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1 Introduction

The development of the technology for ultrashort pulse laser with high intensity has enabled us
to explore a new research area of ultrafast and non-equilibrium phenomena governed by heavily
photoexcited carriers. Coherent phonon (CP) generation [1] is one of the representative ultrafast
phenomena unveiled by the irradiation of the ultrashort pulse laser, and this has been inves-
tigated in a variety of materials such as semiconductors, semimetals/metals, superconductors,
and other materials [2, 3, 4, 5]. Here, a longitudinal optical (LO) phonon is driven by the pulse
whose temporal width is much shorter than a period of the LO phonon, namely of an order of
10 fs. Thus far, the CP generation mechanism has been discussed by means of classical models
based on a damped forced-oscillation, and a great number of experimental results have been
examined from the viewpoint of a phase shift built in an asymptotic harmonic vibration, termed
as an initial phase.

Two well-known classical models have been employed for the discussion on the CP generation
thus far. One is the impulsive stimulated Raman scattering model [6], and in this model, it is
considered that a delta function-shaped force attributed to Raman polarizability drives the
oscillator, resulting in the sine form. The other is the displacive excitation of CP model [7],
where the external force is associated with the photoexcited carriers of a step function-like
shape, and the oscillation becomes of the cosine form. These classical models have succeeded in
revealing overall character of the CP generation dynamics, and have been followed by associated
theoretical studies [8, 9].

However, it is a matter of course that such approaches encounter difficulties in revealing
unexplored quantum effects in addition to demonstrating the details of the CP dynamics of
concern embedded in the initial phases. Quantum effects arise in the early stage of the CP
generation where heavily photoexcited carriers interact with an LO phonon; hereafter, we term
this time region the early time region (ETR). Incidentally in fact, additional complicated signals
due to nonlinear optical interference, termed as coherent artifact [10], manifest themselves in
the ETR, which result in masking inherent dynamics in CP.

As regards the quantum effect accompanied by the CP generation, Fano resonance (FR) [11]
has been observed transiently in the ETR for lightly n-doped Si [2]. This FR is considered
to be caused by interference between a discrete state of the LO phonon and continuum states
of the excited carriers. This is discerned just in a moment before the carrier relaxation time.
Further, it is speculated that the manifestation of the FR is the vestige of the birth of a polaronic
quasiparticle (PQ) due to the strong carrier-LO phonon interaction [12]. Here, we stress that
the concerned transient FR is distinct from the FR observed in incoherent Raman scattering for
heavily doped Si [13].
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The aim of the present dissertation is as follows. First, we construct a fully quantum me-
chanical model for the CP generation dynamics applicable for both nonpolar and polar semicon-
ductors on an equal footing [14]. In this model, we introduce PQ operators on the basis of the
supposition of the transient formation of the PQ in the experiments [2, 12], and these operators
are composed of an LO phonon operator and a set of pairs of electron operators. Next, on the
basis of this PQ model, we inspect the origin of the transient FR and other unexplored quantum
effects [14, 15]. Further, we investigate features of the CP generation such as the initial phases
and the asymptotic amplitudes under various pulse laser conditions [15]. For these purposes,
we examine a retarded longitudinal susceptibility related to transient induced photoemission
spectra and a CP displacement function.

This summary is organized as follows. In Sec. 2, we provide the brief explanation of the
theoretical framework. In Secs. 3 and 4, we present the results and discussion, and the conclusion,
respectively. Atomic units (a.u.) are used throughout unless otherwise stated.

2 Theory

2.1 Equations of motion

We take into consideration the total Hamiltonian Ĥ = Ĥe+Ĥ ′(t)+Ĥp+Ĥe−p. A two-band elec-

tron Hamiltonian is given by Ĥe =
∑

bk εbka
†
bkabk+(1/2)

∑
q ̸=0 V

(C)
q

∑
bb′kk′ a

†
bk+qa

†
b′k′−q

ab′k′abk.

