
A Penalty Approach for Solving Nonsmooth and
Nonconvex MINLP Problems

M. Fernanda P. Costa1, Ana Maria A.C. Rocha2, Edite M.G.P. Fernandes2
1 Centre of Mathematics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

mfc@math.uminho.pt
2 Algoritmi Research Centre, University of Minho, Campus de Gualtar, 4710-057 Braga,

Portugal
{arocha,emgpf}@dps.uminho.pt

Abstract

This paper presents a penalty approach for globally solving nonsmooth and nonconvex
mixed-integer nonlinear programming (MINLP) problems. Both integrality constraints
and general nonlinear constraints are handled separately by hyperbolic tangent penalty
functions. Proximity from an iterate to a feasible promising solution is enforced by an
oracle penalty term. The numerical experiments show that the proposed oracle-based
penalty approach is effective in reaching the solutions of the MINLP problems and is
competitive when compared with other strategies.

Keywords: MINLP, penalty function, DIRECT, oracle

1 Introduction
In this paper, we address the solution of nonsmooth and nonconvex mixed-integer non-
linear programming (MINLP) problems by a penalty approach. It is assumed that the
problem is in the form

glob min
x∈X⊂Rn

f(x)

subject to gj(x) ≤ 0, j = 1, . . . , p
hl(x) = 0, l = 1, . . . ,m
xi ∈ R for i ∈ Ic ⊆ I ≡ {1, . . . , n}
xj ∈ Z for j ∈ Id ⊆ I

(1)

where f, gj , hl : Rn → R are continuous possibly nonlinear functions in a compact
subset of Rn, herein defined as X = {x : −∞ < lbi ≤ xi ≤ ubi <∞, i = 1, . . . , n},
Ic ∩ Id = ∅ and Ic ∪ Id = I . Thus, Ic is the index set of the continuous variables
and Id consists of the indices of the integer variables. Here, integer variables include
binary variables. Let C be the following subset of Rn, C = {x ∈ Rn : gj(x) ≤ 0, j =
1, . . . , p, hl(x) = 0, l = 1, . . . ,m}, and let Wc = C ∩ X be a closed set. Consider
the set D, which is the cartesian product of the sets Dj , j ∈ Id, where

Dj = {d ∈ Z : lbj ≤ d ≤ ubj} , j ∈ Id, (2)

let I be defined by I = {x ∈ X : xj ∈ Z for j ∈ Id ⊆ I} and let W = C ∩ I be
the nonempty feasible region of the problem (1). When a continuous relaxation of
the integer variables is applied, W ≡ Wc. A continuous relaxation means that the
integer variables can be treated as continuous variables, and all function (f , g and
h) values can be computed for xj ∈ R, j ∈ Id (instead of xj ∈ Z, j ∈ Id). The
MINLP problem (1) is said to be convex if f and g1(x), . . . , gp(x) are convex functions

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/159406477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and h1(x), . . . , hm(x) are affine functions over X . This means that by relaxing the
integrality constraint on xj , j ∈ Id, a convex program is obtained (minimizing a convex
function over a convex set). Otherwise, the MINLP is said to be nonconvex.

Most techniques available in the literature require the definition and the use of con-
vex model functions and the continuous relaxations of the integer variables. However,
some real-life MINLP problems that emerge in mechanical, electrical and chemical
engineering applications involve nonsmooth and nonconvex functions and the specific
integer variables cannot be relaxed [10]. Most exact methods for nonconvex MINLP
are based on the branch-and-bound (BB) technique. Effective examples are the spatial-
BB algorithm [4, 16], branch-and-reduce type algorithms [4, 24] and the α-BB algo-
rithm [1].

Heuristics for nonconvex MINLP are also available in the literature. A heuristic
approach extension of the boundary tracking optimization is presented in [27]. In [17],
a variable neighborhood search heuristic is proposed and in [22], two heuristics are
analyzed: the first aims to obtain an initial feasible solution, the second one searches
for an improved solution within the neighborhood of a given point.

Extensions of the feasibility pump algorithm to nonconvex MINLP are available in
[8]. A derivative-free method that relies on two search procedures, a line search strat-
egy for the continuous variables and a local search for the discrete ones, is presented
in [19]. Recently, penalty-based algorithms aiming to penalize integrality violation are
available in the literature [6, 20, 21].

Metaheuristics are nowadays very popular and aim to compute fast and good ap-
proximations to optimal solutions of nonconvex MINLP problems. A mixed-integer
hybrid differential evolution (MIHDE) [18] has been successfully applied to mixed-
integer optimization problems and a particle swarm optimization is presented in [28].
A parameter free penalty approach with a genetic algorithm (GA) [9] and a filter tech-
nique combined with a GA [14] are analyzed when solving nonconvex MINLP. In
[11], the BBMCSFilter method, which relies on a BB framework and a derivative-free
methodology to solve nonsmooth and nonconvex NLP, is presented. Two extended
versions of the ant colony optimization framework are available in [25] and a new ver-
sion of the firefly algorithm (FA), that uses four preference rules to select solutions
that are feasible or have the least objective function values, is tested in [7]. Review on
MINLP techniques and applications are available in [2, 3, 4]. A brief overview of the
start-of-the-art in software for the solution of MINLP problems can be found in [5].

