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Abstract

Eigenvalue problems lies in many fields of science and engineering, such as classical structural

mechanics, molecular dynamics, gyroscopic systems, and MIMO systems in control theory.

There are many types of eigenvalue problem, such as standard eigenvalue problem (SEP),

generalized eigenvalue problem (GEP), and polynomial eigenvalue problem (PEP). QR and QZ

methods are stable eigensolver for solving the SEP and GEP.

Linearization form is a common way for solving the QEP or PEP. The idea of linearization form

is to convert a QEP or PEP to a GEP, and compute eigenvalues of the GEP by QZ method.

QZ method is a numerical stability method for computing eigenpairs in GEP. however, it can

be not stability for computing eigenpairs in QEP and PEP. Moreover, in some applications,

such as such as vibration analysis and mass-spring system, we are only interested in aprtial

eigenvalues.

To avoid the di�culty for linearization form in solving QEP and PEP, we consider to use the

Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR method), which computes the

eigenvalues inside a given curve using the contour integral. The aim of the SS-RR method is to

reduce the dimension of original problem. The original PEP or QEP is converted into a small

projected PEP or QEP using the Rayleigh-Ritz projection. However, the SS-RR method is not

stable if the norms of matrices in projected matrix polynomial are separated widely.

The objectives of this thesis is to improve the backward stability of the SS-RR method for

solving the PEP. To achieve this goal, we discuss two ideas for the SS-RR method.

The first one is the SS-RR method with scaling technique which combine the projected QEP

with scaling technique. We give some assumptions and find the relation between backward

error of original QEP and that of projected QEP. Based on these relations, we explain that the

SS-RR method with scaling technique can reduce the backward error of computing eigenpairs

in QEP.

Extending this idea, the second one is the SS-RR method with balancing technique which

convert the projected PEP to SEP, then use the balancing technique in SEP. We investigate

the reason that the SEP with balancing technique can improves the backward error of computing

eigenpairs in PEP.

i



Finally, we show some numerical experiments that the SS-RR method with scaling and balanc-

ing techniques can improve the backward error of computing eigenpairs in PEP and QEP.
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Chapter 1

Introduction

Many problems arise in science and engineering fields from the mathematical model of eigen-

value problems, such as finite elements analysis, vibration analysis of building, quantum physics

and data analysis.

Matrix polynomial lies at a important position of eigenvalue problems, it has many applications

in engineering areas, such as oscillation analysis of structural mechanics, and acoustic systems

in electrical circuit simulation [2]. Based on matrix polynomial, there are several types of

eigenvalue problems. Here, we give the definition of matrix polynomial P (�),

P (�) = �mAm + �m�1Am�1 + · · ·+ A0 (1.1)

where Ak 2 Cn⇥n\{O}, k = 0, . . . ,m.

In this chapter, we firstly introduce linear eigenvalue problems and numerical methods for

solving linear eigenvalue problems in Section 1.1. Secondly, we define the target problem and

applications in Sections 1.3 and 1.4. Then we review the state-of-the-art numerical methods,

such as linearization form and contour integral-based eigensolvers for solving polynomial eigen-

value problem in Section 1.5. Finally, we show research objectives in Section 1.6 and give a

overview of this research.

2
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1.1 Background

In this section, firstly, we will introduce linear eigenvalue problems, such as standard eigenvalue

problem and generalized eigenvalue problem. Then we will describe some methods for solving

linear eigenvalue problem.

1.1.1 Standrad eigenvalue problem

Based on (1.1), when A1 = In, In is identity matrix and m = 1, we have the standard eigenvalue

problem (SEP)

A0x = �x, A0 2 Cn⇥n,

where � are eigenvalues and x 2 Cn\{0} are associated eigenvectors. QR method is a standard

method for computing all eigenvalues in the SEP [3, 4].

1.1.2 Generalized eigenvalue problem

From (1.1), if m = 1 and A1 is not an identity matrix, we have a generalized eigenvalue problem

(GEP)

(�A1 + A0)x = 0,

where the matrices A0, A1 2 Cn⇥n, � are eigenvalues and x 2 Cn\{0} are associated eigenvec-

tors.

QZ method is a stable method for computing all eigenvalues in GEP. For large sparse GEP,

eigenvalues are computed by a Krylov method [5].
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1.2 Numerical methods for solving linear eigenvalue prob-

lems

In this section, we introduce some numerical methods based on on unitary transformations for

solving linear eigenvalue problem.

1.2.1 QR method

We review QR method for solving standard eigenvalue problems.

A matrix A 2 Cn⇥n can be transformed into a Schur factorization

A = PUPT,

where PTP = In, U is an upper triangular matrix. The diagonal elements of U are the

eigenvalues of A.

The idea of QR method is to compute Schur factorization for target matrix using a similarity

transformation. Let A1 = A and compute QR decomposition

A1 = Q1R1,

where QT

1
Q1 = I and R1 is an upper triangular matrix. Using this relation and set

A2 = QT

1
A1Q1 = R1Q1.

Similarity, with k = 1, 2, . . . , we iterate

Ak = QkRk, Ak+1 = RkQk.

Then Ak is converged to an upper triangular matrix, and its diagonal elements are the eigen-
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Algorithm 1 QR iteration

Input:
A matrix A 2 Cn⇥n.

1: Let A0 = A.
2: for k = 1, . . . , do
3: Ak = QkRk (QR decomposition).
4: Compute Ak+1 = RkQk.
5: end for

values of A. The Algorithm 1 show the steps of QR iteration.

However, the basic QR method has two disadvantages in practice.

• Firstly, the computation costs of QR decomposition is relatively high O(n3).

• Secondly, the QR method includes many iteration steps for reaching convergence. To

reach convergence, the computation cost for iteration steps is very high.

To reduce the computation cost of QR decomposition, we use the Householder method. The

idea of Householder method is to transform the matrix A into a Hessenberg form by Householder

transformation, such as

A =

2

66666666664

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

3

77777777775

=) H =

2

66666666664

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥

⇥ ⇥

3

77777777775

,

then, the computation cost of QR decomposition for the Hessenberg matrix is reduced to O(n2).

To avoid the second disadvantage, we introduce QR method with a incorporating shifts. The

main steps of the shifted QR method are presented in Algorithm 2.
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Algorithm 2 The shifted QR method

Input:
A matrix A 2 Cn⇥n.

1: Set A0 = A
2: for k = 1, . . . , do
3: Compute QR-factorization QkAk = Ak�1 � �kI, where �k is a rough approximation to

eigenvalue.
4: Compute Ak = RkQk + �kI.
5: end for

1.2.2 QZ method

We now discuss numerical method for solving generalized eigenvalue problem (GEP). QZ

method is a stable eigensolver for computing all eigenpairs in GEP. Moler and Stewart pro-

posed QZ method for solving generalized eigenvalue problems [6]. After that, the QZ method

is modified by [7, 8, 9, 10].

Let A,B 2 Cn⇥n, the generalized eigenvalue problem is defined by

Ax = �Bx,

where � are eigenvalues and x 2 Cn\{0} are associated eigenvectors. We also define A� �B is

a matrix pencil with � 2 C.

The idea of QZ method is to find two unitary matrices Q and Z, then convert (A,B) to ( eA, eB),

eA = QHAZ, eB = QHBZ.

where eA, eB are upper triangular matrices. This transformation is called generalized Schur

decomposition of a matrix pair (A,B). We compute finite eigenvalues �i of Ax = �Bx using

� = aii/bii, where aii and bii are the diagonal elements of eA and eB and bii 6= 0.

To compute generalized Schur decomposition of a matrix pair (A,B), We transform the matrix

pair (A,B) to a Hessenberg-Triangular matrix pair (H, T ) by Householder transformation and

the Givens rotations. When we convert the matrtix pair (H, T ) to HT�1, the QZ method is



1.3. Target problem 7

consider as the QR method [11].

1.3 Target problem

The target problem is polynomial eigenvalue problem (PEP). We defined the PEP by

P (�)x =

 
mX

i=0

�iAi

!
x = 0, (1.2)

where Ai 2 Cn⇥n, � 2 C and x 2 Cn\{0} are eigenvalues and their associated eigenvectors x.

If the degree of (1.1) m = 2, we have a quadratic eigenvalue problem (QEP)

Q(�)x = (�2A2 + �A1 + A0)x = 0, (1.3)

where the matrices A0, A1, A2 2 Cn⇥n, � are eigenvalues and x 2 Cn\{0} are associated

eigenvectors.

QEP is a special type of PEP and it also can be converted to a linear egenvalue problem, then

compute all eigenvalues by QZ method.

In this thesis, we will study some numerical methods for computing eigenpairs (�,x) of P (�)

and improve the backward stability of computing eigenpairs (�,x) of P (�).

1.4 Applications

Polynomial eigenvalue problem arises in many fields of science and engineering. Here, we

introduce several applications of PEP, such as vibration analysis of structures, acoustic wave

problem and mass-spring system.
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1.4.1 Vibration analysis

This quadratic eigenvalue problem arises from vibration analysis of structures. In vibration

analysis, A2 is mass matrix, A1 is damping matrix and A0 is sti↵ness matrix. To reduce the

damage of vibration in earthquake, a viscous damper has been designed in a piston [12], We

consider this model of viscous damper as the solution of following equation,

A2ü(t) + A1u̇(t) + A0u(t) = 0, (1.4)

where A2, A1, A0 are mass, damping and sti↵ness matrices and kA1k2 �
p
kA2k2kA0k2. Based

on (1.4), this problem can solved by the heavily damped QEP

(�2A2 + �A1 + A0)x = 0, kA1k2 �
p
kA2k2kA0k2. (1.5)

1.4.2 Acoustic wave problem

This quadratic eigenvalue problem arises from acoustic wave problem [13]. The formulation of

this problem is given by

1

s2
@2r

@t2
��r = p(x, t). (1.6)

Here, we define p(x, t) and s(x) are acoustic pressure and sound speed functions with two

independent variable x and t. We also define x are the coordinates variable, t is time variable.

When (1.6) is homogeneous, the problem is transformed into a eigenvalue problem

r(x, t) = er(x)ee�t. (1.7)
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(1.7) is satisfied boundary conditions which on ⌦1,⌦2,⌦3

@er
@n

= 0, (1.8)

er = 0, (1.9)

@er
@n

= �
e�
⇠
er. (1.10)

Equation (1.7) and boundary conditions (1.8-1.10) is solved by a quadratic eigenvalue problem

(�2M + �D +K)r = 0, (1.11)

whereM,D,K are square, sparse matrices and � are eigenvalues and r is associate eigenvectors.

1.4.3 Mass-spring system

This QEP arises in an n degree of freedom damped mass-spring system [14]. This problem is

considered as a second-order di↵erential equation

A2

d2

dt2
x+ A1

d

dt
x+ A0x = 0,

we denote the mass matrix that

A2 =

2

66666664

a1

a2
. . .

an

3

77777775

,
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then the damping matrix A1 and sti↵ness matrix A0 are defined by

A1 = D

2

66666666664

b1

b2
. . .

bn�1

0

3

77777777775

DT +

2

66666666664

↵1

↵2

. . .

↵n�1

↵n

3

77777777775

,

A0 = D

2

66666666664

c1

c2
. . .

cn�1

0

3

77777777775

DT +

2

66666666664

�1

�2

. . .

