheite and 6Vo uéen. To mpdTo €lodyel ToV avayvOo TN 6TO
YewenTtnd unofodpd xar To BelTEPO TEPLYPAPEL TO GUOTNUA TPOCOUOIWONE XAl TN TEL-
capaT| MEAETY. XTo TE®TO PEpog, Ta xe@dhona 1-3 mapoucidlouue TNV €vvola Tou
OeMEVOABIATY, TO LOVTEND TV Aa®Y TOU TROXELTOL VO YENOULOTOLOOUUE XAl CYETIXT
0oUAELd oL €yl Yivel amd dAAouc. Y10 BelTERO UEPOS, XEQIAcna 4-5, TEQLYPAPOUUE
TO GUCTNUO TEOCOUOIOTC XAl T1) TEWUUATIXT) UEAETT TUPOUCLALOVTOL TO ATOTEAEGHUTA

TWV UETPACEWY TOU XAVOYE.
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Chapter 2

Introduction

While the CPU industry is evolving, the number of transistors inside the integrated
circuit are being driven by the well know Moore’s Law. Simultaneously, the clock
frequency is very rapidly increasing. This was the case until the start of the 21st
century, when the CPU manufacturing reached a phenomenon called “Power Wall”.
The power consumption in a small area that we can produce is limited for various
reasons, mainly, because of heat emission. The power consumption equation indicates
that if we keep increasing the crowd of the transistors and the frequency in which
they are operating by keeping the voltage constant, then CPUs are going to reach the
power density of a nuclear reactor in a matter of years.

A lot of microprocessors have thermal switches which drop instantly the activity
of a chip in case of overheating by reducing the voltage operating point and frequency.
According to the A.Patterson and J.Hennesy book “Computer Architecture: A Quan-
titative Approach”: Power consumption is the greatest limiting factor in the modern

use of transistors [1].

By observing the most simple mathematical model 2.1 of power consumption
P=CxV*xf (2.1)

we can see that only two of the three factors affect directly the performance of a

microprocessor, the capacitive load (symbol C) and the frequency (symbol f); the
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third factor, voltage (symbol V), affects performance only indirectly, because there is
a threshold voltage for every operating frequency of a given microprocessor in which
the behavior of the chip is guaranteed without the danger of timing errors. A lot
of research in the past years is suggesting ways to operate microprocessors in below-
nominal voltage values. This is not trivial since in below-nominal voltage values the
transistors may come to timing errors and have unpredicted behavior, which we must
take into account. The gains of this below-nominal operation of the microprocessor
is that the power consumption drops rapidly since it depends by the square of the
operating voltage.

Reliable computing under unreliable circumstances is one of the next challenges
the computing community must solve. To achieve such a difficult task we need to per-
form a thorough analysis of the way hardware faults manifest errors to architectural
components and how on their turn affect the applications behavior. The analysis
of the faults may help us construct a hierarchy of target-modules that need to be

enhanced in order to achieve robustness.

To achieve a high grasp of the previously mentioned phenomenon new tools had
to be constructed and the existing ones to be extended by adding new functional-
ities. The main contribution of this thesis is to provide a realistic fault injection
infrastructure which takes into account the power consumption and the application’s

instruction mix.

In order to study the effects of timing faults on various applications we have
developed such a framework on top of Gemb [2], in this framework the user is able to
provide a set-up file which determines the specific instructions and the type of of faults
that are going to be injected. The restrictions of this approach is that you cannot
take into consideration the control flow and the instruction mix of the application to
provide realistic probabilities of faults, since they are statically determined before the
simulation i.e if a multiplication instruction is to be executed inside a loop which the
iterations depend in the input data, there is no easy way to determine the instruction
mix.

The first part of this diploma thesis was to extend this framework and create a tool
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which dynamically injects faults under realistic probabilities throughout the pipeline
of an ARM architecture. Firstly, we imported the previously existing fault injection
functionality in the ARM instruction set. Secondly, we provided the user an interface
and a functionality to pick different probabilities per pipeline stage and per instruction
class in which the errors are going to be manifested dynamically during run-time. Also
we coupled the tool that we created with the DVFS functionality of Gemb to simulate
heterogeneous cores with different voltage levels that have various fault injection
probabilities per core. The last part was to compute the power consumption by using
statistical data of the simulation by using McPAT [3], a tool that has mathematical
functions which approximately computes the power performance of many core and
multi-core architectures.

