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Abstract
In the last 15 years, antiretroviral therapy (ART) has been the most globally impactful life-

saving development of medical research. Antiretrovirals (ARVs) are used with great suc-

cess for both the treatment and prevention of HIV infection. Despite these remarkable

advances, this epidemic grows relentlessly worldwide. Over 2.1 million new infections occur

each year, two-thirds in women and 240,000 in children. The widespread elimination of

HIV will require the development of new, more potent prevention tools. Such efforts are

imperative on a global scale. However, it must also be recognised that true containment of

the epidemic requires the development and widespread implementation of a scientific

advancement that has eluded us to date—a highly effective vaccine. Striving for such medi-

cal advances is what is required to achieve the end of AIDS.

In the last 15 years, antiretroviral therapy (ART) has been the most globally impactful life-sav-
ing development of medical research. Antiretrovirals (ARVs) are used with great success for
both the treatment and prevention of HIV infection. In the United States, the widespread
implementation of combination ARVs led to the virtual eradication of mother-to-child trans-
mission of HIV from 1,650 cases in 1991 to 110 cases in 2011, and a turnaround in AIDS
deaths from an almost 100% five-year mortality rate to a five-year survival rate of 91% in HIV-
infected adults [1]. Currently, the estimated average lifespan of an HIV-infected adult in the
developed world is well over 40 years post-diagnosis. Survival rates in the developing world,
although lower, are improving: in sub-Saharan Africa, AIDS deaths fell by 39% between 2005
and 2013, and the biggest decline, 51%, was seen in South Africa [2].
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Furthermore, the association between ART, viremia, and transmission has led to the con-
cept of “test and treat,” with the hope of reducing community viral load by testing early and
initiating treatment as soon as a diagnosis of HIV is made [3]. Indeed, selected regions of the
world have begun to actualize the public health value of ARVs, from gains in life expectancy to
impact on onward transmission, with a potential 1% decline in new infections for every 10%
increase in treatment coverage [2]. In September 2015, WHO released new guidelines remov-
ing all limitations on eligibility for ART among people living with HIV and recommending
pre-exposure prophylaxis (PrEP) to population groups at significant HIV risk, paving the way
for a global onslaught on HIV [4].

Despite these remarkable advances, this epidemic grows relentlessly worldwide. Over 2.1
million new infections occur each year, two-thirds in women and 240,000 in children [2]. In
heavily affected countries, HIV infection rates have only stabilized at best: the annualized
acquisition rates in persons in their first decade of sexual activity average 3%–5% yearly in
southern Africa [5–7]. These figures are hardly compatible with the international health com-
munity’s stated goal of an “AIDS-free generation” [8,9]. In highly resourced settings, microepi-
demics of HIV still occur, particularly among gays, bisexuals, and men who have sex with men
(MSM) [10]. HIV epidemics are expanding in two geographic regions in 2015—the Middle
East/North Africa and Eastern Europe/Central Asia—largely due to challenges in implement-
ing evidence-based HIV policies and programmes [2]. Even for the past decade in the US,
almost 50,000 new cases recorded annually, two-thirds among MSM, has been a stable figure
for years and shows no evidence of declining [1].

While treatment scale-up, medical male circumcision [11], and the implementation of strat-
egies to prevent mother-to-child transmission [12] have received global traction, systemic or
topical ARV-based biomedical advances to prevent sexual acquisition of HIV have, as yet,
made limited impressions on a population basis, despite their reported efficacy. Factors such as
their adherence requirements, cost, potential for drug resistance, and long-term feasibility have
restricted the appetite for implementation, even though these approaches may reduce HIV
incidence in select populations.

Already, several trials have shown that daily oral administration of the ARV tenofovir diso-
proxil fumarate (TDF), taken singly or in combination with emtricitabine, as PrEP by HIV-
uninfected individuals, reduces HIV acquisition among serodiscordant couples (where one
partner is HIV-positive and the other is HIV-negative) [13], MSM [14], at-risk men and
women [15], and people who inject drugs [16,17] by between 44% and 75%. Long-acting
injectable antiretroviral agents such as rilpivirine and cabotegravir, administered every two and
three months, respectively, are also being developed for PrEP. All of these PrEP approaches are
dependent on repeated HIV testing and adherence to drug regimens, which may challenge
effectiveness in some populations and contexts.