Conduction and valence bands are labeled as b = c and b = v, respectively. a†bk and abk
represent creation and annihilation operators of an electron, respectively. Here, an energy

dispersion in band b and a Coulomb potential are provided by εbk and V
(C)
q , respectively

with the Bloch momentum k and q. The electron-light interaction at time t is given by

Ĥ ′(t) = −
∑

k

[
Ωcv(t) a

†
ckavk +Ωvc(t) a

†
vkack

]
, and Ωbb̄(t) with b̄ ̸= b is expressed as

Ωbb̄(t) = Ω0bb̄f(t) cosω0t, (1)

where the Rabi frequency Ω0bb̄ is provided by the product of a peak amplitude of an irradi-
ated electric field and the electric dipole moment between Γ-points of c- and v-bands. Fur-
ther, ω0 and f(t) are laser frequency and a pulse-envelope function, respectively. An LO

phonon Hamiltonian and the electron-phonon interaction are given by Ĥp =
∑

q ωqc
†
qcq and

Ĥe−p =
∑

bqk

(
gbqcqa

†
bk+qabk + g∗bqc

†
qa

†
bkabk+q

)
, respectively. c†q and cq represent creation and

annihilation operators of LO phonon, respectively, with energy dispersion ωq. It is considered
that the LO phonon mode is coupled with b-band electron through the interaction represented
by a coupling constant gbq.

The non-equilibrium dynamics driven by the pump laser irradiation of concern is described by
time-evolution of the phonon operator and a composite operator representing an induced carrier
density, defined as A†

q(kbb
′) = a†bk+qab′k. It is remarked that we are concerned exclusively with

the case of q being quite small, but finite: q ̸= 0. In terms of the Heisenberg equation, the
equation of motion of A†

q(kbb
′) is expressed as

−i

(
d

dt
+

1

Tqkbb′

)
A†

q(kbb
′) = [Ĥe + Ĥ ′(t), A†

q(kbb
′)] + [Ĥe−p, A

†
q(kbb

′)], (2)

where a time constant Tqkbb′ describes a phenomenological relaxation of A†
q(kbb

′). We obtain the

expression of the first commutator in the right-hand side of Eq. (2) as [Ĥe + Ĥ ′(t), A†
q(kbb

′)] ≈∑
k̃b̃b̃′ A

†
q(k̃b̃b̃

′)Zq(k̃b̃b̃
′,kbb′), where Zq represents a c-number non-Hermitian matrix, though an

explicit form is not shown here. It is noted that we evaluate Eq. (2) by employing a factoriza-

tion approximation, and split four operator terms such as a†
b̃,k̃+q̃

ab̃′k̃a
†
b,k+qab′k into a product of
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A†
q̃(k̃b̃b̃

′) and a single-particle density matrix ρbb′k ≡ ⟨a†bkab′k⟩, where ⟨Ô⟩ represents an expec-

tation value of an operator Ô concerning the ground state. Moreover, we employ the rotating
wave approximation, and thus high-frequency contributions are removed; A†

q(kbb
′), ρbb′k, and

Zq(k̃b̃b̃
′,kbb′) are replaced by eiω̄bb′ tĀ†

q(kbb
′), eiω̄bb′ tρ̄bb′k, and Z̄q(k̃b̃b̃

′,kbb′), respectively, where
ω̄cv = ω0, ω̄vc = −ω0, and ω̄bb = 0. Therefore, Eq. (2) becomes of the form

−i

(
d

dt
+

1

Tqkbb′

)
Ā†

q(kbb
′) = [Ĥe + Ĥ ′(t), Ā†

q(kbb
′)]− Ā†

q(kbb
′)ω̄bb′ + [Ĥe−p, Ā

†
q(kbb

′)]

≈
∑
k̃b̃b̃′

Ā†
q(k̃b̃b̃

′)Z̄q(k̃b̃b̃
′,kbb′) + [Ĥe−p, Ā

†
q(kbb

′)]. (3)

As regards the equation of motion of c†q, it is straightforward derived as −i
dc†q
dt = ωqc

†
q +∑

bk gbqĀ
†
q(kbb).

2.2 Physical quantities

On the basis of the linear response theory, an induced charge density n
(ind)
q (t) caused by a

weak external field fq(t) is given by n
(ind)
q (t) = −

∫ t
−∞ dt′ χ

(t)
q (t, t′)fq(t

′)/4πV [16], where V is

a volume of a crystal. χ
(t)
q (t, t′) is a retarded longitudinal susceptibility in the non-equilibrium

and transient system of concern, and it consists of two contributions as [16]

