
Studies on Cell Biological Modulation of
Abnormally Accumulated Microtubule-Associated
Protein Tau for Alzheimer's Disease Drug
Discovery

著者 Ikemoto Yumiko
year 2018
その他のタイトル アルツハイマー病における微小管関連蛋白質タウの

異常蓄積の細胞生物学的制御に関する研究
学位授与大学 筑波大学 (University of Tsukuba)
学位授与年度 2017
報告番号 12102甲第8563号
URL http://doi.org/10.15068/00152263



 

 

 

 

 

Studies on Cell Biological Modulation of Abnormally Accumulated Microtubule-Associated 

Protein Tau for Alzheimer's Disease Drug Discovery 

 

 

A Dissertation Submitted to 

the Graduate School of Life and Environmental Sciences, 

the University of Tsukuba 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy in Biological Science 

(Doctoral Program in Biological Sciences) 

 

Yumiko IKEMOTO  



i 

 

Table of Contents 

 

Abstract .................................................................................................................... ........... 1 

Abbreviations ...................................................................................................................... 4 

General Introduction ........................................................................................................... 6 

Part 1 ........................................................................................................................... ...... 10 

Abstract ................................................................................................................ 11 

Introduction .......................................................................................................... 12 

Materials and Methods ........................................................................................ 14 

Results ................................................................................................................. 18 

Discussion ........................................................................................................... 22 

Figures ................................................................................................................. 28 

Part 2 ................................................................................................................................. 42 

Abstract ................................................................................................................ 43 

Introduction .......................................................................................................... 44 

Materials and Methods ......................................................................................... 46 

Results ................................................................................................................. 57 

Discussion ........................................................................................................... 61 

Figures ................................................................................................................ 64 

General Discussion ......................................................................................................... 90 

Acknowledgements ........................................................................................................ 94 

References ...................................................................................................................... 96 

 



1 

 

 

 

 

 

 

 

 

 

 

Abstract 

  

  



2 

 

Alzheimer's disease (AD) is a severe neurodegenerative disorder. There is no disease 

modifying drugs for AD so far, hence increase of number of AD patients due to population aging 

is a global social issue. Neurofibliraly tangles (NFTs) is a major pathological hallmarks of AD 

and mainly composed of tau protein. Since tau has pivotal role in the pathogenesis of AD and 

other tauopathy diseases, it is important to understand the cell biological basis of abnormal 

production and accumulation for the AD drug discovery. For this purpose, I studied about cell 

biological modulation of abnormal production and accumulation of tau. 

 In the first chapter, I describe the tau gene expression modulation through transcription 

factor Sp1. The tau protein is encoded by microtubule-associated protein tau (MAPT) gene and 

Sp1 binds to the promoter region of MAPT gene. As Sp1 is supposed to affect AD pathology via 

regulating tau/MAPT gene expression, targeting Sp1 is attractive strategy to modulating tau gene 

expression. To investigate basic information of Sp1 as a drug target, I prepared a series of Sp1 

mutant proteins and examined DNA recognition properties of Sp1. From the analysis, I found that 

each of three zinc finger motifs had different role in DNA recognition. I also found that the C-

terminal finger induced conformation change in DNA structure of the N-terminal finger binding 

regions, and that the conformation change affected DNA recognition mode of the N-terminal 

finger. These findings are useful for designing tau expression modulator targeting Sp1. 

In the second chapter, I describe a novel glycogen synthase kinase-3 (GSK-3) inhibitor 

that suppresses tau phosphorylation. Tau is hyperphosphorylated mainly by glycogen synthase 

kinase 3 (GSK-3). Accordingly GSK-3 inhibitor is expected to improve AD pathology by 

inhibiting NFT formation. I discovered a potent and selective GSK-3 inhibitor, compound A and 

found that compound A reduced tau phosphorylation in vitro and in vivo. And chronic treatment 

of compound A in human P301L tau expressing mouse (JNPL3 mice, an AD mice model) resulted 

in significant reduction on not only tau phosphorylation but also abnormal tau aggregation.  
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Taken together, I conclude that cell biological modulation of tau gene expression and 

tau phosphorylation is attractive strategy for AD treatment, and tau–targeting approach is 

promising beyond 'Aβ hypothesis' based approach. 
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Aβ  amyloid β 

AD  Alzheimer’s disease 

ATP  adenosine triphosphate 

DNA  deoxyribonucleic acid 

GSK-3  glycogen synthase kinase-3 

MAPT  microtubule associated protein tau 

NFT  neurofibliraly tangle 

Sp1  specificity protein 1 

SEM  standard error of mean 
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AD is a severe and progressive neurodegenerative disorder with cognitive impairment 

and personality change due to synaptic and neuronal loss. AD is a most common dementia 

accounting for estimated 60 to 80 percent of cases. Worldwide, nearly 44 million people have 

AD or related dementia, and AD is now 4th leading cause of death in the high income countries 

in the world (1). The global cost of AD and dementia is estimated to be $818 billion in 2015 

(1). Increase of number of AD patients due to population aging is a global social issue. Currently, 

there is no disease modifying drugs for AD with limited treatment options of symptomatic relief.   

The two major pathological hallmarks in brains of AD patients are senile plaques 

composed of Aβ peptides and NFTs composed of abnormally hyperphosphorylated tau protein. 

Aβ targeting drug development/therapies have widely been researched and developed for AD 

treatment, and this strategy has strongly supported by the discovery of disease associated 

mutations in Aβ-related genes, such as amyloid precursor protein, Presenilin-1, and Presenilin-

2. Nevertheless, several large clinical trials of Aβ targeting drug candidates for the treatment of 

AD and mild cognitive impairment have failed over the last decade. Recent multicenter 

neuroimaging study results indicated that Aβ pathology (senile plaques) appeared in the very 

early stages of AD pathology development and preceded clinical symptom, suggesting the 

necessity of the very early intervention and prevention for Aβ targeting treatment (2).  

Recent growing number of evidences supports the idea that NFT is a key driver of 

disease progression in AD (3), and people pay much attention to tau targeting strategy for AD 

drug development. Tau is a microtubule associated protein and mostly localized in axons. 

Physiologically, tau has an important role in microtubule assembly and microtubule stability, also 

contributes maintaining normal axonal integrity and neuronal function (4-6). Tau is supposed to 

have other functions, such as cellular signaling, neuronal development, neuroprotection, and 

apoptosis (4-6). In spite of its important roles in cellular processes, several lines of tau knockout 
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mice were reported to be viable and do not display any gross physical or behavioral abnormalities, 

as microtubule associated protein 1A (MAP1A) may compensate for the loss of tau (4). In AD 

and other tauopathy patient brains, such as Pick's disease (PiD) frontotemporal dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17), progressive supranuclear palsy (PSP), and 

corticobasal degeneration (CBD), abnormally hyperphosphorylated tau accumulate as paired 

helical filaments (PHF) (5). Abnormally hyperphosphorylated tau is dissociated from microtubule, 

leading to neuronal damage with impaired axonal transport (5). Disease associated mutation in 

MAPT gene were reported in frontotemporal lobar degeneration with parkinsonism 17 (FTDP-

17) patients (7).  

Since tau has pivotal role in the pathogenesis of AD and other tauopathy diseases, it is 

necessary to understand the basis of abnormal production and accumulation for the AD drug 

discovery. For this purpose, I studied about cell biological modulation of abnormal production 

and accumulation of tau. In the first chapter, I describe the tau gene expression modulation 

through transcription factor Sp1. Tau is encoded by MAPT gene and Sp1 binds to the promoter 

region of MAPT gene (8). In AD and other tauopathy patient postmortem brains, Sp1 is 

abnormally expressed (9). As Sp1 is supposed to affect AD pathology via regulating tau/MAPT 

gene expression, targeting Sp1 is attractive strategy to modulating tau gene expression. To 

investigate basic information of Sp1 as drug target, I prepared a series of Sp1 mutant proteins and 

examined DNA recognition properties of Sp1. In the second chapter, I describe a novel GSK-3 

inhibitor that suppresses tau phosphorylation. I discovered a potent and selective GSK-3 inhibitor, 

compound A and found that compound A reduced tau phosphorylation in vitro and in vivo. And 

chronic treatment of compound A in human P301L tau expressing mouse (JNPL3 mice, an AD 

mouse model) resulted in significant reduction on not only tau phosphorylation but also abnormal 

tau aggregation.  
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Part I 

Finger-positional change in three zinc finger protein Sp1 

: influence of terminal finger in DNA recognition. 
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Abstract 

 

The connection of functional modules is effective for the design of DNA binding 

molecules with the desired sequence specificity. C2H2-type zinc finger proteins have a tandemly 

repeated array structure consisting of independent finger modules and are expected to recognize 

any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc 

fingers. To investigate the effects of the replacement of the terminal finger on the DNA 

recognition by other fingers, I have constructed the three zinc finger peptides with finger 

substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of 

gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is 

predicted if the fingers act in a modular fashion. The methylation interference analyses 

demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and 

Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type 

peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal 

finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of 

Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger 

(active finger) induces a conformational change in the DNA in the region for the binding of the 

N-terminal finger (passive finger). The present results strongly suggest that the extent of base 

recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This 

information provides an important clue for the creation of a zinc finger peptide with the desired 

specificity, which is applicable to the design of novel drugs and biological tools. 
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Introduction 

 

The design of DNA targeting proteins with desired functions is one of the most 

significant problems in the post-genome era and may lead to the creation of new drugs and 

biological tools. To achieve this goal, it is necessary to establish the DNA recognition rule by the 

DNA binding molecules with a well-defined modular structure such as the C2H2-type zinc finger 

and pyrrole−imidazole polyamide (10, 11). The C2H2-type zinc finger motif has a tandemly 

repeated structure consisting of independent modules with the consensus sequence:  (Tyr,Phe)-X-

Cys-X2,4-Cys-X3-Phe-X5-Leu-X2-His-X3-5-His-X2-6. Each finger domain is mostly connected 

by a well-conserved linker and has a compact globular ββα structure due to tetrahedral binding of 

a zinc ion with invariant cysteines and histidines. The first crystal structural analysis of the 

Zif268−DNA complex has provided useful information about the DNA recognition by the C2H2-

type zinc finger motif (12, 13). In the complex, each zinc finger makes direct base contacts by 

using amino acids at positions −1, 2, 3, and 6 in the α-helix that recognizes overlapping four-base-

pair subsites mainly on the guanine-rich strands of the binding site. However, two unique features 

opposed to the modularity of the zinc finger have been reported in the DNA recognition by the 

zinc finger protein. One is the unbalanced influence of these fingers on the DNA binding observed 

in the DNA bindings of Zif268 (14), the C-terminal three fingers of TFIIIA (15), and WT1 (16). 

In them, the N-terminal fingers make particularly smaller contributions to the high-affinity DNA 

binding than the other fingers. The other influence is the relative finger position on the DNA 

binding of the finger. The order change of zinc fingers in an array and sequential selection via the 

phage display give rise to the unexpected effects on the DNA base recognition by zinc fingers 

(17, 18).  
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Transcription factor Sp1 is a sequence-specific DNA binding protein derived from the 

HeLa cell (19, 20). Sp1 has three contiguous repeats of a C2H2-type zinc finger motif at the C-

terminus and activates transcription in various viral and cellular genes by binding to the GC box, 

which has the decanucleotide consensus sequence 5'-(G/T)GGGCGG(G/A)(G/A)(C/T)-3' 

(20−24). Together with the crystallographic evidence of the Zif268−DNA complex, some 

previous studies about the Sp1−DNA interaction revealed that the three zinc fingers of Sp1 also 

make a different contribution to GC-box DNA binding (25-28). Namely, the contribution is 

reduced in the order:  C-terminal finger > central finger > N-terminal finger. Moreover, the N-

terminal zinc finger of Sp1 uniquely binds to DNA, whereas the central and C-terminal zinc 

fingers typically bind to DNA (28). The finger does not utilize His(3), but instead utilizes Lys(−1) 

for the recognition of the guanine bases at the center and the 3'-end of the 5'-GGG-3' subsite 

despite prevalent  recognition of guanine at the center of the 5'-GGG-3' subsite by His(3).  