The widespread elimination of HIV will require the development of new, more potent pre-
vention tools. Because HIV acquisition occurs subclinically, the elimination of HIV on a popu-
lation basis will require a highly effective vaccine. Alternatively, if vaccine development is
delayed, supplementary strategies may include long-acting pre-exposure antiretroviral cock-
tails and/or the administration of neutralizing antibodies through long-lasting parenteral prep-
arations or the development of a “genetic immunization” delivery system, as well as scaling up
delivery of highly effective regimens to eliminate mother-to-child HIV transmission (Fig 1).

The Quest for an HIV Vaccine
HIV vaccine development has been challenging. The failure of five vaccine efficacy trials [17–
21] and the modest efficacy of one [18–22] has limited the pharmaceutical industry’s role in
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HIV vaccine science. Current funding for HIV vaccine development is almost solely through
government or philanthropic foundations [23]. The various approaches tested in late-stage
clinical development, employing either viral vectors alone [17,18], in combination with DNA
plasmids [21] or glycoprotein 120 [20], or glycoprotein 120 alone [19,20], have either been
futile or have increased susceptibility to HIV acquisition in certain subgroups of vaccine recipi-
ents [17,18].

However, a milestone in the field was reached in late 2009, when the RV144 trial [24] of a
recombinant canary pox prime and protein boost demonstrated modest efficacy with waning
durability from 60% at 12 months to 31% at 36 months against sexually acquired HIV in Thai-
land. Although this vaccine regimen did not induce neutralizing antibodies, an immune corre-
lates analysis indicated that it induced antibodies to the scaffolded V1V2 region of Env and
that this response was associated with a reduced risk of infection [25,26]. Vaccine recipients who
did not develop antibodies to the V1V2 scaffold demonstrated no vaccine efficacy, while those
who developed antibodies to the V1V2 scaffold had an overall vaccine efficacy of 69% [27]. Addi-
tional analyses demonstrate that these V1V2 antibodies could mediate antibody-dependent cellu-
lar cytotoxicity (ADCC) and that the vaccine regimen induced immune pressure on viral
sequences in the V1V2 region, providing increased support that this region is an important point
of “attack” for nonneutralizing antibodies [28]. Other immune responses associated with vaccine
efficacy in RV144 included polyfunctional CD4+ T cell responses as well as antibodies to enve-
lope proteins of the IgG3 subclass [26,29]. These data, which suggest that nonneutralizing anti-
bodies, especially to the V1V2 region of the HIV envelope, are associated with vaccine-induced
protection, are provocative and require corroboration, as this V1V2 region had heretofore been
largely ignored as a critical component of the human response to HIV.

Studies are underway to determine whether enhancing such responses by developing related
vaccine prototypes with better T-cell priming as well as enhanced antibody responses will
reproduce and enhance the vaccine efficacy seen in RV144. The Pox Protein Public Private

Fig 1. Medical interventions required to end the epidemic of HIV. Image credit: Glenda Gray.

doi:10.1371/journal.pbio.1002372.g001
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Partnership (P5) has designed an HIV vaccine program to be executed in the clade-C-predomi-
nant areas of southern Africa. The program will initially evaluate the role of alternate adjuvants
coupled with a bivalent clade C protein in combination with a clade C optimised ALVAC vec-
tor as a means of developing a more potent and durable antibody response. More recently,
with initial funding from the US National Institutes of Health (NIH), a group of collaborators
at the Ragon Institute, the US Military HIV Research Program (USMHRP), the International
AIDS Vaccine Initiative (IAVI), and, more recently, Jansen Pharmaceuticals have initiated
development of a vaccine regimen that consists of a replication defective Adenovirus type 26
and Modified Vaccinia Ankara (MVA) vaccine in combination with a gp 140 protein boost
that incorporates a series of synthetic Mosaic genes designed to make immune responses to all
the major clades of HIV. Nonneutralizing antibodies appear to be the major correlate of
immune protection in nonhuman primate (NHP) challenge models. These vaccines are now
entering expanded human clinical trials.

