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A B S T R A C T

The bifidogenic potential of fructo-oligosaccharides (FOS) produced by a newly isolated strain – Aspergillus
ibericus was studied. Their activity was compared to FOS produced by Aureobasidium pullulans and to a non-
microbial commercial FOS sample (Raftilose® P95). FOS fermentability by a number of probiotic bacteria and
their hydrolytic resistance to the simulated harsh conditions of the digestive system was evaluated. Aspergillus
ibericus FOS sample effectively promoted probiotic bacteria growth. Overall, microbial-derived FOS promoted
greater cellular growth compared to the commercial sample. FOS fermentation was both substrate and strain
specific. The FOS structural differences identified may explain their distinct assimilation by the probiotics. [Fru
(2→6)Glc] (possibly blastose) and a reducing trisaccharide (possibly [Fru(β2→6)Glc(α1↔β2)Fru], neokestose)
were only found in microbial-derived FOS samples, while Raftilose® P95 was richer in inulobiose/inulotriose. 1-
Kestose and nystose were only slightly hydrolyzed in the presence of gastric and intestinal fluid. FOS synthesized
by Aspergillus exhibited great potential as food ingredients with likely prebiotic features.

1. Introduction

Human nutrition and health are intrinsically related with the effi-
ciency of the gastrointestinal system. Through the active modulation of
the colonic microbiota with a regular daily ingestion of prebiotics, such
as fructo-oligosaccharides (FOS), it has been possible to reduce a great
number of pathophysiological disorders and associated chronic diseases
such as irritable bowel syndrome (Chen et al., 2017), osteoporosis (Bryk
et al., 2015), obesity (Whelan, Efthymiou, Judd, Preedy, & Taylor,
2006), metabolic syndrome and dyslipidaemia (Mallappa et al., 2012),
immune system regulation (Frei, Akdis, & O’Mahony, 2015) and colon
cancer (Pool-Zobel, 2005). FOS have been extensively used as pre-
biotics in diabetic, dietetic and infant foods (Al-Sheraji et al., 2013;
Padma & Prabhasankar, 2014; Panesar, Kumari, & Panesar, 2013).
Their incorporation in food greatly improves the technological and
nutritional properties of the final products, namely the organoleptic
characteristics; product shelf-life, reduction of browning due to Mail-
lard reactions, low energy ingredient as fat replacer and enable fiber
incorporation within liquid foods (Franck, 2002).

Currently, the FOS commercially available are mainly obtained
from inulin hydrolyzed or by enzymatic transformation of sucrose using
microbial enzyme fructosyltransferases (Nobre, Teixeira, & Rodrigues,
2015). Fungi, belonging to the Aspergillus, Penicillium and Aureobasidium
genera, are among the most studied microorganisms used for the pro-
duction of FOS (Maiorano, Piccoli, Da Silva, & De Andrade Rodrigues,
2008). The attainment of FOS yields higher than 55–60% is still a
challenge due to enzyme inhibition by the products released during FOS
synthesis (Sangeetha, Ramesh, & Prapulla, 2005). Consequently, sev-
eral researchers continue to pursue new and optimized conditions to-
wards higher FOS production yields such as the use of whole cells, in-
stead of purified enzymes (Castro, Nobre, Duprez, De Weireld, &
Hantson, 2017; Dominguez et al., 2012; Nascimento, Nobre, Cavalcanti,
Teixeira, & Porto, 2016; Nobre et al., 2016) and the use of new isolated
strains such as the Aspergillus ibericus MUM 03.49, an isolate from
Portuguese wine grapes (Nobre et al., 2018), duly characterized, with
great potential for FOS production. As a result, current studies are not
only focused on the physicochemical characteristics of the new FOS
produced by these microorganisms, but also on their prebiotic index.
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To classify a food ingredient as prebiotic, a number of criteria must
be fulfilled, namely resistance to gastric juice, hydrolysis by salivary,
pancreatic and brush border enzymes; and selective fermentation
ability by the intestinal microbiota (Gibson et al., 2010). Therefore,
oligosaccharides produced by new isolated strains must be submitted to
several simulated digestion steps to determine the effective amount of
carbohydrates that can reach the large intestine and be further meta-
bolized by the probiotic bacteria.

Lactobacillus and Bifidobacterium probiotic strains are among the
indigenous gut bacteria that selectively grow in the presence of pre-
biotic FOS. Some of these bacteria have been used as probiotic cultures,
mainly in yogurts and fermented milks (Mattila-Sandholm et al., 2002).
For this reason, their ability to ferment specific carbohydrates provides
useful information about the prebiotic features of the metabolized
carbohydrates. Although the dietary intake of specific carbohydrates
has proved to exert an important influence on the resultant composition
of the human gut microbiome, it is not clear which prebiotic carbo-
hydrates are the most suitable substrates for a selective growth of
specific strains (Chung et al., 2016; Huebner, Wehling, & Hutkins,
2007). In vitro tests have been conducted to evaluate the functional
activity of different prebiotics, including FOS (Kaplan & Hutkins, 2000;
Rada et al., 2008; Su, Henriksson, & Mitchell, 2007).

This work aims at evaluating and comparing the potential prebiotic-
like activity of three FOS samples obtained from different sources: FOS
produced by a new isolated strain of A. ibericus, FOS produced by
Aureobasidium pullulans and the commercially available Raftilose® P95.
The oligosaccharides were characterized by sugars and linkage analysis
using different chromatographic techniques and comparison with
available standards. The glycosidic linkages of the oligosaccharide
sugar residues were identified by methylation analysis and further, the
oligosaccharides structure was analyzed by gas chromatography-
quadrupole mass spectrometry (GC-qMS). The ability of several
Bifidobacterium and Lactobacillus strains to ferment the different FOS
samples was determined. The resistance of each sample to the in vitro
conditions simulating the gastrointestinal system was also evaluated.

