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Chapter 1 General introduction 

Lianas (woody vines) are characterized by the slender stems with various forms due to the 

mechanically dependent growth habit. Lianas are defined as woody plant species that germinate in the 

soil but require mechanical support (i.e. host tree) to grow and survive in some part of their life history. 

Climbing habit of lianas has evolved independently in the angiosperms, gymnosperms, and ferns 

(Burnham 2015). Lianas are widely found in major linages of Mesangiosperms; more than 60% of 

eudicots and magnoliids include at least one liana species (Isnard and Field 2015). At family level, 

over one-third of all seed plant families include at least one climbing species (Gianoli 2015). Lianas 

exhibit various strategies for climbing their hosts to capture sufficient light resources in the forest 

canopy. For example, various types of biomechanical properties of lianas (climbing mechanism) allow 

them to climb up to the forest canopy; these include stem twiners, branch twiners, tendril climbers, 

root climbers, and hook climbers (scrambler) (Putz and Holbrook 1992). Stem twiner is the most 

common climbing mechanism which comprises about half of the total number of liana species in both 

temperate and tropical forests (Barik et al. 2015). It is also important to note that strategy of lianas to 

climb trees has a trade-off between the light capture efficiency and the risk of fall due to the negative 

impact on host trees (Ichihashi and Tateno 2011). Ichihashi and Tateno (2011) found that Actinidia 

arguta, a temperate deciduous liana species, spread their leaves aggressively in host tree crowns while 

reducing the risk of falls enhanced by the top-heavy architecture by climbing many host trees. Their 

variety of life-forms, structure and behaviour of lianas had attracted scientists for a long time (e.g. 

Darwin 1865).  

Lianas are most diverse in tropical forests, while species richness and abundance of lianas in 

the northern hemisphere decrease along latitudinal and geographical gradients due to high sensitivity 

to temperature and precipitation of lianas (Schnitzer 2005; Hu et al. 2010; Guo et al. 2012). However, 

lianas are present in high abundance and great diversity in temperate forests characterised by mild 

temperatures and plentiful soil water, such as found in the floodplain forest of the southern USA (Allen 

et al. 1997) and in the temperate rainforests of southern Chile (Jiménez-Castillo and Lusk 2009). The 

necessity of abundant soil water and mild temperatures is due to the large-diameter vessels and 
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disproportionately large leaf area of lianas, which lead to a higher susceptibility to freeze-thaw 

embolism (Jiménez-Castillo and Lusk 2013). 

Recently, lianas are considered as an important component due to a significant contribution 

to forest dynamics and other forest ecological functions by influencing tree regeneration and 

composition in both temperate and tropical forests (reviewed in Schnitzer and Bongers 2002; 2012). 

For example, lianas rapidly colonize canopy gaps, which inhibits the establishment of shade-tolerant 

species (Schnitzer and Bongers 2002) and reduces the forest carbon gain (Schnitzer et al. 2014). 

Furthermore, lianas are able to dominate in canopy gaps even after canopy closure (Schnitzer et al. 

2001) and result an arrested succession (Tyman et al. 2016). Lianas compete intensely with trees for 

light resources because lianas often overtop tree canopy for their growth and survival. Lianas also 

compete with trees for below-ground resources such as water and nutrients (Schnitzer et al. 2005). 

There has been increasing research interests in the ecology of lianas over past three decades due to the 

substantial contribution of lianas in forests. However, their fundamental ecological characteristics, 

such as life history strategies and distribution patterns, are still less explored especially in temperate 

forests. 

Lianas are not only important as an ecological component in forests but also important in 

terms of forest management and conservation. For example, removing lianas from host trees (liana-

cutting) is an essential procedure for timber production because lianas have negative impact on host 

trees (Suzuki 1989). Number of previous studies have shown effectiveness of liana-cutting for tree 

growth and survival (e.g. Schnitzer et al. 2004). Furthermore, many liana species that natively 

distributed in East Asia are non-native, aggressive invadors in North America (e.g. Celastrus 

oribuclatus, Euonymus fortunei, Lonicera japonica, Peuraria montana var. lobata, Wisteria 

floribunda; reviewed in Leicht-Young and Pavlovic 2015). On the other hand, lianas are considered to 

play a positive role in species diversity; Schnitzer et al. (2000) reported that both species richness and 

density of pioneer trees were enhanced by lianas in places where the canopy gap disturbance occurred, 

while shade-tolerant tree species richness and density were inhibited. Lianas are also important for the 

conservation of animals and birds. For example, lianas provide a pathway between tree crowns which 
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is critical for inter-crown movement of arboreal animals (e.g. ants; Yanoviak 2015), produce a tangled 

structure in the understory for birds to escape from the predator (Michel et al. 2015), and represents 

as an important food resource to animals (Arroyo-Rodríguez et al. 2015). Thus, fundamental 

ecological knowledge of lianas would help the understanding of the role of lianas on forest 

management and conservation. 

Clonal reproduction is a common and key life history process for colonization and 

regeneration success of liana species. For example, tropical liana species respond to canopy gap 

disturbances via clonal reproduction, resulting in aggregated distribution patterns (Ledo and Schnitzer 

2014). Despite the ecological significance of clonal reproduction to the life history and distribution 

patterns of liana species, previous findings were based on observations (i.e. liana inventory, Schnitzer 

et al. 2012; excavation, Sakai et al. 2002), which means that the evaluation of clonal reproduction of 

liana species are still limited in terms of identification of genetically distinct individuals (clone, genet), 

mainly due to methodological limitations. Clonal reproduction of lianas is difficult to evaluate via 

observational methods because clonally reproduced stems (stolons) are easily buried underground and 

connections between rooted stems (ramets) tend to decay over time. Precise identification of clonal 

reproduction for both above-ground and below-ground clonal reproduction, and past connectivity is 

essential for the comprehensive understanding the contribution of clonal reproduction as a potential 

driver of distribution patterns of liana species. Evaluation of clonal reproduction using genetic tools 

such as microsatellite markers is an effective approach for such conditions. Genetic analysis on clonal 

plant species has been widely used in number of previous studies, and methods for clonal analysis 

have been well standardized (reviewed in Arnold-Haond 2007); however, few studies have applied 

genetic tools to evaluate the clonal structure of liana species in their natural habitat. 

To evaluate the contribution of clonal reproduction on the distribution patterns of liana species 

in a temperate forest, I conducted the set of studies as follows; 

1) I described liana community structure and ramet-level distribution patterns in a 6-ha plot 

in an old-growth cool temperate forest of Japan (Chapter 2). Species name and size of all 

liana stems higher than 1.3m above ground on trees (5 cm > diameter at breast height; 
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DBH) were recorded and mapped in the study plot. Liana community structure in the 

present study site was compared with other temperate forests. Spatial distribution patterns 

and the preferences of host tree and microsite characteristics of lianas were assessed. This 

chapter was published in Mori et al. (2016a). 

2)  I studied the contribution of clonal reproduction to the distribution patterns of a 

deciduous liana species Wisteria floribunda in an old-growth cool temperate forest of 

Japan (Chapter 3). Following liana inventory in chapter 2, I collected either leaf or inner 

bark samples from all W. floribunda individuals in the study plot. Samples were 

genotyped using microsatellite markers designed for this species (Mori et al. 2016b). 