χ
(t)
q (t, t′) = χq(t, t

′) + χ′
q(t, t

′), (4)

where χq(t, t
′) and χ′

q(t, t
′) are retarded susceptibilities attributed to an electron-induced inter-

action and an LO phonon-induced interaction, respectively. The two susceptibilities are propor-
tional to a retarded density-density correlation function of electrons expressed as DR

q (t, t
′), and

a retarded phonon Green function expressed as D′R
q (t, t′), respectively. DR

q (t, t
′) is provided by

DR
q (t, t

′) = −i⟨[n̂q(t), n̂−q(t
′)]⟩θ(t − t′), with a density operator n̂q(t) =

∑
bk a†bk+qabk/V. On

the other hand, D′R
q (t, t′) is provided by D′R

q (t, t′) = −i⟨[cq(t)+ c†−q(t), c−q(t
′)+ c†q(t

′)]⟩θ(t− t′).
We investigate two physical quantities associated with the retarded susceptibilities; a tran-

sient induced photoemission spectrum and a CP displacement function. The dielectric function

ϵq(tp+τ, tp) is straightforward derived from χ
(t)
q (tp+τ, tp), and tp is the time where fq(t

′) probes

dynamics of concern. Here, it is remarked that ϵq(tp+τ, tp) and χ
(t)
q (tp+τ, tp) are dependent on

tp in addition to the relative time τ = t− t′, which is distinct from equilibrium systems. Thus,
the Fourier transform of ϵq(tp + τ, tp) as ϵ̃q(tp;ω) =

∫∞
0 dτe−iωτ ϵq(tp + τ, tp) leads to the tran-

sient induced photoemission spectra defined by Īq(tp;ω) = −Imϵ̃q(tp;ω). On the other hand,

the CP displacement function Qq(τ) is provided by Qq(τ) = DR
q (τ + t′, t′) − D

R(0)
q (τ + t′, t′)

except for a trivial proportional constant. Here t′ = 0 is concerned, and the retarded free

phonon Green function D
R(0)
q (t, t′) = −2 sin[ωq(t− t′)]θ(t− t′) is subtracted. Qq(τ) is expressed

as Qq(τ) = Cq(τ) cos [ωqτ +Θq(τ)] , where Cq(τ) and Θq(τ) are a transitory amplitude and a
renormalized phase modulus π at τ . After the ETR, Cq(τ) and Θq(τ) become an asymptotic
amplitude C0

q and an initial phase θq, respectively.

2.3 Polaronic quasiparticle operators

We suppose the PQ suggested in the experiments [2, 12], and define the PQ operator composed

of Ā†
q(kbb

′) and c†q. Brief explanations of the PQ are shown in the following. First of all,
we solve an eigenvalue problem of the non-Hermitian matrix Z̄q in Eq. (3) with t fixed as

an adiabatic parameter, represented by UL†
q Z̄q = EqUL†

q and Z̄qU
R
q = UR

q Eq. UL
q and UR

q

3



Energy

∆=ω0-Eg

joint-energy band

ωq
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a quasiboson state

(a) (b)

Effective coupling

modes

Figure 1: Schematic diagrams of (a) the energy distribution due to the photoexcited carriers,
and (b) the transient FR dynamics based on the PQ picture. (From Refs. [14] and [15] with
partial modification.)

are biorthogonal left and right eigenvectors, respectively with an adiabatic eigenvalue diagonal

matrix Eq. We employ matrix notations, that is, Z̄q =
{
Z̄q(k̃b̃b̃

′,kbb′)
}
, Eq = {Eqα}, and

U
L/R
q =

{
U

L/R
qα (kbb′)

}
, where Eqα and U

L/R
qα (kbb′) represent the eigenvalue and eigenvector of

the αth state, respectively. Here, the set of eigenstates {α} consists of a single discrete state
of the plasmonlike mode signified as α1, and a continuum state of single-particle excitation
modes signified as {β}, namely {α, α′} = (α1, {β}). Here, we define the creation operator

of an quasiboson of the αth state as B†
qα =

∑
kbb′ Ā

†
q(kbb

′)UR
qα(kbb

′), and furthermore, an

effective quasiboson-phonon coupling constants are given byMqα =
∑

kb gbqU
L†
qα(kbb) andM ′∗

qα =∑
α′ M∗

qα′⟨[Bqα′ , B†
qα]⟩ =

∑
kbb′

(
g∗bqρ̄bb′k − g∗b′qρ̄bb′k+q

)
UR
qα(kbb

′).

