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Abstract 

Leishmaniasis is a virulent parasitic infection that causes a 

significant threat to human health worldwide. The existing 

drugs are becoming less effective due to the ability of 

Leishmania spp. to alter its metabolism to adapt to harsh 

environments. Understanding how this parasite manipulates its 

metabolism inside the host (e.g. sandfly and human) might 

underpin new ways to prevent the disease and develop 

effective treatment strategies. 

Despite significant advances in omics technologies, 

biochemistry of parasites still lacks the understanding of 

molecular components that determine the metabolic behavior 

under varying conditions. Metabolic network modeling might 

be of interest to identify physiologically relevant nodes in a 

metabolic network.  

The present work proposes a metabolic model iSK570 (an 

extension of the iAC560 model) with additional reactions for 

the metabolism of lipids, long chain fatty acids and 

carbohydrates to study the metabolic behavior of this parasite. 

Gene Inactivity Moderated by Metabolism and Expression 

(GIMME) algorithm was used to verify the consistency 

between model flux predictions and gene expression data. 

Improved flux distributions were obtained, allowing a more 

accurate understanding of stage-specific metabolism in of 

promastigotes and amastigotes.  

1. Introduction 
Protozoan parasites from the genus Leishmania belong to the 

family Trypanosomatidae, and cause a spectrum of human 

diseases affecting around 12 million people worldwide 

(www.who.int). Existing treatment therapies involving drugs 

such as e.g. sodium stibogluconate and meglumine 

antimoniate, amphotericin B and miltefosine are limited by 

various features, including in some cases host toxicity and 

lack of efficacy [1,2]. Considering endemic severity of the 

disease, there is an urgent need for understanding Leishmania 

metabolism which can subsequently help in developing novel 

anti-leishmanial therapies.  

Significant alterations have been observed in the metabolism 

exhibited by Leishmania at different stages of its life cycle, 

where it faces different nutritional environments [3]. For 

example, the promastigote form (inside sandfly) of 

Leishmania preferably uses glucose and L-proline via 

glycolysis pathways and TCA cycle; while amastigote uses 

glucosamine (GlcN) and its derivative N-acetylglucosamine 

(GlcNAc)along with some lipids and amino acids [4,5]. 

Availability of various sugars, such as hexoses (e.g. glucose, 

mannose, and galactose) and amino sugars (e.g. GlcN and 

GlcNAc) are determining factors for parasitic metabolic 

phenotype, especially for synthesizing essential glycans and 

glycoconjugates [6].  

Unfortunately, no previous studies have explained the 

metabolic basis leading to the biosynthesis of glycans and 

glycoconjugates in the presence of different environments. In 

fact, it is still unknown if observed metabolic changes are 

resulting from, or arising out of the different parasitic stages. 

For example, under promastigote stage, only a few enzymes 

from the TCA cycle are active, while in amastigote stage, 

glycolytic enzymes are less functional. 

Metabolic network modeling is an effective and sophisticated 

approach for systematically study the metabolic behaviour of 

an organism, as well as to understand the relationship between 

its genotype and phenotype. Previously, these methods have 

been used to understand the cellular metabolism as well as to 

identify essential genes in many medically important 

organisms, such as Mycobacterium tuberculosis [7], 

Acinetobacter baumanii [8], Francisella tularensis [9] 

including human parasites like Leishmania major [10] and 

Plasmodium falciparum [11]; though with the low prediction 

accuracy. One of the most probable and obvious reasons for 

the low prediction accuracy might be associated with the lack 

of use of experimental data (e.g. transcriptomics, proteomics, 

and metabolomics etc.) to constrain the model and 

unavailability of the suitable strategies to use omics data in the 

metabolic network analyses.  

Integrating omics data with metabolic network analysis can 

improve our understanding on various aspects, such as 

metabolic alterations associated with the environmental 

conditions, essential genes and metabolic flux variability of 

the essential reactions [12]. The relevant data can be 

integrated into the metabolic model to provide an extra layer 

of metabolic flux constraints to improve its overall prediction 

efficiency. Various methods like GIMME [13], iMAT [14], 

MADE [15], E-Flux [15] and PROM [16] have been made 

available for the integration of transcriptomics and genomics, 

fluxomics [17], and metabolomics [18] data into metabolic 

models. Successful examples include the integration of 

RNAseq data into the Leishmania infantum model [19],  

proteomics data into a metabolic model of Enterococcus 

faecalis [20], and multi-omics data into metabolic models of 

Escherichia coli [21] to understand the metabolism and 

associated phenotypes. The strategy has also improved drug 

target predictions in many medically important organisms 

such as Aspergillus fumigatus [22], Plasmodium falciparum 

[23] and L. major [24]. 