2. Material and methods

2.1. Potential prebiotic carbohydrates

FOS samples from three different sources were characterized by
analysis of their glycosidic linkage (Section 2.2) and evaluated for their
potential prebiotic activity, namely in vitro utilization by probiotic
bacteria (Section 2.3) and in vitro digestion using a gastrointestinal
artificial model (Section 2.4). Raftilose® P95, a commercial FOS sample
from Beneo-Orafti Group (Oreye, Belgium), was tested and the results
were compared with two FOS samples produced in our laboratory by A.
pullulans CCY 27-1-94 (Culture Collection of Yeasts, Bratislava, Slo-
vakia) and A. ibericus MUM 03.49 (Culture collection of Micoteca da
Universidade do Minho (MUM), Braga, Portugal). FOS samples were
produced by fermentation using the whole cells of each microorganism
(A. pullulans production conditions reported in Nobre et al., 2016; A.
ibericus production conditions reported in Nobre et al. 2018) and pur-
ified using an activated charcoal column (as described in Nobre,
Teixeira, & Rodrigues, 2012).

2.2. Glycosidic linkage analysis

The glycosidic linkages were identified by methylation analysis, as
described in Coelho, Rocha, Moreira, Domingues, & Coimbra (2016).
The oligosaccharides were methylated using CH3I, hydrolysed (TFA
2M) and the resultant monosaccharides were reduced (NaBD4) and
acetylated. The partially methylated alditol acetates (PMAAs) obtained
were analyzed by gas chromatography-mass spectrometry (GC-qMS) on
a Shimadzu GCMS-QP2010 Ultra. The GC was equipped with a DB-1 (J
& W Scientific, Folsom, CA, USA) capillary column (30m length,

0.25mm of internal diameter and 0.10 μm of film thickness).

2.3. Carbohydrates identification and quantification by GC–qMS

Carbohydrates contained in the three FOS samples were analyzed
using a modified version of the method of Simões, Nunes, Domingues, &
Coimbra (2011). Sucrose, trehalose, kojibiose, laminaribiose, nigerose,
maltose, isomaltose, sophorose, cellobiose, gentiobiose, 1-kestose, me-
lezitose, panose, isomaltotriose, nigerotriose, and cellotriose were used
as standards. Samples (1–2mg) and 2-deoxyglucose as internal stan-
dard (20–200 μL of 1mg·L−1) were derivatized, in duplicate, by adding
200 μL of a sodium borohydride solution (15% (m/v) in NH3 3M) and
incubated at 30 °C for 60min. Afterwards, the excess of the reducing
agent was destroyed by the addition of glacial acetic acid (0.1 mL). The
acetylation of the alditols was performed by adding 1-methylimidazole
(0.45 mL) and acetic anhydride (3mL) and allowed to react for 30min,
at 30 °C. This solution was treated with water (3 mL) to decompose the
excess of acetic anhydride, and the alditol acetates were extracted with
dichloromethane (5mL). The dichloromethane phase was washed two
times with water (3mL) and evaporated to dryness. The alditol acetates
were dissolved in anhydrous acetone (70–500 µL) and analyzed by
GC–qMS with the same column used for the linkage analysis. The
samples were injected in split mode (split ratio of 33), with the injector
operating at 250 °C, using the following temperature program: initial
temperature of 140 °C followed by a linear increase of 5 °C·min−1 until
180 °C, and standing 1min at this temperature, followed by a linear
increase of 5 °C·min−1 until 250 °C, maintaining this temperature
10min, with further linear increase of 10 °C·min−1 until 325 °C,
standing 3min at this temperature. Linear velocity of the carrier gas
(He) was set at 35 cm·s−1 at 200 °C, with a solvent delay of 2min. MS
scans were performed for GC–qMS between 33 and 700m/z at 70 eV
ionization energy.

2.4. Microorganisms

Fourteen probiotic strains were tested in their response to the dif-
ferent FOS samples to detect possible growth behavior differences
among different genera, species and strains (Table 1). The Lactobacillus
and Bifidobacterium strains used herein were specifically selected given
their potential probiotic properties.

Lactobacillus and Bifidobacterium cultures were maintained at
−80 °C in a 30% (v/v) glycerol solution. For the prebiotic activity as-
says, frozen cultures were re-activated in de Man-Rogosa-Sharpe (MRS;
Biokar Diagnostics, France) broth, followed by overnight incubation at
37 °C. For the particular case of Bifidobacterium strains, MRS was sup-
plemented with filter-sterilized 0.5 g·L−1 of L-cysteine·HCl (Merck,
Germany) to lower the redox potential, and these strains were in-
cubated in a plastic anaerobic jar with a GasPakTM EZ anaerobe con-
tainer system sachet (an atmosphere generating system from BD, USA)
in order to guarantee anaerobic conditions. Pre-cultures were also
prepared according to the aforementioned conditions.

2.5. In vitro utilization of carbon sources by probiotic bacteria

MRS broth with the carbon source replaced by the different oligo-
saccharide samples was used to assess their prebiotic-like potential. The
MRS broth without carbon source was autoclaved at 121 °C for 15min
and it was composed of 10 g·L−1 of peptone, 10 g·L−1 of meat extract,
5 g·L−1 of yeast extract, 2 g·L−1 of K2HPO4, 1.08 g·L−1 of Tween 80,
5 g·L−1 of C2H3NaO2, 2 g·L−1 of ammonium citrate tribasic, 0.2 g·L−1 of
MgSO4 and 0.05 g·L−1 of MnSO4. Solutions of glucose, Raftilose® P95,
FOS from A. pullulans or FOS from A. ibericus were prepared and filter-
sterilized through 0.2 µm filters. Each of these solutions was then
added, separately to the MRS broth to achieve a final concentration of
2% (w/v) and, filter-sterilized deionized water was used as a negative
control.
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Assays were performed by adding 2% (v/v) of each probiotic strain
(Table 1), pre-grown overnight, to the MRS broth containing the dif-
ferent carbon sources. These inoculated media were transferred (300 or
250 µL, in case of Lactobacillus or Bifidobacterium strains, respectively)
to a 96-well microplate. The microplate was incubated at 37 °C for 24 h.
The optical density at 660 nm of each well was recorded every hour,
using a FLUOstar OPTIMA) microplate reader (BMG LABTECH, Ger-
many). For Bifidobacterium strains, as previously mentioned, MRS was
supplemented with filter-sterilized 0.5 g·L−1 of L-cysteine·HCl and the
wells were covered with 50 µL of autoclave-sterilized liquid paraffin to
avoid oxygen contact. All assays were carried out in triplicate.