Thus, the equations of motion of B†
qα and c†q are integrated into a single equation in a

matrix form of −i d
dt [B

†
q, c

†
q] ≈ [B†

q, c
†
q]hq + [iB†

qWq, 0], where Wq = {Wqαα′} and Wqα′α ≡∑
kbb′ [dU

L†
qα′(kbb′)/dt]UR

qα(kbb
′) +

∑
kbb′ U

L†
qα′(kbb′)T

−1
qkbb′U

R
qα(kbb

′). Further, hq ≡ {hqγγ′} is a

non-Hermitian matrix provided by hq =

[
Eq Mq

M ′†
q ωq

]
. Here, {γ, γ′} = ({β}, α1, α2) with α2

representing a LO phonon mode and γ, γ′ = 1 ∼ N + 2, where N is the number of the single-
particle excitation modes; β, β′ = 1 ∼ N .

We are exclusively concerned with the case where the continuum level of {β} overlaps the two
discrete levels of α1 and α2. This case is categorized into the Fano problem, in other words, the
multichannel scattering problem with one open channel and two closed channels, except for hq
being non-Hermitian. We take into account the following coupled equations of

∑
γ′ hqγγ′V R

qγ′β =

V R
qγβEqβ, where V R

qβ = {V R
qγβ} represents the right vector of the solution for given energy Eqβ. In

terms of V R
qβ, we define a set of N operators F †

qβ as F †
qβ =

∑
β′ B

†
qβ′V R

qβ′β+B†
qα1V

R
qα1β

+c†qV
R
qα2β

.

Further, we introduce the left vector V L†
qβ = {V L†

qβγ} associated with V R
qβ in order to satisfy the

inverse relations B†
qα =

∑
β F

†
qβV

L†
qβα and c†q =

∑
β F

†
qβV

L†
qβα2

, where
∑

γ V
L†
qβγV

R
qγβ′ = δββ′ and∑

β V
R
qγβV

L†
qβγ′ = δγγ′ . Thus, we investigate time-evolution of F †

qβ in terms of the associated
Heisenberg equation. Employing the inverse relations, we obtain expressions of the retarded
Green functions in terms of F †

qβ, though not shown here.
Finally, in Fig. 1, we show the diagrams representing the transient FR dynamics concomitant

with the CP generation on the basis of the PQ picture. As shown in Fig. 1(a), in the joint-band
energy dispersion, the carriers form the energy distribution depending on the Rabi frequency
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Figure 2: Transient photoemission spectra Īq(tp;ω) as a function of ω for Si at probe time tp of
(a) 15 fs, (b) 65 fs, and (c) 100 fs, and those for GaAs at tp of (d) 15 fs, (e) 65 fs, and (f) 100fs.
(From Ref. [14] with partial modification.)

Ω0cv in Eq. (1), the pulse width defined by τL, and the detuning defined as

∆ = ω0 − Eg, (5)

where Eg represents a band gap energy at Γ point. Further, the energy distribution partially
overlaps with the energy of the LO phonon ωq. As shown in Fig. 1(b), the PQ FR state
constituted of the α2 and β states is deexcited through an induced photoemission process. The
detail of the deexcitation process is discussed in Sec. 3.1. It is noted that the contribution of
the α1 state to the transient FR is negligibly small.

3 Results and Discussion

3.1 Transient Fano resonance

In this section, the numerical calculations are conducted with Ω0cv = 16.5 meV and ∆ = 82 meV
for undoped Si, and Ω0cv = 27.2 meV and ∆ = 73 meV for undoped GaAs. The pulse-envelop
function f(t) in Eq. (1) is set to a squared shape with τL = 15 fs. It is noted that we assume

⟨[Bqα, B
†
q′α′ ]⟩ = δqq′δαα′ is fulfilled, so that the effective coupling M ′

qα becomes equal to Mqα.
This assumption is verified by partially neglecting the effects of the interband density matrices
ρ̄bb̄k. As a result, the matrix hq becomes Hermitian, and V L

qβ and V R
qβ become equivalent, which

enables one to employ the solutions of the Fano problem as a set of the vectors [17].
The transient induced photoemission spectrum Īq(tp;ω) is a decisive observable to compre-

hend the occurrence of transient and nonlinear FR. Consulting Eq. (4), it is seen that the two
interactions−the dynamically screened Coulomb interaction induced by electrons and the LO
phonon-induced interaction−play a part to the total retarded longitudinal susceptibility, repre-