Clonal structure and distribution patterns of clones of W. floribunda were assessed. This 

chapter was published in Mori et al. (2017a). 

3)  I studied the role of clonal reproduction and canopy gap disturbances on the distribution 

patterns of Wisteria floribunda to examine the mechanism—lianas respond to canopy gap 

disturbances via clonal reproduction—reported in tropical forests (Chapter 4). Canopy 

gap disturbances were identified from the 25-year canopy height data in the study plot 

(Nakashizuka et al. 1995b). Effects of canopy gap disturbances on distribution of W. 

floribunda were evaluated using statistical modelling with accounting for differences in 

life history stages and the magnitude of clonal ability. 

4) To evaluate the contribution of seed reproduction to the distribution patterns of the liana 

species, I studied the distribution pattern of current-year seedlings of Wisteria floribunda 

because post-dispersed seed to seedling stage respond most dramatically to surrounding 

environment throughout the life history (Chapter 5). Emergence and survival rate of 

current-year seedlings were investigated with three years of continuous observation on 

current-year seedlings in the study plot. Effects of environmental factors that might affect 

the distribution of seedlings (e.g. light and water) were assessed. 

5) I studied the clonal structure of three liana species (Schizophragma hydrangeoides, 

Euonymus fortunei, Rhus ambigua) to evaluate the relative importance of clonal 
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reproduction to the distribution patterns of liana species in a temperate forest (Chapter 6). 

I also studied the clonal structure of ramets on the forest floor of three most abundant 

liana species (W. floribunda, S. hydrangeoides, E. fortunei) to examine the inter-specific 

variation of clonal reproduction on the forest floor via stolons (Chapter 6). Leaf samples 

on the forest floor were collected in the belt transect established in the centre of the study 

plot. Samples were genotyped using microsatellite markers described in Mori et al. 

(2017b) and Hsu et al. (2013). 

In the final chapter, I made a general discussion regarding to life history strategies of liana 

species in a temperate forest (Chapter 7). 
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Chapter 2 Liana distribution and community structure in an old-growth 

temperate forest: The relative importance of past disturbances, host trees, and 

microsite characteristics 

 

2.1 Introduction 

Lianas contribute to forest dynamics and other forest ecological functions by influencing tree 

regeneration and composition in both temperate and tropical forests (Putz 1984; Schnitzer and Bongers 

2002; Ladwig and Meiners 2009). They are most abundant and diverse in tropical forests, but there is 

increasing interest in the ecology of temperate lianas based on recent recognition of their importance 

in temperate tree communities (Ladwig and Meiners 2015).  

Within forest stands in temperate forests, liana density and diversity vary at a local scale. Thus, 

liana distribution is determined in part by the degree of support provided by the diameter and height, 

species, bark texture, allelopathy, and other characteristics of the host trees (e.g. Talley et al. 1996; 

Buron et al. 1998; Carrasco-Urra and Gianoli 2009; Ladwig and Meiners 2010a; Castagneri et al. 

2013). These preferences are closely related to the climbing type (stem twiners, root climbers, and 

tendril climbers) (Putz and Holbrook 1992) and the size (Putz 1984; Ichihashi and Tateno 2011) of the 

lianas. Small-stem twiners require smaller trees in the understory to climb; root climbers, with their 

adhesive roots, do not have upper size limits for host trees; and large lianas that ascend to the forest 

canopy require larger host trees for support (Ichihashi and Tateno 2011). Thus, an analysis of liana 

distribution must take into account both liana size and climbing type. Microsite characteristics, 

including microscale habitat, water and nutrient availability, also influence liana distribution (e.g. 

Collins and Wein 1993; McNab and Loftis 2002; Leicht-Young et al. 2010; West et al. 2010; Kusumoto 

et al. 2013). Lianas in temperate forests often follow a “sit and wait” strategy, persisting in the forest 

understory until conditions cause an opening in the canopy (Greenberg et al. 2001).  

Disturbance is another important determinant of the liana community (Allen et al. 1997; 

Schnitzer and Carson 2001; Londré and Schnitzer 2006; Ledo and Schnitzer 2014). Large-scale 
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disturbances, whether natural (e.g. hurricanes) or anthropogenic, produce forest edges and thereby 

increase liana abundance (Laurance and Williamson 2001; Londré and Schnitzer 2006). Small-scale 

disturbances, such as treefall gaps in mature or old-growth forests, also contribute to the maintenance 

of the liana community (Schnitzer and Bongers 2002; Ledo and Schnitzer 2014). Recent studies in 

tropical forests have determined that treefall gaps are necessary for the maintenance of liana 

populations and their species richness (Schnitzer and Carson 2001; Ledo and Schnitzer 2014). By 

contrast, in a study of temperate forests in South America, Carrasco-Urra and Gianoli (2009) showed 

that liana abundance was independent of light availability related to treefall gaps. These findings imply 

that the impact of canopy disturbance on the liana community differs between temperate and tropical 

forests (see Ladwig and Meiners 2015).  

Investigations of the factors that determine liana species density and diversity must therefore 

consider disturbances, host tree conditions, and microsite characteristics comprehensively. However, 

this was not the case in previous ecological studies of lianas in temperate forests (e.g. Allen et al. 1997; 

Londré and Schnitzer 2006; Carrasco-Urra and Gianoli 2009; Leicht-Young et al. 2010; Pavlovic and 

Leicht-Young 2011; but see Leicht-Young et al. 2010). Other studies were limited geographically to 

either North or South America (McNab and Loftis 2002; Carrasco-Urra and Gianoli 2009; Ladwig and 

Meiners 2010a; West et al. 2010; Leicht-Young et al. 2010; but see; Hu 2011). Furthermore, all of 

those studies were done in small (≤1 ha) plots, and a spatial perspective on liana populations was 

accordingly absent. As shown in Barro Colorado Island, Panama, studies of large forest plots can 

provide important insights into the liana community, highlighting factors such as habitat preference, 

disturbance dependency, and density effects (Ledo and Schnitzer 2014; Schnitzer et al. 2015). 

In this chapter, I examined the structure and distribution of the liana community, focusing on 

past disturbances, host tree preferences, and microscale characteristics, in a 6-ha plot established in a 

temperate forest in Japan and containing lianas of different sizes and climbing types. Specifically, the 

following questions were addressed: 1) How similar is the liana community structure in the study plot 

to that in other temperate forests with respect to flora, basal area and climbing mechanisms? 2) 

Considering host trees, microsites, and past disturbances, which of these factors is the most important 
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determinant of liana distribution? 3) Does the answer to the latter question change as a function of 

liana climbing type or size class? 

This study was published in Mori et al. (2016a). Figures and tables used in this chapter is 

from Mori et al. (2016a). 