Peptone, ammonium citrate tribasic and MnSO4 were obtained from
Sigma-Aldrich (France), yeast extract was obtained from Biokar
Diagnostics (France) and meat extract, K2HPO4, Tween 80, C2H3NaO2,
MgSO4 and liquid paraffin were obtained from Merck.

2.6. In vitro digestion of FOS samples

In vitro digestion was performed as described elsewhere (Minekus
et al., 2014). Briefly, 5mL of each carbohydrate sample under study, at
a concentration of 12.5% in total sugars, was prepared and subse-
quently exposed to conditions simulating the environment of the
mouth, stomach and small intestine.

The simulation of the oral phase consisted in the addition of simu-
lated salivary fluid (SSF) (KCl 15.1 mmol·L−1, KH2PO4 3.7mmol·L−1,
NaHCO3 13.6 mmol·L−1, MgCl2·(H2O)6 0.15mmol·L−1, (NH4)2·CO3

0.06mmol·L−1, and HCl 1.1mmol·L−1), CaCl2·(H2O)2 (to obtain
1.5 mmol·L−1 in the fluid) and purified water (necessary volume to
dilute the SSF stock solution). The sample was incubated for 2min at
37 °C. Note that alpha-amylase was not used since starch was absent in
the samples evaluated. No hydrolysis was found in a preliminary test
conducted with alpha-amylase and FOS (data not shown).

The gastric secretion (simulation of the passage through the sto-
mach) consisted of porcine pepsin solution (2000 U·mL−1 in the final
sample), simulated gastric fluid (SGF) (KCl 6.9mmol·L−1, KH2PO4

0.9 mmol·L−1, NaHCO3 25mmol·L−1, NaCl 47.2mmol·L−1,
MgCl2·(H2O)6 0.1mmol·L−1, (NH4)2·CO3 0.5mmol·L−1 and HCl
15.6 mmol·L−1), CaCl2·(H2O)2 (to obtain 0.15mmol·L−1 in the fluid),
HCl to adjust pH to 3.0 and purified water (volume needed to dilute the
SGF stock solution). The samples were incubated in a shaking bath at
37 °C for 2 h.

The intestinal phase was simulated by adding simulated intestinal
fluid (SIF) (KCl 6.8mmol·L−1, KH2PO4 0.8mmol·L−1, NaHCO3

85mmol·L−1, NaCl 38.4 mmol·L−1, MgCl2·(H2O)6 0.33mmol·L−1, and
HCl 8.4 mmol·L−1), CaCl2·(H2O)2 (to obtain 0.6mmol·L−1 in the fluid),
pancreatin suspension in SIF (based on trypsin activity of 100 U·mL−1

in the final sample), bile solution in SIF (to obtain 10mmol·L−1 in the
final sample), NaOH (volume necessary to adjust the pH to 7.0) and

purified water (volume needed to dilute the stock solution of SIF). The
samples were incubated for 2 h at 37 °C.

Note that all the electrolyte solutions (SSF, SGF and SIF) were
prepared 1.25× concentrated (i.e. 4 parts of electrolyte stock solution
+1 part water to give the correct ionic composition in the simulated
digestion fluids) and that CaCl2·(H2O)2 was not added to the stock SSF,
SGF and SIF solutions to avoid precipitation.

Samples were collected after each phase (oral, gastric and intestinal)
of the in vitro digestion and the reaction of gastric phase (pepsin ac-
tivity) was stopped by raising pH to 7.0 with NaHCO3 (1mol·L−1) and
after full digestion, the reaction was stopped adding the enzyme in-
hibitor pefabloc (1mmol·L−1) (10 µL per 1mL of sample). All samples
were tested at least in triplicate.

Porcine pepsin, pancreatin (8×USP), bile extract porcine, HCl,
NaHCO3, (NH4)2·CO3 and pefabloc SC (4-(2-aminoetyl) benenesulfonyl
fluoride) were purchased from Sigma-Aldrich (St. Louis, MO). NaOH,
KCl, CaCl2·(H2O)2, KH2PO4 and NaCl were obtained from Panreac
(Spain) and MgCl2·(H2O)6 was purchased from Merck.

2.7. Oligosaccharides quantification by HPLC

Samples from the in vitro assays (Sections 2.5 and 2.6) were ana-
lyzed using an HPLC system (Shimadzu) equipped with a Prevail Car-
bohydrate ES 5u column (5 μm, 25×0.46 cm length×diameter)
(Alltech). Sugars separation was performed using a mixture of acet-
onitrile (HPLC Grade, Carlo Erba, France) in pure-water (70:30 v/v),
and 0.04% of ammonium hydroxide (HPLC Grade, Sigma-Aldrich,
Germany). The elution was conducted at 1mL·min−1

flow rate and the
column temperature was maintained at 25 °C (Nobre et al., 2018).
Samples were sent to a Sedex 55 evaporative light scattering detector
(ELSD) (Sedere, Alfortville, France) working with a drift tube tem-
perature set at 50 °C and nitrogen gas as nebulizing gas, at a pressure of
3.5 bar. The chromatographic signal was recorded and further in-
tegrated using the software LabSolutions (Shimadzu).

FOS standards (1-kestose, nystose, and 1F-fructofuranosylnystose)
were acquired from Wako (Japan). Sucrose and fructose standards were
obtained from Merck and glucose from VWR (Belgium).

2.8. Statistical analysis

The digestion of FOS by simulating the environment of the mouth,
stomach and small intestine was performed at least in triplicate and
data was analyzed using the open source statistical program R (version
2.15.1) at 5% of significance level. A one-way analysis of variance
(ANOVA) was used to evaluate the effect of the digestive conditions in
the percentage value of each FOS. If no significant interaction effect was
found, for each statistical significant factor, means were compared
using the Tukey’s multiple comparison test. Shapiro-Wilk and

Table 1
Probiotic strains tested to assess FOS samples as carbon source.

