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Abstract

Fluorescence in situ Hybridization (FISH) is a versatile, widespread and widely- used tech-

nique in microbiology. The first step of FISH—fixation/permeabilization—is crucial to the

outcome of the method. This work aimed to systematically evaluate fixation/permeabiliza-

tion protocols employing ethanol, triton X-100 and lysozyme in conjugation with paraformal-

dehyde for Peptide Nucleic Acid (PNA)-FISH. Response surface methodology was used to

optimize these protocols for Gram-negative (Escherichia coli and Pseudomonas fluores-

cens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacil-

lus cereus). In general, the optimal PNA-FISH fluorescent outcome in Gram-positive

bacteria was obtained employing harsher permeabilization conditions when compared to

Gram-negative optimal protocols. The observed differences arise from the intrinsic cell

envelope properties of each species and the ability of the fixation/permeabilization com-

pounds to effectively increase the permeability of these structures while maintaining struc-

tural integrity. Ultimately, the combination of paraformaldehyde and ethanol proved to have

significantly superior performance for all tested bacteria, especially for Gram-positive spe-

cies (p<0.05).

Introduction

Fluorescence in situ Hybridization (FISH) is a widely used technique in the field of microbiol-

ogy [1]. Since the first application to microorganisms by DeLong et al. [2], FISH progressed

into a versatile technique allowing the identification, quantification and characterization of

phylogenetically defined microbial populations in complex environments [3].

A standard FISH protocol targeting the rRNA, involves 4 different steps: fixation/per-

meabilization, hybridization, washing and visualization/detection [4,5]. The fixation/
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permeabilization step is crucial in FISH. On the one hand, it must preserve the integrity of

rRNA, cell shape and prevent cell loss through lysis; on the other hand, it must permeabilize

the cells in order to allow the diffusion of the probes through the cell envelope [1,6]. Fixation

of bacteria usually employs 4% (wt/vol) paraformaldehyde, an aldehyde that cross-links cellu-

lar macromolecules, namely proteins, ultimately creating a mesh type structure within the cell

[1,6,7]. The use of paraformaldehyde for most Gram-negative bacteria is sufficient to have a

successful FISH outcome. However, some Gram-negative and many Gram-positive species

require the use of permeabilization agents such as enzymes, solvents, detergents or even hydro-

chloric acid [1,5]. These will cause physical damage on the organized structure of the cell enve-

lope in the form of pores, from where the probes can access the interior of the cell. The choice

of the permeabilization procedure to be employed will depend on the characteristics of the

microorganism(s) and their cell envelope composition [8], ultimately requiring a pre-optimi-

zation stage in order to assess the conditions that provide the best results [6,9,10,11].

Improvements at a procedure level, or as a result of combination with other techniques,

allowed the emergence of a diverse array of FISH-based assays [12]. One example of this is the

application of peptide nucleic acid (PNA) as probes. PNA is a DNA mimic composed by a neu-

tral polyamide backbone with recognized superior hybridization features, such as improved

thermal stability of the duplexes [13,14], easier diffusion through the bacterial envelope [15]

and increased resistance to nucleases and proteases [3,16,17].

Even though improvements to FISH are noticeable, its outcome is still influenced by a wide

variety of abiotic and biotic variables and the way they interplay with each other [18,19,20].

While biotic variation is mainly attributed to the physiological state of microorganisms, abiotic

variation is mainly associated to protocol implementation, such as the type of fixative used

(aldehyde or alcohol-based fixation), composition of the hybridization solution, hybridization

time and temperature. Recent works have successfully disclosed the effect of temperature,

time, pH, formamide, probe and dextran sulfate concentration in PNA-FISH through the

application of response surface methodology (RSM) [19,21]. However, a systematic study

addressing the effects of the type of fixation/permeabilization protocol in PNA-FISH is

lacking.

This work aimed to disclose the effect (and interplay) of different strategies in the fixation/

permeabilization step on PNA-FISH efficiency for bacteria. To this end, three different per-

meabilization compounds, ethanol, triton X-100 and lysozyme were combined with parafor-

maldehyde in a series of fixation/permeabilization protocols. Response surface methodology

was then used to model the hybridization of a universal Eubacteria PNA probe (EUB338)

[21,22] and signal quantification was assessed by flow cytometry.