 

In this study, I prepared three mutant zinc finger peptides, Sp1(zf223), Sp1(zf323), and 

Sp1(zf321), and evaluated the effect of the terminal finger on the base recognition of the other 

fingers in the DNA binding of three zinc finger peptide. The wild-type and mutant peptides 

preferably bind to their predicted binding sequences. Methylation interference and DNase I 

footprinting analyses suggest that the different degrees of base recognition of the N-terminal 

finger of the mutant peptides from that of wild type is due to the DNA conformational change 

induced by the binding of the C-terminal finger. 
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Materials and Methods 

 

Materials  

All enzymes were purchased from New England Biolabs (Beverly, MA, USA), except 

for the restriction enzyme AgeI obtained from Nippon Gene (Tokyo, Japan). The synthesized 

oligonucleotides for construction of the genes and substrate DNAs were acquired from Amersham 

Pharmacia Biotech (Piscataway, NJ, USA）. Labeled compound [γ-32P]ATP was supplied by 

DuPont (Wilmington, DE, USA). The plasmid pBS-Sp1-fl was kindly provided by Dr. R. Tjian. 

All other chemicals were of commercial reagent grade.  

 

Preparation of Zinc Finger Peptides from Sp1  

The primary structures of all the zinc finger peptides used in this study are summarized 

in Figure 1A. Sp1(zf123), which is the alias for Sp1(530−623), is coded on plasmid 

pEVSp1(530−623) as previously described (29). For the creation of Sp1(zf223) and Sp1(zf323), 

the finger 2, 3, and 2−3 gene fragments were amplified by PCR with the primer set of 

pEVSp1(530−623) as a template. The amplified single-finger fragments were designed to be 

flanked by the N-terminal region with the BamHI site at the 5'-end and the AgeI site at the 3'-end. 

On the other hand, the double-finger fragments were amplified aite at the 5'- and 3'-ends, 

respectively. The AgeI enzyme site in the linker region encodes amino acids Thr-Gly, part of the 

linker peptide between fingers 1 and 2. By digesting one set of single- and double-finger 

fragments with enzymes and ligating them into the similarly digested pEV3b, I constructed the 

plasmids pEVSp1(zf223) and pEVSp1(zf323), which code Sp1(zf223) and Sp1(zf323), 

respectively. The plasmid pEVSp1(zf321) coding Sp1(zf321) was created by ligating the N-

terminal double-finger gene fragment from pEVSp1(zf323) and the finger 1 gene fragment from 
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pEVSp1(530−623) in the same manner as described above. All sequences were confirmed by the 

BcaBEST Dideoxy Sequencing Kit (Takara Shuzo, Kyoto, Japan). These zinc finger peptides 

were overexpressed in Escherichia coli strain BL21(DE3)pLysS and purified as previously 

described (28), except for the use of 1 mM dithiothreitol as the reductant.  

 

Preparation of Substrate DNA Fragments  

The substrate oligonucleotides contain the target binding site predicted from the binding 

mode of the transcription factor Sp1:  GC(123), 5'-GGG GCG GGGCC-3'; GC(223), 5'-GGG 

GCG GCGGC-3'; GC(323), 5'-GGG GCG GGGGC-3'; GC(321)-1, 5'-GGGC GCG GGGGC-3'; 

and GC(321)-2, 5'-GGGCC GCG GGGGC-3'. The synthesized oligonucleotides were annealed 

and inserted in pBluescript II SK+ (Stratagene, La Jolla, CA, USA). The HindIII−XbaI fragment 

was cut out and labeled at the 5’-end by 32P for the experiments.  

 

Circular Dichroism (CD) Measurements  

The CD spectra of the wild-type and mutant zinc finger peptides of Sp1 were recorded 

on a Jasco J-720 spectropolarimeter in 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 1 mM 

dithiothreitol, and 5 μM zinc finger peptide at 20°C.  

 

Gel Mobility Shift Assays  

Gel mobility shift assays were carried out under the following conditions. Each reaction 

mixture contained 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 1 mM dithiothreitol, 10 μM ZnCl2, 

25 ng/μL poly(dI-dC), 0.05% Nonidet P-40, 5% glycerol, 40 mg/μL BSA, the 32P-end-labeled 

substrate DNA fragment (∼50 pM), and 0−4 μM zinc finger peptide. After incubation at 20°C for 

30 min, the sample was run on a 12% polyacrylamide gel with Tris−borate buffer at 20°C. The 
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bands were visualized by autoradiography and quantified with NIH image software (version 1.62). 

The dissociation constants (Kd) of the Sp1 peptide−DNA fragment complexes were estimated 

based on a previously reported procedure (28).  

 

Methylation Interference Analyses  

Methylation interference assays were investigated as previously described (27, 29). The 

binding reaction mixture contained 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 1 mM dithiothreitol, 

10 μM ZnCl2, 20 or 25 ng/μL competitor DNA, 0.05% Nonidet P-40, 5% glycerol, the 32P-end-

labeled methylated DNA fragment (∼40 nM, 400 Kcpm), and 10−500 nM zinc finger peptides. 

As competitor DNAs, 20 ng/μL sonicated calf thymus DNA and 25 ng/μL poly(dI-dC) were used 

for the experiments shown in Figures 3 and 4, respectively. To examine both the strong and weak 

base contacts in the methylation interference experiment, I selected the experimental conditions 

such that the peptide/DNA molar ratio in the binding reaction was about 10−20% bound. 

Densitometric measurements were obtained with NIH image software (version 1.62). The extent 

of interference was estimated as previously described (28).  

 

DNase I Footprinting Analyses  

DNase I footprinting experiments were performed according to the method of Brenowitz 

et al. (30). The binding reaction mixture contained 20 mM Tris-HCl (pH 8.0), 15 mM NaCl, 5 

mM CaCl2, 10 mM MgCl2, 20 ng/μL sonicated calf thymus DNA, the 5‘-end-labeled substrate 

DNA fragment (∼8 nM, 20 000 cpm), and 0−10 μM peptide. After incubation at 20°C for 30 min, 

the sample was digested with DNase I (0.75 milliunit/μL) at 20°C for 2 min. The reaction was 

stopped by the addition of 20 μL of DNase I stop solution (0.1 M EDTA and 0.6 M sodium 

acetate) and 100 μL of ethanol. After ethanol precipitation, the cleavage products were analyzed 
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on a 10% polyacrylamide/7 M urea sequencing gel. The bands were visualized by 

autoradiography.  
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Results 

 

Design of Mutant Zinc Finger Peptides, Sp1(zf223), Sp1(zf323), and Sp1(zf321) and Their 

Predicted Binding Sequences  

To study the effect of the terminal finger of the three finger peptide on DNA binding of 

the peptide, I prepared three mutant zinc finger peptides, Sp1(zf223), Sp1(zf323), and Sp1(zf321) 

(Figure 1A, left panel). Sp1(zf223) and Sp1(zf323), in which the N-terminal finger 1 of 

Sp1(zf123) is replaced with fingers 2 and 3, respectively, are  the mutants for the evaluation of 

the N-terminal finger properties. On the other hand, the effect of replacing the C-terminal finger 

on the DNA binding mode is estimated by the preparation of a mutant peptide, Sp1(zf321), which 

has three zinc fingers arrayed inversely in comparison with Sp1(zf123). Previous study 

demonstrated that the finger 3-deleted mutant, Sp1(zf12), formed no stable complex with the GC-

box DNA under my experimental conditions because of the small contribution of finger 1 to the 

DNA binding (28). Therefore, I did not design Sp1(zf121) but Sp1(zf321), considering the 

deficiency of the DNA binding ability of Sp1(zf121). 

The predicted binding sequences, which are designed from the putative DNA binding 

mode of Sp1 (Figure 1B; 28), are shown in Figure 1A (right panel). The wild-type GC-box 

sequence, GC(123), is derived from the mouse dihydrofolate reductase promoter (I and III) (18, 

19). GC(223) and GC(323) are the target sequences for Sp1(zf223) and Sp1(zf323), respectively. 

From the results of the previous interference experiment for Sp1(zf123), finger 1A of Sp1(zf123) 

recognizes uniquely the five-base-pair subsite (28). On the contrary, the zinc finger proteins such 

as Zif268 exhibit the typical recognition of the three-base-pair subsite by each finger domain (12). 

To clarify whether the base recognition mode of finger 1C of Sp1(zf321) is typical or unique, I 
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prepared two sequences, GC(321)-1 and -2, in addition to GC(321)-0 which is identical to the 

target sequence for Sp1(zf323).  

 

Examination of the Folding Property of Wild-Type and Mutant Zinc Finger Peptides of Sp1  

To examine the change in the folding property by finger substitution, I analyzed the 

secondary structures of the peptides based on measurements of the CD spectra. Figure 2 shows 

the CD measurement results for the peptides at 20°C. The spectrum for Sp1(zf123) was similar 

to those of the single- and three-finger peptides of Sp1 previously described (31-33). Negative 

Cotton effects in the far-UV region with a minimum at 206 nm and a shoulder around 222 nm 

suggest that Sp1 (zf123) has an ordered secondary structure. The spectrum for Sp1(zf321) was 

quite similar to that of Sp1(zf123). On the other hand, Sp1(zf223) and Sp1(zf323) exhibited 

spectra somewhat different from those of Sp1(zf123) and Sp1(zf321). As for the ellipticities at 

206 nm, the values of Sp1(zf123) and Sp1(zf321) ([θ]206 = −11 936, −10 984, respectively) were 

distinct from those of Sp1(zf223) and Sp1(zf323) ([θ]206 = −14 205, −14 673, respectively). This 

is probably due to the difference in the composition of the fingers. These results indicate that the 

conformation of the finger domain in each peptide is not identical but comparable with that of 

each other. I obtained the same results at 4°C (data not shown). 

 

Evaluation of the Binding Affinity of Mutant Zinc Finger Peptides to Wild-Type and 

Mutant GC Boxes  

By using gel mobility shift assays, I obtained the dissociation constants (Kd) of these 

peptide−DNA complexes as summarized in Table 1. Sp1(zf123) binds to GC(123) with a 5.3 nM 

dissociation constant, which is comparable to the previously reported value, whereas GC(223) 

and GC(323) dissociation constants were 57 and 22 nM, respectively. The Kd values for the 
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Sp1(zf223)−GC(123), −GC(223), and −GC(323) complexes were 41, 3.9, and 21 nM, 

respectively. On the other hand, the Kd values for Sp1(zf323) binding to GC(123), GC(223), and 

GC(323) were 24, 60, and 6.6 nM, respectively. These results suggest that each mutant mentioned 

above binds to the predicted binding sequence with the highest affinity under my experimental 

condition. 

On the contrary, Sp1(zf321) binds to the wild-type and mutant GC boxes with a 70−250-

fold lower affinity than the other peptides. The dissociation constants of Sp1(zf321) for GC(123), 

GC(223), and GC(323) are 994, 286, and 314 nM, respectively, indicating that GC(223) and 

GC(323) are preferable to GC(123) for the binding of Sp1(zf321) to DNA. All peptides used in 

this study showed no effective binding to GC(321)-2. GC(321)-1 was bound only by Sp1(zf123) 

and Sp1(zf323) with 714 and 512 nM dissociation constants, respectively.  

