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Abstract

Background: Actinobacillus succinogenes is a promising bacterial catalyst for the bioproduction of succinic acid
from low-cost raw materials. In this work, a genome-scale metabolic model was reconstructed and used to assess
the metabolic capabilities of this microorganism under producing conditions.

Results: The model, iBP722, was reconstructed based on the functional reannotation of the complete genome
sequence of A. succinogenes 130Z and manual inspection of metabolic pathways, covering 1072 enzymatic
reactions associated with 722 metabolic genes that involve 713 metabolites. The highly curated model was
effective in capturing the growth of A. succinogenes on various carbon sources, as well as the SA production under
various growth conditions with fair agreement between experimental and predicted data. Calculated flux
distributions under different conditions show that a number of metabolic pathways are affected by the activity of
some metabolic enzymes at key nodes in metabolism, including the transport mechanism of carbon sources and
the ability to fix carbon dioxide.

Conclusions: The established genome-scale metabolic model can be used for model-driven strain design and
medium alteration to improve succinic acid yields.
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Background
Actinobacillus succinogenes is a gram-negative facultative
anaerobic bacterium and is one of the major natural pro-
ducers of succinic acid (SA). It can grow on a broad
range of substrates, including arabinose, cellobiose, fruc-
tose, galactose, glucose, lactose, maltose, mannitol, man-
nose, sucrose and xylose, producing a mixture of
by-products (e.g., SA, formic acid (FA), acetic acid (AA),
and ethanol (EtOH)) as the main by-products [1, 2]. Its
tolerance to high sugar concentrations (up to 160 g.L− 1

of glucose [3]) and high levels of organic acids [4], as
well as its capnophilic nature [5], make this microorgan-
ism potentially interesting for the production of SA at
the industrial scale. High-titer succinate production
using low-cost feedstocks like cane molasses or corn
straw has been obtained [2, 6–15]; however, significant

amounts of other organic acids were also produced, in-
creasing the downstream processing costs, which makes
this bioprocess less competitive. Currently, SA is mainly
produced from petrochemical feedstocks through the
hydrogenation of maleic acid or maleic anhydride [16].
However, the bio-based production using low pH yeast
fermentation [17–19] or anaerobic fermentation using
bacteria [20–23] has been successfully implemented by
companies like Myriant [24], BASF [25] or BioAmber
[26], offering economically and ecologically attractive al-
ternatives to the conventional petro-based SA produc-
tion [27–29]. Some examples of SA producing systems
are given in Table 1, including naturally-producing
bacteria like Basfia succiniciproducens and Mannheimia
succiniproducens and genetically engineered organisms
such as E. coli or S. cerevisiae. So far, natural producers
appear to outperform most engineered strains, but devel-
opments in strain design and fermentative processes are
expected to promote the production of bio-based SA by
metabolically engineered microorganisms. For instance,
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M. succiniproducens has been metabolically engineered by
removing competing pathways, resulting in an increase in
the SA yield from 0.45 to 0.76 g of SA per g of glucose [30].
Under optimized conditions, the A. succinogenes

wild-type strain is able to produce up to 98 g.L− 1 of SA
with an approximate yield of 90% (w/w) on glucose [31].
The optimization of bioprocesses has proven to further
increase SA production by using high concentrations of
carbon dioxide (CO2) and/or hydrogen (H2) [32, 33].
Other studies have shown that the redox state of the fer-
mentation broth affects SA production, which can be
improved by manipulating the supplementation of oxi-
dant and reducing agents [34, 35]. Yet, due to the accu-
mulation of other fermentative by-products, SA yields
are still far below the maximum theoretical yield of
1.12 g.g− 1 of glucose consumed (YSA/Glc) [36]. A com-
prehensive understanding of the metabolism and the
phenotypic responses to environmental perturbations is
a major step for developing efficient bioprocesses for SA
production.
Genome-scale metabolic models (GSMMs) have

proven to be powerful tools for understanding and
re-designing the metabolism of microbial strains. For in-
stance, the optimization of SA production in E. coli or S.
cerevisiae has been achieved by applying metabolic en-
gineering strategies supported by in silico modelling of
metabolic networks [37–40]. There are three main
pathways for SA biosynthesis, including the tricarboxylic
acid (TCA) cycle in the oxidative direction, the glyoxy-
late shunt and the reductive TCA pathway [41]. Typic-
ally, under aerobic conditions, either the oxidative TCA
cycle or the glyoxylate shunt can be used for SA