Materials and methods

Bacterial strains

The bacterial strains used in this study were the ones selected in previous works of PNA-FISH

modelling and optimization [19,21], including Pseudomonas fluorescens ATCC 13525, Escheri-
chia coli CECT 434, Staphylococcus epidermidis RP61A, Listeria innocua CECT 910 and Bacillus
cereus. All strains were grown on tryptic soy agar (TSA) [3% (wt/vol) tryptic soy broth and

1.5% (wt/vol) agar] (Liofilchem, Italy) at 30˚C and streaked onto fresh plates every 2 or 3 days.

PNA-FISH method

To evaluate the influence of the type of fixation/permeabilization step in the fluorescent signal

outcome, a PNA-FISH protocol similar to the one described in Rocha et al. [19] and Santos

et al. [21] was implemented, followed by signal quantification using flow cytometry. A
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universal PNA probe EUB338 (5’-TGCCTCCCGTAGGA-3’),based on the work of Amann

et al. [22], which recognizes a conserved region of the 16S rRNA in the domain Eubacteria,

was used. The probe was synthesized and labelled at the N terminus with AlexaFluor488 via a

double 8-amino-3,6-dioxaoctanoic acid (AEEA) linker (Panagene, South Korea).

Overnight grown bacterial cells were harvested from plates and suspended in phosphate-

buffered saline (PBS) (137mM NaCl [Sigma, USA]; 2.7mM KCl [Sigma]; 10mM Na2H-

PO4.2H2O [Sigma] and 1.8mM KH2PO4 [Sigma]) to a final concentration of 108 to 109 cells/

mL. For sample fixation/permeabilization, three strategies were evaluated, in representation of

different classes of permeabilizers: organic solvents (ethanol), detergents (triton X-100) and

enzymes (lysozyme). The ranges selected are presented in Table 1. The conditions were

selected to cover the normally used procedures described in the literature [9–11,14,23–25].

One mL of previously prepared cell suspensions were pelleted by centrifugation at 10,000 ×
g for 5 min, resuspended in 400 μL of 4% (wt/vol) paraformaldehyde (Sigma) and incubated at

room temperature according to the experimental design. After centrifugation at 10,000 × g for

5 min, the pellet was resuspended in 500 μL of ethanol (Fisher Scientific, USA), triton X-100

(Sigma) or lysozyme (from chicken egg white, ~70000 U/mg—Sigma) and incubated at -20˚C,

room temperature or 37˚C, respectively, according to the experimental design. For hybridiza-

tion, 100 μL of the previously fixed bacteria cells were pelleted by centrifugation at 10,000 × g
for 5 min and resuspended in 100 μL of hybridization solution. The composition of the hybrid-

ization solution used took into consideration the optimum conditions already evaluated in

previous studies [19,21] with the exception of probe concentration that was kept at 200 nM.

Briefly, hybridization solution for E. coli and P. fluorescens contained 2% (wt/vol) dextran sul-

fate (average 500,000 Molecular Weight—Sigma), 0.1% (vol/vol) triton X-100 (Sigma), 5.5%

(vol/vol) formamide (Sigma) and 50 mM Tris-base (pH 10; Sigma). For L. innocua and S. epi-
dermidis it contained 10% (wt/vol) dextran sulfate, 0.1% (vol/vol) triton X-100 (Sigma), 5.5%

(vol/vol) formamide (Sigma) and 50 mM Tris-HCl (pH 8; Sigma). Finally, for B. cereus the

solution had the same composition as the one used for L. innocua and S. epidermidis except for

the formamide concentration, which was of 49.5% (vol/vol). Samples were hybridized at 60˚C

for 55 min, except for B. cereus samples that were incubated for 110 min. Negative controls

were prepared using the same conditions stated previously and resuspended in hybridization

Table 1. Central composite design levels for the variables used to evaluate the influence of the type of fixation/permeabilization protocol in PNA-FISH. For E. coli,
P. fluorescens, L. innocua, S. epidermidis and B. cereus species.