In spite of the availability of abundant omics data and various 

methodologies, only a few studies have employed these 

strategies to understand the metabolism of Leishmania 

[10,19,25]. Here, we applied omics data with metabolic 

modeling approaches to understand the metabolic profile of L. 
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major under different environmental conditions. The 

workflow mainly includes the integration of gene expression 

data from promastigote and amastigote stages into our 

metabolic model using Gene Inactivity Moderated by 

Metabolism and Expression (GIMME) method [13].  

2. Methodology 

2.1. Model extension and refinement  

The existing metabolic model iAC560 [10] was extended to 

include sugar nucleotides biosynthetic pathways, which 

reactions and enzyme-coding genes were collected from 

databases like KEGG [26] and LeishCyc [27]. As some of the 

reaction steps were not associated with a specific gene, 

homology search tools like BLAST [1], were applied to find 

the highest scoring gene sequences (% identity ≥ 40%, 

alignment length ≥ 70% and E-value 1.0e
-30

), as described in 

[19] and associate those to the corresponding reactions. 

Additionally, based on experimental evidence, several 

metabolic reactions were altered in terms of reversibility 

and/or compartments, while new transport reactions for sugar 

nucleotides, lipids, and fatty acids were also included. Refer to 

Supplementary material S1 for added, deleted or altered 

reactions. 

 

2.2. Biomass composition 
 

The macromolecular composition of L. major cells was also 

corrected. Protein, DNA and RNA contents were estimated 

from L. donovani studies [19], while carbohydrates, lipids, and 

polyamine contents were calculated using experimental data 

from protozoan Tetrahymena [28,29] and L. mexicana [30]. 

Individual carbohydrates, such as mannan, lipophosphoglycan 

(LPG), glycoinositol phospholipid (GIPL), and N-glycans, 

were estimated as follows: mannan contents were assumed to 

represent 80% and 90 % of all carbohydrates in promastigote 

and amastigote stage, respectively [30], while LPG, GIPL, and 

N-glycans would represent 20% and 10% in total, 

respectively. The relative mass fractions (w/w) of LPG, GIPL, 

and N-glycans were estimated based on previous studies [31–

34]. Further details on biomass calculations can be found in 

Supplementary material S2. 

 

2.3. In-silico media formulation 

2.3.1. Modified Media for Promastigote (MMP)  

MMP was formulated for L. major growth under promastigote 

stage, which includes 16 nutrient sources: L-arginine, L-

cysteine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-

methionine, L-phenylalanine, L-threonine, L-tyrosine, L-

valine, hypoxanthine, phosphate, oxygen, proline, and 

glucose. The nutrients, in particular, glucose and proline were 

considered based on the previous studies [35,36], explaining 

that both the compounds are major carbon source for 

Leishmania promastigote, while remaining ones were included 

considering the experimental studies [37,38] and 

computational predictions in [10], which concluded that 

Leishmania can grow in these nutrients. 

 

2.3.2. Modified Media for Amastigote (MMA)  

MMA includes all 16 nutrients from MMP with additional 

amino sugars, amino acids, lipids and fatty acids, making a 

total of 21 nutrients. GlcN and GlcNAc sugars were added 

considering findings from Naderer et al. (2010) studies [4] that 

showed the degradation of glycosaminoglycans inside 

macrophages to provide GlcN and GlcNAc as carbon sources 

during the amastigote stage. Fatty acids like stearyl acid and 

lipids, e.g. phosphatidylethanolamine were also considered, 

based on different studies that show that Leishmania utilizes 

lipids from host cells and transports them into the cytosol 

[39,40]. The consumption of the lipids and fatty acids during 

amastigote stages were also supported by other experimental 

studies discussing the possibility of growth of Leishmania 

axenic amastigote in lipid and fatty acid-rich medium [41–43]. 

The amino acids aspartate and alanine were also added to 

MMA, based on higher consumption measurements of these 

amino acids as carbon sources by amastigotes [44]. 

 

2.4. Reaction flux constraints in FBA-based 
simulations 

 

Model simulations under amastigote and promastigote stages 

were estimated using different reaction constraints. For 

example, the uptake flux for proline was reduced by 90% in 

amastigote compared to promastigote simulations, based on 

the previous study showing a decrease in the consumption of 

this particular amino acid in L. mexicana amastigotes [35]. 

Also, glucose uptake flux was constrained to 90% less than 

that in the promastigote stage, considering previous findings 

[45,46], which concluded that parasitophorous vacuole is a 

compartment poor in glucose. Furthermore, the oxygen uptake 

in amastigote stage was significantly reduced as compared to 

that in the promastigote stage, considering the fact that 

Leishmania-infected macrophage is an oxygen-deficient entity 

[47,48]. The upper and lower limits for uptake fluxes for all 

other nutrients were set unconstrained (See Supplementary 

material S2). 