�n�1

�n

3

77777777775

.

Then the problem is transformed into a quadratic eigenvalue problem,

(�2A2 + �A1 + A0)x = 0,

where � are eigenvalues and x are corresponding eigenvectors.

1.5 Numerical method for solving PEP and QEP

In this section, we discuss some numerical methods for computing eigenpairs for PEP. There

are two types methods for computing eigenpairs in PEP. First one is linearization form for

computing all eigenpairs in PEP. The second one computes partial eigenpairs in PEP by using

a given contour.
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1.5.1 Linearization form

Linearization form is a classic approach for computing all eigenpairs of P (�). The idea is to

convert P (�) to a linearization form L(�)

L(�) = �X + Y, (1.12)

where X, Y 2 Cmn⇥mn. L(�) and P (�) have the same eigenvalues if

H(�)L(�)M(�) =

2

64
P (�) O

O I

3

75

with H(�) and M(�) are unimodular matrix polynomial. Then we consider (1.12) as a gener-

alized eigenvalue problem (GEP)

L(�)z = (�X + Y )z = 0. (1.13)

We compute all eigenpairs (�, z) of L(�) with QZ method. Finally, we recover eigenpairs (�,x)

of P (�) from (�, z) of L(�).

There are several choice for linearization form L(�). Illustrating by example, assume the degree

of matrix polynomial m = 2. We have the first and second companion linearization form

C1(�) = �

2

64
A2 O

O In

3

75+

2

64
A1 A0

�In O

3

75 , C2(�) = �

2

64
A2 O

O In

3

75+

2

64
A1 �In

A0 O

3

75 ,

where In 2 Rn⇥n is the identity matrix. When A2 and A0 are nonsingular matrices, we have

L1(�) = �

2

64
A2 O

O �A0

3

75+

2

64
A1 A0

A0 O

3

75 , L2(�) = �

2

64
O A2

A2 A1

3

75+

2

64
�A2 O

O A0

3

75 .

Other linearization forms are introduced in [15, 16, 17].
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However, there are some di�culty for linearization form in solving PEP.

• When the original matrix polynomial P (�) 2 Cn⇥n with degree m is converted to the

larger mn ⇥mn linearization form L(�), if m � 2, the computation cost for eigenpairs

of P (�) is very large.

• A lot of PEP can not be solved by linearization form accurately when the norms of

coe�cient matrices vary widely.

• Linearization form is a classic way for computing all eigenpairs. However, in some appli-

cations, such as structural dynamics and structural-acoustic interaction, it is unnecessary

to compute all eigenpairs, and partial eigenpairs (�,x) which have physic property are

su�cient.

1.5.2 Contour integral-based eigensolver

To prevent the inflation of matrix dimension of polynomial eigenvalue problem by using lin-

earization form and only focus on partial eigenvalues, we introduce a contour integral-based

eigensolver for computing partial eigenpairs in polynomial eigenvalue problem (PEP). This

method is called Sakurai-Sugiura (SS) method [18].

The original SS method converted generalized eigenvalue problem (GEP) to a projected GEP

based on a subspace corresponding the target eigenvalues and eigenvectors which are inside of

a given curve. For solving generalized eigenvalue problem and nonlinear eigenvalue problem,

the SS method has a number of extension types which are based on Hankel matrix pencil

and Rayleigh-Ritz projection. When the target problem is generalized eigenvalue problem,

SS-Hankel method [18, 19] transform the GEP to a small dimension Hankel matrix pencil.

The SS-RR method projects the GEP to a projected GEP with small dimension by using

Rayleigh-Ritz projection [20].

Extend to solve nonlinear eigenvalue problem, we also have SS-Hankel and SS-RR method

[21, 22, 23] based on contour integral theorem.
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Hankel type of Sakurai-Sugiura method

The idea of SS-Hankel method is to convert the target problem to Hankel matrix pencil with

a smaller dimension, then compute eigenvalues which inside of a given curve � using contour

integral.

We denote U, V 2 Cn⇥L that is input matrices and K,L 2 N+. The block complex moment  k

is defined by

 k =
1

2⇡i

Z

�

zkUHP (z)�1V dz, k = 0, 1, . . . , 2K � 1 (1.14)

where P (z) is a matrix polynomial and z 2 C. In numerical calculations, we approximate the

contour integral (1.14) using trapezoidal rule,

 k ⇡ b k :=
1

N

N�1X

j=1

⇥kU
HP (!j)

�1V, k = 0, 1, . . . , 2K � 1 (1.15)

where ⇥k =
⇣

!j��

⇢

⌘k+1

. We then construct the Hankel matrices HKL and H<

KL
, such that

HKL :=

2

66666664

 0  1 · · ·  K�1

 1  2 · · ·  K

...
...

. . .
...

 K�1  K · · ·  2K�2

3

77777775

H<

KL
:=

2

66666664

 1  2 · · ·  K

 2  3 · · ·  K+1

...
...

. . .
...

 K  K+1 · · ·  2K�1

3

77777775

Then we reduce the dimension of Hankel matrices HKL and H<

KL
by using the singular value

decomposition of HKL = VKL⌃UH

KL
with discard small singular value �bp in ⌃,

⌃ =

2

66666664

�1

�2

. . .

�n

3

77777775

.
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Algorithm 3 The SS-Hankel method

Input: U, V 2 Cn⇥L, N,K,L are non-zero integers. A matrix polynomial P (�) where P (�) =
�mAm + �m�1Am�1 + · · ·+ A0.

Output: b�i, bxi, i = 1, . . . , bp.
1: Compute bSk by (1.16) and construct block moments  k k = 0 : 2K � 1.
2: Construct block Hankel matrix HKL and H<

KL
, k = 0 : 2K � 1.

3: Make a singular value decomposition forHKL and obtain smaller dimension Hankel matrices
Hbp = HKL(1 : bp, 1 : bp), H<

bp = H<

KL
(1 : bp, 1 : bp)

4: Compute eigenpairs (�i, qi) for generalized eigenvalue problem (H<

bp � �Hbp)q = 0.

5: Compute eigenpairs (b�i, bxi) of P (�) using b�i = � + ⇢�i and bxi = Sqi.

Therefore, we have smaller dimension matrices

Hbp = HKL(1 : bp, 1 : bp), H<

bp = H<

KL
(1 : bp, 1 : bp)

with bp  KL. We compute the eigenpairs (�i, qi) of H
<

bp � �Hbp and extract the eigenvalues �

which inside �.

To compute the eigenvectors of P (�), we define

Sk :=
1

2⇡i

Z

�

zkP (z)�1V dz, k = 0, 1, . . . , 2K � 1

and

S =


S0, S1, , . . . , Sbp�1

�
.

The approximation of Sk then is given by

Sk ⇡ bSk :=
1

N

N�1X

j=0

⇥kF (!j)
�1V, k = 0, 1, . . . , 2K � 1 (1.16)

where ⇥k =
⇣

!j��

⇢

⌘k+1

. Finally, the eigenvectors xi of P (�) are computed by xi = Sqi and

eigenvalues �i of P (�) are recovered from �i = � + ⇢�i, i = 1, . . . , bp.

The main steps of the SS-Hankel method are presented in Algorithm 3.
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Rayleigh-Ritz type of Sakurai-Sugiura method

The SS-RR method computes the eigenvalues that are located inside a Jordan curve �. Let

K,L 2 N+ be input parameters and U 2 Cn⇥L be the input matrix with KL < n. We define

S =


S0, . . . , SK�1

�
2 Cn⇥KL,

and

Sk =
1

2⇡i

Z

�

gk(z)P (z)�1Udz 2 Cn⇥L, (1.17)

where gk is a k-th degree polynomial function. Since the target eigenvectors are in R{S}, the

target eigenpairs can be computed using the Rayleigh-Ritz procedure with R{S} [21].

We use a numerical quadrature to approximate the contour integral (1.17). The approximation

of Sk is given by

Sk ⇡ bSk =
NX

p=1

!pgk(zp)P (zp)
�1U, (1.18)

where zp and !p, p = 1, . . . , N , are the integral points and their associated weights.

We construct bS =


bS0, . . . , bSK�1

�
and compute a low-rank approximation of bS by singular

value decomposition as

bS = bV b⌃cWH ⇡ V ⌃WH,

where V = bV (:, 1 : `), and ` is the numerical rank of bS. Then, we convert the original problem

P (�) to R(�) = V HP (�)V and compute all eigenpairs of R(�), where the dimension of R(�)

is `. Let the computed eigenpairs of R(�) be denoted by (b�j, byj), where byj 2 C`. Then, the

eigenpairs (b�j, bxj) of P (�) are approximated by

(b�j, bxj) = (b�j, V byj), j = 1, . . . , n(�),
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Algorithm 4 The SS-RR method

Input: N,K,L 2 N+, U 2 Cn⇥L, zp,!p, p = 1, . . . , N . A Jordan curve �, and a matrix polyno-
mial P (�).

Output: b�j, bxj, j = 1, . . . , n(�), where n(�) is the number of eigenvalues inside the Jordan
curve.

1: Compute P (zp)�1U, p = 1, . . . , N .

2: Compute bSk, k = 0, . . . , K � 1 by (1.18).

3: Compute the singular value decomposition bS = bV b⌃cWH, where bS = [bS0, . . . , bSK�1].
4: Set V = bV (:, 1 : `), where ` is a numerical rank of bS.
5: Compute eigenpairs (b�j, byj of R(�) = V HP (�)V , j = 1, . . . , n(�).

6: Extract the n(�) eigenvalues b�j, j = 1, . . . , n(�) that are inside � and set bxj = V byj,
j = 1, . . . , n(�).

where n(�)  ` is the number of approximate eigenvalues in the target region ⌦.

The main steps of the SS-RR method are presented in Algorithm 4.

1.6 Research objectives

In this thesis, we compute partial eigenpairs of P (�) using the SS-RR method. P (�) is trans-

formed into a matrix polynomial with a small dimension as

R(�) = V HP (�)V, (1.19)

where the matrix V 2 Cn⇥`, ` ⌧ n, has orthonormal columns consisting of basis vectors

for the subspace constructed by the SS-RR method. However, the SS-RR method su↵ers from

backward instability when the norms of the coe�cient matrices of R(�) vary widely. (Backward

instability means the backward errors of computing eigenpairs are very large)

The objective of this research is that

• improve the backward stability of compuing eigenpairs for the SS-RR method in PEP

• explain why the use of stable eigensolver in (1.19) improves the backward stability of

compuing eigenpairs for the SS-RR method.
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To achieve this goal, we have two ideas for improving the backward stability of compuing

eigenpairs in the SS-RR method

• The SS-RR method with scaling technique. To solve the QEP (1.3), we combine (1.19)

with the stable eigensolver quadeig (scaling technique has been implemented in quadeig)

in the SS-RR method. To explain reason that scaling technique can improve the backward

stability of the SS-RR method, we construct relation between the backward error of R(�)

and that of Q(�). We found the SS-RR with quadeig improve the backward stability of

computing eigenpairs under some assumptions [24].