Assay Variables Range and level

−α −1 0 +1 +α

1a x1 Time in Paraformaldehyde 4% (wt/vol) (min) 9.6 30.0 60.0 90.0 110.5

x2 [Ethanol] % (vol/vol) 8.0 25.0 50.0 75.0 92.0

x3 Time in Ethanol (min) 4.8 15.0 30.0 45.0 55.2

1b x1 Time in Paraformaldehyde 4% (wt/vol) (min) 9.6 30.0 60.0 90.0 110.5

x2 [Triton X-100] % (vol/vol) 0.1 0.6 1.3 2.0 2.5

x3 Time in Triton X-100 (min) 4.8 15.0 30.0 45.0 55.2

1c x1 Time in Paraformaldehyde 4% (wt/vol) (min) 9.6 30.0 60.0 90.0 110.5

x2 [Lysozyme] (mg/mL) 0.1 1.1 2.6 4.0 5.0

x3 Time in Lysozyme (min) 4.8 15.0 30.0 45.0 55.2

aExperimental levels set for Paraformaldehyde-Ethanol fixation/permeabilization studies. Ethanol solutions were prepared in deionized H2O.
bExperimental levels set for Paraformaldehyde-Triton X-100 fixation/permeabilization studies. Triton X-100 solutions were prepared in deionized H2O.
cExperimental levels set for Paraformaldehyde-Lysozyme fixation/permeabilization studies. Lysozyme solutions were prepared in PBS.

https://doi.org/10.1371/journal.pone.0196522.t001
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solution without probe. After hybridization, cells were centrifuged, at 10,000 × g for 5 min,

resuspended in 500 μL of washing solution containing 5 mM Tris base (pH 10; Sigma), 15 mM

NaCl (Sigma) and 0.1% (vol/vol) triton X-100 (Sigma) and incubated for 30 min at 60˚C. After

centrifugation, at 10,000 × g for 5 min, the pellet was resuspended in 500 μL sterile saline solu-

tion, 0.9% (wt/vol) NaCl (Sigma). Each experiment was performed in triplicate.

Flow cytometry analysis

The fluorescence intensity of hybridized samples and negative controls was quantified by a

Sony EC800 flow cytometer (Sony Biotechnology Inc., USA) equipped with a 488 nm argon

ion laser. Forward angle light scatter (FS), side angle light scatter (SS) and green (FL1) fluores-

cence were detected at logarithmic scale. A minimum of 40,000 events falling into the bacterial

gate defined on the FS-SS plot were acquired per sample at a flow rate of 20 μL/min. The data

was analysed with Sony analysis software (Sony Biotechnology Inc), and the average fluores-

cence intensity was determined for each triplicate experiment.

Response surface methodology (RSM)

The evaluation of the impact that each type of fixation/permeabilization step in the fluorescent

signal outcome of bacteria was accessed recurring to RSM, accordingly to the procedure

applied by Santos et al. [21]. The average fluorescence intensity obtained after PNA-FISH was

used as the dependent variable.

Central composite designs (CCD) were set up for P. fluorescens, E. coli, S. epidermidis, L.

innocua and B. cereus using the statistical software Design Expert1 10.0.5.0 (Stat-Ease Inc.,

USA) to estimate the coefficients of the model. The range and levels of all variables were

defined according to previous studies [9–11,14,23–25]. Each CCD included 23 factorial points

(coded at ± 1), 6 axial points (coded as ± α) that represent extreme values used for the estima-

tion of the model curvature and 6 centre points (all factors at coded level 0) repeated to take

into account the experimental error [26,27]. Therefore, each design matrix consisted of 20

PNA-FISH experiments.

Statistical analysis

In order to infer the best fixation/permeabilization procedure for all five species, the average

fluorescence intensity values obtained by flow cytometry were introduced in Design Expert1

10.0.5.0 software to fit a quadratic model and each obtained model was analysed using analysis

of variance (ANOVA). The interaction of the three independent variables and their effect on

the fluorescence intensity was analysed by constructing the response surface and contour

plots. The optimization function of the software was then used to estimate the optimum condi-

tions within the experimental range that maximized the fluorescence intensity.

A confirmation experiment of the predicted optimum points for the 3 fixation/permeabili-

zation protocols was performed simultaneously for each species in triplicate. The fluorescence

intensity obtained in the confirmation experiments was evaluated using a one-way ANOVA

followed by Tukey’s test to assess the significance between the different fixation/permeabiliza-

tion protocols for each species. The ANOVA and Tukey’s test analysis were performed in the

software GraphPad Prism 5 (GraphPad Software, Inc., USA).

