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A B S T R A C T

Human performance, in all its different dimensions, is a very complex and interesting topic. In this paper we
focus on performance in the workplace which, asides from complex is often controversial. While organizations
and generally competitive working conditions push workers into increasing performance demands, this does not
necessarily correlates positively to productivity. Moreover, existing performance monitoring approaches
(electronic or not) are often dreaded by workers since they either threat their privacy or are based on
productivity measures, with specific side effects. We present a new approach for the problem of performance
monitoring that is not based on productivity measures but on the workers' movements while sitting and on the
performance of their interaction with the machine. We show that these features correlate with mental fatigue
and provide a distributed architecture for the non-intrusive and transparent collection of this data. The easiness
in deploying this architecture, its non-intrusive nature, the potential advantages for better human resources
management and the fact that it is not based on productivity measures will, in our belief, increase the
willingness of both organizations and workers to implement this kind of performance management initiatives.

1. Introduction

The change in the job offers in the last decades, caused by
technological evolution, brings along many significant and broad
changes. Some of the most notorious ones can be pointed out by the
emergence of indicators such as stress or mental fatigue which, in
extreme cases, can endanger the life and well-being of the employees.
In more moderate cases it will impair performance, general cognitive
skills and productivity. In addition to these factors, many of these jobs
are the so-called desk-jobs, in which people frequently sit for more than
8 h [1].

Until now, the performance of the employees has been evaluated
through their productivity: the more one produces, the better the
performance at work. While the true nature of this relationship is yet to
be thoroughly studied (properly contextualized in each work domain),
there are other issues that need to be addressed. First of all, the worst
aspect about this approach is that it only points out a potential decrease
of performance after a productivity loss. This means that the “damage”
is already done and that it is most likely too late for the employee to
cope with whatever caused the performance loss. An approach that
could point out, in advance, upcoming breaks in performance (e.g.
through the observation of behavioral patterns) could allow for

preventive interventions rather than reactive [2].
Another major aspect that current approaches fail to consider are

the side effects of productivity or performance monitoring in the
workplace [3]. Indeed, as research in the last years has pointed out,
this kind of approach might act as an additional stressor on the
employee, which adds to the existing pressure in the workplace and to
its negative consequences. In a study conducted in 1995 by researchers
of the State University of New Jersey, it was analyzed the impact of
electronic performance monitoring and its social context on the
productivity and stress of employees [4].

Electronic Performance Monitoring (EPM) systems are one of the
many technological developments employees face in today's work-
places. These systems provide managers a wide range of information
about employees' routines including real-time information such as the
pace of work, degree of accuracy, log-in and log-out times, and even the
amount of time spent on bathroom breaks. This study examined how
productivity and subjective experiences are affected by EPM systems
and how the social context of the workplace moderates that influence.

In a survey involving the monitored workers, 81% of the respon-
dents declared that electronic observation made their jobs more
stressful [5]. Another study compared the behavior of monitored and
non-monitored workers and found that monitored workers felt more

http://dx.doi.org/10.1016/j.neucom.2016.05.105
Received 15 November 2015; Received in revised form 23 March 2016; Accepted 2 May 2016

⁎ Corresponding author at: ALGORITMI/Department of Informatics, University of Minho, Braga, Portugal.
E-mail addresses: dcarneiro@di.uminho.pt (D. Carneiro), apimenta@di.uminho.pt (A. Pimenta), jneves@di.uminho.pt (J. Neves), pjon@di.uminho.pt (P. Novais).

Neurocomputing 231 (2017) 41–46

Available online 18 October 2016
0925-2312/ © 2016 Elsevier B.V. All rights reserved.

MARK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/159405449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.05.105
http://dx.doi.org/10.1016/j.neucom.2016.05.105
http://dx.doi.org/10.1016/j.neucom.2016.05.105
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.05.105&domain=pdf


stressful [6].
The introduction of EPM systems can transform ordinary jobs into

high-stress jobs. It can also reduce the opportunities for employees to
socialize with each other at work, leading to a loss of social support,
partially responsible for the stress associated with EPM [7,8].