Genus Species Strain Supplier

Lactobacillus acidophillus Ki CSK, Ede, the Netherlands
LAFTI® L10 DSM Food Specialties, Moorebank, Australia

casei ssp. paracasei LAFTI® L26 DSM Food Specialties, Moorebank, Australia
01 Chr. Hansen, Hørsholm, Denmark
431 Chr. Hansen, Hørsholm, Denmark

plantarum 299v PROBI AB, Lund, Sweden
D36 Isolated from persimmon; ESB collection

rhamnosus R11 Lallemand, Montreal, Canada
20021 DSMZ, Braunschweig, Germany

brevis D24 Isolated from persimmon; ESB collection

Bifidobacterium animalis ssp. lactis BB-12® Chr. Hansen, Hørsholm, Denmark
ssp. lactis BLC DSM Food Specialties, Moorebank, Australia
Bo CSK, Ede, Netherlands
ssp. lactis B94® DSM Food Specialties, Moorebank, Australia
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Anderson-Darling normality tests were used to confirm a normal dis-
tribution of data. Results were considered significantly different for p-
values < 0.05.

Results of the increase in cell density values for a given strain, for
each carbohydrate tested, are given as mean ± Standard Deviation.

All statistical tests were conducted at a 5% significance level.

3. Results and discussion

FOS can be either produced by enzymatic trans-fuctosylation of
sucrose by fructo-furanosidases (invertase) and fructosyl-transferase
(inulosucrase and levansucrase) or by controlled hydrolysis of inulin by
inulinases. The oligosaccharides resulting from these processes may
have different chemical structures, not only due to their source, but also
depending on the fungal or bacterial enzymes used. Consequently, the
prebiotic properties and fermentation of such FOS by the microbiota
may also differ. Several studies conducted with different oligosacchar-
ides have proved not only their different ability to be fermented, but
also that individual strains have specific substrate preferences (Kaplan

& Hutkins, 2000; Rada et al., 2008; Su et al., 2007).
In the current work, three FOS samples from different sources were

studied: a commercial sample Raftilose® P95; and two samples pro-
duced enzymatically, one by A. pullulans (AP) and the other one by A.
ibericus (IB).

3.1. Carbohydrates structure identification and quantification

The composition of the FOS samples was analyzed by HPLC. Results
are shown in Table 2.

GC-qMS analyses of the alditol acetate derivatives were performed.
The monosaccharides fructose and glucose, the disaccharide sucrose,
the trisaccharide 1-kestose, and the tetrasaccharide nystose were used
as standards. The possible assignment of the remaining oligosacchar-
ides was assessed by combining the information of the fragmentation
pattern and the glycosidic linkage analyses, as summarized in Table 3
and represented in Fig. S1 (Supplementary material). The amount of
each di- and trisaccharide identified is shown in Table 4. The amount of
monosaccharides is presented as equivalents of glucose, while di- and
trisaccharides are depicted as equivalents of sucrose, i.e. they were
calculated with the response factor of glucose and sucrose, respectively.
The total content of trisaccharides determined by GC-qMS were 31%,
28%, and 30% for Raftilose® P95, FOS from A. pullulans (AP), and FOS
from A. ibericus (IB), respectively, that are in accordance with the re-
sults obtained by HPLC (Table 2).

The fragmentation patterns of the detected di- and trisaccharides
derivatives allowed to differentiate the reducing from the non-reducing
structures. The non-reducing structures are not modified when sub-
mitted to a borohydride reduction, giving origin to one single deriva-
tive. On the contrary, reducing oligosaccharides are transformed by
borohydride into the respective alditols, resulting single derivatives
2 Da heavy. The ion at m/z 375, which corresponds to the mass of a
pentaacetylated hexose residue, is diagnostic of the reducing oligo-
saccharides (Table 3). When the reducing oligosaccharide contains a
fructose residue in the reducing end, the reaction with borohydride
forms 2 epimeric alditols, and the consequent formation of two peaks in
the chromatogram. Besides sucrose, other non-reducing disaccharides

Table 2
Oligosaccharides composition expressed as degree of polymerization of the
fructo-oligosaccharides (FOS) samples tested. Data obtained by HPLC.

Carbohydrate Sugar (% (gFOS·gtotal sugar−1)) Total FOS (%
(gFOS·gtotal
sugar

−1))DP3 DP4 DP5 DP6

FOS (Aspergillus
ibericus)

39 50 4 0 93

FOS (Aureobasidium
pullulans)

33 53 7 0 93

Raftilose® P95 33a 30a 20a 5a 95b

DP: Degree polymerization.
a Determined in this work by HPLC.
b Data obtained from the producer (Based on manufacturer’s analysis oli-

gosaccharides with DP up to 7 are present. However, in the present work, we
could not detect by HPLC the higher oligosaccharides).

Table 3
Retention time, fragmentation pattern and possible assignment of oligosaccharides present in Raftilose® P95, FOS sample produced by Aureobasidium pullulans (AP),
and Aspergillus ibericus (IB) samples.

Peaka tRa Fragmentation patternb Possible assignment Glycosidic linkages

Present in all samples
A 28.68 153 (1 0 0); 375 (70.6); 211 (54.3); 169 (24.9); 128 (22.7); 109

(20.3); 433 (18.4)
Inulobiose [Fru(β2→1)Fru] t-Fru; 1-Fru

C 29.41 153 (1 0 0); 375 (69.2); 211 (49.3); 169 (21.8); 128 (27.0); 433
(20.6); 109 (12.1)

Inulobiose [Fru(β2→1)Fru] t-Fru; 1-Fru

Only present in microbial-derived FOS
B 29.04 153 (1 0 0); 375 (61.9); 211 (47.9); 169 (25.2); 128 (24.6); 109

(14.5); 433 (19.3)
[Fru(α2→6)Glc]/[Fru(β2→6)Glc] t-Fru; 6-Glc

22 41.38 211 (1 0 0); 169 (66.4); 109 (40.9); 331 (33.4); 101 (15.6); 127
(10.3); 128 (6.6);