All these steps where made so we can have a simulation infrastructure that can
be used to study the performance/QOS/Energy efficiency trade-offs of different het-
erogeneous architectures that have unreliable cores.

This document is constructed in two blocks. The first one introduces the the-
oretical background and the second describes our framework and the experimental
evaluation. In the first part, chapters 1-3 we discuss the concept of dependability , the
fault model that we are going to use and related work done by others. In the second
part chapters 4-6 we describe the framework that we created and the experimental

evaluation by displaying the result of some experimental campaigns.
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Chapter 3

Background

As mentioned in the previous chapter we need achieve reliable computing under un-
reliable circumstances. In order to do that we need to set up systems that are highly
tolerant to faults. Measuring the fault tolerance of a system is not trivial. In this
chapter we will introduce definitions which will be used to help us categorize faults,

measure fault tolerance and connect these to power consumption.

3.1 Dependability

Dependability is a generic concept including as special case such attributes as relia-
bility, availability, safety, integrity, maintainability. The original definition of depend-
ability is the ability to deliver service that can justifiably be trusted. An alternate
definition is the ability of a system to avoid service failures that are more frequent and
more severe than is acceptable[4]. The second definition of dependability suits more
in our needs. For the purpose of clarification we will formally define the attributes

that dependability encompasses
e availability: readiness for correct service;
e reliability: continuity of correct service;

e safety: absence of catastrophic consequences on the user(s) and the environ-

ment;
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e integrity: absence of improper system alterations;

e maintainability: ability to undergo modifications, and repairs.

3.1.1 Factors of Dependability

We will generalize the reasons why a system may not perform as it is intended to.
The causes and the reasons that a system deviates from it’s intended behavior are

called factors of dependability[5].

e Fault is a physical defect, imperfection, or flaw that occurs within some hard-

ware or software component;

e Error is a deviation from accuracy or correctness and is the manifestation of a

fault;
e Failure: is the non-performance of some action that is due or expected.

We have to mention here that there is a confusion in the bibliography between
terms, fault and error, which can be used vice - versa. In our study faults have
secondary importance since we don’t take into consideration the reasons errors occur,
but we evaluate systems based on the manifestation of these faults, for that reason

we will refer only to errors from now on, even if they are mentioned as faults.

3.1.2 Methods of Unreliable Computing under Unreliable

Environment

As mentioned in [6], fault tolerance uses methods to ensure that faults do not cause

failure. Such methods are:

e Detecting Errors: is primarily dependent on redundancy, including natural
redundancy (e.g. error detecting codes in hardware, executable assertions in
software) and artificial redundancy (e.g. modular redundancy in hardware and

N-version programming in software);
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e Assessing Damage: This step involves assessing the extent of the damage
caused by the fault on the state of the computation, and making a decision on

what recovery action must be taken;

e Error Recovery: This step involves correcting the current state of the compu-
tation according to the findings of the damage assessment step, and resuming

the computation;

e Fault Removal: While the three preceding steps deal with the current com-
putation and are performed on-line for the sake of salvaging the current com-
putation, this step deals with the system itself, and can be performed off-line.

It consists of identifying the fault that caused the error and removing it.

These methods are based on traditional architectures. In the past decade more
modern and exotic architectures [7] and programming models are assuming that pro-
cessors can function in two states, reliable and unreliable, in the reliable state the
processor takes all necessary precautions to run the code reliably, but the power con-
sumption and the speed are secondary goals. With this assumption, abusing the
programmers knowledge on assessing in which areas of the code faults are acceptable,

makes system utilize their hardware much more efficiently.