 

Specific Base Recognition Mode of Mutant Zinc Finger Peptides Revealed by Methylation 

Interference Analysis  

Figure 3A shows the methylation interference patterns of Sp1(zf123), Sp1(zf223), and 

Sp1(zf323) for GC(123), GC(223), and GC(323), respectively. The extent of the interference 

based on a densitometric analysis is shown by histograms (Figure 3B). The interference patterns 

at subsites I and II were the same among these peptides. In contrast, distinct interference patterns 

were observed at subsite III. Namely, the recognition of G7 in Sp1(zf223) and Sp1(zf323) was 5-

fold stronger than in Sp1(zf123), and the recognitions of G10 in Sp1(zf223) and Sp1(zf323) and 

G11' in Sp1(zf223) were almost lost. In Figure 3C, I compared the extent of the interference of 

fingers 2 and 3 on the basis of the difference in the relative position, suggesting that the difference 

has a significant effect on the base recognition of the cognate fingers. 
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   Figure 4 shows the results of the methylation interference assay for Sp1(zf321). From the 

results of the evaluation of Kd, Sp1(zf321) binds to GC(223) and GC(323) with a higher affinity 

than the other DNAs. Therefore, I carried out an experiment using such peptide−DNA 

combinations in which Sp1(zf323) was employed as the control. Panels A and B depict the 

electrophoretic results and the densitometric analysis for Sp1(zf321), respectively. There is no 

obvious difference in the extent of interference between the Sp1(zf321)− and 

Sp1(zf323)−GC(223) complexes. In the binding to GC(323), Sp1(zf321) shows an interference 

pattern distinct from that of Sp1(zf323). The bases at subsite III were not strongly recognized by 

Sp1(zf321), as is distinct from the case with Sp1(zf323). 

 

Analysis of Conformational Changes of DNA Induced by Binding of Mutant Zinc Finger 

Peptides  

Figure 5 shows the DNase I footprinting patterns of Sp1(zf123), Sp1(zf223), Sp1(zf323), 

and Sp1(zf321) for their high-affinity binding sequences. All mutant peptides protected the wild-

type or mutant GC box from cleavage by DNase I in both strands. Hypersensitive cleavage was 

observed at the 5'-AA-3' step outside the GC box in the guanine-rich strand (G-strand), whereas 

no cleavage induction by protein binding was detected in the cytosine-rich strand (C-strand). In 

addition, hypersensitive cleavage was also induced in the G-strand by the binding of Sp1(zf321) 

between G8 and G9 in the GC box. The same footprinting patterns were also obtained in the case 

of the wild-type and mutant Sp1 peptide−GC(123) complexes (data not shown).  
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Discussion 

 

Effects of Replacement of Finger 1 in Sp1(zf123) on DNA Binding Affinity and Specificity 

Based on previous mutational analyses of Sp1(zf123) and the GC boxes (28), the 

relative contribution of the three fingers of Sp1(zf123) to the DNA binding affinity was shown to 

be reduced in the order of finger 3 > finger 2 > finger 1. It is expected that the replacement of 

finger 1 with finger 2 or 3 in Sp1(zf123) leads to an increase in the DNA binding affinity of 

Sp1(zf123). The results presented here show that both Sp1(zf223) and Sp1(zf323) preferentially 

bind to their predicted binding sequences with a dissociation constant comparable to that of 

Sp1(zf123). In contrast, the deletion of finger 1 from Sp1(zf123) results in an 89-fold reduction 

in the binding affinity to GC(123) (28). Together with this evidence, the results indicate that these 

mutants evidently make use of all three fingers in DNA binding and that the N-terminal fingers, 

fingers 2A and 3A of Sp1(zf223) and Sp1(zf323), respectively, make an equivalent contribution 

to the DNA binding of finger 1A of Sp1(zf123).  

The extent of base recognition of Sp1(zf223) and Sp1(zf323) appears to be distinct in 

part from that of Sp1(zf123). From the results of the methylation interference analyses, the two 

fingers at positions B and C of the mutant peptides maintain the same base recognition mode as 

that of Sp1(zf123). With respect to their fingers at position A, the strong interference patterns of 

Sp1(zf223) and Sp1(zf323) at G7 in the G-strand suggest that they recognize bases at subsite I 

like fingers 1 and 2 of Zif268, respectively, in contrast to finger 1A of Sp1(zf123), which 

recognizes G8 and G9 by Lys(−1) and exhibits a weak interference pattern at G7. The direct 

comparison of the extent of base recognition by them with that in their native positions 

demonstrates the difference in the extent of recognition (Figure 3C). In Sp1(zf323), G7 is 

recognized 1.5-fold stronger than G1. The extent of the recognition is also stronger than that of 
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G7 in Sp1(zf123) by a factor of 3.7. In the DNA binding of the zinc finger protein, the helicity of 

the recognition helix increases by the C-cap formation in the linkers connecting adjacent fingers 

at the C-terminal side (34). The increase in the recognition of G7 in the Sp1(zf323)−GC(323) 

complex may be elucidated by the increment of helicity induced by new C-cap formation in finger 

3A of Sp1(zf323). However, the mutation of Ala(6) to arginine in finger 1A of Sp1(zf123), which 

was carried out for the increase in the recognition of G7 in the Sp1(zf123)−GC(123) complex 

considering the typical base recognition mode of the zinc finger peptide, had no drastic effect on 

the recognition of G7 in GC(123) despite the plausibility of the original C-cap formation in finger 

1A of Sp1(zf123) (35). This evidence suggests that the extent of recognition of G7 by the finger 

at position A of these Sp1 peptides is undetermined only by the C-cap formation in the finger.  

In contrast, the recognition of G9 by finger 2A of Sp1(zf223) is 5-fold weaker than the 

recognition of G6 by finger 2B. A rationale for the disruption of the base recognition by a terminal 

zinc finger is reported as an end effect (14). In this theory, the base recognition by the amino acids 

such as Arg(18) and Arg(80), which are situated at positions −1 and 6 in the α-helices of fingers 

1 and 3 of Zif268, respectively, is less sensitive to the mutation to glycine than the other critical 

amino acid residues. This is not applicable to my system for the following reason:  no decrease in 

the base recognition by finger 3A of Sp1(zf323) was observed, whereas a similar decrease was 

detected in the Sp1(zf223)−GC(223) complex.  

 

Effects of Replacement of Finger 3 in Sp1(zf123) on DNA Binding Affinity and Specificity  

Previous report revealed that finger 1A of Sp1(zf123) recognizes the five-base-pair 

subsite (28). On the basis of several X-ray crystallographic analyses (12, 13, 36-39), fingers 1C, 

2B, and 3A of Sp1(zf321) are expected to bind to subsites I, II, and III, respectively, and the 

predicted binding sequence for finger 1C is not the five- but the three-base-pair site, 5‘-NGG-3‘, 
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in the G-strand. The actual DNA binding affinity of Sp1(zf321) for various GC boxes estimated 

by the calculation of the Kd values suggests that a pertinent interaction between finger 1C and 

subsite III does not occur in GC(321)-1 or -2, but in GC(123), GC(223), and GC(323). The 

inability of Sp1(zf321) binding to GC(321)-1 and -2 also demonstrates that Sp1(zf321) did not 

bind to the DNA by the N-terminal two-finger domain in contrast to the ability of the two-finger 

peptide, Sp1(zf23), to bind to GC(123) (28). This evidence indicates that the constitution and 

order of the finger is important for DNA binding of the zinc finger protein with a high affinity 

and specificity despite the sufficiency of the two-finger domain for DNA binding. For the DNA 

binding of the two-finger peptide composed of fingers 2 and 3, fingers 2 and 3 need to be aligned 

in the direction from amino- to carboxyl-termini.  

   As evidenced by the comparison of the results of the methylation interference analyses and 

estimation of the Kd values of Sp1(zf321) with those of other mutants, the base recognition mode 

of finger 1C of Sp1(zf321) is distinct from that of finger 1A of Sp1(zf123). Finger 1C of 

Sp1(zf321) appears to have the typical base recognition mode of the zinc finger protein. That is 

to say, Lys(−1) and His(3) recognize G3 and G2 in subsite I. G1 might be recognized by Arg(5). 

The base recognition by Arg(5) was also discovered in the GLI−DNA complex, in which Arg(5) 

in finger 5 recognizes guanine at position 4' (36). In addition, it is of special interest that the base 

recognition mode of finger 3A of Sp1(zf321) is clearly different from that of finger 3A of 

Sp1(zf323). Replacement of finger 3C by finger 1 in Sp1(zf323) induced a 15-fold reduction in 

the extent of recognition of G8 by finger 3A. As mentioned earlier, the extent of base recognition 

by the finger at position A is distinct from that of the finger at the native position in the cases of 

Sp1(zf223) and Sp1(zf323). Therefore, the zinc fingers at positions A and C are passive and active 

fingers, respectively.  
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Effects of Conformational Change of DNA Induced by the Binding of Active Finger on DNA 

Binding of Passive Finger  

Several conformational changes of DNA induced by the binding of the zinc finger 

protein, such as bending (29, 37, 39, 40), local distortion (28), and unwinding (41), have been 

reported. DNA bending is induced by the bindings of Tramtrack, Sp1, and TFIIIA. Based on my 

CD data for the wild-type and mutant peptides, no drastic conformational change in each finger 

domain appears to occur, suggesting that the conformational change of DNA has effects on the 

DNA binding of the peptides. For the investigation of the existence of DNA bending, DNase I 

footprinting analyses are available, since hypersensitive cleavage of DNA by DNase I induced by 

the binding of protein is generally attributed to a conformational change in the DNA, in particular 

bending (42). In fact, such a hypersensitive cleavage has also been observed in the 3‘-region 

outside the GC-box in the G-strand for the binding of the zinc finger of Sp1 to the GC-box DNA, 

and this is consistent with the evidence of DNA bending by circular permutation analyses (28, 29, 

40). Therefore, I applied DNase I footprinting analyses to the examination of the DNA bending 

by the Sp1 mutants. My footprinting results clearly show that Sp1(zf321) produces bending of 

the GC-box DNA at subsite III. The hypersensitive cleavage at the G8−G9 step does not occur in 

the binding of Sp1(zf323), indicating that finger substitution at position C in Sp1(zf323) induces 

a structural change. The other conformational change of DNA by Sp1 binding is local distortion 

of the GC-box DNA in the 3'-region of the G-strand revealed by previous footprinting analyses 

(27). In the binding of Sp1(zf123) to GC(123), finger 1A recognizes the bases of the region in a 

unique manner. Together with the result that finger 1 shows the typical base recognition mode by 

transferring from positions A to C, it is suggested that the conformational distortion has an effect 

on the base recognition mode and/or extent of the  zinc finger at position A. Moreover, the 

distortion is induced by the binding of the C-terminal two fingers of Sp1(zf123) (Sogo et al., 
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unpublished data), indicating that Sp1(zf223) and Sp1(zf323) also cause a distortion in subsite III 

by the C-terminal two fingers upon binding to DNA and fingers 2A and 3A may show different 

extents of base recognition than that in the native positions. In the mechanism described above, 

the N- and C-terminal fingers in the three-finger-peptide are passive and active fingers for base 

recognition of DNA, respectively.  