[Fru(β2→6)Glc(α1↔β2)Fru]/[Fru(β2→6)Glc(α1↔
α1)Glc]/[Glc(α1→6)Glc(α1↔β2)Fru]

t-Fru; 6-Glc/t-Fru; 6-Glc; t-Glc/t-Glc;
6-Glc; t-Fru

D 41.77 375 (1 0 0); 211 (69.0); 153 (59.0); 169 (29.0); 331 (23.0); 109
(14.7); 128 (14.6);

R

E 41.92 375 (1 0 0); 153 (64.0); 211 (58.3); 273 (27.0); 169 (20.3); 331
(19.4); 109 (12.1); 128 (12.0);

R

F 42.02 375 (1 0 0); 211 (65.0); 153 (51.1); 169 (29.0); 331 (21.2); 109
(16.0); 128 (13.1);

R

Only present in FOS (AP)
23 41.45 169 (1 0 0); 211 (62.8); 109 (47.7); 331 (38.45); 127 (13.4);

271 (8.3); 128 (6.8);
[Fru(β2→6)Glc(α1↔β2)Fru]/[Fru(β2→6)Glc(α1↔
α1)Glc]/[Glc(α1→6)Glc(α1↔β2)Fru]

t-Fru; 6-Glc/t-Fru; 6-Glc; t-Glc/t-Glc;
6-Glc; t-Fru

Only present in Raftilose® P95
G 41.18 375 (1 0 0); 211 (75.0); 153 (60.3); 169 (47.1); 109 (26.0); 331

(25.0); 128 (15.8);
Inulotriose [Fru(β2→1)Fru(β2→1)Fru] t-Fru; 1-Fru

H 41.41 375 (1 0 0); 211 (72.2); 153 (53.7); 169 (41.0); 331 (23.3); 109
(23.0); 128 (13.8);

Inulotriose [Fru(β2→1)Fru(β2→1)Fru] t-Fru; 1-Fru

a Retention time (minutes) in the DB-1 column, according to Fig. S1.
b Values in parentheses are the relative intensities of the fragments.
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were detected by GC-qMS (Table 4, peaks [1-6]). These disaccharides
are likely products of culture medium or fungi metabolism, composed
by galactose and mannose, detected in small amounts by methylation
analysis (Table 5). The presence of small amounts of terminally-linked
mannose (t-Man) and 1,2,6-Man residues could be indicative of the
presence of small fragments of mannoproteins from yeast or fungi cell
walls (Bastos, Coelho, & Coimbra, 2015). Beyond the oligosaccharides
identified based on the standards used, other di- and trisaccharides
were detected based on the retention time and MS fragmentation pat-
tern. Their tentative assignment was proposed in Table 3 combining the
MS data with the glycosidic linkages type and relative abundance ob-
served for each sample (Table 5).

Concerning reducing disaccharides, peaks A and C, present in all
samples, were more abundant in Raftilose® P95 (36.1mg·g−1). The
glycosidic linkage analysis of Raftilose® P95 showed only (2→1)Fru
(40.5%) as reducing sugar with fructose at the reducing end. As this
results from the inulin hydrolysis, it should be linked to t-Fru (33.6%),
thus corresponding to inulobiose [Fru(2→1)Fru]. The high abundance

of t-Glc (22.1%) most probably result from sucrose, also composed by t-
Fru, and 1-kestose and nystose oligosaccharides, also composed by t-Fru
and (2→1)Fru. Peak B, absent in Raftilose® P95 sample, could be
composed by t-Fru, t-Glc, (1→6)Glc, given that these were the most
abundant glycosidic linkages of the FOS from A. pullulans (AP) and from
A. ibericus (IB) without fructose at the reducing end. Therefore, the
possible peak B structures are [Fru(2→6)Glc] and [Glc(1→6)Glc]. As
the MS spectra and retention time do not correspond to isomaltose [Glc
(α1→6)Glc] or gentiobiose [Glc(β1→6)Glc], the peak B was assigned to
[Fru(2→6)Glc]. As blastose [Fru(β2→6)Glc] is reported to be a sec-
ondary product of fructosyltransferase reactions when using sucrose as
substrate (Flieger et al., 2005; Santos-Moriano et al., 2015), peak B was
assigned as blastose.

A total of 15 different non-reducing trisaccharides were identified
by GC-qMS in the FOS samples produced by microorganisms. These
peaks were assigned as 7-21 and they are present in very small
amounts. Another two non-reducing trisaccharides were found (as-
signed as peak 22 and 23). Considering the glycosidic linkages found for
FOS (AP) and FOS (IB) samples, and the non-reducing character of
peaks 22 and 23, there are three possible structures for these peaks
(Table 3).

One of the possible assignments is neokestose [Fru(β2→6)Glc(α1↔
β2)Fru], which is already reported as a product of sucrose transfor-
mation by fungi species (Yasuda, Shitoh, Yamano, Itoh, & Shimura,
1986). In addition, [Fru(β2→6)Glc(α1↔α1)Glc] and theanderose [Glc
(α1→6)Glc(α1↔β2)Fru] are also possible structures. The non-reducing
trisaccharide present in higher amounts for all the three samples was
composed by residues of terminally-linked fructose (t-Fru), terminally-
linked glucose (t-Glc), and (2→1)Fru, suggesting the presence of a FOS-
inulin type, such as 1-kestose (GF2). By comparison with results ob-
tained by HPLC and Nuclear Magnetic Resonance (NMR), in a work
conducted previously with samples from A. ibericus (Nobre et al., 2018),
this peak was confirmed as 1-kestose. Three different reducing tri-
saccharides (assigned as D, E and F) were found in the samples from
microorganisms, but not in Raftilose® P95. Each peak was present in an
amount up to 8mg·g−1 of sample, representing a maximum 1% content
of the total oligosaccharides (w/w). Besides, another two peaks corre-
sponding to reducing trisaccharides (assigned as G and H) were found
only in Raftilose® P95. These sugars were detected in a considerable
amount (up to 28%). Possibly, peaks G and H are the sugar inulotriose,
since the fragmentation pattern found is similar to that of inulobiose
peaks and a high proportion of (2→1-Fru linkage was found for this
sample (Table 5). Raftilose® P95 is obtained from the hydrolysis of in-
ulin, hence the presence of these two sugars was expected.