production and several studies have used both S. ce-
revisiae and E. coli to exploit these metabolic pathways
[38, 40]. The redirection of the carbon flux through the
glyoxylate shunt provides some advantages over the oxi-
dative TCA cycle, mainly because the decarboxylation of
isocitrate to succinyl-CoA leads to carbon loss [40] and,
in the case of S. cerevisiae, the SA channelling from the
mitochondria to cytosol is avoided as TCA cycle en-
zymes are located in mitochondria. However, if a reduc-
tive TCA pathway is used, a 2-fold maximum theoretical
yield (2 mol.mol− 1 of glucose) can be achieved com-
pared to the oxidative route (1 mol.mol− 1 of glucose)
[41]. Many organisms, such as E. coli and S. cerevisiae
have been tested for SA production under anaerobic
conditions using the reductive branch of the TCA cycle
[38, 42]. However, reducing power limitations (i.e.
NADH) or redox balance issues have shown to have
an impact on the final SA yields [41]. Metabolic en-
gineering strategies driven by in silico modelling may
allow to overcome these disadvantages, both under
aerobic and anaerobic conditions. Strategies for in-
creasing energy and/or cofactor pools [43–45], to
overcome enzyme limitations [46] or to decrease
by-product generation [37] are just a few examples
that have been exploited [47].
A. succinogenes produces SA anaerobically through the

reductive branch of the TCA cycle (i.e., C4 pathway)
using fumarate as the final electron acceptor, which
makes this metabolic branch highly dependent on the
redox state of cultures. Phosphoenolpyruvate (PEP) node
controls the amount of flux that is directed towards the
C4 and C3 pathways, adjusting the level of fermentative

Table 1 Some examples of SA bio-production systems using natural producers or metabolic engineered organisms

Organism Genetic modifications Culture conditions Carbon
sources (CS)

SA Yield
(g.gCS

−1)
References

B. succiniciproducens Anaerobic, continuous Glycerol 1.02 [21]

M. succiniproducens Anaerobic, batch Glucose 0.59 [71]

M. succiniproducens – Deletion of ldhA, pflB, pta, and ackA genes Anaerobic, fed-batch Glucose 0.76 [30]

A. succinogenes Anaerobic, continuous Xylose 0.80 [63]

A. succinogenes Anaerobic, batch Glucose 0.74 [72]

A. succinogenes Anaerobic, repeated fed-batch Glucose 0.88 [31]

E. coli – Deletion of pflB, ldhA, ppc genes
– Heterologous expression of pckA
from B. subtilis

Anaerobic, batch Corn stalk hydrolysate 1.02 [43]

E. coli – Deletion of iclR, icd, sdhAB, ackA-pta, poxB
– Heterologous expression of pepc gene
from Sorghum vulgare

Aerobic, batch Glucose 0.72 [73]

S. cerevisiae – Deletion of sdh3, ser3, ser33
– Overexpression of ICL1

Aerobic, batch Glucose 0.05 [37]

S. cerevisiae – Deletion of pdc1, pdc5, pdc6, fum1, gpd1
– Overexpression of pyc2, mdh3,
fumC and frds1

Aerobic, batch Glucose 0.14 [19]

Mass yields are given in g.g− 1 of carbon source (CS)
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products generated by each pathway. Other metabolic
nodes like oxaloacetate (OAA) and malate (MAL) have
shown to link the C4 and C3 pathways via decarboxylat-
ing enzymes, i.e. oxaloacetate decarboxylase and the
NADPH-dependent malic enzyme, respectively. The split
of carbon flux at these branching points is largely influ-
enced by various factors, such as the availability of CO2,
pH or carbon sources. It has been previously shown that
an increase in the concentration of dissolved CO2 in the
fermentation broth through the supplementation of
magnesium carbonate [48] or sodium bicarbonate [32]
can promote an increase in the carbon flow toward the
C4 pathway, thus increasing the production of SA. The
presence of carbonic anhydrases (putative coding
gene, Asuc_1199), which interconverts CO2 and bicar-
bonate (HCO3

−), may also contribute to increase CO2

fixation [12, 49].
Here, a GSMM (named iBP722) representing a wide

range of metabolic capabilities of A. succinogenes 130Z is
proposed. The model allows predicting and analysing the
impact of stoichiometric and physiological constraints
known to apply at steady-state conditions. Although the
central carbon metabolism of A. succinogenes 130Z has
been comprehensively described [32, 33, 50, 51], the over-
all representation of metabolic pathways associated with
various catabolic and anabolic capabilities of the organism
are now made available. The biosynthetic pathways for vi-
tamins, cofactors and other biomass building blocks are
described, as well as respiratory and energy consuming as-
similatory pathway. This model provides a detailed insight
on the metabolism of A. succinogenes that can be system-
atically explored to improve the bioproduction of SA.