 

2.2 Material and Methods 

2.2.1 Study site 

The study was conducted in a 6-ha plot (300 m × 200 m) in the Ogawa Forest Reserve (OFR), 

an old-growth temperate deciduous forest located in the southern Abukuma Mountains, Ibaraki 

Prefecture, central Japan (36˚56’ N, 140˚35’ E, elevation 610–660 m). The dominant species in the 

forest canopy are Quercus serrata Murray, Fagus japonica Maxim., and Fagus crenata Blume 

(Masaki et al. 1992). The mean monthly temperature is 10.7ºC, with a maximum typically occurring 

in August (22.6ºC) and a minimum in January (−0.9ºC). Mean annual precipitation is approximately 

1,910 mm, with a maximum in August (338.2 mm) and a minimum in December (42.1 mm). In winter, 

the maximum snow depth often reaches 50 cm (Mizoguchi et al. 2002). 

The area where the OFR is located was altered by large-scale human disturbances, probably 

in the form of fire, in the 1930s (Masaki et al. 1992). Tanaka and Nakashizuka (1997) showed that 

these disturbances occurred both at the edge of the plot and outside it, resulting in large patches (>1500 

m2) within the plot mainly composed of Quercus serrata (Masaki et al. 1992; Nakashizuka et al. 

1995b). The presence of smaller patches (<400 m2) of other tree species around the plot’s centre reflect 

tree regeneration after local disturbances (see Masaki et al. 1992). Thus, the OFR is the complex of 

patches differing in their age and size and indicative of past disturbances. Masaki et al. (1992) 

classified tree species in the study plot into shade-tolerant species (e.g. Acer palmatum var. amoenum, 

Carpinus cordata, Carpinus laxiflora, F. crenata, and F. japonica,) and shade-intolerant species (e.g. 

Betula grossa, Castanea crenata, Cornus controversa, Q. serrata, and Styrax obassia) based on the 

DBH distribution of each tree species. 
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2.2.2 Field methods 

I conducted an inventory of the trees in the 6-ha plot in 2009 by dividing the study plot into 

2,400 cells, each with an area of 5 m × 5 m (see Masaki et al. 1992). The girth at breast height of the 

trees was measured using a steel measuring tape. Tree species and locations within each cell were 

recorded for all stems with a girth >15 cm. The diameter at breast height (DBH) was calculated by 

dividing the girth by π.  

A census of the lianas in the study plot was conducted from July to November 2013 to 

determine the size (DBH, measured using a caliper) of all liana stems more than 1.3 m above the 

ground and present on the inventoried trees. Species names and locations within each cell were 

recorded. For liana stems with an elliptical cross section, the longest diameter was measured. If a liana 

stem dug into the trunk of the host tree, the breadth of the exposed part was measured using a calliper. 

I also recorded whether the lianas reached the canopy. Since it was impossible to distinguish the true 

individual liana (i.e. ramets and genets; Gerwing et al. 2006) without the use of excavations or genetic 

tools, liana individuals were identified based on their above-ground connectivity. 

The microsite characteristics determined within every 5 m × 5 m cell were slope inclination 

(degrees; Masaki et al. unpublished), soil moisture content (volumetric percentage; Masaki et al. 2015), 

and microscale landform (Yoshinaga et al. 2002). The last was classified according to the criteria 

proposed by Tamura (1981): crest slope, head hollow, upper side slope, lower side slope, flood terrace, 

and river bed (Yoshinaga et al. 2002).  

 

2.2.3 Analysis 

All liana stems recorded in the 6-ha OFR plot were separated to one of two classes, “small” 

or “large”, based on the vertical position of the liana in the host tree and the size of that tree. Liana 

individuals that reached the forest canopy and climbed large trees (tree DBH ≥25 cm) were classified 

as “large”, whereas those that did not reach the canopy or that climbed small trees (DBH <25 cm) 

were classified as “small”. A diameter of 25 cm was set as the host-tree size threshold because 85% of 

the forest canopy comprised trees with a DBH >25 cm. 
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The spatial aggregation pattern of each liana species in each size class was characterised using 

a L(r) function, derived from Ripley’s K-function (Law et al. 2009): 

"($) = '(($)/* − $ (eq. 2.1) 

A positive L(r) value indicates aggregation, and a negative value indicates regularity at scale 

r. First, spatial distribution patterns were determined by calculating the L(r) values for each liana 

species with respect to size class. The significance of the aggregation was tested with 95% local 

confidence limits of the null hypothesis of complete spatial randomness (CSR). Confidence limits 

were generated with 1000 Monte Carlo simulations. Second, conspecific spatial correlation among 

different size class and heterospecific spatial correlation within each size class were examined by 

expanding L(r) to L12(r) (Lan et al. 2009). Significance was tested by generating 1000 random 

distributions using a torus translation. Both L(r) and L12(r) were calculated for a total distance of up 

to 100 m at 5-m intervals. 

For each size class, the probability of liana presence on non-liana trees was analysed using a 

trend surface generalised additive model based on five variables (trend surface GAM), with logit as a 

link function: 

logit(12) = 34 + 36762 + 38782 + 39792 + 3:7:2 + 3;7;2 + <(=, ?) + @2 (eq. 2.2) 

where 	β4  is a constant (intercept), 	{36,38, 39, 3:, 3;} are the parameters, 	{z6, z8, z9, z:, z;}  the 

covariates, <(=, ?)	is a trend surface (i.e. a spline for the geographic component), and 	@2 is the error 

term. The parameters β6 and	β8 represent the effects of the size (DBH) and shade intolerance of the 

host trees (defined in Masaki et al. 1992), respectively. The parameter 	β9, β:, and β; represent the 

effects of the microsite characteristics: slope inclination, soil water content, and microscale landform, 

respectively. The variables used in the model and their data sources are summarised in Table 2.1. 

Among the covariates, z6, z9  and z:  were numerical; the others were categorical. When the shade 

intolerance (established after a relatively recent disturbance) of a host tree had a positive effect on 

liana species distribution, then that liana species was considered disturbance dependent. When shade 

intolerance had a negative effect on liana species distribution, that species was considered less 
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disturbance dependent. Bias due to spatial autocorrelation was corrected by including the x-y 

coordinates of the host tree as <(=, ?) (Dormann et al. 2007). Each liana species within each size class 

was evaluated using this method. A model was then selected according to Akaike’s information 

criterion. All statistical analysis were performed in R version 3.2.2 (R Development Core Team 2015). 

The “ads” package was used for the spatial analysis (Pélissier and Goreaud 2015), and the “mgcv” 

package for statistical modelling (Wood 2011). 

 

2.3 Results  

Nine liana species were found on tree stems in the OFR study plot (Table 2.2), with Wisteria 

floribunda, a stem twiner, as the most dominant. This species accounted for 85% and 57% of the total 

basal area and abundance of the liana community respectively. The abundances of other stem twiners, 

including Actinidia arguta, Akebia trifoliata, and Schisandra repanda, were relatively low. Euonymus 

fortunei, Schizophragma hydrangeoides, Hydrangea petiolaris, and Rhus ambigua were root climbers, 

and their abundances were higher than those of stem twiners, other than W. floribunda. The only tendril 

climber found in the OFR was Vitis coignetiae which was consisted mostly of large-class stems. Spatial 

analyses and the trend surface generalised additive model were conducted for populations with an 

abundance of >10 individuals within a size class; these analyses were applied to the following 

populations: W. floribunda (large and small), E. fortunei (small), S. hydrangeoides (large and small), 

H. petiolaris (small), R. ambigua (large and small), and V. coignetiae (large). 

I recorded 856 liana stems on 700 tree stems with DBH >5 cm (4,751 stems); thus, 18% of 

the trees in the study plot carried at least one liana. The total liana basal area was 0.47 m2 ha-1, which 

was 1.4% of the tree basal area (34.8 m2 ha-1). Larger trees were often more infested by lianas (Fig. 