In this paper we present a new approach on the problem of
performance monitoring in desk jobs, in line with the Ambient
Assisted Living view [9], that quantifies performance independently
of the amount of work produced by the employee. Namely, we develop
a multimodal approach that incorporates different sources of informa-
tion to allow the extraction of behavioral and physical features to
characterize the performance of the user. These features are extracted
from the keyboard, the mouse and the chair of the user.

As the results point out, the selected features vary consistently
throughout the day, showing a decrease in the performance of
interaction as the day of work goes by and an increase in the movement
of the chair, pointing out increasing discomfort. This multimodal
approach allows a quantification of performance decrements without
requiring productivity measures. In that sense, employees will be more
prone to accept such an approach. It is also non-intrusive as it requires
no specific actions by the employees: they simply need to carry out their
regular work.

Our goal is that team managers make use of such information to
implement better human resources management strategies, that take
into account (possibly in real-time) the state of the employees, allowing
the development of individualized working schedules, warnings when
performance decreases or the implementation of automatized coping
strategies. As an example, we developed a simple desktop application
that produces a warning when significant decreases in performance are
observed on the user.

2. Architecture

The architecture of the proposed system was developed as a
Service-Component Architecture (SCA): a group of OASIS specifica-
tions that has become an industry standard. It is intended for the
development of applications based on SOA, which defines how
computing entities interact to perform work for each other.
Originally published in November 2005, SCA is based on the notion
that all the functions in a system should exist in the form of services
that are combined into composites to address specific business
requirements. In other words, it allows to build service-oriented
applications as networks of service components. SCA is used for
building service components, assemble components into applications,
deploy to (distributed) runtime environments and reuse service
components built from new or existing code using SOA principles.

SCA provides a good basis for applications under the umbrella of
the Ambient Intelligence (AmI) field [10], such as this one, and it
fulfills major AmI deployment requirements by promoting late bind-
ings at deploy time and runtime with the support of several relevant
technologies including POJO, SOAP, REST, BPMN, BPEL, JMS, Camel
or Rules services. But most of all it is currently supported by several
major commercial and open source products such as Jboss Switchyard,
IBM WebSphere or TRENTINO (C++). From the several available

implementations of SCA we have chosen JBoss SwitchYard since it is
an open source solution in a relative mature state, and also enhances
some of the SCA advantages.

A service-based approach was followed to develop an architecture
logically divided into several packages that encapsulate a set of features
and tasks. Fig. 1 pictorially depicts, from a high-level point of view, the
proposed architecture.

Three main components can be identified. The first is the compo-
nent that is on the user-area. It provides, in an non-intrusive way,
features about the employees' behavior. Two of these features are
extracted from two accelerometers placed in the chair, as detailed in
Fig. 1. These accelerometers aimed to record the movements of the
workers during the day (8 h workday), while sitting in front of the
computer. Accelerometer 1 was placed at the level of the worker's back
while accelerometer 2 was placed in one of the wheeled arms of the
chair, with the aim to record acceleration generated by the moving of
the chair. Specifically, Axivity's WAX3 wireless accelerometers were
used.

The remaining features are extracted from the mouse and keyboard
of the computer and fully characterize the employee's interaction with
these peripherals. Although these features and the process of their
extraction have been detailed in the past [11], we provide a brief
overview. From the keyboard we extract features such as the typing
speed or rhythm, the number of errors or the time of each key press. In
previous studies we have noted that key presses, for example, may vary
in duration from 80 ms at the beginning of a session, to as much as
100 ms at the end, depending on the user and on the type of task being
performed. From the mouse we extract features such as velocity,
acceleration, distance between clicks, duration of the click or excess
of distance traveled, just to name a few. Once again, we consistently
find decreases in performance on these features as the workday
progresses [12].

Simultaneously with the acquisition of the behavioral features,
employees answered a questionnaire about mental fatigue on a hourly
basis (USAFSAM Fatigue Scale [13]). This was implemented with the
aim of studying, in parallel, the daily evolution of mental fatigue given
the well-known relationship between this indicator and performance
[14].

The second component of the architecture is placed on the server
side of the system. It is responsible for the continuous acquisition of
behavioral data and its persistence in the database. Moreover, it also
provides very important functionalities in the form of services. Namely,
it allows for behavioral models to be trained based on individual user
data and the results of the questionnaire (as depicted further below),
namely using machine learning algorithms. It also allows for these
models to be used in real-time for classifying user performance from
behavioral data, which is essential given the aims of this research line.