Results and discussion

This work intended to study and model the effect of different fixation/permeabilization strate-

gies of bacteria during a PNA-FISH procedure. This step is of the utmost importance in FISH,

Influence of the fixation/permeabilization step on PNA-FISH for the detection of bacteria
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since it can dictate the success or failure of the whole procedure. To model its effect, RSM was

applied to the hybridization data obtained from 3 Gram-positive (S. epidermidis, L. innocua
and B. cereus) and 2 Gram-negative species (P. fluorescens and E. coli). These species were

selected in order to include bacteria with different cell wall thicknesses (from thin, e.g. Gram-

negative P. fluorescens [2.41 ± 0.54 nm, values for P. aeruginosa excluding the outer mem-

brane], to thick cell walls, e.g. Gram-positive B. cereus [33.3 ± 4.7 nm, values for B. subtillis]
[28]) and as a follow up of previous modelling and optimization works [19,21].

Initial CCD designs were based on the values typically described in the literature for FISH

fixation/permeabilization protocols [9–11,14,23–25]. It should be noticed that paraformalde-

hyde at a concentration of 4% (wt/vol) is a common step to most of the procedures (as this is a

preferential compound for fixative purposes) and the main procedural differences are related

to the type of permeabilization agent used, as well as the concentration and exposure periods

[1,6]. The application of the fixation/permeabilization protocols according to the CCD designs

and their application to PNA-FISH for the five different species under study was successful,

since significant quadratic models (for at least one of the test conditions at each fixation/per-

meabilization combination) (p-value<0.05) and satisfactory coefficients of determination (R2)

were obtained (Tables A and B in S2 File). This allowed to determine the optimal conditions

for maximum fluorescence (Table 2).

As in previous optimization studies, differences in fluorescence intensity values between

species are observed. The fluorescence signal for positive samples ranged from 17.4 to 2449.0

a.u., depending on the microorganism and condition tested. Overall, higher values were

obtained for Gram-negative over Gram-positive species, except for B. cereus. These variations

are known to be, at a certain level, intrinsic to the target RNA content and probe accessibility

[19,21]. As significant variations in the fluorescence intensity can be found between species

when applying different fixation/permeabilization protocols for each bacteria (see Table 2 and

Fig 1D).

For each fixation/permeabilization method, the results in Table 2 were transposed to level

factors and plotted into a radar chart for further analysis (Fig 1).

Treatment with paraformaldehyde and ethanol

Ethanol is used in FISH procedure as a fixative and as a permeabilization agent [7,11,14]. Etha-

nol fixative capability, similarly to other alcohols, arises from the coagulation, precipitation

and denaturation of proteins, through the interference with their hydration cloud [7,29]. On

the other hand, permeabilization is accomplished by promoting the solubilization of cell enve-

lope components [8].

Analyzing Fig 1A, a Gram-specific behavior is observed in the optimal fixation/permeabili-

zation protocol found for each species. Gram-negative P. fluorescens and E. coli required longer

paraformaldehyde steps (above 50 minutes) combined with low ethanol concentrations for

short periods (25% [vol/vol] for 15 minutes). These findings are not surprising, since previous

reports using DNA probes, stated that hybridization of Gram-negative species can be success-

fully achieved using only paraformaldehyde as a fixation/permeabilization agent [5,10,11].

This arises from the fact that aldehyde fixatives present also a weak detergent-like activity [5].

On the other side, Gram-positive S. epidermidis and B. cereus required exposure to higher etha-

nol concentrations (50% and 75% [vol/vol], respectively) or, as found for L. innocua, a longer

ethanol step (45 minutes at 25% [vol/vol]) for an effective permeabilization. Again, this was an

anticipated result since Gram-positive bacteria are known to be harder to permeabilize [10].

Overall, these optimizations are directly connected with the specific cell envelope architecture,

while Gram-positive species cell wall is mainly composed of thick and rigid peptidoglycan

Influence of the fixation/permeabilization step on PNA-FISH for the detection of bacteria
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structure intertwined with teichoic and lipoteichoic acids, Gram-negative species present a

small layer of peptidoglycan between the cell membrane and an outer membrane [30–32].

Furthermore, it is also possible to observed that short paraformaldehyde steps of 30 min-

utes, are preferred for Gram-positive species, excluding B. cereus. These results are in line with

previous reports stating detrimental effects of cross-linking agents in terms of fluorescent out-

come on whole cell hybridization of Gram-positive species [33,34].