 

In this paper, I report “the active and passive fingers mechanism in DNA recognition by three-

zinc-finger peptide” which is based on the conformational change in DNA induced by the C-

terminal finger. This concept is not always applicable to the DNA binding of other zinc finger 

proteins. In fact, all zinc fingers equivalently bind to DNA without any induction of a 

conformational change in DNA during the DNA binding of Zif268 and YY1 (12, 13, 38). In the 

N-terminal six zinc fingers of the TFIIIA−DNA complex, however, DNA is bent in the binding 

regions of fingers 1 and 2 (39). Recently, it was reported that the three-zinc-finger domain binds 

to DNA as one unit during the DNA binding of the zinc finger protein by multiconnection of 

identical zinc fingers (43). Therefore, in the design of zinc finger proteins with a novel sequence 

preference, selection of the third finger (passive finger) at the N-terminus of a two-finger domain 

containing an active finger is desirable. Thus far, the DNA recognition code of the zinc finger has 

been analyzed by a phage display method (44-47). While most of sequences can be recognized 

by zinc finger proteins, unrecognized sequences remain. I may overcome this problem by 

considering the presented information in the design of novel zinc finger peptides. Additionally, 

such peptides give promise of the application of the zinc finger peptide to the design of novel 

drugs and biological tools. 
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Tables and Figures 

 

Table 1:  Dissociation Constants (Kd) for Spl(zf123), Sp1(223), Sp1(zf323), and Sp1(zf321) 

Binding to Wild-Type (GC) and Mutant GC Boxes. a, Apparent dissociation constants were 

determined by titration using a gel mobility shift assay as described under Materials and Methods. 

Values are averages of three or more independent determinations with standard deviations. B, The 

nomenclature is described in the text (see Figure 1). c, ND, not determined. 
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  Kd (nM)a  

binding siteb  Sp1(zf123)  Sp1(zf223)  Sp1(zf323)  Sp1(zf321)   

GC(123) 5.3 ± 0.4   41 ± 2.2   24 ± 1.1   994 ± 45   

GC(223) 57 ± 2.6   3.9 ± 0.2   60 ± 2.3   286 ± 29   

GC(323) 22 ± 1.6   21 ± 1.0   6.6 ± 0.2   314 ± 15   

GC(321)-1   714 ± 74  >4000   512 ± 57   >4000   

GC(321)-2   >4000   >4000   >4000   NDc 

 

  



30 

 

Figure 1. (A) Primary structures of wild-type and mutant zinc finger peptides of Sp1 (left) and 

their predicted binding sequences (right). The designation of each zinc finger is shown by the 

original name (fingers 1−3) with an alphabetical letter indicating the absolute position (positions 

A−C). Substituted or inserted nucleotides in the mutated GC-box sequences are depicted in 

boldface type. The base numbers in the wild-type and mutant GC boxes are also shown. (B) Mode 

of putative interaction of Sp1 with GC-box DNA. Amino acid residues at the N-terminus of the 

α-helix in each finger are depicted by their one-letter codes with the number of helical positions 

below. Solid arrows show the amino acid−base contacts assumed by the DNA binding mode of 

Zif268, and dotted arrows depict the contacts indicated by previous report. 
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Figure 2. CD spectra of wild-type and mutant zinc finger peptides of Sp1 at 20°C. 
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Figure 3. (A) Methylation interference analyses for Sp1(zf123), Sp1(zf223), and Sp1(zf323) 

binding to GC(123), GC(223), and GC(323), respectively. The left (lanes 1−9) and right (lanes 

10−18) panels show the results for the G- and C-strands, respectively. Lanes 1, 4, and 7 and lanes 

10, 13, and 16 contain G+A and C+T of the Maxam−Gilbert sequencing reactions, respectively. 

The remaining lanes represent free (F) and peptide-bound (B) DNA samples. In these experiments, 

calf thymus DNA was used as a competitor (see Materials and Methods for details). (B) A 

histogram showing the extent of methylation interference by Sp1(zf123), Sp1(zf223), and 

Sp1(zf323). Three or more autoradiograms of the gels were scanned with a densitometer, and the 

average extent of interference was calculated as the ratio of the cutting probabilities for the two 

bands (B/F). (C) Direct comparisons of the extent of interference between finger 2B of Sp1(zf123) 

and finger 2A of Sp1(zf223) (left) and between finger 3C of Sp1(zf123) and finger 3A of 

Sp1(zf323) (right). 
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Figure 4. (A) Methylation interference analyses for Sp1(zf323) and Sp1(zf321) binding to 

GC(223) and GC(323). The left and right panels show the results for GC(223) and GC(323), 

respectively. Lanes 3−10 represent free (F) and bound (B) DNA samples. Lanes 2 and 11 contain 

G+A and C+T of the Maxam−Gilbert sequencing reactions, respectively. Lanes 1 and 12 show 

intact DNA. In these experiments, poly(dI-dC) was used as a competitor (see Materials and 

Methods for details). (B) Histograms showing the extent of methylation interference by 

Sp1(zf323) and Sp1(zf321) for GC(223) (left) and GC(323) (right). Two or more autoradiograms 

of the gels were scanned with a densitometer, and the average extent of interference was 

calculated as the ratio of the cutting probabilities for the two bands (B/F). 
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Figure 5. DNaseI footprinting analyses for Sp1(zf123), Sp1(zf223), Sp1(zf323), and Sp1(zf321) 

binding to their high-affinity binding sequence. Panels A and B show the results for the G- and 

C-strands, respectively. The asterisks represent the enhance sites of cleavage. Lanes 1, 6, 11, 16, 

and 21 in panel A, G+A (Maxam−Gilbert reaction products); lanes 1, 6, 11, 16, and 21 in panel 

B, C+T (Maxam−Gilbert reaction products). Peptide concentrations and the combinations of 

peptide and substrate DNA are noted in the figure 
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Supplementary Figure 1. DNaseI footprinting analyses for Sp1(zf123), Sp1(zf223), Sp1(zf323), 

and Sp1(zf321) bindings to GC(123). Left and right panels show the results for the G- and C-

strands, respectively. The asterisks represent enhance site of cleavage. Lanes 2, 15, and 16 in left 

panel, G+A (Maxam-Gilbert reaction products); Lanes 2, 15, and 16 in right panel, C+T (Maxam-

Gilbert reaction products). Peptide concentrations are noted in the figure. 

 

  



41 

 

 

 

  



42 

 

 

 

 

 

 

 

 

 

 

Part II 

Efficacy of a Novel, Orally Active GSK-3 Inhibitor 6-Methyl-N-[3-[[3-(1-

methylethoxy)propyl]carbamoyl] -1H-pyrazol-4-yl]pyridine-3-carboxamide 

 in Tau Transgenic Mice 
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Abstract 

 

Neurofibrillary tangles (NFTs) composed of hyperphosphorylated and aggregated tau 

are common pathological characteristics in Alzheimer’s disease (AD) and other tauopathies. 

Aberrant tau phosphorylation is an early and pivotal event in the pathogenesis of tauopathies, and 

since GSK-3 is a key factor implicated in aberrant tau phosphorylation, GSK-3 inhibition is 

expected to suppress tauopathy disease progression. In the present study, I report the efficacy of 

a newly discovered small molecule GSK-3 inhibitor, 6-methyl-N-[3-[[3-(1-

methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-carboxamide (compound A), to 

inhibit tau phosphorylation and to reduce the amount of pathological aggregated tau in JNPL3 

mice that overexpress a mutant form of human tau. Compound A is a highly potent and selective 

inhibitor of GSK-3 with an IC50 of 2 nM, with at least 230-fold lower potency against 27 other 

kinases. Oral administration of compound A resulted in a significant reduction of tau 

phosphorylation at several GSK-3 directed sites. Furthermore, chronic oral administration of 

compound A markedly reduced aggregated tau in old JNPL3 mice. These results suggest that a 

novel, orally active GSK-3 inhibitor, compound A, has potency in the prevention of tau pathology. 
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Introduction 

 

Neurofibrillary tangles (NFTs) composed of hyperphosphorylated and aggregated tau 

are common pathological characteristics in several neurodegenerative diseases, such as 

Alzheimer’s disease (AD), frontotemporal dementia with parkinsonism linked to chromosome 17 

(FTDP-17), Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration that are 

collectively called tauopathies (48, 49). In AD, the temporal and spatial distribution of NFTs 

correlates well with clinical disease severity (50, 51). Tau is a microtubule-associated protein, 

and its normal physiological function is to bind and stabilize microtubules (52). Aberrant 

phosphorylated tau loses its ability to bind to and stabilize microtubules, leading to disruption of 

the microtubule assembly and deficits in axonal transport (53-56). Considering recent studies 

reporting age-dependent synaptic deficits, hippocampal degeneration and memory impairment in 

transgenic mice overexpressing mutant forms of tau (57, 58), strategies targeting tau pathology 

are attractive for the treatment of AD and other tauopathies. 

Previous studies have demonstrated that tau is a substrate of various kinases, such as 

cyclin dependent kinase 5 (CDK5), mitogen-activated protein kinase (MAPK) and glycogen 

synthase kinase-3β (GSK-3β) (59-65). Among these kinases, GSK-3β has been reported to be the 

predominant tau kinase involved in most of the hyperphosphorylated serine/threonine residues in 

PHF-tau both in vitro and in vivo (60). Overexpression of GSK-3β in mammalian cells and 

transgenic mice resulted in tau hyperphosphorylation, microtubule destabilization, and 

pathological PHF formation (66-68). In addition, a conditional GSK-3β overexpressing transgenic 

mouse exhibited some phenotypes such as neuronal death in the hippocampus and cognitive 

deficits (67, 68). Furthermore, active GSK-3β is localized to pretangle neurons, dystrophic 

neurites and NFTs in AD brains, and a spatial and temporal pattern of increased active GSK-3β 
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expression coinciding with the progression of NFTs and neurodegeneration has been observed 

(69, 70). These observations support a major contribution of GSK-3β in the progression of AD 

and other tauopathies. Several groups have investigated different classes of small molecule GSK-

3 inhibitors (71-74), however, there are only a few reports that describe the efficacy of small 

molecule GSK-3 inhibitors on in vivo tau pathology (75, 76). 

In the present study, I report the efficacy of a newly discovered small molecule GSK-3 

inhibitor 6-methyl-N-[3-[[3-(1-methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-

carboxamide (compound A) on tau pathology. Compound A is a highly potent and selective GSK-

3 inhibitor with oral activity and has a significant inhibitory effect on in vivo tau phosphorylation. 

In addition, chronic administration of compound A resulted in a marked reduction of aggregated 

tau in old JNPL3 mice that overexpress a mutant form of human tau (77).  
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Materials and Methods 

 

Antibodies 

The following antibodies were used for immunoblotting at appropriate concentrations 

as recommended by the manufacturers. Mouse monoclonal antibodies recognizing phospho-

specific epitopes on tau, AT8 for Ser202/Thr205, AT180 for Thr231, and AT270 for Thr181, and 

human total tau, HT-7, were purchased from Innogenetics (Ghent, Belgium). Rabbit polyclonal 

antibodies recognizing phospho-specific epitopes on tau, Thr205, Ser262, Ser396, and Ser422 

were purchased from Biosource International (Camarillo, CA, USA). Rabbit polyclonal antibody 

recognizing total tau, Tau Ab-3, was purchased from Lab Vision Corporation (Fremont, CA, 

USA). Mouse monoclonal antibody recognizing β-actin was purchased from Sigma-Aldrich (St. 

Louis, MO, USA).  