Finally, the third major component of the architecture concerns the
use of the performance models, in real-time, for improving perfor-
mance throughout the day or preventing performance breaks. This
considers both automatic and human-driven decision mechanisms. On
the one hand, and as implemented in the developed prototype, the
system can autonomously point out to the user or anticipate significant
breaks in performance, providing a warning that encourages the user to

Fig. 1. High-level view of the architecture, highlighting the 4 sources of information in each user: the mouse, the keyboard and two accelerometers placed on the chair as well as their
placement and directions of the axes.
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take a break. Other more advanced context-dependent coping strate-
gies can be implemented (e.g. taking a walk in a nearby park, grabbing
a coffee, group activity with coworkers).

On the other hand, human decision makers can also make use of
this kind of information, which may or may not be directly shown to
the employees, in order to better manage their teams. Namely,
managers can learn the best working schedule for each individual or
each employee's resilience to working long hours. This will allow them
to implement better strategies in what concerns the management of
personnel, ultimately achieving working environments that are better
for both organizations (e.g. increased performance/productivity) and
collaborators (e.g. no stress from productivity measures, better social
relationships, improved quality of life).

Summarizing, in an organizational context, the gathering and
analysis of metrics describing people's behavior, and the providing of
tools for visualization (particularly real time analytics) enables better
decision making and data-driven actions that consider the state and
well-being of each individual worker. Such initiatives can nowadays be
scaled to hundreds or thousands of workers, through the use of Big
Data tools and techniques, without compromising performance and
availability.

The interaction features described above characterize the behavior
of each individual while interacting with the computer. This behavior,
as many others, is affected by factors that influence performance at
work, including mental fatigue, stress level or emotional arousal.
Specifically, each instance of the behavior is characterized by fifteen
values (represented as doubles) that are a result of applying several
data summarization techniques (e.g. aggregation of collected data by
calculating values such as mean and variance on the very frequently
collected values). Each of these instances also contains a timestamp.

Given that this data is stored in a MongoDB database, each record
needs 136 bytes of storage space: 15 times 8 bytes (the MongoDB
double size) plus 8 bytes for the timestamp, and 8 bytes for the two
keys that describe the application being used and the user. A new
record is produced every five minutes, for each user of the environ-
ment. Assuming that each individual is expected to work around 8 h
per day, a production of around 12.75 Kbytes of data per worker is
estimated. Table 1 shows the expected data growth projections for
different numbers of users and different time-spans.

3. Validation of the architecture

The developed architecture was used in a laboratory setting with the
main aim to assess a potential relationship between performance and
the features under study, namely the acceleration measured on the
chair and the interaction with the peripherals. In what concerns the
interaction with the peripherals, 24 participants (19 men) interacted
with the computer while performing their regular tasks, with their
interaction patterns being recorded. Of these, and due to hardware
availability limitations, only 8 had accelerometers placed in their
chairs, as depicted in Fig. 1. As would happen in a real-life environ-
ment, these participants were requested to come into the lab and
perform their regular activities, without any restriction whatsoever.

Data was collected continuously and organized on an hourly basis.

Each hour of data originates one instance, with each instance depicting
the variance of each feature in that period for a given user, as well as a
subjective evaluation of each user's level of fatigue, provided through a
self-report mechanism. Specifically, we used the seven-point
USAFSAM Mental Fatigue Scale created by Dr. William F. Storm and
Captain (Dr.) Layne P. Perelli of the Crew Performance Branch of the
USAF School of Aerospace Medicine, Brooks AFB, San Antonio, Texas,
and then used in many field and laboratory tests [15].

Data from the accelerometers was organized in hourly series, so as
to match the intervals at which questionnaires were collected. Using
the Anderson–Darling test, it was determined that the distributions of
the eight resulting datasets were not normal. Given this, the Kruskal
Wallis test was used in the subsequent analysis. This test was used to
compare the distributions of each of the three axes and of the two
accelerometers. The maximum p-value observed was 2.2e−16, which
demonstrates that the changes in acceleration that occur from one
interval to the next are statistically significant.