• The SS-RR method with balancing technique. We extend the idea in [24] to solve the

PEP. One common way for solving (1.19) is to convert R(�) into a GEP with the same

spectrum as R(�) and solve the GEP. In this article, to improve the accuracy of comput-

ing eigenpairs, we consider using a balancing technique [25, 26], that is a preprocessing

technique for improving accuracy of computing eigenpairs in the standard eigenvalue

problem (SEP). To allow the use of the balancing technique, we transform the GEP into

the SEP. We also explain why the use of a stable eigensolver for the SEP, such as QR

method with a balancing technique, can improve the backward stability of the SS-RR

method. To achieve this goal, we need to find relations between the backward error of the

SS-RR method and that of the SS-RR method with the balancing technique. We found

that the SS-RR method with the balancing technique improves the backward stability of

computing eigenpairs under some assumptions [27].

1.7 Overview of thesis

In this section, we introduce the organization of this thesis.

In Chapter 1, we introduce the background of this research, target problem and numerical

methods for solving polynomial eigenvalue problem. Finally, we give objectives of this thesis

and how to achieve these goals. Finally, we give a overview of objectives of this thesis.
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In Chapter 2, we introduce the definition and explicit expression for backward error of comput-

ing eigenpairs. Backward error is very important for analyzing the numerical stability of the

SS-RR method. Then we show the bound of backward error of P (�) relative to L(�). Some

numerical experiments are shown in Chapter 2.

In Chapter 3, we propose a method based on the SS-RR method. We combined the SS-RR

method with scaling technique for improving the numerical stability of the SS-RR method.

Then we analyze the backward error of the proposed method and that of the SS-RR method.

We analyze the backward stability of the proposed method and show, through numerical exper-

iments, that it computes eigenpairs with backward errors that are smaller than those computed

by the SS-RR method.

In Chapter 4, to improve the backward stability of the SS-RR method in polynomial eigenvalue

problem, we combine it with a balancing technique for solving a small projected PEP. We then

analyze the backward stability of the SS-RR method. Several numerical examples demonstrate

that the SS-RR method with the balancing technique reduces the backward error of eigenpairs

of PEP.

In Chapter 5, we discuss a new balancing technique for solving the heavily damped quadratic

eigenvalue problem, we compare backward errors of linearization form with several types of bal-

ancing techniques. Numerical experiments show the proposed method can reduce the backward

error for computing eigenpairs in heavily damped quadratic eigenvalue problem.

In Chapter 6, conclusions and suggestions for future studies are presented.



Chapter 2

Backward error

2.1 Introduction

Backward error is an important definition for analyzing the numerical stability of algorithms

for solving standard eigenvalue problem, generalized eigenvalue problem, and polynomial eigen-

value problem.

In this section, we introduce the definition of backward error of eigenpairs in polynomial eigen-

value problems and generalized eigenvalue problems.

We also introduce some bounds of backward error of P (�) relative to that of L(�). These

bounds will be used in next chapters. Finally, we investigate bounds of backward error P (�)

relative to that of L(�) in numerical experiments.

2.2 Normwise backward error

We usually use the normwise backward error for analyzing the numerical stability in polynomial

eigenvalue problems.

19
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Definition 2.1 ([14]). Let P (�) be the matrix polynomial,

P (�j) =
mX

i=0

�i

j
Ai.

The normwise backward error of the approximated eigenpairs (b�j, bxj) of P (�) is given by,

⌘(P, b�j, bxj) := min{✏ : (P (b�j) +�P (b�j))bxj = 0,

k�Aik2  ✏kAik2, i = 0, . . . ,m},

where �P (�j) =
P

m

i=0
�i

j
�Ai, �Ai is a perturbation matrix.

The definition of backward error ⌘(L, b�j, bzj) for linearization form is similar to definition of

backward error ⌘(P, b�j, bxj). We have the following definition.

Definition 2.2 ([14]). Let L(�) be a linearization form,

L(�) = �X + Y.

The backward error of the approximated eigenpairs (b�j, bzj) of L(�) is given by

⌘(L, b�j, bzj) := min{✏ : (L(b�j) +�L(b�j))bzj = 0,

k�Xk2  ✏kXk2, k�Y k2  ✏kY k2},

where �L(�j) = �j�X +�Y , �X and �Y are perturbation matrices.

For computing the backward error numerically, explicit expressions for the backward error of

⌘(P, b�j, bxj) and ⌘(L, b�j, bzj) are given by the following formula [28]:

⌘(P, b�j, bxj) =
kP (b�j)bxjk2

(
P

m

i=0
|b�j|ikAik2)kbxjk2

, (2.1)
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⌘(L, b�j, bzj) =
||L(b�j)bzj||2

(|b�j|||X||2 + ||Y ||2)||bzj||2
. (2.2)

2.3 Bounds of backward error of P (�) relative to that of

L(�)

To compute all eigenpairs of P (�), the classical approach is to convert P (�) to a linearization

form L(�). Based on this approach, we also discuss the backward errors of P (�) and L(�). We

introduce some relations between backward error of P (�) and that of L(�). These relations are

very useful for analyzing numerical stability of algorithms.

For finding a relation between backward error of P (�) and that of L(�), we need to find a

relation between P (�) and Q(�). From [29], we have

G(�)L(�) = eT
1
⌦ P (�),

where ⌦ is the Kronecker product [30] and e1 is the 1st column of identity matirx. G(�) is a

n⇥ nm matrix polynomial. Based on this relation, we have

kG(�)L(�)zk2 = kP (�)xk2  kG(�)k2kL(�)zk2. (2.3)

We have the following theorem

Theorem 2.1 ([29]). Let (�,x) be approximate eigenpairs of P (�) and (�, z) be approximate

right eigenpairs of L(�). The bound of ⌘(P,�, x)/⌘(L,�, z) is given by

⌘(P,�,x)

⌘(L,�, z)
 |�|kXk2 + kY k2P

m

i=0
kAik2|�|i

kG(�)k2kzk2
kxk2

. (2.4)

Proof. Using (2.1) and (2.2), we have

⌘(P,�,x)

⌘(L,�, z)
=

kP (�)xk2
(
P

m

i=0
kAik2|�|i)kxk2

(|�|kXk2 + kY k2)kzk2
kL(�)zk2

.
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Based on (2.3), we have

kP (�)xk2  kG(�)k2kL(�)zk2.

Therefore, we have

⌘(P,�,x)

⌘(L,�, z)
 |�|kXk2 + kY k2P

m

i=0
kAik2|�|i

kG(�)k2kzk2
kxk2

.

To discuss the bound of ⌘(P,�,x)
⌘(L,�,z) in detail, Higham [29] give a quantity instead of (2.4),

⇢ =
maxikAik2

min(kA0k2, kAmk2)
. (2.5)

QZ method can be stable for linear eigenvalue problems. However, it is unstable for PEP. This

means that ⌘(L,�, z) is small but ⌘(P,�,x) may be very large. Therefore, Theorem 2.1 shows

that if ⌘(P,�,x)
⌘(L,�,z) ⇡ 1 as long as ⇢ ⇡ 1, the backward error of P (�) can be reduced.

The quantity ⇢ also give a predict that a eigensolver is stable or not for PEP before computing

eigenpairs.

2.4 Numerical experiments

In this section, we choose the first companion form C1 and investigate the bound of ⌘(P,�,x)
⌘(L,�,z) . We

use the MATLAB command eig to compute all eigenpairs of L(�). All test problems are shown

in Table 2.1 from nonlinear eigenvalue problems [1]. All the computations were performed using

MATLAB 2016.

As shown in Table 2.2, the maximum value of ⌘(P,�,x)
⌘(L,�,z) is not too large when ⇢ is not too larger

than 1. Therefore, ⇢ can investigate the bound of backward error of ⌘(P,�,x)
⌘(L,�,z) . The backward

error ⌘(P,�,x) may be large when ⇢ is too large.
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Table 2.1: Polynomial eigenvalue problems [1].

Problem n applications
sleeper 200 A Vibration analysis of a railtrack
spring 200 A damped mass-spring system

power� plant 8 A Nuclear power plant problem.
hospital 24 A building model

Table 2.2: The maximum value of ⌘(P,�,x)
⌘(L,�,z) and value of ⇢

Problem max ⌘(P,�,x)
⌘(L,�,z) ⇢

sleeper 10.7 17.0
spring 48.4 49.9

power�plant 1⇥ 1010 1⇥ 104

hospital 2.3⇥ 103 8.0⇥ 103

Figures 2.1,2.2 show that the backward errors ⌘(P,�,x) close to backward errors ⌘(L,�, z)

when ⇢ is not far from 1. Figures 2.3, 2.4 display the backward errors ⌘(P,�,x) are large when

⇢ � 1, we also find that the backward errors ⌘(L,�, z) are small but ⌘(P,�,x) are large in

power�plant.

2.5 Conclusion

In this Chapter, we introduce the definition of backward error of P (�) and backward error of

L(�). We also introduce the bound of backward error of P (�) relative to that of L(�) and a

quantity ⇢. We can use the quantity of ⇢ to investigate the backward error of P (�). We find

that if ⇢ � 1, the eigensolver is unstable and the backward errors of P (�) are large.
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Figure 2.1: Backward error ⌘(L,�, z) for the sleeper problem.
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Figure 2.2: Backward error ⌘(P,�,x) for the sleeper problem.
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Figure 2.3: Backward error ⌘(L,�, z) for the power�plant problem.
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Figure 2.4: Backward error ⌘(P,�,x) for the power�plant problem.



Chapter 3

Scaling technique for Sakurai-Sugiura

method in quadratic eigenvalue

problem

In this chapter, we introduce Sakurai-Sugiura method with scaling technique for solving quadratic

eigenvalue problem. The main content of this chapter is

• We combine the SS-RR method with scaling technique and reduce the backward error of

the SS-RR method in QEP.

• We analyze the backward error of the SS-RR method in QEP and give some theorems

to explain the reason that the SS-RR method with scaling technique can improve the

backward error of computing eigenpairs in QEP.

This chapter is based on the paper H. Chen, Y. Maeda, A. Imakura, T. Sakurai, F. Tisseur:

Improving the numerical stability of the Sakurai-Sugiura method for quadratic eigenvalue prob-

lems. JSIAM Letters. 9 (2017), 17–20.

26
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3.1 Introduction

We define quadratic eigenvalue problem (QEP) as following

Q(�)x = (�2A2 + �A1 + A0)x = 0, A2, A1, A0 2 Cn⇥n\{O}. (3.1)

The QEP is to find � 2 C and non-zeor vectors x 2 Cn\{0} that satisfy Q(�)x = 0. If (�,x)

are satisfied Q(�)x = 0, � are eigenvalues and x are associated eigenvectors for Q(�)x = 0.

QEP appears in many models of structures [2], for example, the building model and earthquake

vibration analysis. In some applications, it is unnecessary to compute all eigenpairs, and we

only need partial eigenpairs (�,x).

To compute partial eigenvalues, we introduce a e�cient method which called Sakurai-Sugiura

method. Based on contour integral theorem, Sakurai-Sugiura method reduces the dimension of

original coe�cient matrices [18] and compute partial eigenpairs for target eigenvalue problems.