 

2.5. Metabolic network analysis 
 

The gene expression data (FPKM
1
 values) of 10275 genes 

from Leishmania spp. [49] was integrated with the extended 

metabolic model (termed as iSK570) by applying GIMME 

approach. OptFlux modules [50] were used to run GIMME 

algorithm and to perform FBA-based analyses under different 

environmental conditions.  

Briefly, GIMME implementation considers genes (and 

associated reactions) with an expression level below the 

threshold as inactive, and thus removes those from the 

simulation. The algorithm may reconsider few of these 

                                                           
1
 FPKM (Fragments Per Kilobase Million) is method for estimating relative 

abundance of transcripts in terms of fragments observed in RNA-Seq 
experiment. 



 
 

inactive reactions, especially the essential ones and so-called 

metabolically important reactions (MIRs), back in the 

simulation to achieve an optimal solution. The remaining 

reactions are blocked and termed as metabolically unwanted 

reactions (MURs) in that particular metabolic state. 

Inconsistencies between the metabolic model and gene 

expression data are estimated based on MIRs that are re-

inserted in the model; however, GIMME solves a linear 

programming (LP) on reconsidered reactions to minimize this 

inconsistency. As such, inconsistency scores (IS) are 

calculated and associated with each metabolic reaction. 

Accordingly, metabolic reactions can be categorized as 

follow:  

 

 

Figure 1: A) Workflow for integrating gene expression data 

into the metabolic. B) An exemplifying scheme for calculating 

inconsistency score (IS) using gene expression and flux 

values. 

 

(1) inactive (expression levels below the threshold and 

metabolic flux
2
 equal to zero); 

(2) potentially inactive (expression levels below the 

threshold and metabolic flux
2
 is non-zero);  

(3) potentially active (expression levels above the 

threshold and metabolic flux
2
 equal to zero); 

(4) active (expression levels above the threshold and 

metabolic flux
2
 is non-zero). 

Different threshold values were tested, and inconsistency 

scores (IS) were recalculated as described in [13] (Figure 1). 

Furthermore, flux spans
3
 based on Flux Variability Analysis 

(FVA) and PFBA flux distributions were compared. The 

predicted changes in metabolic operability of reactions after 

GIMME implementation were also compared with proteomic 

data from Pawar et al. (2014) [51]. 

 

3. Results and Discussion 
 

3.1. Consistency between metabolic model 
iSK570 and gene expression data in 
promastigote conditions 

 

Based on different tests, where the gene expression threshold 

values were changed, it was observed that IS values increase 

with the threshold values (Figure 2A), particularly above 

threshold values of 11 (Figure 2B). Below this threshold, IS 

values are close to zero, indicating that there are only a few 

inconsistencies between predicted fluxes and gene expression 

levels associated to the corresponding reactions. As such, 

while increasing the threshold value more reactions with 

predicted fluxes different from zero, but with low expression 

levels, i.e. reactions that should be active, are included, which 

increases the level of inconsistency between expression data 

and flux predictions. Although the number of potentially 

inactive reactions, i.e. reactions with expression levels below 

the threshold and predicted zero flux, increases with the 

threshold value, agreeing with metabolic predictions; the fact 

is that increasing the threshold value tends to exclude 

reactions that should be active as predicted by FBA-based 

simulations.  

 

                                                           
2
 Metabolic flux was calculated by performing GIMME which uses  

Parsimonious Flux Balance Analysis (PFBA) to run simulations. 
3
 Flux span refers to the difference between maximum and minimum flux 

values that a reaction can carry according to FVA analysis. 



 
 

 

Figure 2: Evaluating inconsistencies between iSK570 model 

predictions and gene expression data from L. major 

promastigote cells. A) Inconsistency scores (IS) were 

calculated for different expression threshold values, while 

estimating the number of reactions with gene expression levels 

below a threshold value and predicted flux values equal and 

different from zero. B) Zoom in of plot A for lower threshold 

values, showing the variation in the inconsistency score and 

the number of reactions with gene expression below threshold 

flux values different and equal to zero. 

As shown in Figure 2A, the number of potentially inactive 

reactions (i.e. with gene expression less than the threshold and 

predicted flux equal to zero) increases to a maximum of 400 at 

the highest expression threshold value (368). In general, 

GIMME considers these reactions as MURs (or metabolically 

unwanted reactions) and, ultimately they do not have an 

impact on the flux distribution. Similarly, potentially active 

reactions (i.e. with gene expression less than threshold and 

flux equal to zero) can be associated with MIRs and GIMME 

might need to reconsider some of these reactions during the 

simulation process. These are almost 250 at a maximum 

threshold value of 368. Although the number of MIRs are 

lower than the number of MURs at a particular threshold 

value, these contribute far more to increase IS values. 