3.1.3 Methods of Decreasing Power Consumption

e Dynamic frequency scaling (also known as CPU throttling) is a technique
whereby the frequency of a microprocessor can be automatically adjusted ”on
the fly,” either to conserve power or to reduce the amount of heat generated by

the chip.

e Dynamic voltage scaling is a power management technique, where the volt-
age used in a component is increased or decreased, depending upon circum-
stances. Dynamic voltage scaling to increase voltage is known as overvolting;

dynamic voltage scaling to decrease voltage is known as undervolting, in order to
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conserve power. Overvolting is done in order to increase computer performance

or reliability.

¢ Dynamic voltage and frequency scaling (DVFS) is the combination of the

previous techniques and it is widely used in modern CPUs.

From equation 2.1 the reader can easily deduce, firstly that decreasing frequency
linearly decreases power consumption while the execution time becomes longer. Sec-
ondly, decreasing voltage exponentially decreases power consumption by affecting

reliability since timing errors of the transistors become more probable.

3.2 Analysis of Instruction-level Vulnerability

Recent studies show that errors don’t manifest uniformly during the execution of
different instructions. In fact, instruction level vulnerability studies partition instruc-
tions into three equivalent classes based on their error probabilities while varying the
voltage and the temperature[8]. Based on these studies, all exercised instruction in
the integer pipeline of ARM ISA are partitioned into three classes for the full range
of operating condition: (i) the logical and arithmetic instructions, (ii) the memory

instructions, and (iii) the multiply and divide instructions.

3.3 Gemb Simulator

For the development of our simulator we extended Gemb[2], a popular open-source
system simulator. Gemb is a versatile tool that proved to have all the features that

we need for the simulation part of the infrastructure we are setting up.

3.3.1 Gemb Features

In this section we will present some of the key features that Gem5 encompasses. For

a detailed documentation the reader is redirected to the official websites.
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e Multiple interchangeable CPU models. Gem5 provides four interchange-
able CPU models: a simple one-CPI CPU; a detailed model of an in-order CPU,
and a detailed model of an out-of-order CPU. The CPU models use a common
high-level ISA description. In addition, gemb features a KVM-based CPU that

uses virtualisation to accelerate simulation.

¢ Homogeneous and heterogeneous multi-core. The CPU models and caches
can be combined in arbitrary configurations, creating homogeneous, and het-
erogeneous multi-core systems. This features is one of the important tools that
make simulating exotic architecture that where described in earlier sections to

be simulated in an accurate manner.

e Multiple ISA support. Gemb decouples ISA semantics from its timing CPU
models, by that enabling different CPU models is [SA-independent. Currently
gemb supports the Alpha, ARM, SPARC, MIPS, POWER and x86 ISAs.

e Power and energy modeling. Gemb’s objects are arranged in OS-visible
power and clock domains, enabling a range of experiments in power and energy
efficiency. With out-of-the-box support for OS-controller Dynamic Voltage and
Frequency (DVFS) scaling, gem5 provides a complete platform for research in

future energy-efficient systems.

3.3.2 GemFI, a Fault Injection extension

GemFI[9] is a fault injection tool based on Gemb, a cycle accurate full system simu-
lator. It provides fault injection methods with a predefined set of faults by the user
with an input file. Every fault is defined as a set of three attributes, the number of
the instruction that the fault is going to be injected, the pipeline stage and the type
of fault. GemFT supports 3 kind of faults:

1. 7stack-at-one” and ”stack-at-zero”, which sets all the bits of a value to 0 or 1

2. 7flip bit” which flipping the running value at bit locations
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3. 7immediate value” which assigns an immediate value provided by the user.

It also supports multiple processor models and allows fault injection in both func-
tional and cycle-accurate simulations. Moreover, it facilitates the parallel execution of
campaign experiments on a network of workstations. GemF1I is developed using C++
and Python. Currently it fully supports only the Alpha instruction set architecture.
One key contribution of this thesis is extending GemFI to ARM ISA.