Other approaches to develop an effective HIV vaccine are also underway and include novel
vector strategies as well as structural biology-based approaches. A recent study demonstrated
that a live replicating cytomegalovirus (CMV) vaccine encoding several simian immunodefi-
ciency virus (SIV) proteins, administered prior to SIV challenge, can lead to complete viral sup-
pression and elimination of detectable SIV infection in about half of the rhesus macaques
studied, implying that some lentiviral infections may be susceptible to clearance via effector
memory T cell-mediated mechanisms [30]. This study provides new insights into the role of
effector memory CD8 T-cells in control and elimination of SIV infection and, more generally,
how to elicit long-term tissue resident immune responses at the mucosal sites where HIV
acquisition occurs. Whether similar immune responses are translatable to humans and can
lead to continued clinical development of this live attenuated vaccine approach remains to be
determined. In addition, further evaluation of the immune responses of the macaques that did
not clear their SIV infection is imperative to further the understanding of the correlates of sus-
tained SIV infection post CMV vaccination.

A worldwide effort to isolate broadly neutralizing antibodies to HIV and to understand the
structural basis for their neutralization as well as the immunological basis for their develop-
ment [31–33] has brought insights into the design of new candidate vaccines as well as anti-
body-targeted approaches.

A major impediment to advancing HIV vaccine development has been the painstakingly
slow pace of conducting vaccine efficacy trials, largely due to the difficulty in producing good
manufacturing practice (GMP) quantities of novel HIV envelope proteins or recombinant vec-
tors with novel inserts. After RV144, it took five years to manufacture the next generation of
recombinant pox/recombinant gp120 proteins. The effective manufacturing of novel, often
complex, immunogens has occurred almost exclusively in an industry where much of the
“lore” of consistently manufacturing reproducible amounts of biologics is collectively learned
over time. Engaging industry to actively embrace such high-risk ventures has been difficult, but
it is a necessary hurdle for the HIV vaccine field to solve. Developing such resolve and expertise
is difficult in a field in which scientific pluralism is valued and required.

Despite the challenge of developing an HIV vaccine, mathematical modelling has verified
the profound impact a vaccine with variable coverage—even low-efficacy vaccines in combina-
tion with other interventions—would have at a population level [34,35].

Neutralizing Antibodies for Prevention of HIV Acquisition
Numerous studies over the past 15 years have demonstrated the ability of HIV-1 neutralizing
antibodies to prevent the acquisition of simian–human immunodeficiency virus (SHIV)
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infection in NHPs [36–39]. Technologies to manufacture these antibodies in sufficient quanti-
ties are now available, enabling test-of-concept trials exploring whether the infusion of one or
more antibodies could persistently reduce viremia in HIV-infected persons.

Perhaps more importantly, human clinical trials are being convened, exploring whether
infusion of monoclonal antibodies could prevent HIV acquisition. If clinical trial proof was
obtained that neutralizing antibodies could markedly reduce HIV acquisition, it would be a
conceptual breakthrough in the HIV prevention landscape and would validate the need to
develop a neutralizing antibody vaccine. Additionally, these antibodies could either be admin-
istered via long-term infusion or provided in a continuous concentration through “genetic
immunization” of the antibody using a persistent vector such as adeno-associated virus vectors
or via the insertion of the HIV antibody gene in plasmablasts [40]. Applying the knowledge
gleaned from cancer, autoimmune, and inflammatory diseases to increase the potency of anti-
bodies by improving effector function of antibodies, such as enhancing ADCC and increasing
serum half-life of IgG through Fc engineering [41–43], may improve the utility of this interven-
tion for HIV treatment and prevention.

Microbicides as an Innovation for HIV Prevention
Unlike the impressive breakthroughs with treatment, the quest to find potent biomedical pre-
vention modalities for women’s routine use remains elusive. In sub-Saharan Africa, more than
two-thirds of infections occur among women aged between 15 and 24 years. Young women
typically acquire HIV infection 5–7 years earlier than their male counterparts [44,45]. HIV
infections among women, especially young women, can be as much as 8-fold higher than in
men of the same age [46] and is an important driver of the epidemic in Africa [47]. Candidate
microbicides are being developed in an array of formulations, including gels, vaginal rings, rap-
idly dissolving vaginal tablets, films, and gel-filled compartments in diaphragms.