2.1a). Lianas of different climbing types climbed host trees of different size classes. For those host 

trees infected by lianas, the occurrence of stem twiners was negatively correlated with that of root 

climbers along tree size gradients (Fig. 2.1b).  

Both small and large liana species were significantly aggregated, with an average scale of 25 

m (Table 2.3). An analysis of conspecific distribution patterns between different size classes revealed 
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the significantly positive spatial correlations of W. floribunda and R. ambigua at 5–80 m and 30–35 m 

respectively, whereas for S. hydrangeoides the correlation was random (Table 2.4). With respect to 

heterospecific distribution patterns, significantly positive spatial correlations were determined 

between the small lianas of W. floribunda and E. fortunei at 20–30 m and between those of S. 

hydrangeoides and R. ambigua at 30–35 m. None of the other combinations of species showed 

significant spatial correlations. 

Host tree size had a significantly positive effect (p < 0.05) on the occurrences of five liana 

species in the large class (W. floribunda, E. fortunei, S. hydrangeoides, R. ambigua, V. coignetiae) and 

four liana species in the small class (E. fortunei, S. hydrangeoides, R. ambigua, H. petiolaris) but their 

effects on small W. floribunda were significantly negative (Table 2.5). The shade intolerance of host 

tree species positively affected liana distribution, except in the case of small S. hydrangeoides, whose 

distribution was negatively correlated with the shade intolerance of its host tree species (Table 2.5, 

Fig. 2.2). 

Among the microsite characteristics, soil moisture and slope angle had significant negative 

effects on small W. floribunda and S. hydrangeoides, respectively (p < 0.05) (Table 2.5). None of the 

other species in the study plot were significantly affected by the respective microsite characteristics. 

 

2.4 Discussion 

2.4.1 The liana community of a cool temperate forest 

The basal area of the lianas was lower (0.47 m2 ha-1; 1.4% to the total basal area) than that of 

the trees (34.8 m2 ha-1), as reported for liana communities in tropical (2.5%, DeWalt and Chave 2004; 

2.2%, Schnitzer et al. 2012) and other temperate (0.2%, Allen et al. 1997) forests. Several liana genera 

detected in the study forest have also been reported in other temperate forests of the northern 

hemisphere. Vitis, Rhus (Toxichodendron) and Eunonymus are also found in temperate deciduous 

forests in North America (Talley et al. 1996; Ladwig and Meiners 2010a; Leicht-Young et al. 2010; 

Ladwig and Meiners 2015), and both W. floribunda and E. fortunei are invasive species in North 

American forests (e.g. Trusty et al. 2007; Kuhman et al. 2010; Smith and Reynolds 2012). Conversely, 
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only a few liana genera in the study plot, such as Hydrangea (Carrasco-Urra and Gianoli 2009; Gianoli 

et al. 2012), also occur in South American forests. The substantial difference in the liana flora of 

temperate South American and that of North American forests might reflect differences in origin, as 

the flora of temperate forests originated from Gondwanaland in the southern hemisphere (Hofstede et 

al. 2002).  

 Carrasco-Urra and Gianoli (2009) and Leicht-Young et al. (2010) found that stem 

twiners and root climbers in forests were negatively associated along the tree size gradient. The two 

studies were conducted in a temperate rain forest of southern South America and in an old-growth 

beech-maple forest of northern North America respectively. In this study, I found a similar relationship 

(Figs. 2.1a, b), in that root climbers climbed most host trees regardless of their DBH, whereas stem 

twiners seemed to initially require the support of trees of smaller DBH. Higher proportions of root 

climbers than of other climbing types have also been reported on the larger trees of other temperate 

forests (Schnitzler and Heuzé 2006; Carrasco-Urra and Gianoli 2009; Leicht-Young et al. 2010; but 

see Nabe-Nielsen 2001), suggesting the universality of this pattern in temperate forests from East Asia 

to America.  

An analysis of the spatial distribution of each species within each size class showed that the 

distribution patterns of all liana species were fairly aggregated over a scale of 5–40 m (25 m on 

average). This likely reflects the seed dispersal process and/or the spreading of genet by stolon, as 

both facilitate the colonisation of sites that have suffered disturbances. In contrast to the large class, 

which showed no significant spatial correlations among species, in the small class, some of the 

heterospecific spatial correlations were significantly positive. These species were therefore probably 

recruited from the same sites and following the same disturbance events, as discussed below. 

 

2.4.2 Effects of past disturbances 

Three species, including the most dominant, W. floribunda, were positively correlated with 

the shade intolerance of their host trees; a negative correlation was determined for only one species. 

This implies that liana distribution in temperate forests depends on past disturbances where shade 
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intolerant species colonize effectively and grow rapidly. Generally, lianas are able to rapidly colonise 

gaps in both tropical (Paul and Yavitt 2011) and temperate (Londré and Schnitzer 2006; Ladwig and 

Meiners 2010a) forests owing to their faster elongation growth (Paul and Yavitt 2011), ability to 

survive treefalls (Putz 1984), and reproduction of clonal stems that can root independently (Ledo and 

Schnitzer 2014). The aggregated distribution patterns of the lianas in this study might therefore be 

related to the colonisation by lianas of disturbed sites, as is often found in the tropics (Schnitzer et al. 

2000). The negative correlation of small S. hydrangeoides with the shade intolerance of its host trees 

suggested that this species is less dependent on disturbance. Gianoli et al. (2010) examined the 

distribution of liana species along the light gradient of South American temperate forests and showed 

that two of the seven dominant species were more abundant in the shaded understory. This suggests 

that adaptation to light exploitation explains the abundance of lianas across a disturbance-mediated 

environmental light gradient (Gianoli et al. 2012). However, the detection of overlapping or non-

exclusive distribution patterns between liana species in the study plot would indicate that niche 

differentiation is a less relevant determinant of the liana community in the OFR. 

The liana community in this forest might change in the future based on the presence or 

absence of disturbance. Masaki et al. (1992) examined projected compositions of this forest and 

suggested that it was likely to be shifting from a composition dominated by shade intolerant tree 

species to one dominated by shade tolerant tree species under the current disturbance regime, which 

lacks large and intensive disturbances. A similar shift might be possible in the liana community; 

without any new large disturbance, an evergreen liana (E. fortunei) could become more abundant than 

other deciduous liana species because evergreen plants can be more shade tolerant than deciduous 

plants (Miyashita and Tateno 2014). 

 

2.4.3 Host tree and microsite characteristics 

Overall, in the studied liana community, host tree conditions were a greater influence than 

were microsite characteristics, and host tree size significantly affected all species within the large class. 