sented by χ̃
(t)
q (tp;ω) = χ̃q(tp;ω) + χ̃′

q(tp;ω). Here, χ̃
(t)
q (tp;ω), χ̃q(tp;ω), and χ̃′

q(tp;ω) show the

Fourier transforms of χ
(t)
q (tp+ τ, tp), χq(tp+ τ, tp), and χ′

q(tp+ τ, tp) with respect to time τ into
the frequency ω-domain, respectively. χ̃q(tp;ω) is proportional to |q|2 in the small-q limit. On
the other hand, χ̃′

q(tp;ω) is proportional to |q|2 for the Frölich interaction of long range, and
|q|4 for the deformation potential interaction of short range. This fact reflects on Īq(tp;ω), as it
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should be; in nonpolar crystals, lattice absorption disappears in the limit of a dipole transition
accompanying momentum transfer q = 0, since spatial inversion symmetry exists.

Figure 2 shows Īq(tp;ω) of Si and GaAs at probe time tp = 15, 65, and 100 fs. The
contribution from χ̃q(tp;ω) and χ̃′

q(tp;ω) are separately represented by blue and green lines,
respectively, and red lines represent the total one. The contribution of χ̃q(tp;ω) is mostly
dominated by the α1 mode, whereas that of χ̃′

q(tp;ω) is dominated by the α2 mode. χ̃q(tp;ω)
is ascribed to electronic excitation through optical interband transitions. Īq(tp;ω) includes
structureless spectra due to the continuum modes {β}, which are almost constant in ω of concern.
In both Īq(tp;ω)’s of Si and GaAs, the formation of spectral peaks is due only to χ̃′

q(tp;ω). The
width of the spectral peaks follows the relaxation time due to phonon anharmonicity, which is
set to 0.27 meV in the calculation, rather than natural spectral width.

Figure 2(a) represents Īq(tp;ω) of Si at tp = 15 fs. The spectrum is dominated by the contri-

bution from χ̃q(tp;ω) attributed to the α1 mode; χ̃
(t)
q (tp;ω) ≈ χ̃q(tp;ω), and the spectrum shows

monotonous reduction in ω. On the other hand, the contribution from χ̃′
q(tp;ω) is negligible

since it is proportional to |q|4. In Fig. 2(b), the contribution from χ̃q(tp;ω) becomes small owing
to the relaxation of the induced carrier density, attributed to Tkqbb′ in Eq. (2). Consequently,
the contribution from χ̃q(tp;ω) is comparable with that from χ̃′

q(tp;ω). It is remarked that
asymmetric spectrum with a dip followed by a peak appears, which is characteristic of FR .
This spectral profile contrasts with the symmetric line shape in Fig. 2(c) at tp = 100 fs, where

the spectrum is governed by χ̃′
q(tp;ω); χ̃

(t)
q (tp;ω) ≈ χ̃′

q(tp;ω).
Regarding Īq(tp;ω) of GaAs, Fig. 2(d) shows spectra at tp = 15 fs with a discernible peak

attributed to the α2 mode. The contributions from χ̃q(tp;ω) of the background continuum and
χ̃′
q(tp;ω) of the peak are comparable order because both are proportional to |q|2. Figure 2(e)

shows the spectrum at tp = 65 fs governed by χ̃′
q(tp;ω), and a symmetric profile is obtained,

which is different a lot from that of Si shown in Fig. 2(b). Figure 2(f) shows the spectrum at
tp = 100 fs representing the similar profile to that in Fig. 2(c).

It is possible to elucidate the origin of the occurrence of the asymmetric spectral profile
shown in Fig. 2(b), that is, the transient FR by inspection of the details of the numerical
calculation, namely, an analytic expression of the retarded longitudinal susceptibility, though
not shown here. According to the procedures, major difference between the results of Si and
GaAs originates just from the phase factor of the effective coupling constant Mqβ = |Mqβ|eiϕqβ ,
apart from trivial difference of material parameters. Mqβ is attributed to the LO phonon induced
deformation potential interaction gbq = gDbq that is real in non-polar crystals, and the Fröhlich

interaction gbq = gFbq that is pure imaginary in polar crystals. It is remarked that in GaAs,
the contribution of the deformation potential interaction in Mqβ is approximately an order of
one thousand times smaller than that of the Fröhlich interaction in the present calculations.
Actually, ϕqβ is determined by the phases of gDq and gFbq; ϕqβ = 0, π for Si, whereas ϕqβ = ±π/2
for GaAs.