Table 4
Amount of carbohydrates identified in the FOS sample produced by Aspergillus ibericus (IB), Aureobasidium pulllulans (AP) and commercial Raftilose® P95.

FOS (IB) FOS (AP) Raftilose® P95

Assignment −X (mg·g−1) RSD (%) −X (mg·g−1) RSD (%) −X (mg·g−1) RSD (%)

Fructosea 5.0 7 13.0 5 38.4 2
Glucosea 2.3 4 6.2 11 12.8 4

[1-6] NR traces traces −
Sucrosea 72.8 2 70.2 4 14.6 13

A+C Inulobiose 27.1 3 25.7 9 36.1 6
B Blastose 7.2 1 12.3 12 −

[7-21] NR traces traces −
1-kestosea 259.1 3 242.1 5 31.7 13

22 NR 18.8 33 9.9 35 −
23 NR − 8.0 26 −
D R 7.4 29 5.2 33 −
E R 1.6 15 3.0 11 −
F R 8.3 11 7.1 19 −
G+H Inulotriose 280.7 17 − −

a Retention time and mass spectra confirmed by comparison with standards. −X – average amount of the carbohydrate; RSD – Relative Standard Deviation; NR –
Non-reducing sugar; R – Reducing sugar.

Table 5
Glycosidic linkage composition of the FOS samples produced by Aspergillus
ibericus (IB), Aureobasidium pulllulans (AP) and commercial Raftilose® P95.

Glycosidic linkage FOS (IB) FOS (AP) Raftilose® P95

−X
(mol
%)

RSD (%) −X
(mol
%)

RSD (%) −X
(mol
%)

RSD (%)

t-Fru 23.1 4 33.0 10 33.6 17
1-Fru 34.6 2 22.0 9 40.5 13
1,6-Fru 0.6 12 0.6 13 1.3 3
1,3-Fru – – – – 1.1 7

Total 58.3 1 55.6 2 76.5 0.4

t-Glc 36.1 2 37.9 0.1 22.1 3
4-Glc 0.8 9 0.6 10 0.9 11
6-Glc 4.5 5 5.4 19 0.5 29
2,3-Glc 0.1 24 0.1 20 – –
3,4-Glc traces – 0.1 0 – –

Total 41.6 1 44.1 2 23.5 1

t-Gal 0.1 4 0.1 5 – –
Total 0.1 4 0.1 5 –

t-Man – – traces – – –
2,6-Man traces – 0.4 38 – –

Total traces – 0.4 38 – –

−X – average; RSD – Relative Standard Deviation.
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Further, the (2→1,6)Fru residue may be indicative of the presence
of FOS (tetra-, penta-, (…)saccharides) with the mixed type structure (D-
fructofuranosyl-(β2→1)m-[D-fructofuranosyl-(β2→6)]n-sucrose)
(Benkeblia, 2013), since the remaining residues of these oligosacchar-
ides were also found (t-Fru, t-Glc and (2→1)Fru). However, the poly-
merization occurs via the m pathway, since the (2→6)Fru residue was

not found in any sample. Oligosaccharides containing an inulin type
such as 1F-fructofuranosylnystose were identified in the samples (Nobre
et al. 2018). Inulin neoseries types, such as 1F,6G-Di-β-D-fructofur-
anosylsucrose, is also likely to be present due to the presence of (1→
6)Glc, along with (2→1)Fru and t-Fru.
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Fig. 1. Growth curves of selected strains of Lactobacillus (a) L. acidophilus Ki, (b) L. acidophilus LAFTI® L10, (c) L. casei ssp. paracasei LAFTI® L26, (d) L. casei 01, (e) L.
casei 431®, (f) L. plantarum 299v, (g) L. plantarum D36, (h) L. rhamnosus R11, (i) L. rhamnosus 20021, (j) L. brevis D24 and Bifidobacterium, (k) B. animalis ssp. lactis BB-
12®, (l) B. animalis ssp. lactis BLC, (m) B. animalis Bo, (n) B. animalis ssp. lactis B94® in MRS broth containing either no added sugar (□, grey line), glucose (♦, grey
line), Raftilose® P95 ( , dash line), FOS produced by Aureobasidium pullulans ( , dot line) and Aspergillus ibericus ( , full line), as carbon sources. Results are given as
mean ± SD.
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3.2. In vitro carbon source utilization by probiotic bacteria

Results of the Lactobacillus and Bifidobacterium strains growth, in-
cubated either with no added sugar as carbon source (negative control) or
supplemented with the four different carbon sources, are shown in Fig. 1.

For a given sugar compound to be considered a prebiotic it should
be metabolized nearly as well as glucose is metabolized (Huebner et al.,
2007). In this study, all microorganisms were found to grow well in the
medium containing glucose as carbohydrate source (positive control).
As expected, none of the microorganisms were able to grow without
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Fig. 1. (continued)

Table 6
Maximum OD660nm values obtained after 24 h of growth of Lactobacillus and Bifidobacterium strains in various carbon sources.

Genus Species Strain No sugar Glucose FOS (A. ibericus) FOS (A. pullulans) Raftilose® P95

Lactobacillus acidophilus Ki − − + + + + + + + + + + + +
LAFTI® L10 − − + + + + + −

casei ssp. paracasei LAFTI® L26 − − + + + + + + + + + + + +
01 − − + + + − − − − −
431 − − + + + + + + + + + + + +

plantarum 299v − − + + + + + + −
D36 − − + + + + + + −

rhamnosus R11 − − + + + − − −
20021 − − + + + − − − − −

brevis D24 − − + + + + + + −
Bifidobacterium animalis ssp. lactis

BB-12®
− − +/- − − −

ssp. lactis BLC − − + + + + + + + + + + + +
Bo − − + + + + + + + + + + + +
ssp. lactis B94® − − + + + + + + + + + + + +