3.4 Power Consumption Model

To assess the gains of unreliable computing in power consumption we need a model.
We are going to use McPAT([3], a well-known framework for power, area and timing
modeling that supports comprehensive design space exploration for multicore and
manycore processor configurations ranging from 90nm to 22nm and beyond. During
the experimental process we observed that McPAT is a tool that will provide the
user a generic sense on the magnitude of power consumption and not predict the
actual power consumption a processor is going to have, although since our study is

comparative McPAT model is fitting it’s purpose.
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Chapter 4

Related Work

Fault tolerant systems is a concept that needs the development of new architectures
and programming models. In this chapter we will present the reader, firstly, the most
recent work that has been done in the computer architecture field, and secondly, the

already developed tools for simulating executions that incorporate fault injection.

4.1 Fault Tolerant Architectures

While researchers tried to solve the problem of unreliable computing they designed
fundamentally novel architectures which make sure either to detect and resolve all
errors either to make sure that errors happen only in non-critical parts of the execution
which will give error acceptable by the user.

In the first case a trademark architecture is RAZOR which ensures error detection
and correction of timing errors of the critical path due to near-threshold operation
of the processors [10]. The main idea behind this is coupling each flip-flop in the
design with a so-called shadow latch which is controlled by a delayed clock. When
error is detected from the shadow latch an error signal is raised, the circuit is delayed
for one cycle so the next pipeline stage will take input from the latch instead of the
miss-calculated flip-flop.

For the second case, ERSA architecture[7] is featuring a combination of cheap,

unreliable compute power together with a small fraction of reliable processor cores
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for running system software, controlling application flow, and recovering from errors

generated on unreliable cores.
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Chapter 5

The Simulator

5.1 Fault Model

In this section we will present the Fault model that we chose as the base for our
implementation. During our study we wanted to focus on errors that occur during
voltage and temperature variations. We want to assess how processors and applica-
tions behave in below-nominal voltage values, in result, these kind of errors simulate
better our case of study.

In general, proving the sufficiency of a fault model is very difficult. It is more
realistic to assume that a fault model is sufficient and justify this assumption to the
greatest extent possible with experimental and historical data or results published in
literature. That is the reason that lead us to create our fault model based on the
experimental research|[8], which was the first that introduced the notion of instruction-
level vulnerability(ILV) to expose variation and its effects to the software stack. To
compute ILV, they quantified the effect of voltage and temperature variations on
the performance and power of a 32-bit, RISC, in-order processor in 65nm TSMC
technology at the level of individual instructions. Results show 3.4ns (68F04) delay
variation and 26.7x power variation among instructions, and across extreme corners.
Their analysis shows that ILV is not uniform across the instruction set. In fact, ILV
data partitions instructions into three equivalence classes.

Based on that study we decided to implement a model in which the user had
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the capability to provide different fault probabilities in each pipeline stage of the

following;:
e Fetch: This fault corrupts the binary form of the instruction;
e Decode: This fault covers corruptions of the opcode field;

e Execution: The execution fault corrupts the results of the ALU unit, in arith-
metic instructions this means wrong operation results, in memory instructions

means wrong calculation of the next-PC;
e Memory(Load/Store): corrupts the read/write values of the memorys;

That is not enough since ILV is not uniform across the instruction set, through
experimental studies we partitioned the instructions into three equivalent classes,

resulting that every class has different fault probability for every pipeline stage:

e Logical & Arithmetic: Includes all instructions of addition substraction log-

ical and binary operations;

e Multiplication & Division: Includes all instructions of multiplication and
division ;
e Memory: Includes all memory operations;
A user can provide the error probabilities in a very intuitive way through the
setup python script that Gemb already uses to set-up the architecture of the system,

below we provide an example, which shows how the user can provide probabilities for

a 2-core system.

[...]

system.cpu[0].p_-Tew_arithm=0.021
system.cpu[l].p_Tew_arithm=0.022
system.cpu[0].p_Tew_loadstore=0.023
system.cpu[l].p_-Tew_loadstore=0.024
system.cpu[0].p_Tew_muldiv=0.025
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system .

system .
system .
system .
system .
system .
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Since the Fetch stage is the same for all instructions the user cannot provide
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p_-lew_muldiv=0.026

.p-Lds_arithm=0
.p_Lds_arithm=0
.p-Lds_loadstore=0.029
.p-Lds_loadstore=0.030
.p_Lds_muldiv=0
.p_-Lds_muldiv=0

.p_-Decode_arithm=0.031
.p_-Decode_arithm=0.032
.p-Decode_loadstore=0.033
.p-Decode_loadstore=0.034
.p_-Decode_muldiv=0.035
.p-Decode_muldiv=0.036

p-Fetch=0.037
p_Fetch=0.038

different probabilities for the 3 classes.