Methods
Metabolic functional annotation
The complete genome sequence of A. succinogenes 130Z
(GenBank accession number NC_009655) [50] was used
for the functional annotation of genes based on hom-
ology searching methods. The annotated genes with po-
tential metabolic roles were manually inspected and
associated with the corresponding coding enzyme(s) and
biochemical reaction(s). An internally developed plat-
form was used to compute, assign and curate gene meta-
bolic functions. This platform couples automated
annotation tools with manual curation procedures that
allows the assignment of metabolic functions to coding
sequences (CDSs) of a particular genome. The pipeline
consists in five main steps (see Fig. 1):

(1) The application of homology search tools like
BLAST [52] and HMMER [53] against sequence
databases, such as UniProt [54] to find the best
alignment between sequences. A ranked list of hits
with the most significant matches to each query is

obtained with the respective information, including
scores and protein features that may contain
Enzyme Commission (EC) numbers.

(2) The computation of “functional scores” based on
BLAST and HMMER scores. As the range of
enzymatic functions attributed to each CDS can
vary from tool to tool, a second score was
computed, i.e. so-called functional score, in order to
propose the best candidate metabolic functions. Be-
sides BLAST and HMMER scores, a functional
score was computed similarly to the method used
by Merlin [55], which is based on the frequency of
the EC number in the homology hits and on the
taxonomy distance between the target strain and
other strains within hit results. This weighed func-
tional scores range between 0 and 1 (1 correspond-
ing to a high confidence score).

(3) Assignment of putative metabolic function(s). EC
numbers associated with the highest functional
score are automatically attributed to each CDS, as
well as the corresponding metabolic reaction(s)
from an internal reactions database.

(4) The assignment of metabolic functions to each CDS
is manually revised, as automatic assignments may
fail when more than one high scoring EC number is
found and/or EC number(s) are incorrectly
associated in databases. Therefore the user is
allowed to inspect all putative assignments and
select the most appropriate or modify the
functional assignment, which can be based on
previous knowledge or other assumptions defined
by the user. Furthermore, more than one CDS can
be associated to the same EC number, which in
many cases consists of subunits of the same
multimeric enzyme. The classification of multimeric
or monomeric subunits is also defined at this stage
using an internal database.

(5) After validation of functional assignments and
enzyme subunits, the association of metabolic
reactions is carried out based on the associated EC
number(s) and/or previous knowledge using as a
reference an internal reactions database. This step is
perhaps the most critical during the reconstruction
of the metabolic network, as it will define the set of
stoichiometric reactions that characterize a specific
organism.

To note that this annotation pipeline is flexible enough,
such that unassigned CDSs in step (3) can be later
reviewed, particularly during the gap filling process.

Construction of the metabolic network
The GSMM was initially constructed by compiling the an-
notated metabolic genes and their corresponding coding
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enzyme(s) and biochemical reaction(s). Additionally,
spontaneous and transport reactions from databases like
KEGG [56] and Transporter Classification Database
(TCDB) [57] were added. Some metabolic reactions, al-
though not associated with genes, were also included due
to evidences found in literature. The preliminary draft
model was then processed to:

� Identify metabolic gaps (or missing reactions)
that either consume or produce isolated (or
dead-end) metabolites within the metabolic

network. Then, each dead-end metabolite was
inspected to search for metabolic reactions that
consume, produce or transport this metabolite.
Typically, MetaCyc or KEGG databases were
used for gap-filling, i.e. to identify the sets of
biochemical reactions that link each dead-end to
a metabolite in the network. When several alter-
natives are found, a manual inspection is re-
quired and sequence-based homology searches
using one or more amino acid sequences col-
lected from potential candidates are used to find

Fig. 1 Metabolic functional annotation of CDSs. The implemented framework uses an automated annotation tool coupled with manual curation
procedures that allows the assignment of metabolic functions to CDSs of a particular genome. The pipeline comprises five main steps: (1)
homology search CDSs against databases like UniProt; (2) computation of functional scores based on similarity; (3) assignment of putative
metabolic function(s); (4) manual curation of functions; and finally (5) association of metabolic reactions
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the most likely reactions set in the metabolic
network of A. succinogenes 130Z.