 

Animals 

Male C57BL/6Njcl mice, age 8 weeks, (Clea Japan, Tokyo, Japan) were used for the 

cold water stress model. Homozygous JNPL3Hlmc mice (Taconic Farms, Germantown, NY, 

USA) were also used in this report. JNPL3 are transgenic mice that overexpress human 4R0N tau 

with the FTDP-17 (P301L) mutation (77). All animals were housed in groups and were allowed 

free access to food and water. All animals used in this study were cared for in accordance with 

the Principles and Guidelines on Animal Experimentation of the Pharmaceutical Research 

Division of Takeda Pharmaceutical Company Ltd. 

 

Cold Water Stress (CWS) 
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CWS (78, 79) was given between 13:00 and 18:00. Thirty min after oral administration 

of compound A, mice were immersed up to the neck in cold water (1-2°C) for 4 min and then 

were returned to individual cages. Mice were sacrificed by decapitation 30 min after the CWS, 

the brains were immediately removed, and the hippocampi were dissected. 

 

Drugs and Drug Administration 

6-Methyl-N-[3-[[3-(1-methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-

carboxamide (compound A) was synthesized in the Pharmaceutical Research Division of Takeda 

Pharmaceutical Company Ltd. (Osaka, Japan). In the case of the CWS model, compound A was 

suspended in 0.5% methylcellulose and was administered orally in a volume of 10 ml/kg of body 

weight 30 min before the CWS. 

In the JNPL3 study, JNPL3 mice were divided into two matching groups. In the study 

with female JNPL3 mice, age 5.5 months, compound A was suspended in 0.5% methylcellulose 

at 10 mg/ml and was administered to mice twice daily in a volume of 10 ml/kg of body weight by 

oral gavage for 1 month. Mice were sacrificed 30 min after the final treatment by decapitation 

and the brains were immediately removed. One brain hemisphere was frozen in powdered dry ice, 

and the other half was immediately homogenized in ice-cold radio-immunoprecipitation assay 

(RIPA) buffer (50 mM Tris-HCl (pH 7.6), 5 mM ethylenediamine tetra acetic acid (EDTA), 1 

mM ethylene glycol tetraacetic acid (EGTA), 30 mM NaF, 5 mM sodium diphosphate, 2 μM 

pepstatin A, 100 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 1 μM microcystin LR, 40 

μM leupeptin, 100 μM 4-(2-aminoethyl)benzenesulfonyl fluoride (ABSF), 2 mM sodium 

orthovanadate, 1 μM MG115). In the study with male JNPL3 mice, age 12.5 months, mice were 

singly housed two weeks before starting treatment, and their basal food intake was measured. 

Subsequently, mice were treated by feeding with chow containing 200 mg of compound A per kg 
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chow (0.02%) for 1 month. In this dosing paradigm, 26 mg/kg/day of compound A were 

administered to the mice. Mice were sacrificed by decapitation, and tissues were analyzed as 

described below. 

 

Preparation of Protein Extract 

Tissues were immediately homogenized in ice-cold RIPA buffer and centrifuged at 

20,000 ×g for 10 min at 4°C. The supernatants were transferred to fresh tubes and were used as 

the soluble fraction. For analysis of aggregated tau from JNPL3 mice, sarkosyl extraction was 

performed (80, 81). The pellets were rehomogenized with 0.5 M NaCl containing 10% sucrose 

and incubated with a final volume of 1% sarkosyl for 1 hour at 37°C. After centrifugation at 

256,000 ×g for 15 min, the pellets were resuspended by ultrasonication in phosphate buffered 

saline, and this suspension was used as the sarkosyl insoluble fraction.  

Total protein lysate of AD patient hippocampus was purchased from BioChain Institute, 

Inc. (Hayward, CA, USA). After centrifugation at 20,000 ×g for 10 min at 4°C, the pellet was 

used for sarkosyl extraction as described above. 

RAB-RIPA-Formic Acid extraction was also performed (82-84). The tissue was 

homogenized in ice-cold high-salt RAB buffer [0.1 M morpholineethanesulfonic acid (MES), 1 

mM EGTA, 0.5 mM MgSO4, 0.75 M NaCl, 0.02 M NaF, 100 M ABSF and protease inhibitors 

(Complete Mini, Roche Applied Science, Mannheim, Germany), pH 7.0], and the sample was 

centrifuged at 50,000 ×g for 20 min at 4°C. The supernatant was boiled for 5 min and then 

centrifuged at 10,000 ×g for 20 min at 4°C. The resulting supernatant contains the soluble tau 

fraction (RAB fraction). To remove myelin and associated lipids, the RAB insoluble pellets were 

reextracted with 1 M sucrose/RAB buffer and centrifuged at 100,000 x g for 30 min at 4°C. The 

pellets were suspended in RIPA buffer and centrifuged as above and the supernatants were 
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collected (RIPA fraction). Finally, the RIPA-insoluble pellets were reextracted with 70% formic 

acid (FA). Protein concentrations were determined using BCA protein assay reagents (PIERCE, 

Rockford, IL, USA).  

 

SDS-PAGE and Western Blotting  

Samples containing 3-10 μg of proteins were separated on a 10% SDS-polyacrylamide 

gel and were transferred to a polyvinylidene fluoride (PVDF) membrane. The membrane was 

washed once with 0.1% Tween-20 containing Tris-buffered saline (TBS-T) for 15 min before 

treatment with Block-Ace (DS Pharma Biomedical, Tokyo, Japan) for 45 min and then was 

probed with primary antibody in TBS-T containing 3% bovine serum albumin (BSA). The 

membrane was washed 3 times with TBS-T and then incubated with the anti-mouse or anti-rabbit 

IgG horseradish peroxidase-linked species-specific F(ab’)2 fragment (GE Healthcare, Piscataway, 

NJ, USA) in TBS-T for 1 hour. After washing 3 times with TBS-T, the blot was developed with 

ImmunoStar Reagents (Wako Pure Chemical Ind., Osaka, Japan). The images obtained with a 

CCD camera (LAS-1000plus Luminescent Image Analyzer, Fuji Film, Tokyo, Japan) were 

quantified by densitometry (Image Gauge Ver. 3.46, Fuji Film).  

 

Preparation and Treatment of Rat Primary Cortical Neuron 

Rat primary neuronal cells were prepared from E17 rat fetus (Japan SLC, Hamamatsu, 

Japan). The cells were suspended in NeuroBasal medium (Invitrogen Life Technologies, Carlsbad, 

CA) supplemented with B27 supplement (Invitrogen Life Technologies), 0.5 mM glutamine and 

penicillin-streptomycin. The cells were cultured on poly-L-lysine coated plates (Sumitomo 

Bakelite, Akita, Japan) under a 5% CO2 atmosphere at 37°C. The cells were then treated with 
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compound A in 0.1% dimethylsulfoxide (DMSO), and cultured for 2 hours. Following 2 hours of 

drug treatment, the culture media was removed and the cells were extracted into RIPA buffer. 

 

Immunohistochemistry 

After dissection, each brain was frozen in powdered dry ice. Frozen brains were 

sectioned at 20 μm thickness using a Leica CM-1850 cryomicrotome (Leica Microsystems 

Nussloch GmbH, Nussloch, Germany) and were mounted onto silane-coated slides. After fixation 

with Mildform 10 N (Wako Pure Chemical Ind.), slides were washed with TBS containing 1 mM 

CaCl2 (TBS-Ca), treated with 0.1% Triton X-100 containing TBS-Ca for 30 min, and then treated 

with 0.6% hydrogen peroxide in methanol for 30 min. After blocking with Block-Ace containing 

3% fetal bovine serum, slides were probed with primary antibodies followed with horseradish 

peroxidase (HRP)-coupled secondary antibodies, detected by 3,3’-diaminobenzidine 

tetrahydrochloride (DAKO Cytomation, Glostrup, Denmark), and counterstained with 

hematoxylin. The images were captured using a Nikon Eclipse E800M microscope (Nikon, Tokyo, 

Japan) and a Nikon Dxm1200 camera (Nikon). 

 

GSK-3 or CDK5 Kinase Assay 

The human GSK-3α was purchased from Millipore Corp. (Bedford, MA), which was 

expressed as an N-terminal 6xHis-tagged protein using a baculovirus expression system. Human 

GSK-3β was expressed as an N-terminal FLAG-tagged protein using a baculovirus expression 

system (Takeda Pharmaceutical Company Ltd., Osaka, Japan). Human p35/cyclin dependent 

kinase 5 (CDK5) was purchased from Millipore Corp., which was expressed as an N-terminal 

GST fusion protein using a baculovirus expression system. The kinase assay was performed in a 

reaction mixture that contained 25 mM HEPES, pH 7.5, 10 mM magnesium acetate, 1 mM 
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dithiothreitol, and 0.01% BSA and serially diluted test compounds. The assay was done in a 96-

well plate assay format. The final amount of enzyme and substrate were optimized for each 

kinase: GSK-3α (40 ng/well of enzyme, 400 ng/well of GSK-3 substrate peptide (Millipore 

Corp.)); GSK-3β (40 ng/well of enzyme, 100 ng/well of GSK-3β substrate peptide (Millipore 

Corp.)); CDK5 (20 ng/well of enzyme, 1 ng/well of CDK5 substrate peptide (Calbiochem, La 

Jolla, CA)). 

All the kinase reactions were started by addition of the ATP solution (final 500 nM), 

and were incubated for 45 min at room temperature for GSK-3α or 90 min at 37 °C for GSK-3β 

or for 45 min at room temperature for CDK5. The reactions were terminated by the Kinase-Glo 

reagent containing EDTA (50 μl/well, Promega Corp., Madison, WI). Ten minutes after addition 

of the Kinase-Glo reagent, luminescence was measured on a Wallac ARVO 1420 (PerkinElmer, 

Shelton, CT). The reaction window was calculated from the difference of the average signals 

obtained from the control (5% DMSO) and the background wells. The compound inhibition was 

expressed as the inhibitor concentration that produced 50% inhibition (IC50) of the activity 

without compound. The IC50 values were obtained by linear regression analysis with a GraphPad 

Prism (version 3.02 for Windows, GraphPad Software, Inc., San Diego, CA). The best fit lines 

were obtained by analyzing the logistic fitting equation. 

 

Serine/threonine Kinase Profiling by IC50 Measurement 

Assays for 14 serine/threonine kinases using radio labeled [γ-33P] ATP (GE Healthcare, 

Piscataway, NJ) were performed in 96 well plates. Mitogen-activated protein kinase p38 alpha 

(p38α), extracellular signal-regulated kinase 1 (ERK1), protein kinase C theta (PKCθ), Jun N-

terminal kinase 1 (JNK1) and B-raf were expressed as N-terminal FLAG tagged proteins using a 

baculovirus expression system. I kappa B kinase β (IKKβ) and MEK kinase 1 (MEKK1) were 
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expressed as C-terminal FLAG tagged proteins using a baculovirus expression system. Aurora-B 

was expressed as N-terminal 6xHis tagged protein using a baculovirus expression system. MEK1 

was expressed as N-terminal GST fusion protein using a freestyle293 (Invitrogen Life 

Technologies) expression system. Cyclic AMP-dependent protein kinase (PKA) was expressed 

using an Escherichia coli (E.coli) expression system. Casein kinase 1 delta (CK1δ) was expressed 

as an N-terminal GST fusion protein using an E.coli expression system. Checkpoint kinase 1 

(CHK1) was expressed as an N-terminal GST fusion protein using a baculovirus expression 

system. CDK1/CycB and CDK2/CycA were expressed as C-terminal 6xHis-tagged CDK1 or 

CDK2, and N-terminal GST-tagged Cyclin B or Cyclin A proteins using a baculovirus expression 

system. 