As we explained in previous chapters to simulate dependability errors we need to
have different three kind of errors ”all-one, all zero”,
which we support, see section 3.3.2. For the shake of simplicity, without sacrificing
functionality we introduce equal probabilities for any of these kind of errors in the

execution stage, but we keep only ”1-flip-bit” errors in all other pipeline stages.

”»
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When we finished developing the fault injection model, we wanted to evaluate the

time overhead that we added in the original Gemb simulator. To do that we made 10

executions of 4 diffrent runs of a 32x32 matrix multiplication:

e (Clean Gemb5, Gem) without any modifications

e GemFI without enabling our tool

e GemFI with enabled tool, but probabilies = 0

e GemF1 with enabled tool and probabilities = 0.1

In the last case we need to mention that the fault injection were done in a way that

would not change the results so the application would run smoothly and not crash

so the time can be compared in a fair way. The resultsb-1 show that the overhead is

minimal, close to non existant when the tool is disabled something very critical as a
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goal for our implementation, and when the probabilities are close to 0 the overhead

is satisfactory.

5.2 Check-pointing

Simulations offer many advantages: ease of use, portability, reproducibility, low cost
etc. One of those is the ability to retrieve a snapshot of the state of the system to
the hard drive and retrieve from that point whenever the user wants. This gives the
ability to the user to study in depth special cases of consecutive errors by reproducing
and take a deeper look to a specific series of faults that were introduced and led to a
specific program behavior. Although Gem4 already provided this kind of mechanism
there were limitations which did not suit our purposes.

Checkpoint on full system detailed simulation was achieved with two ways. For the
first method CPUS were switched from detailed to atomic mode create the checkpoint
and afterwards switching again from atomic to detailed mode in order to continue the
simulation. For this to be done the pipeline stages on the detailed mode where flushed
prior taking the checkpoint and thus there could be a potential accuracy loss in our
fault injection framework. The other method was achieved by simulating MOESI
hammer cache coherency protocol. This method did not switched between detailed
and atomic modes however the simulation time increased dramatically.

Due to the previous limitations we had to turn to a Linux based checkpoint package
which checkpointed the simulator’s state from an outer scope. DMTCP is distributed
under the terms of Lesser GNU Public License (LGPL) and supports checkpointing
the state of multiple of multiple simultaneous applications, including multi-threaded
and distributed applications.

The main reason for choosing DMTCP was based on the ability to take checkpoints
not only inside of the simulator by calling functions given by the API of DMTCP but
also outside of the simulator. The ability to invoke DMTCP inside of the simulator
gave us the opportunity to keep the already existed checkpointing front-end of the

Gemb simulator (special instruction added on ISA so that applications may call a
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Figure 5-2: Block diagram of the McPAT framework

checkpoint internally) and alter the back-end of the checkpointing method (use the
DMTCP API to checkpoint instead).

Another important feature DMTCP incorporates is the fact that can checkpoint
multiple applications that run simultaneously. A DMCTP enabled application con-
sists of all processes connected to a given coordinator. To have two simultaneous
DMTCP computations on the same host, you will need two DMTCP coordinators
listening to different port numbers. The command dmtcp_coordinator generates a

new coordinator.

5.3 Calculating Power Consumpion

As we mentioned earlier we will use McPAT to calculate power consumption of our
simulation. McPAT is the first integrated power, area, and timing modeling frame-
work for multithreaded and multicore/manycore processors. It is designed to work
with a variety of processor performance simulators (and thermal simulators, etc.)
over a large range of technology generations. McPAT allows a user to specify low-
level configuration details. It also provides default values when the user decides to
specify only high-level architectural parameters. The block diagram provided by the
developers of McPAT gives a good sense of how that tool can be used and coupled

with simulators.5-2

30

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7



Eventhough McPAT provides a lot of functionality and gives the user intuitive
ways to provide input this tool is created in a generic way so it can work with all
availiable simulator that can provide the data that it needs to run.