Treatment with paraformaldehyde and triton X-100

Triton X-100 is a nonionic chemical surfactant used in FISH in the fixation/permeabilization

step or/and as part of the hybridization solution [23–25,35]. It is a very effective detergent in

the solubilization of phospholipids, due to the high binding affinity to hydrophobic molecules.

Permeabilization arises from a channel-forming effect that results from two main events:

Table 2. Optimum PNA-FISH fixation/permeabilization protocols predicted through RSM models for each species. Fixation/permeabilization combinations

included: paraformaldehyde and ethanol, paraformaldehyde and triton X-100 and paraformaldehyde and lysozyme. Negative control, predicted and average obtained fluo-

rescence with error values (standard deviation) under optimum conditions are presented.

Bacteria Fixation/

Permeabilization

Protocol

Optimum conditions Predicted

Fluorescence (a.

u.)

Confirmation Experiments

Time in

Paraformaldehyde 4%

(wt/vol) (min)

[Permeabilization

Agent] % (vol/vol) or

(mg/mL)

Time in

Permeabilization

Agent (min)

Obtained

Fluorescence (a.

u.)

Negative

Control (a.

u.)

P.

fluorescens
Paraformaldehyde

+ Ethanol

53.1 25.0 15 215.3 370 ± 30 7.6

Paraformaldehyde

+ Triton X-100

70.0 2.0 15 344.0 420 ± 70 16.0

Paraformaldehyde

+ Lysozyme

90.0 1.1 15 348.5 350 ± 40 8.7

E. coli Paraformaldehyde

+ Ethanol

89.9 25.1 15 205.8 290 ± 10a 11.4

Paraformaldehyde

+ Triton X-100

82.9 2.0 15 179.3 278 ± 4a 11.7

Paraformaldehyde

+ Lysozyme

90.0 1.1 15 160.6 151 ± 7 8.9

S.

epidermidis
Paraformaldehyde

+ Ethanol

30.0 51.3 15 105.2 102 ± 1b 8.8

Paraformaldehyde

+ Triton X-100

90.0 2.0 45 67.2 75.2 ± 0.6b 7.5

Paraformaldehyde

+ Lysozyme

90.0 4.0 15 28.9 38 ± 2b 7.5

L. innocua Paraformaldehyde

+ Ethanol

30.0 25.0 45 126.5 160 ± 10 12.6

Paraformaldehyde

+ Triton X-100

35.2 2.0 45 146.4 210 ± 30 7.5

Paraformaldehyde

+ Lysozyme

90.0 1.5 45 163.4 180 ± 40 7.6

B. cereus Paraformaldehyde

+ Ethanol

90.0 75.0 15 2136.8 1700 ± 200c 21.9

Paraformaldehyde

+ Triton X-100

88.8 0.6 15 1861.0 1000 ± 300 21.6

Paraformaldehyde

+ Lysozyme

86.0 1.1 15 1062.7 1200 ± 100 18.0

aIndicates significant differences among the fixation/permeabilization protocol and the one using lysozyme, p<0.05
bIndicates significant differences among all fixation/permeabilization protocols, p<0.05
cIndicates significant differences among the fixation/permeabilization protocol using ethanol and the ones using triton X-100 and lysozyme, p<0.05.

https://doi.org/10.1371/journal.pone.0196522.t002
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interaction and substitution of cell envelope lipid molecules and conformational changes in

cell envelope proteins [8,36].

Analyzing paraformaldehyde and triton X-100 testing results, Fig 1B, is possible to observe

a Gram-specific pattern, as with previous paraformaldehyde/ethanol optimizations. Overall,

Fig 1. Optimum PNA-FISH fixation/permeabilization protocol and fluorescence intensity outcome obtained for each species. Radar chart representation in terms

of level factors (-1 [inner vertices] to 1 [outer vertices]): A—Paraformaldehyde and ethanol; B—Paraformaldehyde and triton X-100; C—Paraformaldehyde and

lysozyme. D—Average fluorescence intensity and error bars (standard deviation) of the confirmation experiment for the optimum fixation/permeabilization protocol

for each species (P. fluorescens—green; E. coli—red; S. epidermidis—yellow; L. innocua—brown and B. cereus—blue).

https://doi.org/10.1371/journal.pone.0196522.g001
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Gram-negative species, P. fluorescens and E. coli, required less exposure to triton X-100 (15

minutes) in order to achieve the highest fluorescence intensity than Gram-positive species, L.

innocua and S. epidermidis (45 minutes).