In 2010, the CAPRISA 004 trial, evaluating a coitally-dependent tenofovir gel regimen, first
proved that ARVs can prevent sexual acquisition of HIV in women [48], followed by a study
with MSM demonstrating the effectiveness of oral ARV chemoprophylaxis [14]. Adherence
markedly affects the effectiveness of all PrEP regimens, and suboptimal adherence remains a
large challenge for microbicide development [48,49], which was seen again in FACTS 001, a
recent phase III confirmation study of coitally applied tenofovir gel [50]. To overcome these
problems, long-acting, slow-release products are under development, including dapivirine or
tenofovir in a vaginal ring [51,52]. In the future, multipurpose prevention technologies (e.g.,
for contraception and HIV prevention) and combination antiretroviral agent microbicides are
in the works [53]. Rectal microbicide formulations for men and women at risk of HIV acquisi-
tion through anal intercourse are also under investigation [54].

ARV Treatment: New Drugs and Formulations: DoWe HaveWhat It
Takes?
The continued development of safer, better priced, and more convenient ARVs has resulted in
the ongoing improvement of health for HIV-infected persons on both an individual and popu-
lation basis. In the developed world, over a million deaths were averted by ARV treatments in
the last decade.

Still, there were 1.5 million AIDS-related deaths during 2013, many of them potentially pre-
ventable, as 60% of HIV-infected people and 76% of HIV-infected children still need to be
placed on treatment [2]. The most formidable barrier to the ubiquitous use of treatment is
access. Communities and health systems experience enormous infrastructural and human
resource shortcomings to early testing and treatment, drug supply, and retention in care.

PLOS Biology | DOI:10.1371/journal.pbio.1002372 March 2, 2016 5 / 14



However, important innovations in drugs, treatment strategies, and monitoring are emerging
that can solidify the expansion and resilience of treatment programs.

A drug development priority in a population-based scale-up of ART is a first-line single tab-
let that requires minimal laboratory monitoring and possesses minimal side effects with low
rates of HIV resistance. Two recent advances on the classic TDF/emtricitabine/efavirenz first-
line single tablet regimen promise to move us closer to this. First has been the coformulation of
once-daily integrase inhibitors such as elvitegravir/cobicistat or dolutegravir. The latest US
guidelines adopt the use of an integrase inhibitor with two nucleoside reverse transcriptase
inhibitors as first-line therapy. In clinical trials, the single-pill TDF/emtricitabine/elvitegravir/
cobicistat coformulation showed better safety profiles compared to its efavirenz-based peer
[55]. Dolutegravir with a Nucleoside/Nucleotide Reverse Transcriptase Inhibitor (NRTI) back-
bone demonstrated superior ability to suppress viral load and better tolerability compared to
efavirenz [56]. The second improvement has been the development of TDF’s pro-drug, tenofo-
vir alafenamide fumarate (TAF), which has also been coformulated in a single daily pill with
emtricitabine/elvitegravir/cobicistat. The latter coformulation showed virologic responses simi-
lar to its TDF equivalent but had better renal and bone profiles. In the developing world, future
scale-up could be eased by prioritizing in-country licensure and cost reduction of such new
drugs.

Even with maximum improvements on a single daily pill, ultimate scale-up must consider
critical issues affecting retention in care, such as the lack of money for transport [57] and the
challenges of getting time off work for patients to attend a clinic and collect medication. Drug
delivery approaches that would guarantee longer-term adherence, such as drug implants, are
being studied. Furthermore, the landscape of health staffing may need to transform, as the
necessity of increasing personnel to handle increased patient volumes may require shifting
tasks even further from nurses to trained counsellors to assist with monitoring and retention in
care (Table 1).

Here and Now: Eliminating Paediatric HIV
The most dramatic alteration in the HIV epidemic has been the marked reduction in HIV
infection in children [2]. The Promise study, a recent randomised clinical trial conducted in
Africa, shows that a globally applicable ART regimen is available that could reduce mother-to-
child transmission of HIV during pregnancy or delivery to less than 1% [58]. A multicountry
pre-exposure prophylaxis trial in infants found similar infection rates of 1.4% and 1.5% in the
two arms at 50 weeks [59] and provides an alternative preventive option for women who are
not ready for a lifetime commitment to ARV treatment as part of a multipronged prevention of
mother-to-child transmission (PMTCT) programme [60].

Table 1. Innovations for scaling up care and keeping people on treatment.