In this study, a penalty continuous formulation of the MINLP problem (1) is used.
First, a penalty function has been selected from a class of penalty functions that are
applied to general integer problems [6, 20, 21]. Second, two other penalty functions
have been constructed in order to penalize the general constraints violation as well as
to enforce convergence to a solution, denoted by the oracle, that is feasible and has
the least function value found so far. Thus, after relaxing the integrality constraints on
the variables and adding a particular penalty term to the objective function, Pd(x; εd),
aiming to penalize the integrality constraint violation, as well as by adding another
penalty term, Pc(x; εc), to penalize the general constraints violation, the following
continuous bound constrained nonlinear programming (BCNLP) problem emerges

glob min
x∈X

Ψ(x; εd, εc) ≡ f(x) + Pd(x; εd) + Pc(x; εc)

subject to xi ∈ R, i = 1, . . . , n,
(3)

where εd, εc ∈ R+ are positive penalty parameters [23]. The motivation is that prob-
lem (1) is equivalent to the continuous BCNLP problem, in the sense that they have

2

the same global minimizers. The optimal solution of the BCNLP problem can then be
easily obtained by well-established and known solvers.

In the sequel, the herein presented work adds a new penalty term to the objective
function in problem (3), aiming to enforce convergence to the oracle, represented by
o∗, and defined as the best found feasible solution, aiming to predict a global optimum.
The goal of the oracle penalty is to penalize solutions that move away from o∗. The new
proposed algorithm is tested and compared with other nonconvex MINLP strategies.

Thus, our contribution in this article is directed to the combination of three penalty
terms aiming to penalize the integrality violation, the nonlinear inequality and equality
constraints violation and the distance to the oracle o∗. The penalty term for the integral-
ity constraints is based on the hyperbolic tangent function, as proposed in [6], and the
equality and inequality constraints are dealt with penalties also defined by the hyper-
bolic tangent function [23]. Similarly, the new penalty imposed on the distance of the
current solution to the oracle is also based on the hyperbolic tangent function. The mo-
tivation for the use of the hyperbolic tangent function is that its boundedness property
makes the BCNLP penalty problem easier to solve than with some of its competitors.
The solution of the BCNLP problem is then obtained using the DIRECT algorithm
[15], a deterministic and derivative-free algorithm for finding global solutions inside
hyperrectangles. We illustrate the performance of the proposed penalty approach on a
well-known set of MINLP test problems.

The remainder of the paper proceeds as follows. Section 2 introduces the penalty
methodology and Section 3 addresses the implementation of the penalty terms and
investigates the use of the penalty parameters and the oracle parameter. Section 4 con-
tains the results of all the numerical experiments and the conclusions are summarized
in Section 5.

2 Penalty Approaches
The following equivalence result based on a penalty approach will be used [6, 20, 21].

Property 1. Assuming that W and Wc are compact sets, there exists a value ε̄ > 0
such that, for any εd ∈ (0, ε̄], the problems

min f(x), subject to x ∈W

and
minF (x; εd) ≡ f(x) + Pd(x; εd), subject to x ∈Wc (4)

where
Pd(x; εd) =

1

εd

∑
j∈Id

min
d∈Dj

tanh(|xj − d|) (5)

are equivalent in the sense that they have the same minimizers.

This property is a consequence of Property 2.5 in [6]. The below presented as-
sumptions (A1) - (A3) on f and on the penalty Pd(x; εd) (see (5)) are required to prove
Property 1.

(A1) Function f is bounded on Wc and there exists an open set A ⊃ W and real
numbers α,L > 0 such that for all x, y ∈ A, f satisfies

|f(x)− f(y)| ≤ L‖x− y‖α.

3

(A2) For all x, y ∈W and for all εd ∈ R+,

Pd(x; εd) = Pd(y; εd).

(A3) There exists an ε̄, and for all z ∈W there exists a neighborhood S(z) such that

Pd(x; εd)− Pd(z; εd) ≥ L̄‖x− z‖α, for all x ∈ S(z) ∩ (Wc\W), εd ∈ (0, ε̄],

where L̄ > L and α is chosen as in (A1). Furthermore, let S =
⋃
z∈W S(z),

∃x̄ /∈ S such that

lim
εd→0

(Pd(x̄; εd)− Pd(z; εd)) = +∞ for all z ∈W,

Pd(x; εd) ≥ Pd(x̄; εd) for all x ∈Wc\S and for all εd > 0.

Problem (4) comes out by relaxing the integer constraints on the variables and
adding a particular penalty term to the objective function f .