Sakurai-Sugiura method has some types for solving quadratic eigenvalue problem. In this

chapter, we consider Rayleigh-Ritz type of the Sakurai-Sugiura method [21] which called SS-

RR method. This idea of the SS-RR method is to only compute target eigenvalues for locating

in a given curve � based on contour integral theorem. Then we reduce the dimension of the

target eigenvalue problem Q(�) to a small dimension projected problem, such that

R(�) = V HQ(�)V = �2R2 + �R1 +R0 (3.2)

Here, the non-square matrix V 2 Cn⇥m with m ⌧ n which has orthonormal columns vectors

and this matrix V is obtained from singular decomposition step in the SS-RR method.

We define (b�, V by) as an approximate eigenpair of Q(�). We also let (b�, by) be an approximate

eigenpair of R(�).

However, this approach does not accurately compute the eigenpairs of Q(�) when there is large

variation in the magnitude of the coe�cient matrices of R(�). To avoid this disadvantage, we
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proposed a stable eigensolver for improving the accuracy of computing target eigenvalues in

projected QEP (3.2) and hope to improve the numerical stability for the SS-RR method for

solving the quadratic eigenvalue problem.

This chapter is organized as follows.

• Section 3.2. We introduce the definition of scaling technique and give a review for

several types of scaling techniques.

• Section 3.3. We introduce the proposed method which combine the SS-RR method with

a stable projected eigensolver, such as quadeig.

• Section 3.4. We give a theoretical analysis for the backward error of the SS-RR method.

• Section 3.5. Some numerical experiments are shown in this section. We investigate our

theorem by numerical experiments.

• Section 3.6. We make a conclusion for this work and show some future works.

3.2 Scaling technique

Scaling technique is to find two parameters � and µ and convert Q(�) = �2A2 + �A1 + A0 to

eQ(µ) = µ2 eA2 + µ eA1 + eA0.

where eA2 = ��2A2, eA1 = ��A1, eA0 = �A0 and � = µ�, � 6= 0.

We compute eigenpairs of eQ(µ) using a linearization form L(�) with QZ method. The aim is

to improve the backward error of L(�) with scaling techniques and the backward error of Q(�)

obtain from L(�) with scaling techniques.
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3.3 The proposed method

In this section, we introduce how to combine the SS-RR method with scaling techniques.

We now discuss why the numerical solution of the QEP in step 5 requires special attention.

The standard way of solving small to medium size dense QEPs,

R(�)y = (�2R2 + �R1 +R0)y = 0, (3.3)

is via linearization. We assume R2, R1, R0 2 Cm⇥m\{O}. This consists of rewriting (3.3) as a

generalized eigenvalue problem (GEP) L(�)v = 0 of twice the dimension, where for example,

L(�) = �

2

64
R2 0

0 I

3

75+

2

64
R1 R0

�I 0

3

75 , v =

2

64
�y

y

3

75 ,

then solve the GEP with the QZ algorithm, and finally recover the eigenvectors y of R(�) from

the eigenvectors v of L(�).

Despite the fact that the QZ algorithm is backward stable for GEPs, it can be backward

unstable for QEPs, in particular when the norms of the coe�cient matrices of R(�) vary widely

[14]. As a result, the computed eigenpairs of Q(�) may not be the exact eigenpairs of a nearby

quadratic. Scaling of the eigenvalue parameter (e.g., � = �µ, µ being the new eigenvalue)

has been shown to improve the backward stability of the solution process [32, 29, 28]. Such

scaling has been implemented in the eigensolver quadeig [33]. The latter o↵ers three types of

eigenvalue parameter scalings:

• Fan, Lin, and Van Dooren scaling: �FLV =
q

kR0k2
kR2k2 ,

• tropical scaling with largest root, �+

trop =
kR1k2
kR2k2 ,

• tropical scaling with smallest root ��
trop =

kR0k2
kR1k2 .

The Fan, Lin, and Van Dooren scaling [32] is employed by default in quadeig for QEPs that
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are not too heavily damped, i.e., when

kR1k2 
p

kR2k2kR0k2. (3.4)

In that case, an eigenpair (b�, by) computed by quadeig is guaranteed to have a small backward

error. Recall from [14] that the backward error of an approximate eigenpair (b�, by) of R(�) in

(3.2) can be defined by

⌘(R, b�, by) := min{✏ : (R(b�) +�R(b�))by = 0,

k�Rik2  ✏kRik2, i = 0, 1, 2},

where �R(�) = �2�R2 + ��R1 +�R0 is a perturbation of R(�).

For heavily damped QEPs, it follows from [31, Thm. 2] that when R2 and R1 are well con-

ditioned, and ��
trop/�

+

trop is small enough then there are precisely m eigenvalues of the m ⇥m

quadratic matrix polynomial R(�) with moduli of the order of �+

trop. Similarly, when R1 and

R0 are both well conditioned, the moduli of the m smallest eigenvalues of R(�) are close to the

smallest tropical root ��
trop. Then quadeig with tropical scaling with largest root (respectively

smallest root) guarantees to return computed eigenpairs (b�, by) with small backward errors for

those eigenvalues b� of moduli close to �+

trop (respectively, ��
trop).

Based on the above comments, we propose to use quadeig in step 5 of Algorithm 4 to solve the

projected QEP R(�)y = 0. We use the Fan, Lin and Van Dooren scaling for not too heavily

damped QEPs, i.e., when the matrix coe�cients of R(�) satisfy (3.4). For heavily damped

QEPs, we use tropical scaling: we choose �+

trop if we are interested in the eigenvalues of large

magnitude and ��
trop otherwise.

Note that we could have used the backward stable eigensolver for QEPs presented in [34], but

the latter is not freely available unlike quadeig.
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3.4 Analysis of the backward errors of eigenpairs com-

puted by the proposed method

In this section, we investigate why the use of a backward stable eigensolver in step 5 of Al-

gorithm 4 improves the backward stability of the SS-RR algorithm. We will make use of the

explicit and computable expression for the backward error ⌘(R, b�, by) given in [14]:

⌘(R, b�, by) = kR(b�)byk2
(
P

2

i=0
|b�|ikRik2)kbyk2

. (3.5)

Let (e�, ey) and (b�, by) be approximations to the same eigenpair (�,y) of R(�) in (3.2). Assume

that (e�, ey) computed by a stable eigensolver and (b�, by) computed by an unstable eigensolver

are such that

⌘(R, e�, ey)  ⌘(R, b�, by). (3.6)

In what follows we identify a su�cient condition under which (3.6) implies that

⌘(Q, e�, V ey)  ⌘(Q, b�, V by). (3.7)

We will need the following lemma.

Lemma 3.1. Let (b�, by) be an approximate eigenpair of R(�) in (3.2) with by normalized so that

kbyk2 = 1. Then for the approximate eigenpair (b�, V by) of Q(�) we have

L1(b�)⌘(R, b�, by)  ⌘(Q, b�, V by)  L2(b�, by)⌘(R, b�, by),
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where

L1(b�) :=
(
P

2

i=0
|b�|ikV HAiV k2)

(
P

2

i=0
|b�|ikAik2)

,

L2(b�, by) :=
kQ(b�)V byk2
kR(b�)byk2

.

Proof. This follows directly from (3.5) and kV byk2 = kbyk2 = 1. Note that kR(b�)byk2 6= 0 since

(b�, by) is not an eigenpair of R(�).

Based on Lemma 3.1, we have the following theorem.

Theorem 3.1. Let (e�, ey) and (b�, by) be approximations to an eigenpair (�,y) of the QEP R(�)

in (3.2). Let ↵ � 1 be such that ⌘(R, b�, by) = ↵⌘(R, e�, ey) and let the functions L1, L2 be defined

as in Lemma 3.1. If

 := ↵L1(b�)/L2(e�, ey) � 1 (3.8)

then the inequality (3.7) holds for the approximate eigenpairs (e�, V ey) and (b�, V by) of Q(�).

Proof. Based on Lemma 3.1, we have

⌘(Q, b�, V by) � L1(b�)⌘(R, b�, by)

= L1(b�)
⌘(R, b�, by)
⌘(R, e�, ey)

⌘(R, e�, ey)

� ↵
L1(b�)

L2(e�, ey)
⌘(Q, e�, V ey)

= ⌘(Q, e�, V ey).

The inequality (3.7) holds because  � 1.

Let us examine the condition in (3.8). It is easy to show that L1(b�)  1 and that L2(e�, ey) � 1

so that L1(b�)/L2(e�, ey)  1. But if the projection V does not change much the norms of the

coe�cient matrices of Q(�), that is, kAik2 ⇡ kV HAiV k2 then L1(b�) ⇡ 1. Also, if the norm
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of the residual for the approximate eigenpair (e�, ey) of R(�) is small then we can expect the

norm of the residual Q(e�)V ey to be small as well so that L2(e�, ey) ⇡ 1. Since ↵ � 1 then

(3.7) is likely to hold. So what Theorem 3.1 says is that if we can improve the backward

error for the approximate eigenpairs of R(�) then we can improve the backward error for the

approximate eigenpairs of Q(�). This justifies the use of a numerically stable eigensolver in

step 5 of Algorithm 4.

3.5 Numerical experiments

We now compare the numerical stability of the SS-RR method with either quadeig and the

choice of scaling discussed in Section 3.3 or polyeig to perform step 5 of Algorithm 4. The

MATLAB function polyeig solves polynomial eigenvalue problems of arbitrary degree and

hence is more general than quadeig. However, it does not employ any scaling and can su↵er

from numerical instability. All the computations are performed using MATLAB 2015.

The test problems listed in Table 3.1 are QEPs belonging to the collection of nonlinear eigen-

value problems NLEVP [1] and are selected so as to have large variations in the norms of their

coe�cient matrices. The mod�spring and mod�sleeper problems correspond to the spring

and sleeper problems in [1] but with the damping matrix A1 multiplied by 102.

For each problem, the Jordan curve � is a circle of center c and radius r, whose values are

given in Table 3.2. For the parameters N,K,L we use N = 32, K = 8 and L = 16. For the

quadrature points and corresponding weights we use

zp = c+ r exp(
2⇡i(p� 1/2)

N
), !p =

(zp � c)

N
, p = 1, . . . , N.

As shown in Table 3.3, the norms of the coe�cient matrices of the projected problems vary

widely. The projected damped�beam and wiresaw2 problems are not too heavily damped since

kV HA1V k2
2
 kV HA2V k2kV HA0V k2. Hence, for these two problems, quadeig is called with

the Fan, Lin and Van Dooren scaling �FLV . The projected mod�spring and mod�sleeper
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Table 3.1: List of test problems.

Problem n applications
damped�beam 400 vibration analysis
wiresaw2 500 vibration analysis of a wiresaw

mod�spring 200 damped mass-spring system
mod�sleeper 1000 A model vibration of a rail track

Table 3.2: Parameters for the SS-RR method.

Problem center c radius r #eigs
damped�beam �2 + 2.6⇥ 106i 3⇥ 105 22
wiresaw2 1.5⇥ 103i 40 26

mod�spring �5000 50 14
mod�sleeper �1650 15 24

are overdamped. Since we are interested in computing eigenvalues of magnitude around 103

for these two problems (see Table 3.2), quadeig is called with tropical scaling with largest

root �+

trop (Table 3.4 shows that �+

trop ⇡ 103 for both problems). With this choice of scalings,

quadeig guarantees to return eigenpairs (e�, ey) inside � with backward errors ⌘(R, e�, ey)) ⇡ nu,

where u is the machine precision. For these problems, polyeig returns eigenpairs (b�, by) with

⌘(R, b�, by)) � nu so that (3.6) holds.