The greater importance of host tree conditions than microsite characteristics on liana species 



 

 

 15 

distribution has also been reported for temperate forests in North America (Leicht-Young et al. 2010) 

and for tropical forests (Nabe-Nielsen 2001; Nesheim and Økland 2007). The correlation between host 

tree size and the presence of all large-class liana species in the study plot was significantly positive, 

consistent with the generally larger surface area, older age, and consequent longer susceptibility to 

liana infestation of larger trees (Ladwig and Meiners 2015). Recent study in a cool temperate forest of 

Japan indicated that the growth of lianas synchronizes with that of their hosts (Ichihashi and Tateno 

2015). Moreover, since larger trees are more likely to constitute the forest canopy, their crowns are 

more light exposed. By contrast, the effect on W. floribunda of small class was negative, which could 

be explained by its climbing type. Stem twiners have adapted to climb smaller-diameter supports, 

either switching with growth to large trees (a process known as “laddering”; Leicht-Young 2014) or 

continuing their growth along the same tree. After reaching the forest canopy, twiners can expand by 

spreading their shoots to host crowns. However, stem twiners often cover host tree crowns before the 

host grows large enough, and the host barely survives. This explains the lower frequency of W. 

floribunda on large host trees (as opposed to that of root climbers such as E. fortunei, which do not 

reduce the growth of host trees) (Fig. 2.1). These observations emphasise the importance of 

distinguishing among size classes within liana species. 

Our observation that small W. floribunda was negatively affected by soil moisture was 

somewhat surprising, given that lianas require more ground moisture to achieve rapid elongation 

growth and thus are more likely to be distributed in moister habitats (McNab and Loftis 2002; 

Kusumoto et al. 2008). A recent study in the OFR found that during their transition from small to large 

classes, several tree species exchanged their drier habitats for wetter ones (Masaki et al. 2015). This 

might also be the case for the liana W. floribunda. An alternative explanation is related to the fact that 

the soil moisture content of our 6-ha plot varied spatially over short distances (10–20 m) (Masaki et 

al. 2015). W. floribunda has a highly developed and connected root system that spreads horizontally 

over a >20-m radius (Sakai et al. 2002); thus, stems of this species in drier habitats may well be 

connected with those in wetter habitats via horizontally reproduced stolons. This possibility can be 

evaluated using genetic tools to determine the horizontal spreading of each clone of this species. The 
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same approach should also be applied to other liana species, as high clonality and highly developed 

root systems are features of lianas in both tropical and temperate forests (Nabe-Nielsen and Hall 2002; 

Yorke et al. 2013), where they serve to enhance below-ground competition between lianas and trees 

(Schnitzer et al. 2005; Toledo-Aceves and Swaine 2008). Moreover, the apparent preference of small 

W. floribunda for drier soils would be consistent with the slower growth and thus smaller size of host 

trees in these soils. 

The negative correlation of both small and large S. hydrangeoides with slope inclination 

indicated the greater sensitivity of this species to the soil surface disturbance caused by a steeper slope. 

This might be due to the fact that S. hydrangeoides, like many other root climbers, spreads stolons 

(vegetative growth) along the ground surface (Kato et al. 2014). However, the effects of slope 

inclination were not detected in the other three root climbers that extend stolons on the forest floor. In 

addition, the lack of significant effects of microscale landforms (Table 2.5) suggested that, compared 

with host tree size, microsite characteristics are not substantial determinants of liana distribution, at 

least in the OFR.  
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2.5 Figures 

 

Fig. 2.1 Proportion of lianas of different climbing types with respect to host tree size class: (a) all trees 

and (b) trees infested by lianas. The climbing type of each liana species is described in Table 2.1.  
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Fig. 2.2 Proportion of (a) small and (b) large liana species according to host-tree shade tolerance. Solid 

bars: shade-tolerant tree species; open bars: shade-intolerant tree species. “Trees” includes all trees 

within the plot. Wf: Wisteria floribunda, Ef: Euonymus fortunei, Sh: Schizophragma hydrangeoides, 

Hp: Hydrangea petiolaris, Ra: Rhus ambigua, Vc: Vitis coignetiae.   
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2.6 Tables 

Table 2.1 Summary of environmental variables and data sources  

DBH, diameter at breast height 

 

 

 Environmental 
variable Resource indicator Data source 

Host tree 
conditions 

Size (DBH) Light availability 
Mechanical support Tree inventory in 2009 

Shade intolerance Past disturbance Masaki et al. 1992 

Microsite 
characteristics 

Slope Soil surface disturbance Masaki et al. unpublished 

Soil water Water availability Masaki et al. 2015 

Microscale landform Soil resource and  
soil surface disturbance Yoshinaga et al. 2002 
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Table 2.3 The spatial aggregation patterns of six liana species.  

 

 

 

 

 

 

 

 

a “+”, aggregated pattern (p < 0.05). Values in parentheses show the spatial scale of significant values 
of the L functions [r for the largest value of L(r)] and the significant spatial range. 
b ND indicates a species in which there were <10 individuals within a size class; these were excluded 
from the analysis. 
 

 

 

 

 

 

Species Smalla Largea 

Wisteria floribunda + (15: 5–75) + (25: 5–50) 

Euonymus fortunei + (40: 5–100) ND 

Schizophragma 
hydrangeoides + (10: 5–55) + (5: 5) 

Hydrangea petioralis + (40: 5–100) ND 

Rhus ambigua + (40: 10–100) + (5: 5–10) 

Vitis coignetiae NDb + (20: 5–100) 
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Chapter 3 Large contribution of clonal reproduction to the distribution of 

deciduous liana species (Wisteria floribunda) in an old-growth cool temperate 

forest: Evidence from genetic analysis 

 

3.1 Introduction 

Lianas are woody vine species that require mechanical support (i.e. host tree) to grow up to 

the forest canopy. Lianas are not only able to establish from seeds and suppressed saplings but also 

via clonal (vegetative) reproduction, whereas most tree species reproduce in only the two former ways 

(Schnitzer and Bongers 2011). Extensive clonal reproduction in lianas is thought to be a major driver 

of their regeneration and colonization success (Schnitzer et al. 2012; Yorke et al. 2013; Ledo and 

Schnitzer 2014), with a recent increase in their abundance and basal area reported in temperate and 

tropical forests around the world (Phillips et al. 2002; Allen et al. 2007; Yorke et al. 2013). Also 

importantly, clonal reproduction is known to be one of the major potential drivers of spatial distribution 

patterns of liana species in tropical forests (Ledo and Schnitzer 2014). However, studies of liana 

distribution patterns are often conducted in tropical forests where studies in temperate forests are 

lacking. Therefore, studies of liana clonal reproduction are essential to understanding their distribution 

and growth patterns in temperate forests. 

Previous studies of clonal reproduction in lianas have provided important insight into their 

regeneration processes at the stand level in both temperate and tropical forests; however, most of these 

studies are still limited in their ability to accurately identify genetically distinct individuals (i.e. genets, 

clones). These studies utilized above-ground (i.e. liana inventory; Schnitzer et al. 2012; Yorke et al. 