Let Pc(·; εc) : Rn → R be a penalty term, that aims to penalize general equality
and inequality constraints violation, defined by

Pc(x; εc) =
1

εc

 p∑
j=1

tanh(g+j (x)) +

m∑
l=1

tanh(|hl(x)|)

 , (6)

where g+j (x) = max{gj(x), 0} and εc ∈ R+ is the penalty parameter. We note that
Pc(x; εc) = 0 when x ∈ C and Pc(x; εc) > 0 when x /∈ C. Generally speaking, under
suitable assumptions on the objective function F of problem (4) and on the penalty
Pc(·; εc), the problems

min Ψ(x; εd, εc) ≡ F (x; εd) + Pc(x; εc), subject to x ∈ X,

and (4) are equivalent (see Theorem 2.1 in [20]).
For the sake of simplicity, we define

P (x; εd, εc) = Pd(x; εd) + Pc(x; εc). (7)

Both penalty terms in P (x; εd, εc) are based on the hyperbolic tangent function, tanh :
R → [−1, 1] ⊂ R, an odd function which is differentiable, strictly increasing on R,
and satisfies tanh(t) = 0 iff t = 0 and

lim
t→0+

tanh(t)

t
= 1, lim

t→+∞
tanh(t) = 1 and lim

t→+∞

d tanh(t)

dt
= 0.

Under some suitable assumptions on f and P (x; εd, εc) (see Theorem 2.1 in [20], as
well as Property 2.5 in [6] in the context of the hyperbolic tangent function) we may
remark the following.

Remark 1. Under suitable assumptions on f and P (x; εd, εc), let W and X (W ⊆
X ⊂ Rn) be compact sets. Then, ∃ε̃ ∈ R+ such that for all εd, εc ∈ (0, ε̃], the
problems (1) and (3) have the same global minimizers.

4

3 Oracle-based Penalty Algorithm
The extension of the above presented penalty approach to solve MINLP problems is
investigated.

We note here that the term Pd(x; εd) (see (5)) penalizes the distance from x to a
point z (in terms of the components i ∈ Id) that satisfies z := [x]r ∈ I ⊂ X where
zi ∈ Z, i ∈ Id results from rounding xi to the nearest integer and zl = xl for l ∈ Ic,
thus compelling x to come near z. However, since z may not be a global minimizer, our
proposal considers a new penalty term that aims to reduce the distance from x to a very
promising solution, o∗ (ideally a global optimizer), that satisfies o∗ ∈ W and has an
objective function value not greater than f(z). The o∗ is a parameter vector, herein also
denoted by the oracle, likewise it is used in [26], due to its predictive nature. Although
the original idea of the oracle penalty method corresponds to a transformation of the
objective function f into an additional equality constraint hm+1(x) = f(x) − γ = 0,
where γ is the oracle parameter [26], our proposal is equivalent to having an extra
equality constraint that aims to enforce the proximity of the current solution to the
oracle. Thus, we add a new penalty term to P , measuring proximity from x to o∗,
with the aim of finding a solution near the oracle with a lower objective function value
f(x) < f(o∗) ≤ f(z)

q(x; o∗) =

n∑
i=1

tanh(|xi − o∗i |). (8)

Remark 2. We note that, in the context of incorporating the function ‘tanh’ in the
penalty terms, this corresponds to adding new equality constraints xi = o∗i to the
problem (1) and that the feasible set of the “new problem” is now Wo = {x ∈ W :
xi = o∗i , i = 1, . . . , n}. When the oracle parameter o∗ is a global minimizer to the
problem (1), a feasible solution to the “new problem” (x ∈ Wo) is the global solution
of the MINLP problem.

Thus, the new proposed BCNLP problem for finding a global solution to a MINLP
problem like (1) is

glob min
x∈X

Ψ(x; εd, εc, o
∗) ≡ f(x) + P (x; εd, εc, o

∗)

subject to xi ∈ R, i = 1, . . . , n,
(9)

where the oracle penalty function reads as follows:

P (x; εd, εc, o
∗) = Pd(x; εd) + Pc(x; εc) +

1

εc
q(x; o∗). (10)

When there is a guess about the global minimizer, this information may be used
to speed the convergence of the algorithm. To apply the oracle penalty function when
there is no guess about the global minimizer, some modifications are required to make
the method more robust regarding the oracle parameter selection. We assume that the
two following conditions hold:

• f(o∗) > f(x∗);

• there exists at least one z∗ ∈W such that f(o∗) = f(z∗) ≥ f(x∗).

Thus, the oracle vector o∗ should be updated whenever a solution better than o∗ is
produced, i.e., if a solution z ∈ I is found such that f(z) ≤ f(o∗) and Θ(z) ≤ Θ(o∗),
where

Θ(x) = max
j=1,...,p;l=1,...,m

{
g+j (x), |hl(x)|

}
(11)

5

represents the maximum general constraints violation, then the new value for the oracle
is the following o∗ = z.

The algorithm based on the proposed oracle penalty function, denoted by oracle-
based penalty algorithm (ObPA), is shown in Algorithm 1. To initialize the oracle, we
set o∗ = [x0]r, where the initial approximation, x0, is randomly generated in X .