The reaction conditions were optimized for each kinase: p38α (100 ng/well of enzyme, 

1 μg/well of myelin basic protein (MBP) (Wako pure chemical Ind.), 0.1 μCi/well of [γ-33P] ATP, 

60 min reaction at 30°C); ERK1 (100 ng/well of enzyme, 2 μg/well of MBP, 0.1 μCi/well of [γ-

33P] ATP, 60 min reaction at 30°C); MEKK1 (25 ng/well of enzyme, 1 μg/well of MBP, 0.1 

μCi/well of [γ-33P] ATP, 60 min reaction at 30°C); PKCθ (25 ng/well of enzyme, 2 μg/well of 

MBP, 0.1 μCi/well of [γ-33P] ATP, 60 min reaction at 30°C); JNK1 (10 ng/well of enzyme, 1 

μg/well of c-Jun, 0.1 μCi/well of [γ-33P] ATP, 60 min reaction at 30°C); IKKβ (20 ng/well of 

enzyme, 1 μg/well of IκBα, 0.1 μCi/well of [γ-33P] ATP, reaction at room temperature); B-raf (25 

ng/well of enzyme, 1 μg/well of GST-MEK1(K96R), 0.1 μCi/well of [γ-33P] ATP, 20 min reaction 

at room temperature); MEK1 (100 ng/well of enzyme, 0.3 μg/well of GST-ERK1 (K71A) 0.2 

μCi/well of [γ-33P] ATP, 20 min reaction at room temperature); Aurora-B (50 ng/well of enzyme, 

30 μM of Aurora substrate peptide, 0.2 μCi/well of [γ-33P] ATP, 60 min reaction at room 

temperature); PKA (3 nM of enzyme, 1 μM of PKA substrate peptide (Millipore, Corp.), 0.2 

μCi/well of [γ-33P] ATP, 10 min reaction at room temperature); CDK1/CycB (4.2 ng/well of 
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enzyme, 1 μg/well of Histone H1 (Calbiochem), 0.2 μCi/well of [γ-33P] ATP, 20 min reaction at 

room temperature); CDK2/CycA (1.8 mUnits/well of enzyme, 1 μg/well of Histone H1, 0.2 

μCi/well of [γ-33P] ATP, 20 min reaction at room temperature); CK1δ (120 ng/well of enzyme, 

2.4 μM of CK1tide (Millipore Corp.), 0.2 μCi/well of [γ-33P] ATP, 20 min reaction at room 

temperature); CHK1 (30 ng/well of enzyme, 25 μM of CHKtide (Millipore Corp.), 0.2 μCi/well 

of [γ-33P] ATP, 10 min reaction at room temperature). 

Except for the PKCθ, enzyme reactions were performed in 25 mM HEPES, pH 7.5, 

with 10 mM magnesium acetate, 1 mM dithiothreitol and 500 nM ATP containing an optimized 

concentration of enzyme, substrate and radiolabeled ATP as described above in a total volume of 

50 µl. For PKCθ, enzyme reactions were performed in 25 mM HEPES, pH 7.5, with 10 mM 

magnesium acetate, 1 mM dithiothreitol, and lipid activator (Millipore Corp.). 

Prior to the kinase reaction, compound and enzyme were incubated for 5 min at the 

reaction temperature as described above. The kinase reactions were initiated by the addition of 

ATP. After the reaction period as described above, the reactions were terminated by the addition 

of 10% trichloroacetic acid (final concentration). The [γ-33P]-phosphorylated proteins were 

filtered in a Harvest Plate (Millipore Corp.) with a Cell Harvester (PerkinElmer) and then free [γ-

33P] ATP was washed out with 3% phosphoric acid. The plates were dried, followed by the 

addition of 40 µl of MicroScint0 (PerkinElmer). The radioactivity was counted by a TopCount 

scintillation counter (PerkinElmer). 

 

Tyrosine Kinase Profiling by IC50 Measurement  

The cytoplasmic domain of vascular endothelial growth factor receptor 2 (VEGFR2) 

was expressed as an N-terminal FLAG-tagged protein using the baculovirus expression system. 

The cytoplasmic domains of v-erb-a erythroblastic leukemia viral oncogene homolog 2 (ERBB2) 
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and epidermal growth factor receptor (EGFR) were expressed as N-terminal peptide 

(DYKDDDD)-tagged proteins using a baculovirus expression system. These expressed kinase 

proteins were purified using an anti-FLAG M2 affinity gel (Sigma-Aldrich). Fibroblast growth 

factor receptor 3 (FGFR3), platelet-derived growth factor receptor alpha (PDGFRα), PDGFRβ, 

TIE2, c-Met, c-Kit, Src, insulin receptor (IR), and lymphocyte-specific protein tyrosine kinase 

(Lck) were purchased from Millipore Corp.  

Assays for 10 tyrosine kinases, except ERBB2 and EGFR, using anti-phosphotyrosine 

antibodies were performed in 384 well plates using the Alphascreen® system (PerkinElmer) at 

room temperature. Enzyme reactions were performed in 50 mM Tris-HCl, pH 7.5, containing 5 

mM MnCl2, 5 mM MgCl2, 0.01% Tween-20, 2 mM dithiothreitol, 0.1 μg/ml biotinylated poly-

GluTyr (4:1) and optimized concentrations of enzyme and ATP as described below.  

Prior to the kinase reaction, compound and enzyme were incubated for 5 min at room 

temperature. The reactions were initiated by the addition of ATP. After the reaction period 

(described below), the reactions were stopped by the addition of 25 μl of 100 mM EDTA, 10 

μg/ml Alphascreen streptavidine donor beads and 10 μg/ml acceptor beads (described below) in 

62.5 mM HEPES, pH 7.4, 250 mM NaCl, and 0.1% BSA. The plates were incubated in the dark 

for more than 12 hours and then read by an EnVision 2102 Multilabel Reader (PerkinElmer). The 

well containing substrate and enzyme without compound was used as a total reaction control. The 

reaction conditions for these 10 kinases were optimized for each kinase: VEGFR2 (19 ng/ml of 

enzyme, 10 μM ATP, 10 min reaction, PY-100 conjugated acceptor beads (PY-100)); FGFR3 (20 

ng/ml of enzyme, 20 μM ATP, 10 min reaction, PY-100); PDGFRα (50 ng/ml of enzyme, 10 μM 

ATP, 30 min reaction, PT66 conjugated acceptor beads (PT66)); PDGFRβ (50 ng/ml of enzyme, 

20 μM ATP, 60 min reaction, PT66); TIE2 (20 ng/ml of enzyme, 2 μM ATP, 10 min reaction, 

PT66); c-Met (1 ng/ml of enzyme, 2 μM ATP, 10 min reaction, PT66); c-Kit (10 ng/ml of enzyme, 
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20 μM ATP, 20 min reaction, PT66); Src (0.33 ng/ml of enzyme, 2 μM ATP, 10 min reaction, 

PY-100); IR (100 ng/ml of enzyme, 10 μM ATP, 60 min reaction, PT66); Lck (100 ng/ml of 

enzyme, 2 μM ATP, 30 min reaction, PY-100). 

Assays for ERBB2 and EGFR kinases using radiolabeled [γ-32P] ATP (GE Healthcare) 

were performed in 96 well plates. ERBB2 and EGFR kinase reactions were performed in 50 mM 

Tris-HCl, pH 7.5, 5 mM MnCl2, 0.01% Tween-20 and 2 mM dithiothreitol containing 0.9 µCi of 

[γ-32P] ATP per reaction, 50 µM ATP, 5 µg/ml poly-Glu-Tyr (4:1), 0.1% DMSO and 0.25 µg/ml 

of ERBB2 or EGFR cytoplasmic domains in a total volume of 50 µl. Prior to the kinase reaction, 

compound and enzyme were incubated for 5 min at room temperature. The kinase reactions were 

initiated by the addition of ATP. After the kinase reacted for 10 minutes (ERBB2) and 5 minutes 

(EGFR) at room temperature, the reactions were terminated by the addition of 10% trichloroacetic 

acid (final concentration). The [γ-32P]-phosphorylated proteins were filtered in a Harvest plate 

(Millipore Corp.) with a Cell harvester (PerkinElmer) and were washed free of [γ-32P] ATP with 

3% phosphoric acid. The plate was dried, followed by the addition of 25 µl of MicroScint0 

(PerkinElmer). The radioactivity was counted by a TopCount scintillation counter (PerkinElmer). 

 

Plasma and Brain Exposure Measurement 

Compound A was administered to non-fasted C57BL/6N mice (male, 8 weeks old, n= 

3) orally (10 mg/kg, 0.5% methylcellulose suspension). At 30, 60 and 120 minutes after oral 

administration, blood and brain (hippocampus, cerebral cortex, and celleberum) samples were 

collected. The blood samples were centrifuged to obtain the plasma fraction. The brain samples 

were homogenized in saline to obtain the brain homogenate. The plasma and brain homogenate 

samples were deproteinized with acetonitrile containing an internal standard. After centrifugation, 

the supernatants were decanted into microplates, and were diluted with 0.01 mol/L ammonium 
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formate and acetonitrile (7/3, v/v) containing 0.2% formic acid. After another centrifugation, the 

supernatants were injected into a LC/MS/MS system to measure the compound concentrations. 

 

Statistical Analyses 

Statistical analysis was performed by statistical analysis software (SAS pre-clinical 

package, version 5.0; SAS Institute, Inc., Cary, NC). Values were expressed as mean ± S.E.M. 

and statistically analyzed by using unpaired Student’s t-test or one-tailed Williams’ test, which is 

a suitable test for a dose dependent study.  
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Results 

 

Novel GSK-3 Inhibitor compound A 

In the search for novel GSK-3 inhibitors, compound A was selected for further study 

on the basis of its enzyme inhibition, pharmacokinetics, and tau phosphorylation assay results in 

primary neuronal cells. The chemical structure of compound A is shown in Figure 6. Compound 

A inhibited GSK-3α with an IC50 value of 2.3 nM and GSK-3β with an IC50 value of 2.0 nM in 

the presence of 500 nM ATP. In order to assess the selectivity of compound A, I measured its 

inhibitory potency against a number of serine/threonine and tyrosine kinases (Table 2). This 

compound had no inhibitory effect on 23 kinases including extracellular signal-regulated kinase 

1 (ERK1), cAMP-dependent protein kinase (PKA) and p38α, and only weak inhibition was 

detected against CDK1/CycB, CDK2/CycA, CDK5 and Jun N-terminal kinase (JNK) 1 with IC50 

values of 2, 0.46, 5, and 5.8 μM, respectively. Compound A markedly inhibited tau 

phosphorylation in rat primary neuronal cells, indicating it has good cell membrane permeability. 

Compound A treatment resulted in a reduction of tau phosphorylation at GSK-3 directed sites as 

detected by AT8 (pSer202/pThr205), AT180 (pThr231), AT270 (pThr181), pThr205 and pSer396 

antibodies in a concentration dependent manner with IC50 values of 1.9, 0.44, 24, 0.25, and 5.2 

μM, respectively (Figure 7). Compound A did not reduce tau phosphorylation at GSK-3 non-

directed pSer262 and pSer422 sites and also did not affect the amount of total tau. These results 

suggest that compound A reduces tau phosphorylation in primary neuronal cells thorough GSK-

3 inhibition. 