2013; Ledo and Schnitzer 2014; Chapter 2) and below-ground censuses (i.e. excavation; Peñalosa 

1984; Putz 1984; Sakai et al. 2002). An above-ground census detects rooted stems that have above 

ground physical connections with other rooted stems (i.e. rooted ramets), which is different from 

branches in terms of connectivity to the ground (Gerwing et al. 2006; Schnitzer et al. 2008, 2012); 

however, these methods are unable to detect clonally reproduced ramets below the forest floor or 
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ramets that were previously connected to each other (i.e. clonal ramets) (Parks and Werth 1993; 

Suyama et al. 2000; Schnitzer et al. 2012). While a below-ground census detects the presence of below 

ground connections, it is often difficult to conduct below-ground census in large area as it requires the 

destruction of the surrounding vegetation, thus making it difficult to apply this methodology widely 

to study plots. Furthermore, a below ground census can only detect the current connectivity between 

ramets.  

Clonal analysis using genetic tools such as microsatellite markers is an effective approach for 

the precise evaluation of clonal reproduction in lianas. Although some previous studies have applied 

genetic analysis to some liana species (Foster and Sork 1997; Grashof-Bokdam et al. 1998; Arnold 

and Schnitzler 2010; Kartzinel et al. 2015), these studies were either conducted in rural ecosystems 

and disturbed forests, and/or were based on non-continuous sampling within small plots. To the best 

of our knowledge, no studies have conducted genetic analyses on lianas with a focus on the 

contribution of clonal reproduction to regeneration processes and distribution patterns under natural 

conditions. In addition, genetic analysis for the evaluation of the liana clonal structure and distribution 

patterns of clones should be conducted in large plots (i.e. > 1 ha). Sakai et al. (2002) showed that 

individual ramets of the deciduous liana species Wisteria floribunda (Willd.) DC. could be up to 310.6 

m in total length. It is also important to test the clonal ability of liana species in various topographies 

to assess any potential impact of the spatial heterogeneity of the forest floor environment on clonal 

reproduction, as clonal growth below the ground and on the forest floor via rhizomes and stolons—

horizontal connections between plant organisms—is often sensitive to microsite characteristics (Parks 

and Werth 1993; Suyama et al. 2000; Waters and Watson 2015). In contrast, micro-topography often 

has a relatively small impact on liana distribution patterns in both tropical and temperate forests 

(Dalling et al. 2012; Chapter 2). Thus, it is necessary to assess the contribution of clonal reproduction 

on the distribution patterns of liana species over various micro-topographies. 

To evaluate the contribution of clonal reproduction on the distribution of a liana species in its 

natural habitat, I conducted a genetic analysis using 10 microsatellite markers in the deciduous liana 

species W. floribunda, with continuous sampling of a 6-ha plot in an old-growth cool temperate forest 
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of Japan. Specifically, the following questions were addressed: 1) Does clonal reproduction 

significantly contribute to the distribution of W. floribunda? 2) How large and long is the clone (i.e. 

genet) patch and what is the distance between ramets within one genet? 3) Are distribution patterns of 

W. floribunda clones affected by micro-topography? Answering these questions is important not only 

to further elucidate the clonal structure of this species, but also to evaluate the contribution clonal 

ability makes to liana distribution and survival strategies. 

This study was published in Mori et al. (2017a). Figures and tables used in this chapter are 

from Mori et al. (2017a). 

 

3.2 Materials and Methods 

3.2.1 Study site 

This study was conducted in the Ogawa Forest Reserve (OFR) (Nakashizuka and Matsumoto 

2002). See Chapter 2 for descriptions of the study site. Data from a tree inventory conducted in 2013 

was used for this analysis. DBH, species name, host tree, and location of all lianas on trees (DBH ≥ 5 

cm) higher than 1.3 m above the ground were measured in 2013 (Chapter 2).  

This study plot includes a variety of landforms including a crest slope (CS), head hollow (HH), 

upper side slope (US), lower side slope (LS), flood terrace (FT), and river bed (RB) (Fig. S3.1; 

Yoshinaga et al. 2002; see illustration in Nagamatsu and Miura 1997), which are landform 

classifications proposed by Tamura (1981). These landform types were classified based on 

discontinuities in slope angles and the forms of adjacent units (i.e. convexity and concavity; for details, 

see Tamura 1981). CS and US are stable landforms that are characterized by decreased soil disturbance, 

whereas the other landforms often experience more frequent soil disturbances (Nagamatsu and Miura 

1997). A small stream runs through the centre of the plot, and thus the variety of its topographic 

conditions is suitable for the evaluation of clonal reproduction in lianas on the forest floor. 

 

3.2.2 Study species 
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Wisteria floribunda (Fabaceae) is a deciduous, stem twining liana species that is widely 

distributed throughout Japan (Ohashi et al. 1989). This species produces stolons on the ground surface 

via clonal reproduction (Fig. S3.2; Sakai et al. 2002). Wisteria floribunda often predominates 

temperate forests; representing 57% of the abundance and 85% of the basal area of the liana 

community in this study plot (Chapter 2). Other liana species in this study plot are mostly root climbers 

(e.g. Euonymus fortunei, Schizophragma hydrangeoides, Hydrangea petiolaris, Rhus ambigua). 

Wisteria floribunda and other root-climbing species accounted for 98% and 97% of the total 

abundance and basal area in this liana community, respectively. Wisteria floribunda often reaches the 

forest canopy and covers the host tree canopy, while root climbers are suppressed under the host tree 

canopy (Ichihashi and Tateno, 2011; Chapter 2). There are no significantly exclusive distribution 

patterns between the liana species in this study plot (Chapter 2).  

 

3.2.3 Sampling, DNA extraction, and genotyping 

Following the liana census conducted in 2013 (Chapter 2), I collected either fresh leaf or inner 

bark samples from all W. floribunda individuals that were higher than 1.3 m above-ground in 2015. I 

defined individuals as being independently rooted ramets that had no apparent above-ground 

connection to other rooted ramets ('apparent genet'; Gerwing et al. 2006). Within the study plot, I did 

not observe any rooted ramets with obvious connections to other rooted ramets. Therefore, the term 

“ramets” used in this study refers to rooted above-ground stems that sprouted from stolons or emerged 

from seeds. Inner bark samples were collected in cases where leaf samples could not be collected 

owing to the difficulty in distinguishing individuals, which often occurred when no leaves were 

available under the forest canopy and/or multiple individuals were tangled on the same host tree. The 

collection of leaf and inner bark samples (N = 391; 326 leaves and 65 bark samples) were stored at –

30°C�prior to DNA extraction. DNA extraction was conducted using the DNeasy kit (Qiagen, Valencia, 

CA, USA). Polymerase chain reaction (PCR) was performed using the 10 microsatellite markers 

designed for W. floribunda as described by Mori et al. (2016b). Genotyping data was checked and 

binned with Geneious R9.0 (Kearse et al. 2012).  
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3.2.4 Data analysis 

Clones were identified with standardized methods (Arnaud-Haond et al. 2007). In brief, the 

ability of 10 microsatellite markers to distinguish multilocus genotypes (MLGs) was examined by 

calculating the distinct number of MLGs for all combinations of a given locus. The results were 

confirmed from the plateau of the genotype accumulation curve (Fig. S3.3). To ascertain whether 

ramets of the same MLG belonged to the same clone, the probability of a given MLG occurring in a 

population under Hardy-Weinberg equilibrium was calculated (Pgen) (Parks and Werth 1993): 

 
(eq. 3.1) 

where <2 is the frequency of each allele at the i-th locus estimated with a round-robin method, and h is 

the number of heterozygous loci. Then, the probability of obtaining n repeated MLGs from a 

population more than once by chance in N samples (Psex) was calculated (Parks and Werth 1993): 

 
(eq. 3.2) 

To ascertain each distinct MLG that belonged to a distinct clone, multilocus lineages (MLLs) 

were defined based on pairwise genetic distances. This procedure was necessary to prevent the false 

detection of clones owing to slightly different MLGs resulting from somatic mutation and genotyping 

errors. The threshold of pairwise genetic distance was determined as one by changing the threshold 

from zero to five following the recommendations of Meirmans and Van Tienderen (2004) (Table S3.1). 