Input: x0 ∈ X , ε > 0, δ > 0, η > 0, µ > 0, ε1d > ε, ε1c > ε, δ1 > δ, η1 > η, µ1 > µ;
Set k = 1;
Initialize the oracle as o∗ = z0 = [x0]r;
while the stopping rule defined in (14) does not hold do

if Θ(zk−1) ≤ Θ(o∗) and f(zk−1) ≤ f(o∗) then
Set o∗ = zk−1;

end
if Θ(o∗) ≤ ηk then

Compute xk, an approximation to the solution of problem (9) such that

Ψ(xk; εkd, ε
k
c , o
∗) ≤ Ψ(x; εkd, ε

k
c , o
∗) + δk for all x ∈ X (12)

else
Compute xk, an approximation to the solution of problem (3) such that

Ψ(xk; εkd, ε
k
c) ≤ Ψ(x; εkd, ε

k
c) + δk for all x ∈ X (13)

end
Set zk = [xk]r;
if ‖xk − zk‖∞ > µk then

εk+1
d = max{0.1εkd, ε}; µk+1 = µk; δk+1 = δk;

else
εk+1
d = εkd; µk+1 = max{0.1µk, µ}; δk+1 = max{0.9δk, δ};

end
if Θ(xk) > ηk then

εk+1
c = max{0.1εkc , ε}; ηk+1 = ηk; δk+1 = δk;

else
εk+1
c = εkc ; ηk+1 = max{0.1ηk, η}; δk+1 = max{0.9δk, δ};

end
Set k = k + 1;

end
Algorithm 1: ObPA

In addition to forcing the integer variables to take integer values, another important
issue is to reduce the overall general constraint violation measured by Θ. The ObPA
has the ability to select the penalty objective function for the BCNLP problem. Either
penalty (10) or (7) is used according to the general constraint feasibility level of the
oracle. At iteration k, if Θ(o∗) ≤ ηk then it is worth to penalize |xi − o∗i | compo-
nentwise, so that an approximation near to the oracle is computed (and penalty (10) is
used); otherwise, an approximation in the vicinity of the oracle is not of the upmost
importance and the penalty (7) is used instead.

Besides the penalty parameters and the feasibility tolerance ηk, another parameter,
µk, is required to check the level of integrality violation at the current solution xk.
Furthermore, the parameter δk represents the error bound which reflects the accuracy
required for the current approximation xk to the solution of the BCNLP problem.

Simple rules to control the reduction of parameters εkd, ε
k
c , η

k, µk and δk are used
and lower bounds are imposed to prevent the BCNLP problems of becoming very hard

6

to solve. The penalty parameters εkd and εkc are reduced, using εk+1
d = max{0.1εkd, ε}

and εk+1
c = max{0.1εkc , ε} respectively, when the corresponding violation measures

(‖xk − zk‖∞ and Θ(xk)) at the computed approximation xk are not satisfactory; oth-
erwise, they are maintained.

The ObPA stops when an approximation xk, which has a sufficiently small general
constraints feasibility measure and is within an error of δ (in relative terms) of the
known global solution, is computed. Thus, the stopping conditions are

Θ(xk) ≤ η and
|f(xk)− f∗|
max{1, |f∗|}

≤ δ, (14)

where η and δ are very small positive tolerances.

Remark 3. The use of the known global solution to stop the algorithm, during these
preliminary tests, aims to analyze its effectiveness. In case f∗ is not available, the sec-
ond condition in (14) is replaced by the relative difference between the function values
of two consecutive iterations less than or equal to the specified error tolerance, δ.

Finally, we now briefly elaborate on the global optimization method to solve the
BCNLP problems formulated in (9) and (3). The deterministic algorithm DIRECT
[15] is used. The problems to be addressed by DIRECT are defined in (9) and (3) in
such a way that conditions (12) and (13) respectively are satisfied. The method does not
require any derivative information and has been originally proposed to solve BCNLP
problems, by producing finer and finer partitions of the hyperrectangles generated from
X , and evaluating Ψ at their centers. The algorithm is a modification of the standard
Lipschitzian approach that eliminates the need to specify the Lipschitz constant [15].
To perform a balance between global and local search, the algorithm makes use of two
important concepts: potentially optimal hyperrectangle and grouping according to size.
The center, ci, the objective function value at the center point, Ψ(ci; ·), and the size,
di, of each hyperrectangle i are used to define the groups of hyperrectangles, to select
the potentially optimal hyperrectangles and to divide them into smaller ones, until a
convergence condition is satisfied [12]. In the context of Algorithm 1, three stopping
criteria were considered for DIRECT: (i) an error tolerance on the BCNLP objective
penalty function value, δk, (ii) a maximum number of iterations, or (iii) a maximum
number of function evaluations.

4 Numerical Experiments
To make a preliminary evaluation of the practical behavior of the proposed ObPA for
solving nonconvex MINLP problems, we use a set of benchmark problems, identified
as f1 to f29 in the subsequent tables (see [13, 14, 24]). The algorithm is implemented in
MatlabTM (registered trademark of the MathWorks, Inc.) programming language. The
algorithmic parameters are set as follows: η = 1E − 04, δ = 1E − 03, µ = 1E − 04,
ε = 1E − 05, ε1d = 1, ε1c = 0.1, η1 = 0.1, µ1 = 0.1. However, if the stopping
conditions (14) do not hold for the given η and δ, ObPA is allowed to run for 30
iterations.