Now, we examine how the difference of Mqβ influences the line shape of Īq(tp;ω) with the
PQ picture. The LO phonon discrete state α2 is embedded in the quasiboson continuum state
β. They can be resonantly coupled, leading to the formation of the FR state of the PQ. As
shown in Fig. 1(b), we have the two transition processes. One is a direct process through an

optical transition matrix D
(c)
qβ from the quasiboson state to the PQ ground state. The other is

a two-step resonant process, that is, from β to α2 mediated by M∗
qβ, and a deexcitation from

α2 to the ground state follows it through an optical transition denoted by D
(r)
qα2 . Consulting

Shore’s model [18], Īq(tp;ω) is provided in the vicinity of ω ≈ ωq as

Īq(tp;ω) ≈ Cqβ +
Aqα2 (ω − ωq) + Bqα2Γqα2/2

(ω − ωq)
2 + (Γqα2/2)

2 , (6)

where the density of state of the quasiboson and the natural spectral width are provided by ρqα2
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and Γqα2 = 2πρqα2 |Mqα2 |2, respectively. Further, Mqα2 is the coupling matrix at Eqβ = ωq. We
obtain Shore’s spectral parameters represented by Aqα2 , Bqα2 , and Cqβ as

Aqα2 = 2|D(c)
qβ ||D

(r)
qα2 ||Mqβ| cosϕqβ

Bqα2 = −2|D(c)
qβ ||D

(r)
qα2 ||Mqβ| sinϕqβ + |D(r)

qα2 |2|Mqβ|2/(Γqα2/2)

Cqβ = |D(c)
qβ |

2

(7)

The Fano’s asymmetric q parameter [11] is obtained by means of Shore’s parameters as qqα2(tp) =
rqα2(tp)+σqα2(tp)

√
[rqα2(tp)]

2 + 1 with rqα2(tp) = Bqα2/Aqα2 and σqα2(tp) = Aqα2/|Aqα2 |, and
Cqβ represents a continuum background.

The spectral profile depends on Aqα2 . On the occasion of ϕqβ = ±π/2, Aqα2 = 0 and the
spectral profile of Īq(tp;ω) becomes symmetric with |qqα2(tp)| infinite. This situation corresponds
to the line shape of GaAs in Fig. 2(e). When ϕqβ ̸= ±π/2, both Aqα2 and Bqα2 are finite, and
an asymmetric spectral profile appears with |qqα2(tp)| finite. The line shape of Si in Fig. 2(b)

with ϕqβ = 0, π is categorized into this case. For Figs. 2(c) and 2(f), because D
(c)
qβ and |Mqβ| are

negligible, Īq(tp;ω) is dominated by the second term of the expression of Bqα2 . As a result, the
spectral profile becomes symmetric. In conclusion, the effective coupling constant Mqβ around
Eqβ ≈ ωq plays a key part in the occurrence of the transient FR, and the spectral profile is
strongly dependent on ϕqβ as far as |Mqβ| is finite.

3.2 Irregular Oscillatory-Patterns in the Early-Time Region

Next, we show the calculated results of the oscillatory patterns Qq(τ) for undoped Si. The pulse
envelop function f(t) is set to a Gaussian-shape with τL = 10 fs. Here, it should be noted that we
investigated Īq(tp;ω) shown in the previous section by solving the multichannel scattering prob-
lem. The scheme is based on the approximation that the effects of the interband density matrices
ρ̄bb̄k are partly neglected so as to solve the Hermitian problem substituted for the non-Hermitian
problem of hq. This approximation scheme is justified for the case of the relatively weak excita-
tion conditions. In the present scheme, we incorporate these neglected effects into calculations.
However as the price to be paid, the more tractable eigenvalue problem takes the place of the
scattering problem to be solved just for the sake of simplicity. We consider an integrated equa-
tion of motion of the phonon, the single-particle excitations in interbands, and the plasmon
whose creation operator is defined by B†

q; −id/dt[c†q, Ā
†
q(kbb̄) · · · ,B†

q] = [c†q, Ā
†
q(kbb̄) · · · ,B†

q]Z̄q.
Z̄q represents a non-Hermitian matrix, though the explicit form is not shown here. From now
on, the indices of ph, pl, and (kbb̄) represent the phonon, the plasmon, and the single-particle
excitation in interbands, respectively. We solve the left and right eigenvalue problems of Z̄q

with time t fixed as VL†
qj Z̄q = EqjVL†

qj and Z̄qVR
qj = VR

qjEqj , where {j} = (ph, {kbb̄}, pl). Eqj is

the jth eigenvalue, and VL
qj and VR

qj are the associated biorthogonal eigenvectors. Thus, the PQ

operator P †
qj is introduced as P †

qj = c†qVR
qphj + B†

qVR
qplj +

∑
kb Ā

†
q(kbb̄)VR

q(kbb̄)j
.