Table 3.4 displays the smallest value min of  in (3.8), where b� corresponds to eigenvalues

computed by polyeig and (e�, ey) are the corresponding eigenpairs computed by quadeig. Table

3.4 shows that the assumption  > 1 is satisfied for all the problems.

It then follows from Theorem 3.1 that the inequality (3.7) holds between eigenpairs from

SS-RR with quadeig and SS-RR with polyeig. This is confirmed by the backward error

results presented in Table 3.5, Fig. 4.1, and Fig. 4.2. They also show that the SS-RR

method with quadeig and appropriate scaling computes eigenpairs (e�, V ey) with backward

errors ⌘(Q, e�, V ey)) ⇡ nu, which is the best we can expect.
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Table 3.3: Norm of the coe�cient matrices of R(�) = V HQ(�)V .

Problem kV HA0V k2 kV HA1V k2 kV HA2V k2
damped�beam 1010 2⇥ 10�1 2⇥ 10�3

wiresaw2 106 2⇥ 101 5⇥ 10�1

mod�spring 25 5⇥ 103 1
mod�sleeper 13 2⇥ 103 1

Table 3.4: Minimum value of  in (3.8), type of scaling � used with quadeig and its value.

Problem min

Parameter scaling
� value

damped�beam 1.4 �FLV 3⇥ 106

wiresaw2 1⇥ 103 �FLV 2⇥ 103

mod�spring 6⇥ 102 �+

trop 5⇥ 103

mod�sleeper 4⇥ 103 �+

trop 2⇥ 103

3.6 Conclusion

We have shown that to improve the backward stability of the SS-RR method, it is crucial to

combine it with a backward stable algorithm for the complete solution of the projected QEP.

In future work, we plan to investigate the inclusion of scaling techniques in other types of

Sakurai-Sugiura methods.
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Table 3.5: Largest backward errors of eigenpairs.

Problem
SS-RR with

polyeig quadeig nu
damped�beam 3⇥ 10�9 2⇥ 10�13 9⇥ 10�14

wiresaw2 6⇥ 10�11 8⇥ 10�15 1⇥ 10�13

mod�spring 4⇥ 10�10 2⇥ 10�15 4⇥ 10�14

mod�sleeper 2⇥ 10�10 5⇥ 10�15 2⇥ 10�13
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Figure 3.1: Backward errors for the damped�beam problem.
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Figure 3.2: Backward errors for the mod�sleeper problem.



Chapter 4

Balancing technique for

Sakurai-Sugiura method in polynomial

eigenvalue problem

In this chapter, we will introduce the Sakurai-Sugiura method with balancing technqiue for

solving polynomial eigenvalue problem (PEP). The main content of this chapter is

• Introduce several types of balancing technique

• Explain the reason that the SS-RR method with balancing technique can reduce the

bakcward error of computing eigenpairs of PEP.

This chapter is based on H. Chen, A. Imakura and T. Sakurai, Improving backward stability

of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem, Appli-

cations of Mathematics. 62, 357–375, 2017.

38
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4.1 Introduction

In this chapter, we consider the polynomial eigenvalue problem (PEP):

P (�)x =

 
mX

i=0

�iAi

!
x = 0, (4.1)

whereAi 2 Cn⇥n\{O}, � 2 C and x 2 Cn\{0} are eigenvalues and their associated eigenvectors.

A number of problems that arise in science and engineering involve the PEP, such as oscillation

analysis of structural mechanics, and acoustic systems in electrical circuit simulation [2].

In some applications, such as vibration analysis and some models of physic, it is unnecessary

to compute all eigenpairs, and partial eigenpairs (�,x) are su�cient.

The SS-RR method extracts only the eigenvalues within a Jordan curve �, using a subspace

constructed with a contour integral. In the SS-RR method for the PEP [21], P (�) is transformed

into a projection of a matrix polynomial with a small dimension as

R(�) = V HP (�)V, (4.2)

where the matrix V 2 Cn⇥`, ` ⌧ n, has orthonormal columns consisting of basis vectors for the

subspace constructed by the SS-RR method. Then, the pair (b�, V by) is used as an approximate

eigenpair for P (�), where (b�, by) is an approximate eigenpair for R(�). However, the SS-RR

method can su↵er from backward instability when the coe�cient matrices of R(�) vary widely

in their norm. Recently, we have improved the backward stability of the SS-RR method for

the quadratic eigenvalue problem (QEP) [24]. Extending this idea, we improve the backward

stability of the SS-RR method for the PEP using balancing technique.

One common way for solving (4.2) is to convert R(�) into a GEP. R(�) and the GEP have the

same eigenvalues. For computing eigenvalues of R(�), we solve the GEP by some numerical

stability methods. In this article, to improve the accuracy of computing eigenpairs, we consider

using a balancing technique [25, 26], that is a preprocessing technique for improving accuracy
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of computing eigenpairs in the standard eigenvalue problem (SEP). To allow the use of the

balancing technique, we transform the GEP into the SEP. We also explain why the use of a

stable eigensolver for the SEP, such as QR method with a balancing technique, can improve

the backward stability of the SS-RR method. To achieve this goal, we need to find relations

between the backward error of the SS-RR method and that of the SS-RR method with the

balancing technique. We found that the SS-RR method with the balancing technique improves

the accuracy of computing eigenpairs under some assumptions.

The remainder of this paper is organized as follows. In Section 4.3, we introduce a linearization

for solving the projected PEP. In Section 4.4, we provide a brief description of the balancing

technique and present an algorithm for the SS-RR method with the balancing technique. Then,

we investigate why the SS-RR method with the balancing technique improves the accuracy for

computing eigenpairs. In Section 4.5, we present numerical experiments that confirm the accu-

racy of the SS-RR method with the balancing technique. Finally, conclusions and suggestions

for future studies are presented in Section 4.6.

4.2 Balancing technique for the standard eigenvalue prob-

lem

In this section, we review the balancing techniques.

The balancing technique is a preprocessing step to improve the accuracy for solving the SEP,

Av = �v, A 2 Cn⇥n. (4.3)

The main idea of the balancing technique is to minimize the norm of D�1AD with a similarity

transformation using a diagonal matrix D.

Here, we now discuss two types of balancing technique for solving SEP.
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4.2.1 Osborne’s balancing technique

Osborne proposed the use of a diagonal matrixD that minimizes the Frobenius-norm ||D�1AD||F

[25]. He showed that his technique also decreases the 2-norm, that is, kAk2 � kD�1ADk2 [25].

Let ci and ri be the p-norms of each column and row, which ignores the diagonal element of

the matrix A defined by

coli =

 
X

j 6=i

|aj,i|p
!1/p

, rowi =

 
X

j 6=i

|ai,j|p
!1/p

. (4.4)

The norm of D�1AD can be reduced when the norms of the columns and rows are equal. The

Osborne’s algorithm seeks fi to minimize

g(fi) = f p

i
colp

i
+

rowp

i

f p

i

,

with fi =
q

rowi
coli

.

4.2.2 Parlett’s balancing technique

Parlett and Reinsch extended Osborne’s technique to any p-norm [26].

The purpose of Parlett-Reinsch algorithm is to equal the norms of columns and rows of A. The

Parlett-Reinsch algorithm seeks fi to minimize

g(fi) = f p

i
colp

i
+

rowp

i

f p

i

,

and finds an approximation of the exact value fi that minimizes g(fi).

The main steps of the Parlett-Reinsch algorithm are summarized in Algorithm 5. The diagonal

elements of D are obtained from the value fi by Step 15 in Algorithm 5.
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Algorithm 5 Parlett-Reinsch algorithm (Balancing technique) [26, 35]

Input:
A matrix A 2 Cn⇥n,  = 2.

Output:
A balancing matrix D�1AD and a diagonal matrix D.

1: Set D := I, where I is an identity matrix
2: Set ⇣ := 0
3: while ⇣ = 0 do
4: for i := 1, . . . , n do
5: Compute p-norm of each column and row that ignores diagonal elements of A by (4.4).
6: Set the quantity qi := colp

i
+ rowp

i
, fi := 1.

7: while coli < rowi/ do
8: coli := coli, rowi := rowi/, fi := fi ⇥ .
9: end while
10: while coli � rowi do
11: coli := coli/, rowi := ri, fi := fi/.
12: end while
13: if (colp

i
+ rowp

i
) < 0.95⇥ qi then

14: ⇣ := 0.
15: Construct the diagonal elements dii of matrix D, where dii := fi ⇥ dii .
16: Balance the i-th column and row of matrix A with A(:, i) := fi ⇥A(:, i), A(:, i) :=

A(:, i)/fi.
17: end if
18: end for
19: end while

4.3 Eigensolver for the projected PEP using lineariza-

tion

We now discuss why the numerical solution of the PEP in Step 5 of Algorithm 4 requires special

attention. In the SS-RR method, the standard way to solve small to medium size PEP,

R(�)y =

 
mX

i=0

�iRi

!
y = 0, Ri = V HAiV (4.5)

is via linearization. We assume Ri 2 C`⇥`\{O}. We linearize (4.5) as follows:

L(�)z = (�X + Y )z = 0,
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where X, Y 2 Cm`⇥m`. L(�) and R(�) have the same spectrum. There are several choices for

L(�). In practice, a common choice for L(�) is its companion form, which is given by

L(�) = �

2

66666664

R1 R2 · · · Rm

�I` O · · · O

...
. . . . . .

...

O · · · �I` O

3

77777775

+

2

66666664

R0 O · · · O

O I` · · · O

...
...

. . .
...

O O · · · I`

3

77777775

, z =

2

66666664

y

�y

...

�m�1y

3

77777775

, (4.6)

where I` 2 R`⇥` is the identity matrix. We compute all eigenpairs of L(�) by using the QZ

algorithm. Finally, we recover the eigenvectors V y of P (�) from the eigenvectors z of L(�).

The QZ algorithm is backward stable for the GEP; however, it can be backward unstable for

the PEP, especially when the norms of the coe�cient matrices of R(�) vary widely [14].

4.4 The SS-RR method with the balancing technique for

the PEP

As shown in Section 1.5.2, the SS-RR method extracts only eigenvalues within a Jordan curve

�. However, the SS-RR method is not stable when the coe�cient matrices of the projected

PEP have widely varying norms.

From [28], it is clear that the backward error of L(�) is reduced, then the backward error of

quadratic matrix polynomial is also reduced. To reduce the backward error of L(�), in this

section, we convert the GEP L(�) to an SEP and solve it using the QR method with the

balancing technique that improves the backward stability of the SEP.
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Algorithm 6 The SS-RR method with the balancing technique

Input: N,K,L 2 N+, U 2 Cn⇥L, zp,!p, p = 1, . . . , N . A Jordan curve �, and a matrix polyno-
mial P (�).

Output: e�j, exj, j = 1, . . . , n(�), where n(�) is the number of eigenvalues inside the Jordan
curve.

1: Construct R(�) = V HP (�)V by step 1-5 in Algorithm 3.
2: Convert the projected matrix polynomial R(�) to L(�).
3: Construct the SEP by (4.7) and compute eigenpairs (e�j, evj) of (4.7).