At each iteration k, when DIRECT is used to solve the BCNLP problems (9) or (3),
by imposing the conditions (12) or (13) respectively, the error tolerance on the penalty
function value is δk. We note that the parameter δ1 is set to one, slowly decreases from
one iteration to the other, until it reaches the value δ = 1E−03. The maximum number

7

of iterations is made to depend on the number of variables (5n for f7; 10n for f3, f4,
f8, f12, f14, f16, f18, f19, f24 and f26; 20n for f1, f5, f11 and f20; 50n for f9 and f17;
70n for f2, f22, f23, f28 and f29; 100n for f6, f13, f21 and f25; 150n for f15; 250n for
f27; 300n for f10) and the maximum number of function evaluations is set to 50,000.

First, we compare the results produced by ObPA, as presented in Algorithm 1,
with those obtained by a variant that does not use the oracle penalty, i.e., the BCNLP
problem (3) is always solved in all iterations. See Table 1. The table shows the name
of the problem, P, the best known optimal solution available in the literature, f∗, the
solution produced by the algorithm, fsol, the number of function evaluations required
to achieved the reported solution, nfe, the number of iteration, nit, and the CPU time
in seconds, T . From the results, it is possible to conclude that the proposed ObPA was
able to find the global optimum for 20 of the 29 problems (according to the stopping
conditions shown in (14) with η = 1E− 04 and δ = 1E− 03). For the remaining nine
problems, the algorithm run for 30 iterations. From the table, we may also conclude
that the solutions obtained by the variant without the oracle penalty have been greatly
deteriorated in three problems (f5, f7, f9) and slightly deteriorated in two (f11 and f12).
The solutions for all the other problems are comparable, being f19 the only one with a
slight improvement. Overall the results obtained by the proposed ObPA are superior to
those of the tested variant.

Second, the results produced by ObPA are compared with those obtained by the
BBMCSFilter, a BB-based multistart coordinate search filter method published in [11]
and the results reported in [14], where a filter-based genetic algorithm (FGA) is pre-
sented. Table 2 shows the name of the problem, being the set f1–f12 also used in [14]
and the set f1–f23 used in [11]. In the second column of the table, the pair inside
parenthesis corresponds to (|Ic|,|Id|). The remaining columns contain: the solution
produced by ObPA, fsol, and the number of function evaluations, nfe, the average
value of the objective function values produced by all the executed runs (with BBM-
CSFilter and FGA) , favg , the standard deviation of the function values, SD, and the
average number of function evaluations (over all the runs), nfeavg . The character ‘–’
in the tables means that the information is not available in the cited papers, ‘Ps’ is the
size of the population and ‘R’ gives the number of independent executed runs. From
the comparison, we may conclude that the produced solutions are of good quality. For
most problems, the number of required function evaluations is moderate when com-
pared with the numbers produced by the other algorithms, with the exception in nine
problems where it is much higher. In seven of these problems, the algorithm reached
30 iterations since one of the conditions in (14) was not satisfied. Thus, from the com-
parison with the BBMCSFilter and FGA, the ObPA proves to be competitive either in
terms of the quality of the found solutions or in the number of function evaluations.

Finally, using a small subset of the problems, we compare our results with those
reported by other strategies. Table 3 reports the solution produced by Algorithm 1,
fsol, the number of function evaluations, nfe, and the number of iterations, nit. The
algorithm is made to stop when a solution with an error of 1E − 03 is reached or a
maximum of 5000n function evaluations is attained. The other results in the table are
collected from the exact penalty for mixed-integer programs (EXP-MIP) in [21], the 4-
rule FA in [7], the MIHDE in [18], the extended version of the ant colony optimization
(ACOmi) in [25], the particle swarm optimization (PSO) in [28] and the penalty GA
(pen-GA) in [9]. The table also shows the solution found by EXP-MIP, fexp, and the
number of nodes (corresponding to the number of branch and reduce iterations), ‘#
nod.’.

8

Table 1: Numerical results produced by Algorithm 1 and by the variant without the oracle penalty.
Algorithm 1 variant without the oracle penalty