� Infer and correct the mass and charge balance of
biochemical reactions. Stoichiometric coefficients of
compounds in reactions are corrected, such that the
reaction is balanced for mass and charge, usually by
adding missing protons or water molecules.

� Identify and correct the reversibility of reactions
based on their thermodynamic properties and
information found in literature. Databases like
MetaCyc [58] and tools like eQuilibrator [59]
were used.

� Include a biomass reaction representing the basic
macromolecular composition of A. succinogenes in
terms of proteins, DNA, RNA, lipopolysaccharide
(LPS), phospholipids, peptidoglycan, glycogen and
cofactors and vitamins (CAV). The synthesis of each
macromolecule was also represented by individual
reactions considering the building blocks molar
composition. For instance, the synthesis of one gram
of protein was calculated based on the average
amino acids composition using the set of encoded
proteins of the A. succinogenes 130Z genome,
according to the methodology proposed in [60]. The
synthesis of other cellular components, like CAV,
was calculated assuming that each small molecule is
equally present in one gram of CAV. Detailed
information on the biomass composition can be
found in Additional file 1.

Constraints-based flux analysis
Basic stoichiometric modelling methods, such as parsi-
monious flux balance analysis (pFBA) and flux variability
analysis (FVA), were used to interrogate the metabolic
properties and capabilities of the reconstructed GSMM
for A. succinogenes 130Z under varying environmental
conditions. Phenotype simulations were performed by
maximizing the biomass reaction assuming growth under
defined conditions, i.e. defined minimum media contain-
ing basic components required for biomass synthesis, such
as vitamins, minerals and trace metals and explicit carbon,
nitrogen and sulphur sources. Maximum theoretical prod-
uct yields were calculated by maximizing the target prod-
uct instead, ignoring the formation of biomass and ATP
maintenance requirements, such that the costs of product
biosynthesis in terms of carbon, energy and reducing
equivalents were properly evaluated.

Results
A. succinogenes genome-scale metabolic network
The construction of the GSMM for A. succinogenes 130Z
was carried out in three different phases: (1) first, meta-
bolic functions were assigned to genes; (2) then, biochem-
ical reactions and enzymatic complexes (assigning proper

gene-reaction relationships) were compiled to build a draft
metabolic model, (3) which was thereafter completed and
corrected by defining a biomass reaction, identifying net-
work gaps and correcting inconsistencies when comparing
with reported information.
The final iBP722 model consists of 722 unique genes

(open reading frame (ORF) coverage − 35%), 1072 reac-
tions and 713 unique metabolites. The model is available
as a Systems Biology Markup Language (SBML) file at
http://darwin.di.uminho.pt/models and BioModels data-
base [61] assigned with the identifier MODEL1804130001
and detailed information on the curated metabolic network
can be found in Additional file 2.

Model validation
Predicted growth on different carbon sources
The iBP722 model was inspected for the ability to simu-
late the A. succinogenes growth on different conditions.
Model simulations were performed using the OptFlux
software [62] applying FBA-based methods that maximize
the biomass reaction under defined conditions, i.e. ex-
change fluxes were constrained to specific values (usually
experimentally measured fluxes) that allow testing growth
under defined environmental conditions, such as sole car-
bon sources. Some exchange fluxes like those associated
with the exchange of CO2, NH4

+, Pi, H+, vitamins and
trace elements were kept unconstrained (i.e. unlimited up-
take rates) to provide unlimited basic nutrients for bio-
mass synthesis.
A. succinogenes is auxotrophic for three amino acids:

L-glutamate, L-cysteine and L-methionine. Glutamate
auxotrophy is due to the organism’s inability to
synthesize α-ketoglutarate, since the genes encoding for
isocitrate dehydrogenase and α-ketoglutarate oxidore-
ductase enzymes are absent in the genome. A. succino-
genes possesses most of the genes encoding enzymes
associated with the cysteine biosynthetic pathway, but
the absence of an adenylsulfate kinase to assimilate sul-
fate prevents the synthesis of hydrogen sulfide required
for the synthesis of L-cysteine. This organism also lacks
several genes for the biosynthesis of methionine as iden-
tified during the functional annotation process. Given
that, exchange fluxes associated with amino acid auxot-
rophies in A. succinogenes, such as L-cysteine and
L-methionine, were maintained unconstrained, except
for L-glutamate that was limited to a minimum flux
value to support growth requirements and avoid glutam-
ate consumption as an additional carbon source. Further
flux constraints were introduced when inspecting carbon
flux distributions in the central carbon metabolism, and
are further detailed in Table SI 11 (Additional file 2). For
instance, succinyl-CoA ligase reaction was limited to a
zero flux to avoid the formation of succinic acid from
succinyl-CoA, in order to be consistent with in vivo
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observations [33]. Assuming these flux constraints,
growth predictions were computed and compared with
in vivo observations [4, 27].
Growth phenotypes on 22 different carbon sources

under anaerobic conditions were tested and compared
with in vivo growth data from [50] (Table 2 and
Additional file 3).
The model predicted accurately growth on more than

90% of the carbon sources, with only two not supporting
in silico growth (FN = 2). In silico growth on
beta-gentiobiose and D-arabitol was not predicted, as
catabolic and transport reactions were not identified in
A. succinogenes. Further information on transport activ-
ities included in the model is given in Additional file 4.

Predicted yields for fermentation products
The iBP722 model was further validated by predicting
anaerobic production yields and comparing with experi-
mental data from batch and/or chemostat cultures of A.
succinogenes 130Z growing on glucose or xylose at dif-
ferent initial concentrations. [32, 51, 63] (Fig. 2). For
each condition, carbon uptake rates were defined based
on experimental values, except for condition C that was
set to 8 mmol.gDCW− 1.h− 1, and then predicted produc-
tion rates were used to calculate minimum and max-
imum FVA yields for biomass, SA, AA, FA and EtOH
(Yx/S, YSA/S, YAA/S, YFA/S, YEtOH/S, respectively).
FVA spans are given by the difference between the max-
imum and minimum predicted yields while maintaining
95% of the maximum biomass formation.
FVA predictions indicate higher yields for C4

by-products (i.e. SA) compared to C3 by-products (i.e.
AA, EtOH and FA), which is in good agreement with ex-
perimental data; however predicted mass ratios between
fermentative by-products, specifically SA/AA and SA/FA,
are higher compared with in vivo observations, especially
when considering maximum FVA ratios. Yet, FVA spans
indicate a significant flexibility for these ratios, which
might explain variations in the in vivo observations.

Improving model predictions
An FVA analysis was performed to elucidate these dis-
crepancies and the metabolic flexibility associated with

C3 and C4 metabolic pathways in A. succinogenes was
examined. Given a set of flux constraints (e.g. substrate
uptake rates, qS), the predicted flux spans for the main
reactions in the central carbon metabolism were calcu-
lated (Fig. 3a). Flux spans are given by the difference be-
tween the maximum and minimum predicted flux values
of each metabolic reaction while maintaining 95% of the
maximum biomass formation. As shown in Fig. 3b, the
largest flux spans were associated with reactions around
the PEP node (e.g. PEP carboxykinase (PPCK) and pyru-
vate kinase (PYK)), while reactions associated to the
Embden-Meyerhoff-Parnas pathway (glucose-6-pho-
sphate isomerase (PGI), phosphofructokinase (PFK) and
enolase (ENO)) presented the lowest flux spans. Meta-
bolic flux data estimated from 13C-labeling experiments
[33] was further used to assess the accuracy of predicted
flux spans. Most in vivo measurements were between es-
timated flux ranges, except for the CO2 exchange and
formate dehydrogenase (FDHmq) reactions, indicating
that the NADH-producing FDHmq reaction should be
active and CO2 exchange flux should be lower. Changes
in flux constraints associated with CO2 uptake (from un-
limited to a maximum of 4 mmol.gDCW− 1.h− 1) altered
predicted flux spans (Fig. 3c), especially for FDHmq,
pyruvate-formate lyase (PFL) and the FA exchange reac-
tion (EX_FA), indicating a higher flexibility in metabolic
activities linked to FA accumulation.
The production of SA in A. succinogenes is influenced