The difference in the distributions can also be visually observed as
in Fig. 2. This figure depicts violin plots, which in addition to the
information provided by boxplots include the probability density for
the different values. These plots show the evolution of the distributions
of the values during the day.

Having carried out this preliminary analysis of the data, it was
examined whether there is any relationship between the subjective
feeling of mental fatigue and the acceleration measured on the chair, in
both positions. To this end it was used the Pearson's test to determine
the statistical correlation between the acceleration measured in each
axis and the subjective level of fatigue.

Data show that the readings of accelerometer 1 have a positive
correlation with the level of mental fatigue for the axes X and Y (0.67
and 0.53, respectively). Concerning accelerometer 2, a strong negative
correlation with the subjective feeling of fatigue exists for the y-axis
(−0.9).

The Mann–Whitney test was also used to compare the distributions
of the values of each feature extracted from the mouse and the
keyboard, in order to verify that there were statistically significant
difference between the two groups of data (Table 2).

4. Results

User feedback was paired with the variance of the features
considered in each hourly period to train the neural network and thus
understand the relationship between the variables. In the preliminary
analysis of the data of the accelerometers, a relationship between the
subjective levels of mental fatigue and the movement of the chair in
some of its axes in both accelerometers was found. For modelling
accelerometer 1, which showed a strong negative correlation with
fatigue for axes X and Y and no significant correlation for the z-axis, a
linear regression was fit to the average acceleration values on these
axes. While the z-axis is left out due to a lack of correlation, its absence
is also positive in the sense that acceleration from when the user sits
down or stands up (which happens mostly on this axis and is not the
normal behaviour we are observing) will not influence the model.

The trained linear model contains residual values shown in Fig. 3
where it is possible to verify that these values follow a normal
distribution, and they have a median value close to 0. In this model
we can still observe a Multiple R-squared: 0.8385, Ajusted R-squared:
0.8331 which confirms the correlation shown between the acceleration
in the y-axis and the level of fatigue.

For the data recorded by the accelerometer 2, K-means clustering
was used to verify that the acceleration of the chair movement in all
three axes can be associated with the different levels of fatigue
observed. The value of K was selected using the NbClust package from
the R Software [16]. This package provides 30 indexes for determining
the number of clusters and proposes the best clustering scheme from
the different results obtained by varying all combinations of number of

Table 1
Projections of data growth for different number of users and time frames.

Time # Users

1 100 10 000 1 000 000

5 min 136 bytes 13.28 Kbs 1.297 Mbs 129.7 Mbs
1 day 12.75 Kbs 1.245 Mbs 124.5 Mbs 12.159 Gbs
1 week 89.25 Kbs 8.716 Mbs 871.6 Mbs 85.115
1 month 382.5 Kbs 37.354 Mbs 3.648 Gbs 364.8 Gbs
1 year 4.545 Mbs 454.5 Mbs 44.382 Gbs 4.438 Tbs
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clusters, distance measures, and clustering methods. The suggested
value of K with the largest number of indexes chosen was three.
Therefore a 3-cluster solution was proposed.

The accuracy of the resulting clusters was computed through the
adjusted Rand index. The adjusted Rand index provides a measure of
the agreement between two partitions, adjusted for chance. It ranges
from −1 (no agreement) to 1 (perfect agreement). Agreement between
the labeled data and the cluster solution is 0.56.

The results obtained for accelerometer 2 show that it is possible to
separate the collected data into three distinct clusters. While workers
pointed out four different levels of fatigue, the first level was only
chosen 10% of the times. This division thus makes sense also when
considering the answers to the questionnaires.

In what concerns the features extracted from the mouse and
keyboard, the first step in the process of training a suitable classifier
was to select the features that presented the most significant differ-
ences when comparing the two groups of data. From all the available
features, we selected the following: key down time, mouse velocity and
acceleration, time between clicks, distance from the pointer to the line
between clicks, distance during clicks, average excess of distance and
average distance of the mouse to the straight line and the time of the

Fig. 2. Hourly violin plot of x-axis for accelerometer 2.