P f∗ fsol nfe nit T (sec.) fsol nfe nit T (sec.)
f1 2 2.000456 589 2 1.29E − 01 2.000472 509 2 1.10E − 01
f2 2.124 2.124481 5433 2 2.54E + 00 2.124481 4891 2 2.39E + 00
f3 1.07654 1.076392 1423 3 5.96E − 01 1.076534 1233 3 5.35E − 01
f4 99.239637 99.244695 629 2 2.69E − 01 99.244695 523 2 2.29E − 01
f5 3.557463 3.701380 103,049 30 6.47E + 01 5.225669 87,569 30 6.42E + 01
f6 4.579582 4.579600 88,843 3 5.10E + 01 4.579600 77,111 3 4.45E + 01
f7 -17 -16.691358 2039 30 5.61E − 01 -10.333333 1757 30 5.63E − 01
f8 -32217.4 -32215.640357 56,685 2 4.39E + 01 -32215.640357 56,685 2 4.62E + 01
f9 7.6671801 7.667232 20,523 4 1.02E + 01 8.240213 198,977 30 1.02E + 02
f10 -2.4444 -2.438023 354,975 30 8.95E + 01 -2.438023 308,273 30 7.97E + 01
f11 3.2361 3.236034 1417 2 7.06E − 01 3.260172 21,901 30 1.10E + 01
f12 1.125 1.125301 263 2 5.94E − 02 1.132343 6911 30 1.55E + 00
f13 87.5 89.500017 707,913 30 3.22E + 02 89.500051 591,301 30 2.74E + 02
f14 -6.666667 -6.666514 241 2 8.68E − 02 -6.666514 223 2 1.10E − 01
f15 -5.6848 -5.684732 14,315 3 7.53E + 00 -5.684732 12,789 3 6.79E + 00
f16 2.000 2.000119 1873 2 8.24E − 01 2.000356 1549 2 7.01E − 01
f17 3.4455 3.445514 5941 3 1.19E + 00 3.445514 5235 3 1.08E + 00
f18 2.2000 2.200032 5097 4 2.28E + 00 2.200198 1445 2 6.54E − 01
f19 6.00972 6.548438 39,871 30 2.36E + 01 6.424818 35,395 30 2.09E + 01
f20 -17.0000 -16.999953 16,871 6 7.87E + 00 -16.999953 14,627 6 7.03E + 00
f21 -4.514202 -4.514198 25,999 4 1.46E + 01 -4.514154 23,529 4 1.39E + 01
f22 -13.401904 -13.401855 67,081 4 3.60E + 01 -13.401855 36,605 3 1.90E + 01
f23 -1.08333 -1.078680 206,889 30 9.65E + 01 -1.078667 204,335 30 9.44E + 01
f24 -0.94347 -0.664913 300,055 30 1.98E + 02 -0.664913 267,527 30 1.73E + 02
f25 189.3116 189.375606 14,855 4 7.52E + 00 189.375388 13,161 4 6.80E + 00
f26 31 31.000339 777 4 1.85E − 01 31.001016 685 4 1.60E − 01
f27 -32 -31.998899 34,169 4 8.32E + 00 -31.998628 30,237 4 6.90E + 00
f28 73.0353 78.769766 1425,125 30 9.96E + 02 78.769766 1423,437 30 1.00E + 03
f29 -1.923 -0.913446 991,839 30 9.19E + 02 -0.913446 1451,577 30 1.12E + 03

9

Table 2: Numerical results produced by the Algorithm 1, the BBMCSFilter in [11] and the FGA in [14].
Algorithm 1 BBMCSFilter † FGA §

P (|Ic|,|Id|) fsol nfe favg SD nfeavg favg SD nfeavg
f1 (1,1) 2.000456 589 2.000817 3.6E − 04 3530 2.0000 1.6E − 06 4530
f2 (1,1) 2.124481 5433 2.124590 1.4E − 06 1259 2.1852 6.1E − 02 3799
f3 (2,1) 1.076392 1423 1.081640 8.1E − 03 5274 1.0769 3.8E − 04 5752
f4 (2,1) 99.244695 629 99.239635 1.0E − 07 670 99.5784 3.4E − 01 9854
f5 (3,4) 3.701380 103,049 3.560848 2.0E − 03 76,775 3.6822 1.2E − 01 11,492
f6 (3,4) 4.579600 88,843 4.582322 9.3E − 04 75,413 4.8048 2.3E − 01 9937
f7 (1,1) -16.691358 2039 -16.998054 2.3E − 03 4296 -16.8267 1.7E − 01 4147
f8 (3,2) -32215.640357 56,685 -32217.428 0.0E + 00 18,051 -32217 2.7E − 02 6609
f9 (2,3) 7.667232 20,523 7.667583 9.5E − 04 28,090 7.7472 8.0E − 02 11,480
f10 (1,1) -2.438023 354,975 -2.444444 0.0E + 00 2736 -2.444 4.4E − 04 4125
f11 (1,2) 3.236034 1417 3.236121 8.7E − 05 41,635 3.3395 1.0E − 01 5028
f12 (1,1) 1.125301 263 1.125115 2.9E − 04 7770 1.125 1.4E − 06 4757
f13 (2,2) 89.500017 707,913 87.507043 1.7E − 02 41,852 – – –
f14 (1,1) -6.6665143 241 -6.666131 1.8E − 04 1122 – – –
f15 (1,2) -5.684732 14,315 -5.651952 2.6E − 02 393,345 – – –
f16 (2,2) 2.000119 1873 2.000000 0.0E + 00 29,847 – – –
f17 (1,1) 3.445514 5941 3.445808 2.1E − 04 5469 – – –
f18 (1,3) 2.200032 5097 2.200000 0.0E + 00 11,182 – – –
f19 (4,2) 6.548438 39,871 6.010714 6.6E − 04 37,132 – – –
f20 (2,3) -16.999953 16,871 -16.994605 5.5E − 03 27,149 – – –
f21 (1,3) -4.514198 25,999 -4.513448 6.8E − 04 50,146 – – –
f22 (2,4) -13.401855 67,081 -13.401930 3.6E − 04 84,790 – – –
f23 (2,2) -1.078680 206,889 -1.083245 5.4E − 05 2458 – – –
f24 (3,8) -0.664913 300,055 – – – – – –
f25 (2,1) 189.375606 14,855 – – – – – –
f26 (0,2) 31.000339 777 – – – – – –
f27 (1,1) -31.998899 34,169 – – – – – –
f28 (6,5) 78.769766 1425,125 – – – – – –
f29 (5,3) -0.913446 991,839 – – – – – –
† The NLP relaxation is stopped after 10 sample points are generated in the multistart algorithm and 30 runs are executed.
§ The algorithm stops when a solution with error 1E − 3 is found or the number of function evaluations reaches 10,000; Ps = 20, R = 50.