by several factors, namely the utilized carbon sources
[64] or the availability of CO2 [5, 33, 48]. The iBP722
model was investigated for predicting the metabolic
flexibility associated with the production of SA when
changing CO2 availability or carbon sources, as well as
the reversibility of metabolic reactions like malic enzyme
(ME2) (Fig. 4). FVA yields for maximum growth simula-
tions show that the production of reduced by-products,
particularly EtOH, changes with the carbon source. As
presented in Fig. 4a, the minimum and maximum FVA
yields for ALCD2x under D-sorbitol growth conditions
(0.62 and 0.69 mol.mol− 1) were higher compared to glu-
cose (0.14 and 0.22 mol.mol− 1, respectively), with the
consequent accumulation of higher amounts of EtOH.
Under glucose conditions most of the carbon flux
through the C3 branch is redirected toward the produc-
tion of AA instead, via acetate kinase (ACKr) with the
production of ATP (minimum and maximum FVA yields
of 0.47 and 0.55 mol.mol− 1, respectively). Interestingly,
however, is that predicted FVA yields for SA production
hardly change between glucose and D-sorbitol growth
conditions when considering the same transport mech-
anism, i.e. PEP:sugar phosphotransferase system
(PEP:PTS). Yet, assuming that both transport mecha-
nisms could be active (i.e., symport and PEP:PTS) for
glucose uptake would increase SA minimum and

Table 2 Comparison of growth predictions and in vivo tests on
22 carbon sources

In vivo

Growth No growth

In silico Growth TP = 19 (86%) FP = 0 (0%)

No growth FN = 2 (9%) TN = 1 (5%)

True Positives (TP) and True Negatives (TN) indicate the number of carbon
sources in which growth phenotypes were correctly predicted, while False
Positives (FP) and False Negatives (FN) indicate the number carbon sources in
which in silico predictions did not match in vivo observations
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maximum FVA yields from 0.63 and 0.67 to 0.82 and
0.96 mol.mol− 1, respectively.
The flux exchange between the C3 and C4 branches

has been also investigated as a major factor affecting the
metabolic flexibility of sugars fermentation in A. succino-
genes [33]. The decarboxylation of L-malate to pyruvate
(PYR) reducing NADP+ to NADPH by ME2, may have a
major role in the fermentative metabolism. Although the
thermodynamics of this reaction is not conclusive re-
garding its reversibility, the metabolic network was
tested using both the forward and the reverse directions.

FVA results (Fig. 4b) show that SA production should
increase when ME2 occurs in the reverse direction, es-
pecially for D-sorbitol conditions, redirecting most of
the PYR pool toward the C4 branch. Consequently, a
greater metabolic flexibility in SA production, especially
under glucose growth conditions, was predicted.
The availability of CO2 was also shown to influence

the production of SA (Fig. 4c). Model predictions indi-
cated that maximum SA yields on glucose can decrease
nearly 20% when decreasing the maximum CO2 uptake
rates by 50%. A shift in carbon flux distributions is

(A1) (A2)

(B1) (B2)

(C1) (C2)

Fig. 2 Experimental values (filled dots) versus predicted FVA yields (floating bars) from A. succinogenes 130Z cultures on glucose (A and B) and
xylose (C). Predicted minimum and maximum FVA yields for biomass, SA, AA, FA and EtOH (Yx/S, YSA/S, YAA/S, YFA/S, YEtOH/S, respectively) were
estimated while maintaining 95% of the maximum biomass formation (A1, B1 and C1). Similarly, minimum and maximum FVA yields between
fermentative by-products (SA/AA, FA/AA and SA/FA) were estimated while maintaining 95% of the maximum biomass formation (A2, B2 and C2).
In silico predictions were performed by setting the substrate uptake rate (qS) to the experimental value (except in condition C that was set to
8 mmol.gDCW− 1.h− 1). Experimental parameters for conditions A and B were obtained from batch cultures with defined medium (AM3)
supplemented with 50 mM glucose and 150 mM NaHCO3 under anaerobic conditions [32, 51]; while parameters for C were obtained from a
continuous culture at a dilution rate of 0.05 h− 1 under anaerobic conditions with supplemented medium (6 g.L− 1 yeast extract, 10 g.L− 1 corn
steep liquor and 50–85 g.L− 1 xylose). No biomass yield was experimentally determined for this condition [63]. Mass yields are given in g.g− 1
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observed when decreasing CO2 uptake levels, redirecting
most of the carbon flux toward the production of C3
by-products like FA and EtOH.