So we modified a script to convert Gemb5 simulation output statistics to McPAT
compatible Machine statistics inputs. We also created a template that gives all the
availiable information for an ARM A15 architecture with 2 cores as Architecture input

parameters to McPAT.
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Chapter 6

Running Experiments

After we finished the development of the tools that we mentioned in the previous
chapters, we run a series of experiments to validate and demonstrate the capabilities

of the infrastructure that we created.

6.1 Setting up the Workstations

As previously mentioned, one of the main disadvantages that fault injection simu-
lations has is the huge time consumption, which is measured close to 10.000 times
slower than a native execution. For the purpose of our experiments we need to run
2000 experiments.

To speed up the experiments we had in our disposal 22 computers from the lab-
oratory of the University of Thessaly. Each PC has an Intel processor (Xeon CPU
E5606) with four cores clocked at 2.13 Ghz and 6Gb of memory (RAM). All PC’s
have access to a Network File system(NFS) and a local file system(10-1). Since the
experiments are independent from each other, in the best case scenario we can run
88 experiments simultaneously, one in each core. To control the campaign of the
experiments we used multiple Linux tools, also python and bash script language.

First we used one of the computers as the main node of our computation. That
node compiled and setted up in NFS all the things that the simulation needs: scripts

,executable, image disks etc. Once these are ready the ”coordinator” script 6-1 is
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Figure 6-1: The control flow of the coordinator script
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launched that copies all these files to the local HDD and runs 4 children which execute
the "Run” script that is responsible for running an individual set of experiment in
the specific core.

Each set of experiments consists from one full simulation that is responsible to
boot the OS on the simulator and create a checkpoint just before the region of interest
in the code. Then we restart the simulation from that point as many times we need
to complete the number of experiments this core is responsible.

It is worth mentioning that a third script is running on the background which
checks periodically if an experiment is taking too long (stuck in an infinite loop), if
the output of the experiments exceeds some limits or if another user is logged in the
machine; on all cases the experiment is killed and a message is printed on the output.
On the last case additionally a checkpoint is created for each experiment in order to
respect the other user.

Besides the scripts the following linux tools where used to help the workstation

setup:

e Wake on Lan (WON): remotely boot each PC by sending a special Packet
to the Network card;

e Secure Shell (SSH): is a cryptographic (encrypted) network protocol to allow
remote login and other network services to operate securely over an unsecured

network.

e Secure File Transfer (SF'TP): is a standard network protocol used to transfer

computer files between a client and server on a computer network.

Apart of running experiments in parallel we tried to reduce the duration of each
experiment individually. This was achieved by a major optimization. Gemb has
developed a special instruction which allows to switch between CPU models. When
the instruction is executed the simulator pauses and a Python script initializes the
next CPU model and then restored the execution with the new CPU model. In some

cases except the of the CPU model the memory model is also switched (atomic -
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Figure 6-2: Optimize the speed of the experiment by switching CPUs

simple). In our case everything that is not happening with fault injection enable is
not a Region of Interest (ROI) so we run it on Atomic Simple mode and then we
switch when fault injection is enabled, similarly we switch when the ROI is over and

we want to export the results to the HDD. The process is described in the figure 6-2

6.2 Sobel Filter Experiment

The Sobel filter, is used in image processing and computer vision, particularly within
edge detection algorithms where it creates an image emphasizing edges. Technically,
it is a discrete differentiation operator, computing an approximation of the gradient
of the image intensity function. At each point in the image, the result of the Sobel

operator is either the corresponding gradient vector or the norm of this vector
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(a) Input Image (b) Output Image