The MLLs are equivalent to the term ‘genet’ in ecological studies and thus, I will use this term hereafter 

for MLLs to avoid further confusion.  

Genets were mapped to show the clonal structure across the study plot. The patch size for all 

genets with three or more ramets was measured by the area of a convex hull polygon for each genet 

calculated in QGIS version 2.16.2 (QGIS Development Team, 2009). The robustness of habitat 

composition based on the landforms of both clonal and non-clonal ramets was tested using the jack-

knife procedure: mean and 95% confidence intervals for habitat composition of landforms were 
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obtained from datasets that were generated excluding one genet. This was done for all combinations 

of genets. If the contribution of single genet on the habitat composition of landforms was large, then 

a 95% confidence interval would be a high value compared to that of the mean value. To evaluate the 

degree of aggregation and intermingling between genets, the aggregation index (Ac) was defined as 

, where Psg is the average probability of clonal identity for all pairs and Psp is 

the average probability for clonal identity among the nearest neighbours. Ac is zero when all genets 

are intermingled and one when all genets are distinctly distributed. Finally, to evaluate the clonal 

diversity the following indices were obtained: clonal richness (R), Simpson’s evenness index (V), and 

the Pareto index (β). The equation for clonal richness (genotypic richness) was  

where G is the number of genets in N samples. Simpson’s evenness index was then estimated as 

 where D is the Simpson index 

, , 

, G is the number of unique MLGs, and N is the number of 

samples. The Pareto index is the negative value of the slope of the power law (Pareto) distribution of 

clonal membership. The equation for Pareto index is , where  is the number of 

genets containing X or more ramets. The Pareto index (β) is higher when genets have a higher density 

and the distribution of ramets per genet has higher evenness. Pgen and Psex were calculated in R version 

3.3.2 (R Development Core Team 2016) with the ‘poppr’ package version 2.2.0 (Kamvar et al. 2014, 

2015). Determination of genets (i.e. MLLs) was conducted in GenoDive version 2.0 (Meirmans and 

Van Tienderen 2004). The calculation of clonal indices was done in R version 3.3.2 (R Development 

Core Team 2016) with the ‘RClone’ package version 1.0 (Arnaud-Haond and Bailleul 2015). 

 

3.3 Results 

All ramets (N = 391; 326 leaf and 65 bark samples) sampled from the study plot were 

genotyped, and a total of 168 genets were detected. There was a low probability of obtaining a given 
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genotype (Pgen < 0.001) and obtaining repeated genotypes that originated from distinct sexual 

reproductive events by chance (Psex < 0.001); thus, it was assumed that errors were unlikely to occur 

in the identification of clones. The number of ramets in one genet ranged from one to 29 (Figs. S3.4a 

and b). Clones contributed 71% and 62% to abundance and total basal area, respectively, or 57% and 

31% when the largest ramet within a genet (presumed parent ramet) was excluded. The number of 

unique genets (i.e. a single-ramet genet) was 29% of all ramets sampled in the study plot, while 

multiple ramet genets with 2–4, 5–9, or 10 or more ramets were found to consist of 21%, 24%, and 

26% of all individuals, respectively. Similarly, the basal area of unique genets was 38%, while multiple 

ramet genets with 2–4, 5–9, or 10 or more ramets were found to make up 20%, 26%, and 16% of the 

sampled individuals, respectively. The clonal richness (R), Shannon evenness Index (V), Pareto index 

(β), and Aggregation index (Ac) were 0.43, 0.96, 0.76 (P < 0.001), and 0.38 (P < 0.001), respectively. 

The number of clonally reproduced ramets and the maximum stem diameter within one genet were 

positively correlated (Fig. 3.1).  

Spatial distribution maps of W. floribunda clones are shown in Figure 3.2. Clones ranged over 

a 180 m distance in the study plot. With the exception of the two largest genets, most of the clones did 

not spread over both sides of the slope, which was divided by a stream or valley landform (Fig. 3.2). 

The largest genet had a patch size of 0.47 ha (Figs. S3.4 and 3.2). The total area of a clone patch size 

for all W. floribunda clones detected in the study plot was approximately 1.1 ha or 18% of the plot.  

The composition of microscale landforms was significantly different between clonal and non-

clonal ramets in terms of abundance (F8  test; df = 5; P < 0.05) and basal area (F8  test; df = 5; P < 

0.001; Fig. 3.3). The non-clonal ramets were distributed to a greater extent on LS in both abundance 

and basal area than were trees and clonal-ramets in comparison to other landforms. These results 

indicate that the clonal reproduction of W. floribunda led to different distribution patterns over the 

micro-topography. 
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3.4 Discussion 

Genetic analysis of the W. floribunda population revealed that clonal reproduction makes a 

large contribution to abundance (71%) and basal area (62%) in this study plot. This contribution was 

57% and 31%, respectively, when the largest ramet within a genet was excluded, still indicating a 

significant contribution. To our knowledge, this is the first study to provide direct evidence for the 

clonal reproduction of a liana species in natural forest conditions using genetic tools with fine-scale 

sampling. Yorke et al. (2013) found that in old-growth tropical forests, long-distance clonal 

reproduction contributed 19% and 60% to abundance and basal area, respectively. Schnitzer et al. 

(2012) reported that clonal rooted stems contributed 43% to the total density and 23% to total basal 

area in a 50-ha plot on the Barro Colorado Island (BCI) in Panama. They also found a strong 

relationship between stem diameter and the number of rooted ramets that had apparent connections to 

other rooted ramets. A similar correlation was found in the present study, a positive correlation was 

observed between maximum DBH and the number of ramets within one genet (Fig. 3.1). This indicates 

that larger lianas could produce a large amount of clonal ramets above (i.e. apparent rooted clones) or 

below (i.e. stolons) ground. Overall, the high contribution of clonal reproduction to W. floribunda 

abundance and basal area is consistent with previous observational studies of lianas in tropical forests.  