Discussion
GSMMs are powerful tools to explore the metabolism of
biological systems. In this work, the iBP722 model of A.
succinogenes 130Z was reconstructed and used as a plat-
form for the in silico analysis of the metabolic behaviour
of this organism during anaerobic growth. The major
end-product is SA, but significant amounts of other
by-products such as EtOH, FA and AA are also accumu-
lated. The possibility to predict and adjust the fermenta-
tive metabolism of A. succinogenes 130Z under different
conditions brings new opportunities to exploit this host as
a platform for the industrial production of SA and other
reduced by-products.
In silico simulations were carried out using pFBA and

FVA methods predicting growth behaviour under chem-
ically defined medium. Model predictions were validated
using reported physiological data and flux distributions
from 13C experiments found in literature [32, 33, 51].
The iBP722 model supports growth predictions on 19
carbon sources under anaerobic conditions (Additional
file 3), including C6 and C5 sugars that were found to

enter the cell mainly through active transport systems
(Additional file 4). The only two carbon sources with in-
correct growth predictions were β-gentiobiose and
D-arabitol, due to the absence of transport and catabolic
pathways in the model, since no coding proteins were
found. On the other hand, no-growth predictions for
glycerol were correctly identified, though transport and
catabolic reactions for glycerol consumption are present
in the model. According to in vivo growth experiments
[65], no cellular growth on glycerol as a sole carbon
source is observed under anaerobic conditions, possibly
caused by redox imbalance under anaerobiosis. However,
the addition of external electron acceptors like dimethyl-
sulfoxide (DMSO) has shown to recover cellular growth
[35], which was also confirmed by in silico analysis
(Additional file 5).
Further validations included the comparison of in vivo

measurements and in silico FVA predictions for mini-
mum and maximum yields under various conditions
(Fig. 2). Despite being relatively variable (from 0.20 to
0.23 g.g− 1 under glucose conditions), experimental
values for biomass yields were used to validate model
predictions. Variations in experimental conditions, par-
ticularly associated with culture media that is often sup-
plemented with yeast extract, interfering with carbon

a b

c

Fig. 3 Metabolic flux spans of the A. succinogenes central carbon metabolism. The FVA analysis covered individual reactions represented in (a).
Flux spans (represented by floating coloured bars) define the flux range of individual reactions while maintaining 95% of the maximum biomass
formation (b) and further constraining the maximum uptake rate of CO2 to 4 mmol.gDCW− 1.h− 1 (c). In vivo flux measurements from 13C-labeling
experiments [33] (represented by filled dots with error bars) are also depicted.
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yields, or the initial sugar concentration that may affect
bacterial growth due to substrate inhibition [66], may
explain these differences. Nevertheless, biomass compos-
ition represented in the model is based on the work of
McKinlay and co-workers [51], which is expected to pro-
vide accurate in silico predictions, especially regarding
metabolic requirements to generate biomass contents
per unit of substrate (i.e. biomass yields, Yx/s). Additional
reaction constraints were included in the model to im-
prove model predictions. For instance, flux constraints
of L-glutamate uptake and succinyl-CoA synthase were
changed to improve carbon-to-nitrogen ratios according
to experimental measurements [51]. Moreover, the ener-
getic requirement for non-growth associated maintenance,
i.e. the amount of ATP spent for cellular maintenance
without growth, was adjusted to improve predicted bio-
mass yields.
Fermentative products ratios were also compared,

showing some consistency between experimental mea-
surements and FVA predictions. Predicted mass ratios
for SA/AA and SA/FA are higher than for SA/FA, which
is consistent with in vivo data; but FVA spans for SA/
AA and SA/FA suggest a huge flexibility in these ratios.
This suggests that carbon flux distributions in the C3
branch are rather challenging to predict. In fact, FVA
flux spans of fermentative pathways (Fig. 3b) indicate a
high metabolic flexibility in the accumulation of
by-products which, in some cases are inconsistent with

experimental measurements. However, when using data
from 13C-labeling experiments [51] to constrain fluxes,
in particular the CO2 uptake rate (Fig. 3c), model predic-
tions improved, especially for reactions associated with
FA accumulation (PFL, FDHmq and EX_FA).
Overall, the iBP722 model allow us to evaluate the

production of SA, showing that maximum theoretical
yield for SA (1.1 g per g of glucose, assuming a symport
system and no ATP requirements for maintenance) is
comparable to those predicted using E. coli or S. cerevi-
siae models (1.1 and 0.8 g per g of glucose for anaerobic
conditions using iJO1366 [67] and iMM904 [68], re-
spectively, under the same previous assumptions). Thus,
metabolic capabilities seem equivalent to other organ-
isms being exploited for SA production. It also allows
describing the impact of growth conditions on the pro-
duction of C3 and C4 fermentative by-products. The
carbon split between C4 and C3 pathways has been in-
vestigated and showed to be influenced by various fac-
tors like the available reducing power (i.e. NADH/NAD+