Table 2
Analysis of significance of the collected data. Column a depicts the average value of the
Mann Whitney test. Column b depicts the percentage of individuals for which the
differences observed in each feature when fatigued and rested were statistically
significant.

Features a b (%)

Distance of the mouse to the straight line 0.022 79
Key down time 0.021 75
Mouse acceleration 0.050 67
Average distance of the mouse to the straight line 0.042 63
Mouse velocity 0.023 63
Average excess of distance 0.041 54
Time between clicks 0.020 54
Distance during clicks 0.026 54
Time between keys 0.271 46
Total excess of distance 0.258 46
Double click duration 0.003 33
Absolute sum of angle 0.336 25
Signed sum of angles 0.706 21
Distance between clicks 0.0238 20

Fig. 3. Linear model built for accelerometer 2.
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day (morning, afternoon, evening) to rule out the influence of the
circadian rhythm.

As a classification algorithm we selected an Artificial Neural
Network (ANN). This decision was taken after an analysis of existing
work that showed the suitability of this kind of algorithms for modeling
mental fatigue. Namely, existing works use electroencephalography
signals [17], electromyography [18] and other features such as gaze
detection or face pose [19] as inputs to neural networks. Existing
related work is especially targeted at vehicle driving and operation of
machines, which is a classical field of application of fatigue detection
and performance monitoring [19]. To the extent of our knowledge, it is
the first time that an ANN is used with performance features such as
those put forward in this work. This is fundamental for domains such
as the workplace or classrooms, in which the use of invasive approaches
results impractical.

The previously mentioned group of features thus constitutes the
input layer of the neural network. Its output is a value between 1 and 7
that denotes the degree of the level of fatigue, as in the USAFAM
questionnaire.

With the input and output layers defined, a multilayer feed-forward
neural network was used to model the relationship between behaviour-
al features and a level of fatigue. The R software environment was used.
A back-propagation learning algorithm was used which, besides the
input and output layers, uses a intermediate hidden layer that lies
between the input layer and the output layer, with a total of 10 nodes.
The number of hidden nodes has been selected after the carrying out of
several performance tests with different numbers of hidden nodes. In
what concerns activation and error functions, the algorithm's default
settings were used.

The network was trained with a dataset containing a total of 74
instances, each of which containing the value of the variance of each of
the features over a period of one hour and the level of subjective fatigue
provided by the users through the questionnaire, for that period. The
network was trained during 125 iterations where it reached a minimum
RMSE (Root-Mean-Square Error) as can be seen in Fig. 4.

The ANN trained and outlined above was tested and validated with
data from the second week of the data collection period, in which each
instance, as described above, contained the variance of each feature in
the period of an hour and the subjective measure of the level of fatigue
of the user. This approach allows us to compare the value pointed out
by the user against the value provided as output by the ANN. The main
result is that the trained ANN correctly classified 81% of the instances,

i.e., producing as output the same value that the user provided in the
questionnaire. The 19% that were misclassified where nonetheless
classified as neighbouring values.

5. Conclusions

This paper presented a distributed architecture for the non-
intrusive acquisition of interaction and behavioral features for the
classification of human performance. We have shown that certain axes
of accelerometers placed on specific points of a chair as well as some of
the interaction features extracted from the mouse and keyboard do
correlate with performance. The most positive aspect of this work is
that it allows the classification of human performance without the use
of features that are not positively regarded by workers, namely
productivity measures.

In that sense, workers will be more prone to accept this kind of
performance monitoring. From the point of view of the organization, it
is a inexpensive approach and does not require any change to the
workers' routines, which is positive. Moreover, it will provide valuable
information to team managers, namely concerning each of the workers'
natural rhythms (e.g. some work better in the morning, others in the
afternoon) thus allowing for a more effective management of human
resources.

In the overall, this will result in more sensitive and positive working
environments, with expected positive impacts in productivity measures
as well as the quality of the product and of the workplace.

The ANN developed in this work is a part of a wider performance
model being developed by this research team which includes related
aspects such as the performance of interaction and the degree of
attentiveness. Ultimately, we aim at the development of a theoretical
and practical multi-modal model that details how performance in the
workplace is influenced by external factors and how it can be assessed
non-intrusively.
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