Intervention Innovation

Diagnostics Non-blood-based diagnostics that are available “over the counter”

Antiretroviral Treatment • Coformulations of once-daily pills with minimal side effects and high
genetic barrier for resistance

• Long-acting antiretrovirals minimising need for regular interface with
health care providers

Virological and Immunological
Monitoring

Point-of-care viral load allows testing, results feedback, and responsive
care recommendations at the same visit

Task Shifting Community health care workers delivering care because drugs are
safe and monitoring is simple

doi:10.1371/journal.pbio.1002372.t001
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These findings must be rapidly operationalised to curtail the quarter of a million new child-
hood infections that occur annually. Here, again, the vexing issue is access, highlighting the
kind of health infrastructure investments required to identify and treat all pregnant women
with HIV (Table 2). South Africa is the first country to report on population-level effectiveness
of a national PMTCT programme [61] and has demonstrated a consistent trend toward lower-
ing transmission among infants, with rates of 2.6% in 2012–2013 [61,62]. The effectiveness of
PMTCT interventions in the field are influenced by access to prenatal care, retention in care,
ARV adherence, adequate education, and follow-up of the mother and infant post-delivery
(Table 2). To achieve adequate viral load suppression at the time of delivery, ARVs should be
initiated early in pregnancy [12]. Even in South Africa, where over 85% of pregnant women
attend at least four antenatal care visits, in 2014–2015 around half (54%) of pregnant women
received their first antenatal care visit before 20 weeks of pregnancy [63].

Incident cases of HIV occurring during pregnancy and lactation increase the risk of
mother-to-child transmission. Implementing repeat HIV testing in late pregnancy and during
breastfeeding will be a further critical step required on the road to elimination [68]. Recom-
mendations to repeat HIV testing around 32 weeks of pregnancy have been erratically imple-
mented in South Africa, with only 22% of women in 2012–2013 reporting that they had their
last HIV test at or beyond 32 weeks [62].

Hopefully, as more women are initiated on lifelong treatment, the continuum of care will
improve so that prevention benefits are realised. One report fromMalawi, however, acts as a
cautionary tale: one in ten women were lost to follow-up six months after ART initiation
(Table 3) [69]. Furthermore, solving the issues of health care stigmatization, access, status dis-
closure, and spousal involvement will also be needed to improve treatment initiation, adher-
ence, and retention in care [70].

Because ART has successfully reduced MTCT and lowered morbidity and mortality in preg-
nant women, it has also led to growing numbers of HIV-exposed but uninfected children.
Increased morbidity and mortality amongst HIV-exposed uninfected children has been
described, including birth defects [71], small for gestational age (SGA) infants [72], growth
[73] and neurodevelopmental delay [74], and reduced immunity to vaccine-preventable dis-
eases [75,76]. There is an urgent need to better understand the health consequences of

Table 2. Potential demand-side and health system innovations to control paediatric HIV.

Innovation Benefits

Scaling up community-based
delivery platforms [64]

Access to universal health coverage

Training of community health
workers [65]

Improve coverage along the continuum of care through early
identification of pregnant women, encouragement of early
antenatal booking, HIV testing, initiation of ARV treatment, and
support for lifelong adherence to medication

Universal testing of infants [66] Increasing access to the early identification of HIV infected infants
and rapid initiation of ARV treatment [67]

doi:10.1371/journal.pbio.1002372.t002

Table 3. Challenges in keeping HIV-positive pregnant women in care [69].

• Women initiated on lifelong ARVs during pregnancy were five times more likely than women who started
ARVs in WHO stage 3/4 or with a CD4 cell count of 350 cells/ml or less to never return after their initial
clinic visit.

• Women initiating lifelong ARVs while breastfeeding were twice as likely to miss their first follow-up visit.

• Loss to follow-up was highest in pregnant women who began lifelong ARVs at large clinics on the day
they were diagnosed with HIV.

doi:10.1371/journal.pbio.1002372.t003
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exposure to HIV and antiretroviral drugs on HIV-uninfected children and to improve moni-
toring and management of this growing subpopulation of children.

HIV Cure
HIV infection results in latent infection of a select population of memory CD4+ T cells within
days post-acquisition [77]. When the integrated HIV proviral DNA is transcriptionally silent,
these resting cells are not affected by ARVs and are not recognised by the immune system. HIV
can reactivate from these cells, however, and their presence constitutes a major barrier to

Table 4. Current biomedical interventions that are capable of bending the HIV epidemic curve.