ratio) or CO2 availability, therefore affecting the SA pro-
duction in A. succinogenes growing cultures [64, 69]. In
silico predicted SA yields are higher with more reduced
carbon sources (e.g. minimum and maximum FVA yields
of 0.44 and 0.46 g.g− 1 on sorbitol compared to 0.41 and
0.44 g.g− 1 on glucose, correspondingly, assuming the
same sugar transport mechanism) and higher CO2 avail-
ability, favouring carbon flux through the C4 branch, as

a b c

Fig. 4 FVA analysis of A. succinogenes metabolism under varying growth conditions. Minimum and maximum FVA yields were computed
maintaining 99% of the maximum growth rate and are given in mol.mol− 1. (a) Predicted FVA yields (minimum-maximum) for key metabolic
reactions under D-sorbitol growth conditions (considering PEP:PTS transport mechanism, Sorb_PTS) and glucose conditions (considering both
PEP:PTS and symport transport mechanisms, Glc_PTS/symport, or only PEP:PTS transport, Glc_PTS). (b) Predicted FVA yields for SA production
when changing ME2 reversibility, both under D-sorbitol or D-glucose conditions (considering only PEP:PTS transport). (c) Predicted FVA yields and
pFBA yields (grey dots) for SA, FA and EtOH production under D-glucose conditions when changing CO2 availability (100% availability means
unconstrained CO2 uptake, while 0% indicates a zero CO2 uptake flux value)
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a consequence of higher reducing power and higher PPCK
carboxylation activity. Moreover, flexibility in sugar trans-
port mechanisms or enzymes reversibility (e.g. ME2) may
lead to increased levels of SA, as carbon flux partitioning
between C3 and C4 pathways was shown to be largely af-
fected (Fig. 4). The reverse activity of ME2 has shown to
increase SA yields, redirecting part of the carbon flux
from the C3 toward the C4 branch through the carboxyl-
ation of pyruvate to L-malate, with the simultaneous pro-
duction of reducing power (NADPH). On the other hand,
transport activities limited to PEP:PTS-based systems de-
crease SA yields, since PEP is used as the energy source
for sugar uptake generating pyruvate, which is necessarily
consumed via the C3 branch.

Conclusions
In this work, the GSMM of A. succinogenes 130Z (iBP722)
was reconstructed and validated using different sets of ex-
perimental data from literature. The reconstruction of the
model included the compilation of functionally annotated
metabolic genes and the corresponding coding proteins,
as well as associated biochemical reactions. The model
was complemented with a biomass equation and spontan-
eous and transport reactions. It was further amended after
a gap filling process, including the identification of genetic
evidences based on homology searches. Model accuracy to
predict growth phenotypes and the production of fermen-
tative by-products was evaluated using FVA and pFBA
simulation methods. The ability to predict changes in car-
bon flux distributions due to environmental perturbations
like CO2 limitations or alterations in the redox state was
also tested. Predicted SA yields were in good agreement
with experimental data, suggesting that the model is able
to characterize the fermentative metabolism under various
conditions. The increase in CO2 availability showed to
have a positive impact in SA yields, which is consistent
with reported data [48, 49]. As such, optimal conditions
for increased SA yields may include increased CO2 avail-
ability, the use of more reduced carbon sources like sorb-
itol or the use of external energy source like H2 [33].
Besides improving process conditions for the production
of SA, the design of microbial strains by metabolic en-
gineering to increase the flux through the C4 branch has
been attempted, albeit with limited success [70]. Model
predictions show that changes in sugar transport systems,
CO2 fixation activities or the reversibility of the malic
enzyme may have an impact in the SA yield. Therefore, it
is expected that modifications in the metabolism that
would include these activities would further improve the
SA yield.
Overall, the iBP722 model enables a better under-

standing of the metabolic behaviour and capabilities of
this organism, which can be explored to further improve
SA productivity. The capacity to consume a wide range

of C5 and C6 sugars, as well as other low-cost carbon
sources (e.g. glycerol or lactose) and its metabolic flexi-
bility may provide some advantages over other
SA-producing strains, like recombinant Escherichia coli
or Mannheimia succiniciproducens [69].
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