10

Table 3: Other numerical comparisons
P Algorithm 1 EXP-MIP 4-rule FA [MIHDE § ACOmi † PSO ‡ pen-GA \

fsol nfe (nit) fexp # nod. favg nfeavg favg nfeavg favg nfeavg % suc. nfeavg % suc. nfesucavg

f1 2.000011 1589 (2) – – 2.0000 3409 – 13,104 – – – – 84 172
f2 2.124476 13,449 (2) – – 2.7149 5253 – 29,166 – – 100 3500 85 64
f3 1.076392 1423 (3) 1.076 0 1.0767 5178 – 28,455 1.1459 4250 – – 43 18,608
f4 99.244695 629 (2) – – – – – 60,950 – – 100 4000 59 7447
f5 3.701662 38,287 (11) – – – – – 12,375 – – – – 41 3571
f6 4.579600 33,859 (3) 4.579 2 4.7758 12,157 – – 4.5796 731 100 30,000 – –
f7 -16.998720 1501 (2) -17 1 -16.9998 3243 – 983 -17 307 – – – –
f8 -32215.640357 56,685 (2) – – – – – 50,976 – – – – 100 100
f9 7.667232 20,523 (4) 7.667 2 8.0695 8622 – – 7.6672 363 – – – –
f10 -2.438023 12,395 (3) – – -2.4380 3501 – – -2.4444 270 – – – –
f11 3.236034 1397 (2) – – 3.2361 4405 – – 23.475 1180 – – – –
f24 -0.686926 62,391 (3) -0.912 1 – – – – – – – – 93 258
f26 31.000339 801 (4) 31 1 – – – – – – – – – –
f29 -1.393493 36,191 (5) – – – – – – – – 88 40,000 – –
[Termination conditions: |fk − f∗|/|f∗| ≤ 1E − 04 and violation ≤ 1E − 03; Ps = 20, R = 30.
§ Termination condition: |fk+20 − fk| < 1E − 05 or a maximum of 2000 iterations; Ps = 3, R = 10.
† Algorithm stops when a solution with error 1E − 03 is reached or a maximum of 10, 000 function evaluations is attained; Ps = 20, R = 30.
‡ Termination conditions: |fk+50 − fk| < 1E − 05 or a maximum of 200 iterations; Ps = 50, R = 100.
\ Termination conditions: |fk − f∗| ≤ 1E − 02 or a maximum of 200 iterations; Ps = 10n, R = 100.

11

As far as the stochastic heuristics are concerned, Table 3 shows: the average of
the objective function values (over all the executed runs), favg, the average number
of function evaluations, nfeavg , the percentage of successful runs (according to the
stopping condition based on the proximity of f to f∗), % suc., and the average number
of function evaluations of the successful runs alone, nfesucavg . From the results we may
conclude that the proposed ObPA performs reasonably well.

5 Conclusions
In this paper, an oracle-based penalty approach for solving nonsmooth and nonconvex
MINLP problems is proposed. A continuous reformulation BCNLP problem is solved
by the deterministic DIRECT solver. The penalty function to be optimized involves a
combination of penalty terms to penalize the integrality constraints, the equality and in-
equality constraints and the distance to the oracle, based on hyperbolic tangent penalty
functions. The numerical experiments show that the proposed algorithm gives compet-
itive results when compared with other methods in the literature.

Future developments will be directed to improve the efficiency of the oracle-based
penalty algorithm, in terms of the number of function evaluations, by using an alterna-
tive deterministic and derivative-free global optimizer to solve the continuous BCNLP
problems.

Acknowledgments
The authors would like to thank two anonymous referees for their valuable comments
and suggestions to improve the paper.

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and
FCT - Fundação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013
and UID/MAT/00013/2013.

References
[1] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global optimization of

mixed-integer nonlinear problems. AIChE Journal, 46(9):1769–1797, 2000.

[2] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan.
Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131, 2013.

[3] F. Boukouvala, R. Misener, and C. A. Floudas. Global optimization advances in
mixed-integer nonlinear programming, MINLP, and constrained derivative-free
optimization, CDFO. European Journal of Operational Research, 252(3):701–
727, 2016.

[4] S. Burer and A. N. Letchford. Non-convex mixed-integer nonlinear program-
ming: A survey. Surveys in Operations Research and Management Science,
17(2):97–106, 2012.

[5] M. R. Bussieck and S. Vigerske. MINLP solver software. In J. J. Cochran, L. A.
Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc., 2011.