4: Compute eigenvalues e�j and eigenvectors ezj of L(�) from (4.7) by setting ezj = Devj, j =
1, . . . , n(�).

5: Compute eigenvalues e�j and eigenvectors exj of P (�) by setting exj = V eyj, where eyj =
ezj(1 : `), j = 1, . . . , n(�).

4.4.1 The proposed method

In the SS-RR method, we transform L(�) to an SEP and apply the balancing technique to the

SEP with the nonsingular diagonal matrix D such that

D�1(�X�1Y )Dv = �v. (4.7)

Finally, we compute the eigenpairs of (4.7) with a backward stable method, such as the QR

method. The eigenpairs of P (�) are recovered from (4.7).

The SS-RR method with the balancing technique is presented in Algorithm 6.

4.4.2 Analysis of the backward error for the proposed method

For solving QEP, an improvement of the backward error of the SS-RR method using a backward

stable QEP eigensolver has been proposed and analyzed in [24]. In this article, we extend the

idea in [24] to solve the PEP. The analysis in [24] is only based on the relationship between

backward errors of the original QEP and projected QEP. Instead, to analyze the backward

stability of the proposed method (Algorithm 6), we additionally need to analyze the relationship

between the backward error of the projected PEP and the linearized eigenvalue problems. In

what follows, we analyze these relationships and provide a theory to explain why the use of a
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stable eigensolver for the SEP improves the backward stability of the SS-RR method.

In the SS-RR method, let (b�j, bzj) and (e�j, ezj) be the approximations of the same eigenpair

(�j, zj) of L(�). (b�j, bzj) are computed by L(�) without using the balancing technique and

(e�j, ezj) are computed with D�1(�X�1Y )Dv = �v, where ezj = Devj.

From (4.6), we also define byj and eyj as

byj = bzj(1 : `), eyj = ezj(1 : `).

Here, we also assume that byj, eyj are normalized, that is, kbyjk2 = keyjk2 = 1. Then (b�j, byj),

(e�j, eyj) are approximate eigenpairs of R(�) and (b�j, V byj), (e�j, V eyj) are approximate eigenpairs

of P (�).

To analyze the accuracy of the eigenpairs obtained with the SS-RR method with the balancing

technique, we consider the backward error of the PEPs.

Definition 4.1 ([14]). Let R(�) be the matrix polynomial,

R(�j) =
mX

i=0

�i

j
Ri.

The backward error of the approximated eigenpairs (b�j, byj) of R(�) is given by,

⌘(R, b�j, byj) := min{✏ : (R(b�j) +�R(b�j))byj = 0,

k�Rik2  ✏kRik2, i = 0, . . . ,m},

where �R(�j) =
P

m

i=0
�i

j
�Ri, �Ri is a perturbation matrix.

The definition of backward error ⌘(L, b�j, bzj) is similar to the definition of ⌘(R, b�j, byj) .

For computing the backward error numerically, explicit expressions for the backward error of
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⌘(R, b�j, byj) and ⌘(L, b�j, bzj) are given by the following formula [28]:

⌘(R, b�j, byj) =
kR(b�j)byjk2

(
P

m

i=0
|b�j|ikV HAiV k2)kbyjk2

, (4.8)

⌘(L, b�j, bzj) =
||L(b�j)bzj||2

(|b�j|||X||2 + ||Y ||2)||bzj||2
. (4.9)

The approximate eigenpair (e�j, ezj) is computed with the balancing technique, therefore, we

assume

⌘(L, b�j, bzj) � ⌘(L, e�j, ezj). (4.10)

In the following steps, we try to identify the su�cient conditions under which (4.10) implies

that

⌘(P, b�j, V byj) � ⌘(P, e�j, V eyj). (4.11)

From [29], we have

kG(�)L(�)zk2 = kR(�)yk2  kG(�)k2kL(�)yk2.

If we use (4.6) to construct L(�), then G(�) is given by

G(�) =

8
>><

>>:


I` ��V HA2V

�
(m = 2)


I` ��(V HA2V + V HA3V ) ��V HA3V

�
(m = 3)

When m > 3, we can obtain G(�) from [29]. Based on (4.8) and (4.9), to analyze the bounds

for the backward error for R(�) relative to L(�), we have the following theorem.

Theorem 4.1 ([29]). Let (b�j, bzj) be an approximation of the eigenpair of L(�) and (b�j, byj)

be an approximation of the eigenpair of R(�), where byj is obtained from bzj by (4.6) and is

normalized so that kbyjk2 = 1. Then, the bound for the backward error of R(�) relative to L(�)
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is

⌘(R, b�j, byj)

⌘(L, b�j, bzj)
 CU(b�j, bzj), (4.12)

where

CU(b�j, bzj) =
(|b�j|||X||2 + ||Y ||2)||G(b�j)||2P

m

i=0
|b�j|i||V HAiV ||2

kbzjk2,

and G(b�j) is an `⇥ `m matrix polynomial.

To analyze the bounds of the backward error of P (�) relative to R(�), we introduce the following

lemma.

Lemma 4.1 ([24]). Let (b�j, byj) be the approximate eigenpairs of R(�), where R(�) := V HP (�)V ,

and V is an orthogonal matrix, V HV = I. Let (b�j, V byj) be the approximated eigenpairs of P (�),

kV byjk2 = 1. Then, we have

BL(b�j) 
⌘(P, b�j, V byj)

⌘(R, b�j, byj)
 BU(b�j, byj),

where

BL(b�j) =
(
P

m

i=0
|b�j|ikV HAiV k2)

(
P

m

i=0
|b�j|ikAik2)

, BU(b�j, byj) =
kP (b�j)V byjk2

kV HP (b�j)V byjk2
,

are functions that depend on the eigenpairs of the problem.

Proof. Based on (4.8), we have

⌘(P, b�j, V byj)

⌘(R, b�j, byj)
=

kP (b�j)V byjk2
(
P

m

i=0
|b�j|ikAik2)kV byjk2

(
P

m

i=0
|b�j|ikV HAiV k2)kbyjk2
kV HP (b�j)V byjk2

.

Because of kV HP (b�j)V byjk2  kV Hk2kP (b�j)V byjk2, we have

⌘(P, b�j, V byj)

⌘(R, b�j, byj)
� (
P

m

i=0
|b�j|ikV HAiV k2)

(
P

m

i=0
|b�j|ikAik2)

= BL(b�j),
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and based on kV HAiV k2  kAik2, we also have

⌘(P, b�j, V byj)

⌘(R, b�j, byj)
 kP (b�j)V byjk2

kV HP (b�j)V byjk2
= BU(b�j, byj),

that proves Lemma 4.1.

Using Theorem 4.1 and Lemma 4.1, we have the following theorem.

Theorem 4.2 ([27]). Let ✓j be a scalar value satisfying ⌘(L, b�j, bzj) = ✓j⌘(L, e�j, ezj). Assume

�j = ✓j↵j�j � 1, (4.13)

where

↵j = BL(b�j)
⌘(R, b�j, byj)

⌘(L, b�j, bzj)
, �j =

1

BU(e�j, eyj)CU(e�j, ezj)
,

then we have

⌘(P, b�j, V byj) � ⌘(P, e�j, V eyj).

Proof. Based on Theorem 4.1, we have

⌘(R, b�j, byj) =
⌘(R, b�j, byj)

⌘(L, b�j, bzj)
⌘(L, b�j, bzj) =

⌘(R, b�j, byj)

⌘(L, b�j, bzj)
✓j⌘(L, e�j, ezj)

� ⌘(R, b�j, byj)

⌘(L, b�j, bzj)
✓j
⌘(R, e�j, eyj)

CU(e�j, ezj)
.
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From Lemma 4.1,

⌘(P, b�j, V byj) � BL(b�j)⌘(R, b�j, byj)

� BL(b�j)
⌘(R, b�j, byj)

⌘(L, b�j, bzj)

✓j

CU(e�j, ezj)
⌘(R, e�j, eyj)

� BL(b�j)
⌘(R, b�j, byj)

⌘(L, b�j, bzj)

✓j

CU(e�j, ezj)

⌘(P, e�j, V eyj)

BU(e�j, eyj)

= ✓j

 
BL(b�j)

⌘(R, b�j, byj)

⌘(L, b�j, bzj)

! 
1

CU(e�j, ezj)BU(e�j, eyj)

!
⌘(P, e�j, V eyj)

= �j⌘(P, e�j, V eyj).

Therefore, from the assumption �j � 1, we have

⌘(P, b�j, V byj) � ⌘(P, e�j, V eyj),

thus proving Theorem 4.2.

The computation of �j may be complicated, because it requires kAik2. To determine a more

e�cient way to compute �j, we analyze (4.13) in detail.

Defining

"1 := max
i=0:m

kAik2
kV HAiV k2

,

we have kAik2  "1kV HAiV k2. Therefore, the lower bound for BL(b�j) is given by

BL(b�j) =
(
P

m

i=0
|b�j|ikV HAiV k2)

(
P

m

i=0
|b�j|ikAik2)

� 1

"1
. (4.14)

In this case, the lower bound for ↵j is given by

↵j = BL(b�j)
⌘(R, b�j, byj)

⌘(L, b�j, bzj)
� 1

"1

⌘(R, b�j, byj)

⌘(L, b�j, bzj)
. (4.15)
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We also define

"2 := max
j

kP (e�j)V eyjk2
kV HP (e�j)V eyjk2

= max
j

BU(e�j, eyj),

then "2 � BU(e�j, eyj) and the lower bound of �j is given by

�j =
1

BU(e�j, eyj)CU(e�j, ezj)
� 1

"2CU(e�j, ezj)
. (4.16)

Based on (4.10), (4.13), (4.15) and (4.16), the lower bound for �j is given by

�j = ✓j↵j�j �
1

"1"2

⌘(R, b�j, byj)

⌘(L, b�j, bzj)

1

CU(e�j, ezj)
. (4.17)

If the projection V does not significantly change the norms of the coe�cient matrices of P (�),

that is,

kAik2 ⇡ kV HAiV k2. (4.18)

We have

"1 ⇡ 1. (4.19)

Next, we analyze the parameter "2. If R(V ) is an invariant subspace with respect to P (e�j),

i.e., there is Q(e�j) such that P (e�j)V = V Q(e�j), then we have

kP (e�j)V eyjk2 = kV Q(e�j)eyjk2 = kQ(e�j)eyjk2,

and

kV HP (e�j)V eyjk2 = kV HV Q(e�j)eyjk2 = kQ(e�j)eyjk2.

Therefore, kP (e�j)V eyjk2 = kV HP (e�j)V eyjk2. In the SS-RR method, V is constructed as an
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approximation of invariant subspace with respect to the target eigenpairs. Based on this, we

may assume

BU(e�j, eyj) =
kP (e�j)V eyjk2

kV HP (e�j)V eyjk2
⇡ 1, (4.20)

and thus "2 is close to 1. Using these assumptions, the lower bound for �j is given by

�j = ✓j↵j�j &
⌘(R, b�j, byj)

⌘(L, b�j, bzj)CU(e�j, ezj)
. (4.21)

Thus, if

⌧j =
⌘(R, b�j, byj)

⌘(L, b�j, bzj)CU(e�j, ezj)
� 1, (4.22)

we have

⌘(P, b�j, V byj) & ⌘(P, e�j, V eyj).