An interesting finding regarding B. cereus optimal protocol was encountered, since the opti-

mal triton X-100 concentration and exposure time were considerably lower (0.6% [vol/vol] for

15 minutes) than those found for the other Gram-positive species. This could result from the

use of a relatively high formamide content in the hybridization solution (resulting from previ-

ous optimizations—49.5% [vol/vol]), which is known to have a damaging effect on the integ-

rity of the cell wall and thus might present a synergetic effect with triton X-100 treatment [21].

Treatment with paraformaldehyde and lysozyme

Lysozyme is a lytic enzyme that hydrolyses the β-1,4 glycosidic bonds between N-acetylgluco-

samine and N-acetylmuramic acid of peptidoglycan [37]. Since peptidoglycan is a common

component of the cell wall of Eubacteria, especially in Gram-positive species, this enzyme is

typically used for permeabilization of bacteria in FISH procedures [9,11,23,37]. As with other

lytic enzymes, lysozyme has a narrow applicability spectrum when compared to chemical per-

meabilization. This results from the specificity of the enzyme-target reaction and loss of activ-

ity if somehow their action site is inaccessible and/or modified [37].

Analyzing paraformaldehyde and lysozyme results (Fig 1C), a Gram-specific pattern is

observed again. Gram-negative species present a higher fluorescent outcome with a fixation/

permeabilization step with long exposures to paraformaldehyde (90 minutes) and short expo-

sures to lysozyme (15 minutes) at low concentrations (1.1 mg/mL). Generally, in Gram-nega-

tive species the outer membrane precludes the access to lytic enzymes; thus, membrane

removal by detergents or chelating agents is usually required for a successful permeabilization

[38]. However, the compromised membranes of fixed cells assure the enzyme access to the

peptidoglycan. In fact, an extended exposure to lysozyme could result on cell lysis even before

Gram-positive cells became permeable [9,37]. The results obtained here seem to confirm this

last observation, since higher exposure to lysozyme would induce a lower PNA-FISH fluores-

cence outcome in Gram-negative bacteria, likely due to extensive damage in the cell envelope.

In Gram-positive species, B. cereus presents a behavior similar to the one observed for

Gram-negative species. The optimal protocol for L. innocua required an higher lysozyme expo-

sure (45 minutes), while S. epidermidis required an higher lysozyme concentration (4.0 mg/

mL). This species-specific behavior could be related to lysozyme sensitivity/resistance of each

species, the degree of cross-linking, type and content of glycan modifications in the peptido-

glycan, which are characteristics that can affect lysozyme activity [39–44]. One clear example

of this is the observed low fluorescence outcome of S. epidermidis (Table 2). In fact, the Staphy-
lococcus genus is known to have a peptidoglycan insensitive to lysozyme activity, resulting

mainly from modifications (O-acetylation) of peptidoglycan monomers [39]. As such, S. epi-
dermidis, was expected to be poorly permeabilized by paraformaldehyde/lysozyme protocols.

Towards a fully optimized PNA-FISH procedure

Following fixation/permeabilization protocol optimization for each species, the predictions

made by the different models were confirmed experimentally. From the confirmation experi-

ments, a general agreement between the predicted and the obtained fluorescence values was

observed (Table 2). Furthermore, these assays also enable a comparison between the different

fixation/permeabilization protocols (Table 2 and Fig 1D). For B. cereus the fixation/permeabi-

lization protocol using ethanol performed significantly better than the other two tested

(p<0.05). Regarding E. coli and S. epidermidis both ethanol and triton X-100 protocols worked
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significantly better than the one using lysozyme (p<0.05). For P. fluorescens and L. innocua all

tested fixation/permeabilization protocols provided similar PNA-FISH outcomes (p>0.05).

Based on the above, paraformaldehyde and ethanol was the fixation/permeabilization PNA--

FISH protocol which allowed an overall higher fluorescence outcome in all five Eubacteria spe-

cies tested.

The results obtained here can be combined with previous optimizations and subsequently

be used for the development of new PNA-FISH methodologies for microbial detection [19,21].

In fact, putting all this information together, an almost fully optimized PNA-FISH procedure

can be obtained in accordance to the properties of the target bacteria (Table 3).