In Figs. 3(a) and 3(b), we present the results of Θq(τ) and Cq(τ) at τ = 20 fs in the ETR as a
function of Ω0cv, respectively, with ∆ = 0 and −136 meV. Both Θq(τ) and Cq(τ) for ∆ = 0 meV

represent irregular changes with cusp structures at Ω0cv = Ω
(C1)
0cv ≡ 82 meV and Ω

(C2)
0cv ≡ 286

meV. Further, the envelopes of both functions show steep changes around Ω0cv = 350 meV. In
contrast, the behaviors of Θq(τ) and Cq(τ) for ∆ = −136 meV are moderate over Ω0cv.

For the more precise interpretation of the results, we evaluate Re[Eqj(τ)] at τ = 20 fs as a
function of Ω0cv. Figure 3(c) shows the calculated results for ∆ = 0 meV, where the eigenvalues
of j = ph and j = pl modes are represented by filled and open red squares, respectively. The
plasma frequencies defined by ωqpl(τ) for ∆ = 0 meV and −136 meV are also shown by red and

blue dash lines, respectively. ωqpl(τ) for ∆ = 0 meV obviously coincides with ωq at Ω0cv = Ω
(C1)
0cv

and Ω
(C2)
0cv , and it leads to anticrossings between Re[Eqph(τ)] and Re[Eqpl(τ)].
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Figure 3: (a) Θq(τ), (b) Cq(τ), and (c) The real parts of Eqph(τ) and Eqpl(τ) as a function of
Ω0cv (in the unit of meV). (d) The enlarged view of Re[Eqph(τ)] around the phonon energy in
panel (c). In panels (a)-(d), τ = 20 fs and the detuning ∆ = 0 and −136 meV. (e) θq and (f)
C0
q as a function of Ω0cv. Experimental data of θq [3] are also shown by green circles. (From

Ref. [15] with partial modification.)

Figure 3(d) shows the enlarged view of Re[Eqph(τ)] in Fig. 3(c). The difference between
Re[Eqph(τ)] and ωq shows the self-energy, which is attributed almost to the interaction between
the phonon and the plasmon; the effects of the single-particle excitations would be much smaller.

The self-energy for ∆ = 0 meV alters steeply at Ω0cv = Ω
(C1)
0cv and Ω

(C2)
0cv , and these positions

are in agreement with those of the manifestation of the cusp structures in Figs. 3(a) and 3(b).
Therefore it is concluded that the anomalies in Θq(τ) and Cq(τ) are clearly ascribed to the
anticrossings resulting from the energetically resonant interaction between the phonon and the
plasmon of the photoexcited carriers. Regarding the case for ∆ = −136 meV, such anomalies
are not obtained since ωq > ωqpl(τ) within the present range of Ω0cv.

Moreover in Fig. 3(c), ωqpl(τ) denoted by a dash line oscillates with a period of approximately
350 meV. This results from the interband Rabi flopping of the photoexcited carriers, where
it ends at τ ≈ τL/2, because in the present calculations for τL = 10 fs, Ω0cv of 2π-pulse

is approximately provided by Ω0cv = Ω
(2π)
0cv ≡ 388 meV and that of π-pulse is provided by

Ω
(π)
0cv = Ω

(2π)
0cv /2 except for the Coulomb correction. Therefore, the evident alterations of Θq(τ)

and Cq(τ) around Ω0cv = Ω
(2π)
0cv for ∆ = 0 meV shown in Figs. 3(a) and 3(b) result from the

Rabi oscillation.
We show the results of the initial phase θq and the asymptotic amplitude C0

q as a function
of Ω0cv in Figs. 3(e) and 3(f), respectively. It is seen that the Rabi-oscillatory patterns still

appear in both of θq and C0
q for ∆ = 0 meV around Ω0cv = Ω

(2π)
0cv , whereas the cusp structures

vanish because the plasmon-phonon coupling is suppressed due to the carrier relaxation. The
experimental results of θq, which represent the dependence on the pump fluence for lightly n-
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Figure 4: Qq(τ) as a function of τ (in the unit of fs) in the ETR at four specific Ω0cv’s provided
in panels (a)-(d). (From Ref. [15] with partial modification.)

doped Si [3], are also shown in Fig. 3(e). As the fluence increases, θq varies from 90◦ to the
vicinity of 0◦. The result is consistent with the calculated one for ∆ = 0 meV.