The parameter ⌧j in (4.22) can be computed with low cost, although it may sometimes happen

that �j � 1 > ⌧j.

4.5 Numerical experiments

In this section, we compare the backward error of the SS-RR method in combination with the

balancing technique (Algorithm 6) with the backward error of the standard implementation

of the SS-RR method (Algorithm 4). For Algorithms 4 and 6, we use (4.6) to construct the

linearized form of R(�). We use the MATLAB command balance to balance the coe�cient

matrix of the SEP in step 4 of Algorithm 6. The MATLAB command balance implements

Algorithm 5.

The test problems (shown in Table 4.1) are PEP of degree m = 2 and higher-order PEP belong-

ing to the collection of nonlinear eigenvalue problems NLEVP [1]. The problems orr�sommerfeld

and mod�butterfly are higher-order PEP. Other problems are PEP of degree m = 2.
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Table 4.1: Polynomial eigenvalue problems [1].

Problem n applications
damped�beam 400 A vibration model of damped beam

shaft 400 A vibration model of shaft
wiresaw1 400 A vibration model of a wiresaw
wiresaw2 400 A vibration model of wiresaw with viscous damping
sleeper 400 A vbiration model of a railtrack with sleepers
spring 400 A finite element model of a mass-spring system with a damper
dirac 400 A model for Dirac operator

acoustic�wave�1d 400 A vibration model from acoustic wave problem
plasma�drift 128 A model from a cubic polynomial eigenvalue problem

orr�sommerfeld 400 A model from qrr-sommerfeld equation
mod�butterfly 400 A model of T-even structure

Table 4.2: Parameters for the SS-RR method.

Problem center � radius ⇢ #eigs
damped�beam �2 + 2.6⇥ 106i 3⇥ 105 22

shaft 2⇥ 105i 9⇥ 104 18
wiresaw1 �180i 40 26
wiresaw2 140i 40 26
sleeper �16 0.2 29
spring �12 1 26
dirac �5 0.7 24

acoustic�wave�1d �126 + 0.03i 1 30
plasma�drift 10 1 10
mod�butterfly 70i 10 18
orr�sommerfeld 3.8⇥ 10�4i 0.4⇥ 10�4 20

For each problem, the Jordan curve � is a circle with center � and radius ⇢ whose values are

given in Table 4.2. We set N = 32, K = 6 and L = 12 for the problem plasma�drift. We use

N = 32, K = 8 and L = 16 for other problems. For the quadrature points and corresponding

weights, we assign

zp = � + ⇢ exp

✓
2⇡i(p� 1/2)

N

◆
, !p =

(zp � �)

N
, p = 1, . . . , N.

All the computations were performed using MATLAB 2014.
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Table 4.3: The value of "1 := max
i=0:m

kAik2
kV HAiV k2 .

Problem "1
damped�beam 16.0

shaft 1.3
wiresaw1 4.0
wiresaw2 3.8
sleeper 1.0
spring 1.1
dirac 1.4

acoustic�wave�1d 17.0
plasma�drift 1.0
mod�butterfly 1.2
orr�sommerfeld 182.0

4.5.1 Verification of the assumptions

Here, we verify the assumptions of (4.19), (4.20), �j in (4.13) and ⌧j in (4.22) by using numerical

experiments.

As shown in Table 4.3, the norms of the coe�cient matrices of R(�) are similar to that of P (�)

for all problems except damped�beam, acoustic�wave�1d and orr�sommerfeld.

Table 4.4 shows the maximum values of BU(e�j, eyj). The value of BU(e�j, eyj) is not much larger

than 1 in most problems. The only exceptions where the assumption (4.20) is not satisfied are

damped�beam and orr�sommerfeld.

Table 4.5 displays the assumption that ✓j > 1 is satisfied for all problems. Table 4.5 also shows

that the assumption that �j > 1 is satisfied for all problems. The more practical approximation

⌧j for �j is also larger than 1 for all problems except orr�sommerfeld, which confirms its wide

applicability.

4.5.2 Evaluation of the backward error of P (�)

In this section, we evaluate the backward errors of P (�) for the SS-RR method and the SS-RR

method with the balancing technique. As shown in Table 4.6 and Figures. 4.1-4.4, the backward

errors of the SS-RR method with the balancing technique are smaller than those of the SS-RR
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Table 4.4: The value of "2 := max
j

BU(e�j, eyj).

Problem "2
damped�beam 27.0

shaft 1.3
wiresaw1 2.4
wiresaw2 1.1
sleeper 1.2
spring 1.6
dirac 5.0

acoustic�wave�1d 1.1
plasma�drift 1.0
mod�butterfly 1.3
orr�sommerfeld 64.0

Table 4.5: The minimum value of the parameters �, ✓ and ⌧ for P (�).

Problem min ✓ min � min ⌧
damped beam 7.1⇥ 104 6.9⇥ 105 2.4⇥ 102

shaft 7.2⇥ 103 5.7⇥ 107 6.6⇥ 103

wiresaw1 2.3⇥ 101 2.4⇥ 102 4.6⇥ 101

wiresaw2 2.0⇥ 101 3.1⇥ 102 3.9⇥ 101

sleeper 1.8⇥ 100 5.8⇥ 100 3.0⇥ 100

spring 1.5⇥ 100 2.9⇥ 100 1.3⇥ 100

dirac 4.1⇥ 100 2.0⇥ 100 1.6⇥ 100

acoustic�wave�1d 1.0⇥ 101 3.5⇥ 102 3.0⇥ 101

plasma�drift 1.0⇥ 100 4.1⇥ 100 3.9⇥ 100

mod�butterfly 2.1⇥ 100 9.9⇥ 101 6.3⇥ 101

orr�sommerfeld 3.6⇥ 108 3.6⇥ 102 1.3⇥ 10�4

method when ⌧ is larger than 1. The improvement in the backward error is significant even

for orr�sommerfeld in spite of the bad estimate for ⌧ . We also find that there is almost no

improvement in the dirac problem.

Based on the experimental results, we find that the SS-RR method with the balancing technique

can reduce the backward error of P (�).

4.6 Conclusion

We have proposed an approach for accurately computing the eigenpairs of the PEP using the

SS-RR method with the balancing technique. In this paper, we discussed why the SS-RR
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Table 4.6: Maximum backward errors of the eigenpairs of P (�).

Problems SS-RR SS-RR method with balancing
damped�beam 3.7⇥ 10�7 7.7⇥ 10�14

shaft 3.4⇥ 10�10 2.6⇥ 10�15

wiresaw1 8.4⇥ 10�13 6.0⇥ 10�15

wiresaw2 4.4⇥ 10�13 1.3⇥ 10�15

sleeper 1.8⇥ 10�13 5.3⇥ 10�15

spring 7.1⇥ 10�14 1.6⇥ 10�15

dirac 3.4⇥ 10�15 4.7⇥ 10�16

acoustic�wave�1d 4.1⇥ 10�13 7.7⇥ 10�15

plasma�drift 4.7⇥ 10�13 7.8⇥ 10�15

mod�butterfly 1.1⇥ 10�9 4.2⇥ 10�11

orr�sommerfeld 1.8⇥ 10�6 1.4⇥ 10�17

method with the balancing technique can improve the accuracy of computing eigenpairs and

we found a relation between the backward error of the SS-RR method and that of the SS-RR

method with the balancing technique. The analysis suggests that the SS-RR method with

the balancing technique can reduce the backward error of the SS-RR method under certain

conditions. In the numerical experiments, we found that these conditions are satisfied in most

practical problems and the SS-RR method with the balancing technique is more accurate than

the original SS-RR method. In our future investigations, we propose to study the results of

combining the balancing technique with other types of SS methods.
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Figure 4.1: Backward error for the damped�beam problem.
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Figure 4.2: Backward error for the shaft problem.
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Figure 4.3: Backward error for the plasma�drift problem.
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Figure 4.4: Backward error for the orr�sommerfeld problem.



Chapter 5

A balancing technique for heavily

damped quadratic eigenvalue problem

In this chapter, we discuss a special class of quadratic eigenvalue problem which called heavily

damped eigenvalue problem. The main content of this research is

• Investigate some numerical methods with di↵erent balancing techniques for solving heav-

ily damped quadratic eigenvalue problem.

• Proposed an new approach with a balancing technique.

• Compare the backward error of the purposed method to other numerical methods by

numerical experiments.

5.1 Introduction

We consider the heavily damped quadratic eigenvalue problem (QEP):

Q(�)x = (�2A2 + �A1 + A0)x = 0 (5.1)

58
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where kA1k2 �
p
kA0k2kA2k2 A2, A1, A0 2 Cn⇥n\{O}, and � 2 C and x 2 Cn\{0} are

eigenvalues and their associated eigenvectors.

One common way for solving the QEP is to convert Q(�) into a generalized eigenvalue problem

L(�)z = 0 (GEP). Q(�) and L(�) have the same eigenvalues [29]. We linearize (5.1) as follows:

L(�)z = (�X + Y )z = 0, (5.2)

where X, Y 2 C2n⇥2n. There are several choices for L(�). In practice, a common choice for

L(�) is its companion form, which is given by

L(�) = �

2

64
A2 O

O In

3

75+

2

64
A1 A0

�In O

3

75 , z =

2

64
�x

x

3

75 ,

where In is an identity matrix. We compute all eigenpairs of L(�) by using the QZ method.

The QZ method is stable for GEP. However, it can be unstable for the QEP, especially when

the norms of the coe�cient matrices of Q(�) vary widely [14].

The remainder of this paper is organized as follows. In Section 5.2, we introduce several

balancing techniques. In Section, we show some numerical methods based on di↵erent balancing

techniques and the proposed method. Finally, some numerical experiments are shown in Section

and we compare several numerical methods to the proposed method.

5.2 Balancing technique

In Section 4.2, we review balancing techniques for solving the standard eigenvalue problems,

such as Osborne and Parlett balancing techniques. Here, we will introduce another balancing

techniques for solving generalized and polynomial eigenvalue problems.
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5.2.1 Ward’s balancing technique

Ward [8] proposed a balancing technique to improve accuracy of computing eigenvalues for

generalized eigenvalue problem Ax = �Bx. The idea of Ward is to transform two matrices A

and B into D1AD2 and D1BD2 by finding two non-singular diagonal scaling matrices D1 and

D2. Then minimize the function

min
nX

i,j=1

(rowi + colj + log|Aij|2) + (rowi + colj + log|Bij|2),

where rowi and colj are the the absolute values of the diagonal elements of D1 and D2.

5.2.2 Lemonnier and Van Dooren’s balancing technique

Lemonnier and Van Dooren’s balancing technique [36] is to find two diagonal non-singular

matrices D1 and D2 such that

kD1AD2ejk22 + kD1BD2ejk22 = ke⇤
i
D1AD2k22 + ke⇤

i
D1BD2k22 = 1, i, j = 1, . . . , n.

Lemonnier and Van Dooren’s balancing technique can reduce the condition number for GEP.