Figure 6-3: Sobel Operation example

6.2.1 The mathematical formula

The operator uses two 3x3 kernels which are convolved with the original image to
calculate approximations of the derivatives - one for horizontal changes, and one for
vertical. If we define A as the source image, and Gx and Gy are two images which at
each point contain the horizontal and vertical derivative approximations respectively,

the computations are as follows:

-1 0 —1 +1 42 +1
Go=| -2 0 —2|*xA Gy=| 0 0 0 [*xA
-1 0 -1 -1 -2 -1

Where * here denotes the 2-dimensional signal processing convolution operation
and A is the image array. The x-coordinate is defined here as increasing in the "right”-
direction, and the y-coordinate is defined as increasing in the ”down”-direction. At
each point in the image, the resulting gradient approximations can be combined to

give the gradient magnitude, using;:

G=./G2+G2

An example Output of the Sobel Operation is shown in the figure 6-3

37

Institutional Repository - Library & Information Centre - University of Thessaly
12/07/2018 21:31:25 EEST - 137.108.70.7



6.2.2 Fault Injection Results

In this section we will present the results from the experimental fault injection cam-
paign that we did by using a simple Sobel filter application that takes as an input a
black&white image with dimensions 512x512 and has as an output the filtered image
written in a headless raw binary file.

We partition our results in 4 categories:

e Crashed: Includes all experiments which fail to terminate successfully and

dont produce an output file;

e Inexact: Includes all experiments which have a visible alteration of the result,

we consider as visible alteration of the result a PSNR lower than 30db ;

e Correct: Includes all experiments that have alteration in the results but we
consider that it is not visible to the user, which means a PSANR greater than

30db;
e Bit-wise Exact: Includes all experiments which produce bit-wise exact results;

We did two series of experiments, the first one has the following error probabilities

in the ROI where the Fault Injection tool is enabled:

[...]

system.cpu[i].p-Ilew_arithm=1e—08 system .cpu[i]. p-Tew_loadstore=1e—08
system .cpu[i].p-Iew_muldiv=1e—08 system .cpu[i].p-Lds_arithm=0
system.cpu[i]. p-Lds_-loadstore=1e—08 system .cpu[i].p-Lds_muldiv=0
system.cpu[i].p-Decode_arithm=1e—08 system .cpu[i]. p-Decode_loadstore=1e—08
system .cpu[i].p-Decode_muldiv=1e—08 system .cpu[i].p-Fetch=1e—08

[..]

The fault injection tool is enabled at the start of the computations for the So-
bel filter and we disable it the moment we finish. The output is written in a safe
environment without faults.

The distribution of the 2100 executions in the previously mentioned clashes are
shown in figure 6-5 (a)

In the second series of experiments we lowered the probability of error in the

following values:
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the fault
injection 8

(b) FI Output Image

Figure 6-4: Image (a) is the output of Sobel that we used for the experiments cam-
paign without any fault injected. Image (b) is an example output that is corrupted
because of the fault injection, if you look closely you can see a horizontal black line
that is not supposed to be there.

[...]

system .cpu[i].p-Tew_arithm=1e—09 system .cpu[i].p-lew_loadstore=1e—09
system.cpu[i].p-Ilew_muldiv=1le—09 system.cpu[i].p-Lds_arithm=0

system .cpu[i]. p_-Lds_loadstore=1e—09 system .cpu[i].p-Lds_-muldiv=0
system.cpu[i].p-Decode_arithm=1e—09 system .cpu[i]. p-Decode_loadstore=1e—09
system .cpu[i].p-Decode_muldiv=1le—09 system .cpu[i].p-Fetch=1e—09

[..]

Similarly for the new probabilities we ran 2100 executions and the results are

shown in figure 6-5 (b).

APPLICATION: SOBEL FILTER APPLICATION: SOBEL FILTER
OQUTPUT BEHAVIOR (1) OUTPUT BEHAVIOR (2)
18,92% , . 14,45%
= Crashed . 2 Crashed
Z g 1,98%
406% Inexact 7, Inexact
8,08% Correct Correct
Bitwise Exact Bitwise Exact
(a) Series of 2100 experiments with error (b) Series of 2100 experiments with error
probability of 1e-08 probability of 1e-09
Figure 6-5
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