Although the results point towards a species-specific optimal fixation/permeabilization pro-

tocol, a compromise between protocol and fluorescence outcome in PNA-FISH is possible.

This arises from the observation that highly fluorescent species, such B. cereus and P. fluores-
cens, will exhibit a similar or higher fluorescence outcome when compared other low fluores-

cent-species, such S. epidermidis, E. coli and L. innocua, even when protocol conditions are

very different from their optimal procedures (Figures A, B and C in S1 File). These observa-

tions have particular significance in multiplex applications where several species can be tar-

geted in a single assay [5,45]. Namely, the species with lower rRNA content (thus weaker basal

fluorescence signal) might be favored in terms of hybridization and permeabilization proto-

cols, so the population’s signals can be balanced.

Finally, it is possible that the optimized conditions for the fixation/permeabilization proto-

cols can be applicable to other microorganisms when PNA probes are used. Nonetheless,

adjustments to the optimum conditions described in this work cannot be excluded, especially

for target species with very different cell envelope compositions. It is also important to notice

that the optimizations described above are likely not applicable to DNA, RNA and other

nucleic acid mimics probes such as LNA or 2’OMe RNA, as their molecular structure differs

markedly from PNA oligonucleotides [4].

Conclusions

In this work we have shown that paraformaldehyde fixation followed by organic solvent (etha-

nol), detergent (triton X-100) or enzymatic (lysozyme) permeabilization are suitable strategies

for PNA-FISH procedures targeting Eubacteria. However, a unique optimal protocol was not

found for all tested species. Despite this, of the three tested strategies, paraformaldehyde fol-

lowed by ethanol has proven to be the best fixation/permeabilization protocol for PNA-FISH

procedures. The differences between optimal protocols obtained were mainly attributed to the

inherent differences in the cell envelope, more precisely in terms of peptidoglycan thickness.

Table 3. Optimized methodological variables for PNA-FISH. Conditions for 5 Gram-positive and Gram-negative species, obtained by RSM in this work and in previous

studies.

Variable Fixation/Permeabilization Hybridization

Paraformaldehyde 4% (wt/

vol) (min)

Ethanol %

(vol/vol)

Ethanol

(min)

Time

(minutes)

Temperature

(˚C)

Formamide (%

vol/vol)

pH DS %

(wt/vol)

Probe

(nM)

Bacteria P.

fluorescens
50 25 15 55 60 5.5 10 2 � 300

E. coli 90 25 15 55 5.5 10 2

L. innocua 30 25 45 55 5.5 8 10

S.

epidermidis
30 50 15 55 5.5 8 10

B. cereus 90 75 15 120 49.5 8 10

https://doi.org/10.1371/journal.pone.0196522.t003
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As such, for Gram-negative species with a thinner peptidoglycan cell wall structure, the combi-

nation of a short step with low concentration of permeabilizant provided the best PNA-FISH

outcomes. On the contrary, Gram-positive species with a thicker peptidoglycan cell wall struc-

ture, a longer step and/or higher permeabilizant concentrations were required for an optimal

PNA-FISH outcome (Fig 2). Additionally, the duration of the paraformaldehyde step was

identified as another driving factor for Gram-positive species, especially for ethanol proce-

dures. Prolonged exposure proved to have a detrimental effect on the fluorescence outcome

and as such, short procedures were generally preferred.

Further research, could focus in the expansion of the scope of this optimization to a broader

range permeabilization compounds, microorganisms, including species from the other two

Domains, Archaea and Eukarya, and eventually, to a set of different nucleic acid mimic probes.

Supporting information

S1 File. Surface response plots for the fluorescence response of the five tested bacteria

regarding each fixation/permeabilization protocol tested.

(DOCX)

S2 File. Adjusted quadratic models and analysis of variance (ANOVA) parameters

obtained for all tested bacteria according to the fixation/permeabilization protocol tested.

(DOCX)

S3 File. Confirmations data file.

(XLSX)

Fig 2. Identification of the driving factors that influence each fixation/permeabilization protocol in PNA-FISH for Gram-positive and Gram-negative species

(except B. cereus). P—Permeabilizant; Pf—Paraformaldehyde; Et—Ethanol; Tx—Triton X-100; Lyz—Lysozyme; [Xx]—Concentration of permeabilizant X; Xx—

Duration of substance X application.

https://doi.org/10.1371/journal.pone.0196522.g002
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