Values of OD660nm: OD > 2.0 (+ + +); 2.0 > OD>1.8 (+ +); 1.8 > OD>1.6 (+); 1.6 > OD>1.4 (+/−); 1.4 > OD>0.8 (−); OD < 0.8 (− −).
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sugar supplementation, as observed by the negative control (Fig. 1).
Five of the fourteen strains tested exhibited an increased cell density

after 24 h growing in glucose as compared to their growth in media
containing oligosaccharides such as L. acidophilus ssp. LAFTI® L10, L.
casei 01 and L. rhamnosus R11, L. rhamnous 20,021 and B. animalis ssp.
lactis BB-12® (Fig. 1 and Table 6). Likewise, Huebner et al., 2007 re-
ported a study with ten different microorganisms metabolizing five
types of prebiotics, among which, from fifty possible combinations,
thirty-seven exhibited a cell density significantly lower when grown on
the prebiotic as compared to glucose. Concerning the B. animalis ssp.
lactis BB-12® strain, although it had achieved a high cell density when
grown in glucose, it grew much slower than in the other substrates, as
shown by the specific growth rates determined (0.133 ± 0.003 h−1 in
glucose and>0.2 h−1 in FOS) (Table S1). In the current study, al-
though L. plantarum 299v, L. plantarum D36 and L. brevis D24 also grew
better/faster in glucose than in oligosaccharides, according to their
specific growth rates (> 0.35 h−1 in glucose) (Table S1), the differences
between the maximum OD660nm obtained after 24 h for glucose and FOS
produced by A. ibericus were less significant (Fig. 1 and Table 6). On the
other hand, a similar growth trend was found for L. acidophilus Ki, L.
casei ssp. paracasei LAFTI® L26, L. casei 431, B. animalis ssp. lactis BLC,
B. animalis Bo and B. animalis ssp. lactis B94® using glucose as compared
to oligosaccharides (Table S1). Bifidobacterium animalis ssp. lactis BLC
achieved the same maximum optical density (OD660nm: 2.2) at 24 h for
all carbon sources although, while growing in glucose and commercial
FOS, its lag phase was 2 h shorter than the one obtained for fermen-
tations with FOS from A. pulullans and A. ibericus (Fig. 1).

The rate at which probiotic microorganisms can grow on a specific
carbon source will influence their ability to compete with other in-
testinal bacteria in the colon. Thus, the prebiotic activity degree of a
specific carbohydrate is related with the extent to which the carbohy-
drate is converted into biomass (Huebner et al., 2007).

The results gathered in the current study suggest that the fermen-
tation of the potential prebiotic compounds assessed depends on the
bacterial strain used rather than on the species or genera. For example,
L. casei ssp. paracasei LAFTI® L26 and L. casei 431 exhibited ODs660nm
higher than 2.0 with all carbon sources, while the cell density of L. casei
01 almost did not increase when using FOS as carbon source. The same
behavior was observed for L. acidophilus and B. animalis. Accordingly, in
a study conducted with bacterial isolates from infants, the values of
specific growth in Raftilose® P95 for B. longum, B. animalis, B. bifidum
and B. breve were considerably different depending on the strain (Rada
et al., 2008). Huebner et al. (2007) also found a different prebiotic score
when growing different strains from the same species of L. plantarum
and L. acidophilus in Raftilose® P95. More recently, Chung et al. (2016)
found that inulin and pectin exert highly selective effects upon the gut
microbiota at the level of individual species but not at the phylum level.
Very small overlap on the growth was found for the two substrates in
the species promoted thereby.

Bifidobacterium strains achieved similar cell densities, independently
of the carbon source used (Table 6). On the other hand, for some Lac-
tobacillus strains, the cell densities obtained may depend on the FOS
type being metabolized. In the present work, the studied strains tended

to grow more with the FOS synthesized by A. ibericus, followed by the
ones from A. pullulans, and then the commercial FOS (Table 6). This was
more evident for L. plantarum 299v, L. plantarum D36 and L. brevis D24
strains. These results may be explained by the different di- and tri-
saccharides profiles, specially of FOS (AP) and FOS (IB) when compared
with the commercial Raftilose® P95. A great variability of oligo-
saccharide chemical structures can be attained depending on the fer-
mentation conditions, substrates and the source of enzymes used during
their synthesis (Cardelle-Cobas et al., 2011). FOS (AP) and FOS (IB)
samples have the compounds corresponding to peaks B (possibly blas-
tose) and 22, and also a higher amount of 1-kestose than the com-
mercial FOS sample. Blastose is the basis of the neo-
fructooligosaccharide (neoFOS) series and this type of FOS has been
reported to have superior bifido-stimulating effect, as well as better
chemical and thermal stability than other oligosaccharides (Miranda-
Molina, Castillo, & Lopez Munguia, 2017). On the other hand, Raftilose®

P95 presents the compounds G+H (possibly inulotriose), and a higher
amount of A+C (possibly inulobiose). Concerning the enzymatically
produced samples, the main difference is the higher amount of com-
pound corresponding to peak 22 (possibly neokestose) in FOS (IB).
Neokestose has been shown to improve the population of bifidobacteria
and lactobacilli to a greater extent than commercial FOS, and to inhibit
Clostridia and the development of cancer cells (Miranda-Molina, et al.,
2017). Therefore, the amount of this compound could justify the higher
prebiotic activity of FOS produced by A. ibericus in Lactobacillus strains.
Indeed, the individual strains’ lag phase, cell densities and growth rates
are affected by the structure and/or degree of polymerization of the
different FOS source (Li et al. 2015). These factors can possibly justify
the differences obtained for fermentations conducted with the different
FOS and consequently, this will be further reflected in their potential
prebiotic properties.

In summary, from the in vitro tests conducted with probiotic bacteria
it was possible to confirm the prebiotic-like potential of the FOS pro-
duced by the new isolated A. ibericus strain, as well as the FOS produced
by the A. pullulans.