 

Effect of Compound A on Tau Phosphorylation in a Cold Water Stress Model 
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Some previous reports have indicated that cold water stress (CWS) transiently induces 

in vivo tau hyperphosphorylation, and a single intraperitoneal administration of the GSK-3 

inhibitor lithium chloride (LiCl) inhibited CWS-induced tau hyperphosphorylation (78, 79). I 

used the CWS model to evaluate the in vivo efficacy of the novel GSK-3 inhibitor compound A 

on tau phosphorylation. The concentrations of Compound A measured in plasma, hippocampus, 

cerebral cortex, and cerebellum after 30, 60, and 120 min are summarized in Table 3. Compound 

A was suspended in 0.5% methylcellulose and was administered orally 30 min before CWS at a 

dose of 1-10 mg/kg. As indicated in Figure 8, compound A significantly inhibited tau 

phosphorylation in a dose dependent manner as detected by the pThr205 antibody. 10 mg/kg of 

compound A reduced tau phosphorylation to the level of the CWS non-treated control group. 

Compound A displayed a highly potent inhibition of in vivo tau phosphorylation in the CWS 

model. 

 

Evaluation of Compound A Efficacy in JNPL3 Mice Expressing Human Tau 

I then investigated the ability of compound A to inhibit tau hyperphosphorylation and 

tau aggregation in a JNPL3 mouse model. JNPL3 mice are well characterized transgenic mice 

that express human 4R0N tau with a FTDP-17 (P301L) mutation. Their phenotype mimics 

features of human tauopathies (77); in particular, the levels of sarkosyl insoluble tau in JNPL3 

mice increase in an age dependent manner and co-migrate with insoluble tau from AD and FTDP-

17 brains. Thus, JNPL3 mice are a useful model to evaluate tau targeting agents for the treatment 

of AD or other tauopathies. 

Initially, I treated homozygous female JNPL3 mice at age 5.5 months with compound 

A for 1 month. It was previously reported that a significant amount of sarkosyl insoluble tau was 

detected in brain tissue from JNPL3 mice of this approximate age (77). From the results of the 
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CWS model and the pharmacokinetic profile, I determined a dose for compound A of 10 mg/kg 

twice daily by oral gavage. There was no significant reduction of body weight in the compound 

A treated group as compared with the vehicle treated group (data not shown). Compound A 

treatment resulted in a significant reduction of tau phosphorylation at GSK-3 directed sites as 

detected by pThr205, pSer396, AT8, AT180 and AT270 antibodies in the soluble tau fraction 

(Figure 9A, B). Consistent with the results in primary neurons, the most striking reduction was 

seen at the AT180 (pThr231) sites. As for GSK-3 non-directed pSer262 and pSer422 sites, 

compound A did not significantly reduce tau phosphorylation. I then investigated the effect of 

compound A on aggregated, sarkosyl insoluble tau that was biochemically similar to NFTs. 

Compound A treatment resulted in a 49%, 66%, and 58% reduction of sarkosyl insoluble tau 

detected by total tau, pThr205, and HT7 antibodies, respectively (Figure 9C, D); however, these 

reductions were not significant due to the variability in the amounts of sarkosyl insoluble tau in 

JNPL3 mice. I also conducted immunohistochemical analyses. Phosphorylated tau signals 

detected by a pThr205 antibody were markedly decreased by compound A treatment especially 

at CA1, CA3, and dentate gyrus regions (Figure 10A-H). Human tau specific signals detected by 

HT-7 were also reduced in compound A treated mice brains (Figure 10I-P). Since compound A 

did not affect the amounts of the soluble fractions of total tau and aggregated tau was mainly 

composed of transgenic human tau in JNPL3 mice brains (77), these results indicate that 

compound A treated mice had reduced levels of aggregated tau. 

I next examined the ability of compound A to prevent later stage tau pathology by using 

much older JNPL3 mice (12.5 months old). As determined from my preliminary study that the 

amounts of tau protein in aged male JNPL3 mice varied less than in female mice, I used male 

mice for this experiment. In this experiment, 26 mg/kg/day of compound A was administered to 

mice for 1 month by feeding, with no significant changes observed in food intake and body weight 
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as compared to the control group (Supplemental Figure 2). Immunohistochemical analyses 

revealed that pThr205 and HT-7 signals were strikingly diminished by compound A treatment 

(Figure 11). Compound A treatment also showed a significant reduction of sarkosyl insoluble tau 

(total tau, -60%; pThr205, -61%; HT7, -66%) (Figure 12). I have also determined a significant 

effect of compound A on insoluble tau extracted by another procedure (RAB-RIPA-FA extraction, 

Supplemental Figure 3). Thus, chronic oral treatment of the novel GSK-3 inhibitor compound A 

led to a robust reduction of pathological aggregated tau at a later stage of tau pathology. 
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Discussion 

 

NFTs composed of hyperphosphorylated, aggregated tau are a common hallmark of 

tauopathies, such as Alzheimer’s disease and FTDP-17. Since abnormal tau phosphorylation is 

considered to be an early and pivotal event in the pathogenesis of tauopathies and GSK-3 is a key 

factor in aberrant tau phosphorylation, GSK-3 inhibition is expected to mitigate disease 

progression in tauopathies. Indeed, some groups have already demonstrated the ameliorating 

effects of lithium, used as a treatment of mood disorder for many years, on tauopathies (75, 85-

87). Several classes of small molecule GSK-3 inhibitors have already been developed (71-74); 

however, there are few reports describing the in vivo efficacy of these compounds on tau 

pathology (75, 76, 88). In the current report, I investigate the in vitro/in vivo efficacy of a recently 

discovered, novel GSK-3 inhibitor, compound A, to inhibit tau phosphorylation and aggregated 

tau. 

Compound A is selective for GSK-3 with an IC50 of 2 nM and 230-fold lower potencies 

for 27 other kinases. Compound A has been found to be one of the most potent and selective 

GSK-3 inhibitors as compared to previously reported compounds (71, 77, 88) and shows 

inhibitory effects on tau phosphorylation at GSK-3 directed sites in primary neuronal cells and 

mouse brain tissue. Yoshida et al. reported that intraperitoneal administration of 300 mg/kg of 

LiCl led to a partial suppression of CWS induced tau phosphorylation (79), while in the current 

study I found that 10 mg/kg of compound A completely inhibited CWS induced tau 

phosphorylation. As compound A is an orally active GSK-3 inhibitor with high potency and 

selectivity, it should be a useful tool in examining the possibility of selective GSK-3 inhibition as 

a tauopathy treatment. 
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In the soluble tau fraction from JNPL3 mice, compound A reduced phosphorylation 

among all examined phosphorylation sites most robustly at the Thr231 residue. This result 

indicates that the Thr231 site is mainly phosphorylated by GSK-3 in vivo, and it has been reported 

that in AD brains pThr231 signals were detected in the earliest stages of tau pathology preceding 

NFT formation (89, 90). Accordingly, GSK-3 may play an important role in the onset of 

tauopathies by phosphorylating the Thr231 residue. Since GSK-3 has been shown to 

phosphorylate tau at most sites in PHF-tau, GSK-3 inhibition would be anticipated to reduce tau 

phosphorylation at multiple sites. My results indicate that GSK-3 inhibition by compound A led 

to a significant reduction of tau phosphorylation at several GSK-3 directed sites. Meanwhile, 

Steinhilb et al. reported that phosphorylation of a group of serine-proline/threonine-proline sites 

plays a fundamental role in tau-mediated toxicity in a tau transgenic Drosophila model (91). They 

also revealed that no single phosphorylation residue plays a dominant role in tau-mediated toxicity, 

which suggests that multiple sites work together to promote neurodegeneration (92). These data 

indicate that GSK-3 inhibitors have the potential of delaying the onset and halting the progression 

of tau pathologies by inhibiting tau phosphorylation at multiple sites. 

Chronic administration of compound A significantly reduced sarkosyl-insoluble tau in 

old homozygous JNPL3 mice (12.5 months old). In contrast, chronic administration of lithium 

failed to reduce sarkosyl-insoluble tau in old heterozygous JNPL3 mice (12 months old) (75) or 

pre-formed NFTs in FTDP-17 tau / GSK-3β transgenic mice (87). Considering the in vitro activity 

and the results from the CWS model (79), I speculate that these results are mainly due to the weak 

inhibitory activity of lithium against GSK-3. To my knowledge, this report is the first to show 

that administration of a GSK-3 inhibitor reduced sarkosyl-insoluble tau in old tau transgenic mice, 

which suggests that chronic inhibition of GSK-3 by a highly potent and selective inhibitor has the 

possibility of preventing NFT formation even in a later stage of tau pathology. Although the role 
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of NFTs in disease progression has not yet been fully elucidated, NFTs are thought to play a 

crucial role in the disease progression of AD and other tauopathies based on studies with 

postmortem brains of AD patients that demonstrate the number of NFTs correlates well with the 

degree of cognitive impairment (50, 51). It is plausible that intracellularly accumulated NFTs of 

relatively large size directly exert toxic effects on cells and contribute to tauopathy disease 

progression. Thus, the efficacy of compound A toward reducing sarkosyl-insoluble tau in old 

JNPL3 mice is a significant result. 

In summary, I have demonstrated the efficacy of the novel, potent, selective, orally 

active GSK-3 inhibitor compound A for significantly reducing tau phosphorylation and 

aggregated tau. Chronic administration of compound A led to a significant reduction of 

aggregated tau in old JNPL3 mice brains. Further research on compound A and related 

compounds as a tauopathy treatment will be needed to clarify their efficacy on neurodegeneration 

and cognitive impairment especially in the later stages of disease. 
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Tables and Figures 

 

Table 2. Kinase selectivity of compound A 
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Ser/Thr 

Kinase 

IC50 (M) of 

compound A 
Tyr Kinase 

IC50 (M) of 

compound A 

GSK-3α 2.3E-09 EGFR >1.0E-05 

GSK-3β 2.0E-09 ERBB2 >1.0E-05 

CDK5 5.0E-06 Src >1.0E-05 

AuroraB >1.0E-05 Lck >1.0E-05 

MEK1 >1.0E-05 IR >1.0E-05 

B-raf >1.0E-05 TIE2 >1.0E-05 

ERK1 >1.0E-05 c-Kit >1.0E-05 

PKA >1.0E-05 c-Met >1.0E-05 

CDK1/CycB 2.0E-06 VEGFR2 >1.0E-05 

CDK2/CycA 4.6E-07 FGFR3 >1.0E-05 

CHK1 >1.0E-05 PDGFRα >1.0E-05 

p38α >1.0E-05 PDGFRβ >1.0E-05 

JNK1 5.8E-06   

IKKβ >1.0E-05   

MEKK1 >1.0E-05   

PKCθ >1.0E-05   

CK1δ >1.0E-05   
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Table 3. Concentration of compound A in mouse plasma, hippocampus, cerebral cortex, and 

cerebellum after oral administraton at a dose of 10 mg/kg. Determination of concentration of 

compound A was performed as described in the Experimental Procedure. 

 

  



67 

 

Time after 

administration (hr) 

Concentration of Compound A (μM, n = 3, mean ±SEM) 

Plasma 

 Hippocampus Cerebral cortex Cerebellum 

0.5 1.45 ± 0.06 0.66 ± 0.13 0.48 ± 0.04 0.39 ± 0.03 

1 0.20 ± 0.01 0.19 ± 0.02 0.16 ± 0.02 0.14 ± 0.01 

2 0.04 ± 0.02 0.08 ± 0.02 0.05 ± 0.01 0.04 ± 0.02 

 

 

  



68 

 

Figure 6. Chemical structure of novel GSK-3 inhibitor compound A. 
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Figure 7. Compound A reduced tau phosphorylation in rat primary cortical neurons in a 

concentration dependent manner. Rat primary cortical neurons at DIV4 were treated with 

compound A at 0.03-30 μM for 2 hours. Cells were extracted and analyzed by immunoblot with 

phosphorylated tau antibodies: AT8, AT180 and AT270 and total tau antibody. 
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Figure 8. Effect of compound A on cold water stress (CWS) induced tau phosphorylation. 