12

[6] M. F. P. Costa, A. M. A. C. Rocha, R. B. Francisco, and E. M. G. P. Fernandes.
Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear
programming. Optimization, 65(5):1085–1104, 2016.

[7] M. F. P. Costa, A. M. A. C. Rocha, R. B. Francisco, and E. M. G. P. Fernan-
des. Extension of the firefly algorithm and preference rules for solving MINLP
problems. In Proceeding of ICNAAM 2016, AIP (to appear), volume 1863, 2017.

[8] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of feasibility
pumps for nonconvex MINLP. Mathematical Programming, 136(2):375–402,
2012.

[9] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan. A real coded genetic al-
gorithm for solving integer and mixed integer optimization problems. Applied
Mathematics and Computation, 212(2):505–518, 2009.

[10] O. Exler, T. Lehmann, and K. Schittkowski. A comparative study of SQP-type al-
gorithms for nonlinear and nonconvex mixed-integer optimization. Mathematical
Programming Computation, 4(4):383–412, 2012.

[11] F. P. Fernandes, M. F. P. Costa, and E. M. G. P. Fernandes. Branch and bound
based coordinate search filter algorithm for nonsmooth nonconvex mixed-integer
nonlinear programming problems. In B. Murgante, S. Misra, A. M. A. C. Rocha,
C. Torre, J. G. Rocha, M. I. Falcão, D. Taniar, B. O. Apduhan, and O. Gervasi, ed-
itors, Computational Science and Its Applications – ICCSA 2014, Part II, LNCS,
volume 8580, pages 140–153. Springer International Publishing, Guimarães, Por-
tugal, 2014.

[12] D. E. Finkel. DIRECT optimization algorithm user guide. CRSC-TR03-11,
Center for Research in Scientific Computation, North Carolina State University,
Raleigh, NC 27695-8205, March 2003.

[13] C. A. Floudas, P. M. Pardalos, C. Adjiman, W. R. Esposito, Z. H. Gümüs, S. T.
Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger. Handbook of Test
Problems in Local and Global Optimization, volume 33 of Nonconvex Optimiza-
tion and its Applications. Springer Science & Business Media, Dordrecht, 1999.

[14] A. Hedar and A. Fahim. Filter-based genetic algorithm for mixed variable pro-
gramming. Numerical Algebra, Control and Optimization, 1(1):99–116, 2011.

[15] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applications,
79(1):157–181, 1993.

[16] S. Lee and I. E. Grossmann. A global optimization algorithm for nonconvex
generalized disjunctive programming and applications to process systems. Com-
puters & Chemical Engineering, 25(11):1675–1697, 2001.

[17] L. Liberti, G. Nannicini, and N. Mladenović. A good recipe for solving MINLPs.
In V. Maniezzo, T. Stützle, and S. Voß, editors, Matheuristics: Hybridizing Meta-
heuristics and Mathematical Programming, volume 10, pages 231–244. Springer
US, Boston, MA, 2010.

13

[18] Y.-C. Lin, K.-S. Hwang, and F.-S. Wang. A mixed-coding scheme of evolutionary
algorithms to solve mixed-integer nonlinear programming problems. Computers
& Mathematics with Applications, 47(8 - 9):1295–1307, 2004.

[19] G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for bound con-
strained mixed-integer optimization. Computational Optimization and Applica-
tions, 53(2):505–526, 2012.

[20] S. Lucidi and F. Rinaldi. Exact penalty functions for nonlinear integer program-
ming problems. Journal of Optimization Theory and Applications, 145(3):479–
488, 2010.

[21] S. Lucidi and F. Rinaldi. An exact penalty global optimization approach for
mixed-integer programming problems. Optimization Letters, 7(2):297–307,
2013.

[22] G. Nannicini and P. Belotti. Rounding-based heuristics for nonconvex MINLPs.
Mathematical Programming Computation, 4(1):1–31, 2012.

[23] A. M. A. C. Rocha, M. F. P. Costa, and E. M. G. P. Fernandes. Solving MINLP
problems by a penalty framework. In A. M. Rocha, M. F. Costa, and E. Fernandes,
editors, Proceedings of XIII Global Optimization Workshop, pages 97–100, 2016.

[24] H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and
MINLPs with applications in process design. Computers & Chemical Engineer-
ing, 19(5):551–566, 1995.

[25] M. Schlüter, J. A. Egea, and J. R. Banga. Extended ant colony optimization
for non-convex mixed integer nonlinear programming. Computers & Operations
Research, 36(7):2217–2229, 2009.

[26] M. Schlüter and M. Gerdts. The oracle penalty method. Journal of Global Opti-
mization, 47(2):293–325, 2010.

[27] V. K. Srivastava and A. Fahim. An optimization method for solving mixed
discrete-continuous programming problems. Computers & Mathematics with Ap-
plications, 53(10):1481–1491, 2007.

[28] L. Yiqing, Y. Xigang, and L. Yongjian. An improved PSO algorithm for solv-
ing non-convex NLP/MINLP problems with equality constraints. Computers &
Chemical Engineering, 31(3):153–162, 2007.

14