3.3. In vitro digestion of oligosaccharides

Additionally, to consider a given oligosaccharide as a potential
prebiotic, it is necessary to guarantee that a significant amount of the
carbohydrate reaches the large intestine (Roberfroid, 2007). The di-
gestion of the three different FOS (Table 2) was investigated following a
standardized in vitro method described elsewhere (Minekus et al.,
2014). The hydrolysis degrees obtained by simulating the environment
of the mouth, stomach and small intestine are shown in Table 7. The
percentage of each carbohydrate moiety in each phase consists in the
difference of oligosaccharides amounts between the beginning and the
end of the respective digestion phase. Only results with statistically
significant differences (p < 0.05) have been considered.

None of the oligosaccharides was hydrolyzed during the first phase
of the digestion, i.e. the simulation of the oral phase with salivary fluid.

1-Kestose (GF2), synthesized by A. pullulans and A. ibericus, was
slightly hydrolyzed in the second phase of the digestion either by the
gastric fluid or due to the exposure to a low pH. Nevertheless, the de-
gree of hydrolysis was still lower than 2.0%. In the third phase, cor-
responding to the simulation of the conditions of the small intestine, no
hydrolysis was found for 1-kestose. Likewise, in a study conducted with
commercial 1-kestose (supplied by Wako Pure Chemical Industries, Ltd.
(Tokyo)), Suzuki, Tanaka, Amano, Asakura, and Muramatsu (2004)
found a small degree of hydrolysis with artificial pancreatic juice (7%),
but in the presence of artificial saliva and small intestine enzymes 1-
kestose remained undigested.

Nystose (GF3), also synthesized by A. ibericus and A. pullulans, was
slightly hydrolyzed during the simulation of the small intestine diges-
tion due to enzymatic hydrolysis. A reduction of 5.5% of the amounts of
nystose from A. ibericus and 4.3% from A. pullulans was found at the end

Table 7
In vitro digestion of oligosaccharides from different sources. The values are
expressed as rate of hydrolysis at different phases of the digestion.

Digestion
phase (%)

FOS (A. ibericus) FOS (A. pullulans) Raftilose® P95

GF2 GF3 GF4 GF2 GF3 GF4 GF2 GF3 GF4

Mouth 1.0a 0.0a 0.0a 0.3 0.0a 0.0a 0.0a 0.2a 0.0a

Stomach 1.5 0.9a 0.0a 2.0 1.1 0.0a 1.0a 1.4a 0.0a

Small Intestine 1.2a 5.5 0.0a 0.1 4.3 0.0a 0.9a 0.0a 1.4

a The values of the sugar concentration obtained between each digestion
phase are not significantly different (p > 0.05).
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of the digestion.
Fructo-furanosylnystose (GF4), probably due to its higher degree of

polymerization, was more resistant to hydrolysis than the other two
oligosaccharides. As a result, no significant hydrolysis was found in the
tests carried out with this oligosaccharide during all simulated diges-
tion phases.

Digestibility of single oligosaccharides has been shown to vary
markedly depending on the oligosaccharide type and is more pro-
nounced for the short-chain ones (Marx, Winkler, & Hartmeier, 2000).
The hydrolysis of long-chain FOS may be prevented by steric hindrance
at the active site of the hydrolytic enzymes (Marx et al., 2000).
Therefore, for the two different FOS samples studied (synthesized by A.
pullulans and A. ibericus), the decisive factor for degradation was based
on the molecular mass of the oligosaccharide.

In a study conducted with neosugars, produced from sucrose by A.
niger enzymes, a difficult digestion was also found for human salivary
enzymes, rat pancreatic and small intestinal mucosa homogenates
(Hidaka, Eida, Takizawa, Tokunaga, and Tashiro, 1986). The authors
concluded that the neosugars are not hydrolyzed by animal digestive
enzymes such as alpha-amylase and small intestinal digestive enzymes.

In vitro digestion experiments demonstrated that the commercial
FOS, Raftilose® P95, was highly resistant to the enzymes of the upper
gastrointestinal tract. In the present study, after each digestion
phase,> 98.5% of each oligosaccharide was recovered. Raftilose® P95
is produced by partial enzymatic hydrolysis of inulin yielding inulin-
type saccharides, mostly composed by 75% of fructose-only chains
(FFn) with degrees of polymerization ranging from 2 to 7, while oli-
gosaccharides produced from sucrose by fungi enzymes, always exhibit
a glucose as a terminal residue in their composition (GFn), with degrees
of polymerization ranging from 2 to 4 (Nobre, Cerqueira, Rodrigues,
Vicente, & Teixeira, 2015; Shoaf, Mulvey, Armstrong, & Hutkins, 2006).
Accordingly, we did find a high proportion of (2→1)Fru linkage in the
Raftilose® P95 sample, that suggests the presence of a great content of
sugars like inulobiose and inulotriose.

The differences on the molecule configuration and type of glycosidic
linkages might explain the difference in resistance to the enzymes and
low pH values.

4. Conclusions

In vitro tests conducted with commercial probiotic bacteria showed
that FOS produced both by the new isolated A. ibericus strain and A.
pullulans exhibit a promising prebiotic potential. The FOS sample ob-
tained was able to stimulate the growth of probiotic strains (ODs660nm
higher than 1.8 were obtained for most strains) and was simultaneously
resistant to hydrolysis along the simulated harsh conditions of the
gastrointestinal system (>98.5% of each oligosaccharide was re-
covered after digestion), thus suggesting that it could reach the large
intestine intact.

Oligosaccharides that were present only in samples of FOS produced
by the microorganisms were detected and identified. It was possible to
assign blastose and neokestose based on fragmentation pattern and
glycosidic linkage. On the other hand, high proportion of (2→1)Fru
linkages was found for the Raftilose® P95 sample, suggesting the pre-
sence of a great content of oligosaccharides like inulobiose and in-
ulotriose.

Additionally, the fermentation of the FOS samples was found to be
both substrate and strain specific, rather than based on the species or
genera. Concerning the cell densities obtained, the lactobacilli probiotic
strains tested preferentially metabolized the microbial-derived FOS
obtained than Raftilose® P95, whereas bifidobacteria demonstrated
equivalent metabolizing capacity of all FOS samples.

The results gathered in the current work provide a basis for further
optimization of the combined use of probiotics and potential prebiotics
envisaging their application as symbiotics in the design of new added-
value functional foods.
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