Intervention R&D innovation Source of financing

1. Health system strengthenening Smart clinic approaches; tools for procurement; health
system processes development

Financial investments in health infrastructure, human
resource development, health care worker training,
continual monitoring and evaluation

2. Universal access to frequent HIV
testing*

Over-the-counter HIV diagnostics, R&D into non-
blood-based diagnostics, Point of care HIV diagnostics
for infants, developing HIV counselling on mobile
platforms.

Government & donor investment into biotechnology that
simplifies point of care diagnostics whilst maintaining
sensitivity and specificity, training of health care
workers and community health workers on the mass
rollout of HIV testing, values clarification for those
carrying out HIV testing to reduce stigmatizing attitudes

3. Making ARV treatment available to
all HIV-infected individuals,
irrespective of CD4 count

R&D in fixed drug combinations, long-acting ARVs
with high barriers to resistance and low side effects

Pharmaceutical investment with government subsidies,
low cost of ARVs, task shifting to community health
care workers

4. Medical male circumcision for
neonates, adolescent boys, and
adults*

Low-cost devices for male adults and neonates to
allow mass medical circumcision without doctor
supervision

Medical device investment, training health care workers
in neonatal circumcision, task shifting.

5. Rolling out PrEP* Continue R&D into long-acting ARV agents Pharmaceutical investment with government subsidies

6. Universal PMTCT* Safe fixed-dose combination (FDC) ARV, point of care
virological and immunological monitoring tools

Government commitment to implementing HIV testing at
family planning, improving access to safe contraception,
allowing for safe termination of pregnancy, ARVs for
life, task shifting.

7. Safe needle exchange* Cheap disposable needles Government support of clean needle exchange
programmes

*Condom provision at every opportunity

doi:10.1371/journal.pbio.1002372.t004

Fig 2. The spectrum of biomedical innovation required to end AIDS. Image credit: Glenda Gray.

doi:10.1371/journal.pbio.1002372.g002
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eradicating infection [78,79]. Advances in understanding the basic biology of HIV have pro-
vided a framework to conceptualise novel approaches to curing the disease. These include
genetic engineering technologies to either protect CD4+ T cells from future infection or deliver
probes to inactivate integrated HIV DNA in the cell [80]. Use of genetically engineered T
+ cells to provide long-term immune surveillance or to activate latently infected cells and
destroy them and any associated HIV virions before they proliferate are being investigated
[80]. Whether these strategies can either singly or in combination result in a true cure or what
the field has termed a “functional” cure (that is, the ability to maintain viral suppression with-
out ARVs with no risk of sexual or perinatal transmission) remains to be determined [80]. The
benefits of such an approach on interrupting the spread of HIV are enormous and warrant a
full-scale effort by the international scientific community.

Conclusion
HIV brought an unprecedented shift in the global landscape of public health: it slashed life expec-
tancy and wiped out a generation of economically active adults in their prime in sub-Saharan
Africa; it reversed gains in under-five mortality and created a cohort of AIDS orphans; and it
exposed the underbelly of poor health systems. It has also revealed the interrelatedness between
social behaviour, stigmatization, cultural mores, religious beliefs, and human health. HIV has
challenged all societies in our attempts to deal with its economic, societal, and medical aspects.

Even with all the biomedical and behavioural tools available today, HIV continues to be a
formidable pathogen, altering the health economics and public health strategies of most coun-
tries worldwide. Of the 35 million HIV-infected individuals worldwide in 2014, more than half
did not know their HIV status, and over a third were not receiving ARVs [1] despite the avail-
ability of affordable point-of-care diagnostics and treatments. Adoption of “universal test and
treat” approaches, extension of medical male circumcision programs, universal access to basic
harm reduction services for people who inject drugs, and more widespread use of PrEP in tar-
geted populations can do much to “bend the curve” and initiate a process to slow the rate of
new HIV infections (Table 4). Such efforts are imperative on a global scale. However, it must
also be recognised that true containment of the epidemic requires the development and wide-
spread implementation of a scientific advance that has eluded us to date—a highly effective
vaccine. There are potential synergies that will accrue from an integrated approach involving
treatment, microbicides, and HIV vaccines (Fig 2). Various mathematical models agree that
treatment roll-out on its own will decrease HIV incidence over time. However, when a 30%
preventative HIV vaccine was introduced to a model with expanding treatment access in
southern Africa, incidence was predicted to be 67% lower over time compared to a scenario
with no vaccine introduction [35].
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