Compound A was administered orally at a dose of 1-10 mg/kg 30 min before the CWS. 0.5% 

methylcellulose was administered to mice as a vehicle treated control. Mice were subjected to 

CWS for 4 min and sacrificed 30 min after CWS. A, Proteins from CWS treated mice 

hippocampus were separated by SDS-PAGE and detected by pThr205 and total tau antibodies. B, 

Immunoblot bands were quantified by densitometry. Data represent means ± S.E.M. of 5 animals 

and are expressed as phospho-tau normalized to total tau. Significance is defined as *** p ≤ 0.001 

(t-test) in comparison to the non-stressed group and as + p ≤ 0.025 (Williams’ test) in comparison 

to the vehicle administered group. 
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Figure 9. Effects of compound A on tau phosphorylation and aggregated tau in JNPL3 mice brain. 

Compound A was administered at a dose of 10 mg/kg twice daily by oral gavage for 1 month to 

female JNPL3 mice (5.5 months old). A, Proteins from the RIPA soluble fractions of JNPL3 mice 

hemispheres were separated by SDS-PAGE and detected by pThr205, pSer262, pSer396, pSer422, 

AT8, AT180, AT270 and total tau antibodies. B, Immunoblot bands were quantified by 

densitometry. Data represent means ± S.E.M. of 10 animals and are expressed as phospho-tau 

normalized to total tau. Significance is defined as * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001 (t-

test) in comparison to the vehicle administered group. C, Proteins from sarkosyl insoluble 

fractions were separated by SDS-PAGE and detected by total tau, pThr205, and HT7 antibodies. 

D, Immunoblot bands were quantified by densitometry. Data represent means ± S.E.M. of 10 

animals. 
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Figure 10. Immunohistochemical analysis of compound A treated JNPL3 mice brains. Compound 

A was administered at a dose of 10 mg/kg twice daily by oral gavage for 1 month to female JNPL3 

mice (5.5 months old). PThr205 and HT7 immunostaining were performed in vehicle treated mice 

(pThr205; A-D, HT7; I-L) and compound A treated mice (pThr205; E-H, HT7; M-P), in the 

hippocampus (A, E, I, M) (magnification, 40x), the CA1 (B, F, J, N) (magnification, 600x), the 

CA3 (C, G, K, O) (magnification, 600x), or the dentate gyrus regions (D, H, L, P) (magnification, 

600x). Hematoxylin was used for counterstaining. 
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Figure 11. Immunohistochemical analysis of compound A treated JNPL3 mice brains. Compound 

A was administered at a dose of 26 mg/kg/day by feeding for 1 month to male JNPL3 mice (12.5 

months old). PThr205 and HT7 immunostaining were performed in vehicle treated mice 

(pThr205; A-D, HT7; I-L) and compound A treated mice (pThr205; E-H, HT7; M-P), in the 

hippocampus (A, E, I, M) (magnification, 40x), the CA1 (B, F, J, N) (magnification, 600x), the 

CA3 (C, G, K, O) (magnification, 600x), or the dentate gyrus regions (D, H, L, P) (magnification, 

600x). Hematoxylin was used for counterstaining. 

 

  



82 

 

 



83 

 

 



84 

 

Figure 12. Effects of compound A on insoluble/aggregated tau in JNPL3 mouse brain. Male 

JNPL3 mice, age 12.5 months, were treated by feeding with chow containing 200 mg compound 

A per kg chow (0.02%) for 1 month. In this dosing paradigm, 26 mg/kg/day of compound A were 

administered to mice. A, Proteins from sarkosyl insoluble fractions were separated by SDS-PAGE 

and detected by total tau, pThr205, and HT7 antibodies. The sarkosyl insoluble fraction of an AD 

patient hippocampus sample (AD) was run in parallel. B, Immunoblot bands were quantified by 

densitometry. Data represent means ± S.E.M. of 9 or 10 animals. Significance is defined as * p ≤ 

0.05 (t-test) in comparison to the vehicle administered group. 
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Supplemental Figure 2. Effects of compound A on food intake and body weight of JNPL3 mouse. 

Male JNPL3 mice, age 12.5 months, were treated by feeding with chow containing 200 mg 

compound A per kg chow (0.02%) for 1 month. 
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Supplemental Figure 3. Effects of compound A on insoluble/aggregated tau in JNPL3 mouse 

brain. Male JNPL3 mice, age 12.5 months, were treated by feeding with chow containing 200 mg 

compound A per kg chow (0.02%) for 1 month. In this dosing paradigm, 26 mg/kg/day of 

compound A were administered to mice. A, Proteins were extracted by RAB-RIPA-Formic acid 

(FA) extraction procedure. Each fraction was separated by SDS-PAGE and detected by total tau 

and pThr205 antibodies. B, Immunoblot bands were quantified by densitometry. Data represent 

means ± S.E.M. of 9 or 10 animals. Significance is defined as * p ≤ 0.05 and *** p ≤ 0.001  (t-

test) in comparison to the vehicle administered group. 
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General discussion 
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In this study, I studied the potential of tau targeting strategies for AD treatment. There 

are various mechanisms related to tau toxicity, such as gene/protein expression, phosphorylation, 

degradation, and aggregation. Among these, I have focused on gene expression and 

phosphorylation, and studied details of tau gene expression modulation through transcription 

factor Sp1 and tau phosphorylation reduction by a tau kinase inhibitor. 

   In the chapter 1, I investigated modulation of tau gene expression. Though tau has an 

important role in microtubule assembly and microtubule stability for maintaining normal axonal 

integrity and neuronal function, loss of tau would not show any gross physical or behavioral 

abnormalities in the light of evidence from tau knockout mice study (4). In addition, some basic 

research indicated that reduction of tau expression is expected to exert efficacy of AD treatment. 

It was reported that Aβ induced toxicity was reduced in primary cultured neurons from tau 

knockout mice. Premature mortality and memory deficits in APP transgenic mice were prevented 

by crossing with tau knockout mice (4). Taken together, reduction of tau gene expression is an 

attractive strategy for AD treatment. 

 I investigated DNA recognition mode of Sp1 zinc finger motif in detail to obtain basic 

knowledge for tau expression modulation via Sp1. From the analysis, I found that the C-terminal 

finger induced conformation change in DNA structure of the N-terminal finger binding regions, 

and that the conformation change affected DNA recognition mode of the N-terminal finger. Sp1 

have various substrates arise from the flexible base recognition mode of N-terminal finger. 

Unique amino acid sequence of N-terminal finger in "recognition helix" comparing to other C2H2 

type zinc fingers has been considered to be one of the reasons for the flexible base recognition 

mode (93). From my research results, conformation change in DNA structure of the N-terminal 

finger would also contribute to the flexible base recognition mode of Sp1 zinc finger motif. 
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In addition to the pivotal role in tau gene expression regulation, recent growing number of 

evidences suggested the crucial roles of Sp1 in AD pathogenesis. In a pathway enrichment 

analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative 

(ADNI) participants, Sp1 was revealed as a master regulator gene of multiple known AD-risk 

genes (94). Also, from the large-scale gene expression analysis related to aging, it is reported that 

Sp1 plays an important role in aging, which is the most common risk factor of AD (95). So 

targeting Sp1 is one of the attractive strategies for AD treatment development. It was reported 

that treatment of tolfenamic acid and mithramycin A, Sp1 inhibitors, ameliorated tau pathology, 

Aβ pathology, and cognitive impairment in AD model mice (96-98). As Sp1 interact with many 

genes, Sp1 can not only affect a number of AD related genes (e.g. APP, ApoE, BACE1, MAPT) 

but also many other genes related to transcription, tumor suppression and DNA repair (99). 

Consequently, Sp1 targeting approach has concerns of side effects as well as potential of efficacy. 

One of the possible solutions to avoid the side effects is 'Sp1 modulator', which can only affect 

the expression of essential genes for beneficial effects. There are no reports describing Sp1 and 

AD target gene(s) selective inhibitors so far, but YM155 would be a nice reference compound. It 

was reported that YM155 could selectively inhibit Sp1-survivin gene expression without 

inhibiting other Sp1 controlled gene promotors (e.g. p21, thymidine kinase) (100). In addition, as 

it was suggested that Sp1 has an important role in tau (MAPT) promoter's neuronal expression 

with undetermined cofactor(s) (8), cofactor(s) information might be a clue to find Sp1-tau 

(MAPT) selective inhibitors. To raise the possibility of success to obtain Sp1 modulator 

compounds for AD treatment, it is necessary to deeply understand the structural and biochemical 

information of Sp1-target gene interaction. My finding would be helpful for understanding basis 

for Sp1-target gene interaction, and also designing tau expression modulators via Sp1. 
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In the second chapter, I studied about tau phosphorylation reduction by GSK-3 inhibitor. The 

precise mechanism of tau toxicity remains unclear so far, tau phosphorylation has been considered 

to be a pivotal step of tau toxicity. GSK-3β is a main tau kinase and responsible for most sites of 

tau phosphorylation (101). Although compound A has inhibitory activity against CDK2/CycA 

with 10-7M order IC50 value, the influence of CDK2/CycA inhibition could be negligible owing 

to little contribution of CDK2/CycA in tau phosphorylation (101) and no CDK2/CycA expression 

in brain (102). Therefore, compound A, a potent and selective GSK-3 inhibitor, is an ideal tool to 

investigate potential of tau phosphorylation reduction thorough GSK-3 inhibition for AD 

treatment. From my study, it is indicated that tau phosphorylation reduction thorough GSK-3 

inhibition would be effective even in the later stage of pathology. This is significant finding for 

development of tau-targeting AD treatment.  

My research suggests the potential of compound A for AD treatment, but it needs to be 

confirmed whether compound A could have efficacy on cognitive deficit. Since a previous report 

has already indicated the efficacy of ATP-competitive GSK-3 inhibitor on cognitive deficit in 

preclinical studies (103), it is expected that compound A also have efficacy on cognitive deficit. 

Moreover, it is indispensable to discuss about concerns of side effects related to GSK-3 inhibition. 

GSK-3 plays crucial roles in various physiological processes via its substrates, such as 

metabolism, development, and differentiation (104). Especially, β-catenin, one of GSK-3 

substrates, is famous for its role in tumorgenesis and tumor progression (105). Most of reported 

GSK-3 inhibitors, including compound A, are ATP-competitive inhibitors, and it is theoretically 

impossible to have substrates selectivity for ATP-competitive kinase inhibitors. To avoid severe 

side effects, development of novel type of GSK-3 inhibitors, such as "substrate-competitive 

inhibitors" and "modulators", would be a great challenge for the future of AD treatment. 
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Global multi-center neuroimaging study result indicated that pathology precede clinical 

symptom in AD (2). Currently, people pay much attention to tau targeting strategy in response to 

several disappointing clinical results of Aβ targeting drugs. Much later intervention can be 

acceptable for tau targeting strategy than Aβ targeting strategy considering disease course and 

pathology establishment (106, 107). Indeed, in my study, tau targeting strategy would be effective 

in the later stage of pathology. In addition to the above mentioned approach, recent research 

progress in the tau-targeting strategy, such as anti-tau antibodies and tau antisense 

oligonucleotides, is remarkable (108, 109). It is expected that effective AD therapy will be 

developed in near future from tau targeting strategy.  
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