5.2.3 Betcke’s balancing technique

Betcke’s balancing technique [37] is to reduce the condition number for PEP by finding diagonal

matrices D1 and D2

lX

k=0

w2kkD1AkD2eik22 = 1,
lX

k=0

w2kke⇤
j
D1AkD2k22 = 1, i, j = 1, . . . , n

where w close to absolute value of target eigenvalues.
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5.3 A linearization form with balancing techniques for

solving heavily damped QEP

In this section, we discuss a linearization form with balancing techniques for improving back-

ward error in heavily damped QEP. Eigensolvers are not backward stable for solving the heavily

damped QEPs when the norms of the coe�cient matrices of Q(�) vary widely. In order to im-

prove the backward stability of heavily damped QEP, we proposed an new method based on

Betcke’s balancing technique. We also compare the backward error of the proposed method

with that of a linearization form with Parlett’s balancing techniques.

5.3.1 Linearization form for heavily damped QEP

Linearization form is a standard approach for solving QEP. Linearize Q(�) as follows:

L(�)z = (�X + Y )z = 0,

where X, Y 2 C2n⇥2n,L(�) and Q(�) have the same spectrum. In practice, a common choice

for L(�) is its companion form

L(�)z =

0

B@�

2

64
A2 O

O In

3

75+

2

64
A1 A0

�In O

3

75

1

CA z = 0, z =

2

64
�x

x

3

75 , (5.3)

where In 2 Cn⇥n is identity matrix. All eigenpairs of Q(�) are computed by using the QZ

method. Finally, recover the eigenvectors x of Q(�) from the eigenvectors of L(�).

The main steps of this approach are shown in Algorithm 7.
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Algorithm 7 Linearization form for QEP

Input:
A matrix polynomial Q(�) = �2A2 + �A1 + A0.

Output:
All eigenpairs (�,x) of Q(�).

1: Construct a linearization form 5.3 for Q(�).
2: Compute eigenpairs (�, z) of L(�) using QZ method.
3: Recover (�,x) from (�, z), where x = z(1 : n).

Algorithm 8 Linearization form with Parlett’s balancing technique for QEP

Input:
A matrix polynomial Q(�) = �2A2 + �A1 + A0.

Output:
All eigenpairs (�,x) of Q(�).

1: Construct a linearization form 5.3 for Q(�).
2: Convert L(�) to a standard eigenvalue problem.
3: Balance the SEP with Betcke’s balancing technique, D�1(�X�1Y )Dv = �v.
4: Compute eigenpairs (�,v) of the SEP with QR method and recover eigenpairs of (�, z)

from (�,v), where z = Dv.
5: Obtain eigenpairs of (�,x) from (�, z) with x = z(1 : n).

5.3.2 Linearization form with Parlett’s balancing technique

Linearize Q(�) to (5.3), then convert L(�) to a SEP using Parlett’s balancing technique

D�1(�X�1Y )Dv = �v.

Compute all eigenpairs of the SEP with the QR method. Finally, recover the eigenvectors x of

Q(�) from the eigenvectors of SEP.

5.3.3 Betcke’s balancing technique for heavily damped QEP

Balance matrix polynomial by finding diagonal matrices D1 and D2

D1(�
2A2 + �A1 + A0)D2y = 0. (5.4)
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Linearize (5.4) to a companion form

L(�)z =

0

B@�

2

64
D1A2D2 O

O In

3

75+

2

64
D1A1D2 D1A0D2

�In O

3

75

1

CA z = 0,

Compute all eigenpairs of L(�) using QZ method. Finally, recover the eigenvector x of Q(�)

from the eigenvectors z of L(�).

Algorithm 9 Betcke’s balancing technique for QEP

Input:
A matrix polynomial Q(�) = �2A2 + �A1 + A0.

Output:
All eigenpairs (�,x) of Q(�).

1: Balance matrix pair (A2, A1, A0) to (D1A2D2, D1A1D2, D1A0D2) with Betcke’s balancing
technique.

2: Construct a linearization form (5.4) for Q(�).
3: Compute eigenpairs (�, z) of (5.4) using QZ method.
4: Recover (�,x) from (�, z), where x = D2z(1 : n).

5.3.4 The proposed method

We combine the linearization form with Betcke’s balancing technique for solving heavily damped

QEP. Linearize (5.1) to (5.3), then combine L(�) with Betcke’s balancing technique

D1L(�)D2 = D1

0

B@�

2

64
A2 O

O In

3

75+

2

64
A1 A0

�In O

3

75

1

CAD2

Compute all eigenpairs of D1L(�)D2 using QZ method. Recover the eigenvectors x of Q(�)

from the eigenvectors of D1L(�)D2.

5.4 Numerical experiments

In this section, we illustrate the backward error of Q(�) via Algs.9-12. The test problems are

from the collection in NLEVP [1]. All the computations were performed using MATLAB 2016.
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Algorithm 10 The proposed method

Input:
A matrix polynomial Q(�) = �2A2 + �A1 + A0.

Output:
All eigenpairs (�,x) of Q(�).

1: Construct a linearization form (5.3) for Q(�).
2: Balance (5.3) with Betcke’s balancing technqiue.
3: Obtain eigenpairs of (�,x) from (�, z) with x = D2z(1 : n).

Table 5.1: Backward error ratio when |�| close to 10�4.

Algorithms max ⌘(Q,�,x)

⌘(L,�,z)
min ⌘(Q,�,x)

⌘(L,�,z)

Algorithm 7 1.0⇥ 1010 9⇥ 108

Algorithm 8 2.3⇥ 108 1.8⇥ 106

Algorithm 9 3.4⇥ 107 2.8⇥ 106

Algorithm 10 2.0⇥ 100 3.6⇥ 10�1

5.4.1 mod�wiresaw2 problem

The first test problem is mod�wiresaw2 problem from wiresaw2 in NLEVP collection . The

dimension of coe�cient matrices A2, A1, A0 2 C200⇥200. Let A1 = 106 ⇤ A1 and

⌧ = kA1k2/
p
kA0k2kA2k2 = 2.0⇥ 104.

Therefore, kA1k2 �
p
kA0k2kA2k2. In Algorithms 9 and 10, we set w close to absolute value

of target eigenvalues where w = 106 and w = 10�4. Fig. 5.1 show that the backward error

of Q(�) will be reduced by Algorithm 10 when we let w close to target eigenvalue. We would

like to know what conditions need to be satisfied in order to obtain small backward errors in

the solution of the QEP, we investigate the ratio ⌘(Q,�,x)/⌘(L,�, z) are approximately equal

to one . Table 5.1 and 5.2 show that Algorithm 10 reduces the ratios of the backward errors

significantly. We also find that when we Algorithms 7-9 can reduce the backward error of Q(�)

when |�| close to 106 and the ratio of ⌘(Q,�,x)/⌘(L,�, z) are approximately equal one.
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Table 5.2: Backward error ratio when |�| close to 106.

Algorithms max ⌘(Q,�,x)

⌘(L,�,z)
min ⌘(Q,�,x)

⌘(L,�,z)

Algorithm 7 1.4⇥ 100 1.1⇥ 100

Algorithm 8 1.5⇥ 100 1.1⇥ 100

Algorithm 9 3.1⇥ 106 3.5⇥ 105

Algorithm 10 3.4⇥ 100 7.6⇥ 10�1
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Figure 5.1: Reduction of backward error of smallest eigenpairs of mod�wiresaw2 using balanc-
ing.

5.4.2 mod�hospital problem

The mod�hospital problem is from hospital problem in the NLEVP collection. We set

A1 = 106 ⇤ A1 and kA1k2 �
p

kA0k2kA2k2 with A2, A1, A0 2 C200⇥200. In Algorithms 9 and

10, we set w close to absolute value of target eigenvalues where w = 106 and w = 10�4. As

shown in Table 5.3, when |�| close to 10�4, the backward error ratio of Algorithm 10 is close

to 1. Backward error ratios of other algorithms are far from 1. The figure 5.3 show that the

backward error of Algorithm 10 is smaller than other methods.

As shown in Table 5.4, when |�| close to 106, Algorithms 7, 8 and 10 have smaller backward ratio
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Figure 5.2: Reduction of backward error of largest eigenpairs of mod�wiresaw2 using balancing.

Table 5.3: Backward error ratio when |�| close to 10�4.

Algorithms max ⌘(Q,�,x)

⌘(L,�,z)
min ⌘(Q,�,x)

⌘(L,�,z)

Algorithm 7 4.4⇥ 109 1.3⇥ 108

Algorithm 8 5.7⇥ 107 2.4⇥ 106

Algorithm 9 1.0⇥ 106 3.3⇥ 104

Algorithm 10 5.2⇥ 100 8.4⇥ 10�1

which close to 1. However, the backward error ratio of Algorithm 9 is far from 1. The result

suggests that Algorithm 10 reduce the backward error of computing eigenpairs and Algorithms

7 and 8 also improve the backward error of heavily damped QEP. Figure 5.4 satisfy this result.

5.5 Conclusion

We have some conclusions as following

• The proposed method improve the backward error of target eigenpairs in heavily damped
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Table 5.4: Backward error ratio when |�| close to 106.

Algorithms max ⌘(Q,�,x)

⌘(L,�,z)
min ⌘(Q,�,x)

⌘(L,�,z)

Algorithm 7 1.1⇥ 100 9.5⇥ 10�1

Algorithm 8 1.0⇥ 100 9.4⇥ 10�1

Algorithm 9 1.4⇥ 106 8.2⇥ 104

Algorithm 10 2.5⇥ 100 1.1⇥ 100
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Figure 5.3: Reduction of backward error of smallest eigenpairs of mod�hospital using balanc-
ing.

QEP.

• Only use linearization form and linearization form with Parlett’s balancing technique

improve backward error of some eigenpairs. However, these methods can not improve

backward error of all eigenpairs in heavily damped QEP.

• In the future, we will analyze the relation of backward error of P (�) relative to that of

L(�) and explain the reason that the proposed method can improve the backward error

of heavily damped eigenvalue problems.
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Figure 5.4: Reduction of backward error of largest eigenpairs of mod�hospital using balancing.



Chapter 6

Conclusion and future work

In this thesis, we improve the backward error of computing eigenpairs in polynomial eigenvalue

problems. We give a overview of our contributions.

6.1 Conclusion

• In quadratic eigenvalue problem (QEP), we use scaling technique in SS-RR method for

improving backward error of partial eignepairs in QEP. We explain the reason that the

projected matrix polynomial with scaling technique can improve the backward error of

the SS-RR method.

• In polynomial eigenvalue problem (PEP), we combine the SS-RR method with balancing

technique. This method not only improve the backward error of eigenpairs in QEP, but

also can improve the backward error in high-order degree PEP. We find some relation

between backward error of P (�) with backward error of SEP. Using these relation, we

explain the reason that the backward error of the SS-RR method can be reduced by

balancing technique.

• For heavily damped quadratic eigenvalue problem, we introduce some balancing tech-

niques for GEP and PEP. Then we compare some methods with balancing techniques

69
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Figure 6.1: A map of research in this thesis.

for solving heavily damped QEP. In numerical experiments, we find that the proposed

method can improve the backward error of heavily damped QEP.

A map of this research is shown in figure 6.1

6.2 Future work

• We will discuss other type of SS method with balancing techniques for solving PEP and

QEP.

• We will analyze backward error of the proposed method for solving heavily damped QEP.

• For solving nonlinear eigenvalue problem, we will discuss nonlinear eigenvalue problem

expressed non-monomial basis and analyze the backward error of the nonlinear eigenvalue

problems.
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