Figures 4(a)-4(d) represent the calculated results of Qq(τ) in the ETR as a function of τ for

∆ = 0 meV. Here Ω0cv is set to Ω
(C1)′
0cv ≡ 81.6 meV, Ω

(π)′
0cv ≡ 190.4 meV, Ω

(C2)′
0cv ≡ 299.2 meV, and

Ω
(2π)′
0cv ≡ 353.6 meV, in the proximity to Ω

(C1)
0cv , Ω

(π)
0cv, Ω

(C2)
0cv , and Ω

(2π)
0cv , respectively. As shown

in Fig. 3(c), the number of excited carriers is maximized at Ω0cv = Ω
(π)′
0cv , and minimized at

Ω0cv = Ω
(2π)′
0cv of the four. At Ω0cv = Ω

(C1)′
0cv and Ω

(C2)′
0cv , owing to the plasmon-phonon resonant

coupling, Qq(τ)’s show irregular oscillatory patterns from a simple sinusoidal function with a

period of 2π/ωq = 66 fs. The transitory amplitudes Cq(τ) at Ω0cv = Ω
(C1)′
0cv and Ω

(C2)′
0cv of

the resonant conditions are approximately ten times larger than that at Ω0cv = Ω
(π)′
0cv of the

π-pulse laser condition, whereas the asymptotic amplitudes C0
q of the resonant conditions are

several times smaller than that of π-pulse laser condition [see Fig. 3(b)]. Moreover, it is seen

that the renormalized phase Θq(τ) changes anomalously, in particular at Ω0cv = Ω
(C1)′
0cv ; the

phase varies rapidly over 2π around τ = 10 fs, attributed presumably to the appearance of

the resonant interaction. Besides, Qq(τ) of Ω0cv = Ω
(π)′
0cv deviates from a simple harmonics due

to the maximized carrier inversion. In contrast, Θq(τ) and Cq(τ) of Ω0cv = Ω
(2π)′
0cv are almost

unchanged, and gradually approaches the asymptotes; Qq(τ) represents a damped harmonic
oscillation in most of the time-region.

4 Conclusions

A fully quantum mechanical model based on the PQ picture for the CP generation in semicon-
ductors is constructed. In this model, the LO phonon, the plasmon of the collective excitation,
and the electron-hole continua of the single-particle excitation are taken into consideration.
Thereby, quantum mechanical effects inherent in the interactions among these modes are theo-
retically revealed, that is, the optically nonlinear and transient FR, the anomalous oscillatory
pattern ascribed to the plasmon-phonon resonant interaction, and the Rabi flopping. It is found
that these quantum effects enrich the underlying physics of the CP generation in the ETR.

The transient FR is manifested in the transient induced photoemission spectra; an asym-
metric spectral profile appears in Si, whereas not in GaAs. The distinct profiles of Si and GaAs
are ascribed to the effective quasiboson-phonon coupling Mqβ; by consulting Shore’s model, the
spectral profiles are strongly dependent on argMqβ, and the asymmetry in spectra is due to the
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deformation potential interaction, and the Fröhlich interaction leads to the symmetric profile.
After the ETR of |Mqβ| ≈ 0, the profiles become symmetric in both of Si and GaAs.

The effects of the resonant coupling between the plasmon and the phonon, and the Rabi
flopping also appear in the ETR. In the CP displacement function of Si, irregular oscillatory
patterns due to the plasmon-phonon resonance are observed just in the ETR. This resonance
effect is expected to be verified experimentally by reducing the masking effect ascribed to coher-
ent artifacts. Further, the resonance effect would be enhanced in polar crystals such as GaAs
because the Fröhlich interaction is much larger than the deformation potential interaction. On
the other hand, the Rabi flopping is also manifested after the ETR, and discernible in experi-
ments through the measure of the initial phase and the asymptotic amplitude as a function of
the Rabi frequency up to more than the one of the 2π-pulse laser.
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