Therefore a threshold value should be carefully selected. In 

the following analysis, a threshold value of 12 (equivalent IS = 

5.9×10
2
) was chosen to perform GIMME simulations, which 

predicted 30 genes (out of 570) with expression levels below 

the threshold value, corresponding to 23 reactions from which 

16 were considered MURs and 7 MIRs. 

 

3.2. FVA and PFBA analyses  
 

FVA analyses were performed based on GIMME results using 

a threshold value of 12. Briefly, the idea was to evaluate 

changes in metabolic predictions imposed by GIMME 

constraints (especially blocked reactions or MURs) and 

estimate the impact in the predicted metabolic flexibility under 

the defined conditions. Therefore, FVA analyses with and 

without GIMME constraints were compared. Reactions were 

categorized as such: type1, minimum and maximum FVA 

fluxes equal to zero; type2, minimum and maximum FVA 

fluxes different from zero (either positive or negative); and 

type3, minimum and maximum FVA fluxes equal to upper 

and lower bounds of reactions (Table 1). 

Results show that the number of reactions type3 decreased, 

while reactions type1 and type2 increased, which suggests that 

GIMME-based constraints reduced metabolic flexibility 

associated with large FVA spans as defined by FVA fluxes of 

type 3 reactions. Also, reactions type 1 with FVA spans of 

zero (i.e. blocked reactions) contribute to decrease this 

metabolic flexibility, as the number of possible alternatives for 

carbon distribution within the network also decreases. 

Minimum and maximum flux values from FVA analyses with 

and without GIMME constraints for each reaction are 

presented in Supplementary material S1. 

 

Table 1: Number of reactions classified as type1, type2 and 

type3 from FVA results considering simulations with and 

without GIMME-based constraints (i.e. deleting MURs).  

Reaction 

Category 

Minimum (min) and 

maximum (max) 

FVA values 

Number of reactions 

  Without 

GIMME-

based 

constraints 

With 

GIMME-

based 

constraints 

type1 min = 0 and 

max = 0 

472 493 

type2 min/max< 0  

or min/max > 0 

239 256 

type3 min =lower bound and 

max=upper bound 

466 428 

 

Additionally, PFBA and GIMME flux distributions were 

compared. In general, flux distributions did not change 

significantly, most likely because of small differences in the 

number of active and non-active reactions (Figure 3A); 

however, few reactions changed their flux values from zero to 

non-zero and vice-versa. The reactions with these binary 

changes are mostly transport reactions, but reactions 

associated with metabolic pathways like “Glycerolipid 

metabolism” (30.3 %) and “Pyrimidine metabolism” (9.09%) 

(Figure 3B) were also found. Changes in flux operability of 

these reactions can be supported by proteomic data for L. 

major from Pawar et al., 2014 [51], which showed that genes 

associated with eight reactions (out of ten) that changed their 

fluxes from zero to non-zero, are expressed at the protein level 

(Table 2). This indicates that GIMME-based flux analyses 

improve model predictions. 

 



 
 

Table 2: List of reactions which showed binary changes (zero 

to non-zero) in their fluxes after GIMME implementation 

(threshold value of 12), and which associated enzymes have 

positive expression at protein level. 

Reaction ID 

 
PFBA flux value Associated 

genes  
Protein 

expression 

[51] 
 Without 

GIMME 
With 

GIMME  
  

R_AGPATi_L

M  

0 4.80 LmjF32.1960 yes 

R_CDPDSPm_
LM  

0 3.26 LmjF14.1200 yes 

R_GPAM_LM  0 4.80 LmjF34.1090 yes 

R_HEXg  0 99.30 (LmjF21.0250 

or 
LmjF36.2320) 

or 

LmjF21.0240) 

yes 

R_ME1x  0 162.49 LmjF24.0770 yes 

R_PAPAm_LM  0 1.04 (LmjF18.0440 

or 

LmjF19.1350) 

yes 

R_PNS1  0 10000 LmjF29.2800 yes 

R_UPPRTr  0 -10000 LmjF34.1040 yes 

 

 
 

  

Figure 3: A) Changes in the number of reactions with 

predicted flux = 0 or ≠ 0 after GIMME implementation. B) 

Percentage cellular distribution of the reactions which showed 

binary changes in their fluxes after GIMME. 

4. Conclusion 

 
The work described the application of GIMME algorithm in 

combination with flux-based analysis to integrate gene 

expression data into genome-scale models to determine 

consistency between data and metabolic model iSK570. The 

strategy has been used to put an extra layer of stoichiometric 

constraints on reactions to predict more accurate fluxes across 

various pathways of L. major. The predicted 

activation/inactivation of the metabolic reactions in a 

particular environment was supported by expression of the 

associated enzymes at the protein level. Improved flux 

distribution further used to describe stage-specific metabolism 

and drug target predictions in Leishmania (not described here 

due to page limitations). All supplementary data mentioned in 

this manuscript can be provided on demand. 
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