I did not observe rooted clones of W. floribunda with apparent connections to each other in 

this study plot (Mori, personal observation); however, I did observe a substantial contribution of clonal 

reproduction to the abundance and basal area of W. floribunda in the present study. Our results indicate 

that genetic tools are useful in evaluating the clonal structure of liana populations in cases where 

physical connections between ramets are not entirely apparent (e.g. when they are connected below-

ground), and where the connections have been lost in the past. In fact, underground clonal reproduction 

could be fairly common among liana species. For example, Putz (1984) excavated small individuals 

(< 50 cm tall) of five common liana species on BCI and found that 15-90% of these plants were not 

true seedlings but clonal ramets connected by stolons or rhizomes. Thus, while previous studies have 

observed the considerable contributions of clonal reproduction to the dynamics of tropical liana 

communities (Schnitzer et al. 2012; Ledo and Schnitzer 2014), the magnitude of the contribution may 
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be even greater if unapparent (below-ground) connections between individuals are included. This 

possibility may be addressed in the future by means of genetic analyses.  

There was a slight intermingling of genets as indicated by the aggregation index of 0.38. The 

aggregation index of W. floribunda was comparable with those of other non-liana clonal woody plant 

species. For example, the Gondwanan conifer species Athrotaxis cupressoides, had aggregation index 

of 0.43 in average (Worth et al. 2016), while the aggregation index is reported to vary widely, both 

within species (0.1-0.79: A. curpressoides, Worth et al. 2016) and between species (0.03: Nothofagus 

pumilio, Mathiasen and Premoli 2013; 0.62: Populus nigra, Chenault et al. 2011). A slightly 

intermingled distribution pattern of genets was observed in the present study, while clonal patches of 

W. floribunda seemed to exhibit a lower degree of overlapping distribution (Fig. 3.2). This could be 

because many non-clonal ramets (i.e. single-ramet genet) were distributed within patches of large 

genets. These non-clonal ramets could have originated from sexual reproduction (i.e. germinated from 

seed) that was observed as one unique genet in the study plot by genetic analysis. Further observation 

on seed production and seedling distribution using both ecological and genetic approaches would 

provide important insight into the contribution of seed reproduction on liana distribution.  

It is also important to note that the wide variation in patch size and range of W. floribunda 

clones (Figs. 3.1 and 3.2) was consistent with other non-liana clonal plants. For example, clones of 

the deciduous tree species Padus ssiori formed a large 0.4 ha genet, but it also had many small and 

unique genets distributed within the same population (Mori et al. 2009). Wide variation in clone patch 

size was also reported in Fagus grandifolia (Kitamura et al. 2001) and in dwarf bamboo (Suyama et 

al. 2000). The heterogeneous clonal structure was also indicated by clonal diversity indices. The clonal 

richness (R = 0.43) and Pareto index (β = 0.76) were comparable to the average value of other clonal 

plants (R = 0.44; terrestrial and marine plant species: 3  = 0.60-1.49 as reviewed in Honey and 

Jacquemyn 2008; Ohsako 2010, Kudzu (Pueraria lobata): β = 0.03–1.47; Kartzinel et al. 2015), 

whereas the evenness (V = 0.96) was relatively higher in the liana I measured in comparison to that of 

other clonal plants (clonal plant average: V = 0.74; Honnay and Jacquemyn, 2008). Kartzinel et al. 

(2015) showed that the clonal structure of Kudzu (Pueraria lobata), which is a deciduous vine species 
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that grows along roadsides and in abandoned farmlands, forms both small and large patches of clones. 

Although clonal indices are an effective way to compare clonal abilities between species, information 

of clonal indices of lianas is currently lacking. Further studies are needed to accumulate clonal indices 

for a general understanding of the relative importance of the clonal reproduction of liana species and 

how they relate to non-liana clonal plant species. 

Clonal ramets were distributed more on the upper side of slopes (US) than the lower side of 

slopes (LS), whereas non-clonal ramets were distributed more on LS than US (Fig. 3.3). LS is the 

steepest slope of the landforms in our study plot and has the most intense amount of soil surface 

disturbance (Nagamatsu and Miura 1997). Consequently, non-liana trees in the study plot are more 

abundant on US than LS (Fig. 3.3) areas, in agreement with a previous study that  vegetation is often 

more developed on US and more scarce on LS (Nagamatsu and Miura 1997). The contrasting 

distribution pattern of these ramets was more evident in basal area than in density (Fig. 3.3). This 

indicates that non-clonal ramets on LS are relatively mature, as indicated by their large stem diameter 

size, number of ramets larger than 5 cm DBH for clonal ramets (US: 39, LS: 21) and non-clonal ramets 

(US: 16, LS: 20). Although larger ramets are able to produce more clonal ramets, clonal ramets were 

found more on the US than the LS. Thus, the differences in preferred landforms between clonal and 

non-clonal ramets may reflect limitations of clonal growth on the forest floor by stolons. In summary, 

lianas derived from seeds do not particularly prefer growing in LS; however, those established in LS 

rarely succeed in clonal reproduction, leading to an accumulation of large single-ramet plants in this 

area.� 

The two largest genets (0.47 and 0.19 ha) were found to range over both sides of the slopes, 

which were divided by a stream and valley landform (Fig. 3.2). These results indicate that these clones 

were somehow able to override these topographic barriers. One possible explanation could be 

“laddering”. By laddering host tree crowns to one another, lianas can expand their distribution despite 

the topographical limitations. When a tree carrying stem twiners fall, lianas will also be pulled down 

to the forest floor and re-root from the stem and/or produce stolons (Schnitzer et al. 2000, 2004; 

Gerwing 2004). In the present study site, I found stolons that had produced from the fallen stems of 
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W. floribunda (Mori, personal observation), while I did not observe any rooted ramet higher than 1.3m 

above-ground that had apparent connections to another rooted ramet, as previously mentioned. This 

could be because stolons can be easily buried in the ground, rendering the observation of ramets 

produced from fallen stems more difficult.�An alternative explanation could be the expansion of 

stolons over the streams and valleys; however, no stolons were observed to have crossed over or started 

to cross over the stream, despite the presence of stolons derived from mother ramets along the streams 

at the study site (Mori personal observation). Even if the stolons succeeded at crossing over the 

streams, ramets need to re-root to become independent from the mother ramet, making the probability 

that stolons can overcome topographic barriers minimal. The fact that the same clones were detected 

across streams and valleys implies that W. floribunda expanded its distribution clonally in two different 

layers of this forest, which were most likely the canopy and understory. 
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3.5 Figures

  

Fig. 3.1 Relationship between the maximum stem diameter and number of ramets in one genet.  
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Fig. 3.2 Clonal patch size of Wisteria floribunda genets. Symbol size represents the DBH of each 

ramet. Polygons indicate the clone patches that have three or more ramets in one genet. Solid lines 

indicate clones that have two ramets in one genet. The different genets with three or more ramets are 

represented by closed symbols using combinations of different patterns and shapes, while those with 

one or two ramets are represented as open circles with a grey outline. Contour is presented in two 

meters. Numerals on contour lines indicate the altitude (m).  
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Fig. 3.3 Habitat composition of microscale landforms of the (a) abundance and (b) basal area of trees, 

clonal and non-clonal ramets. Clonal and non-clonal ramets represent genets with two or more ramets 

and genets with one ramet, respectively. The robustness of habitat composition for clonal and non-

clonal ramets was tested by generating datasets that excluded one genet from all combinations. Error 

bars represent a 95% confidence interval for the generated datasets. Abbreviations of landforms are as 

follows: CS, crest slope; HH, head hollow; US, upper side slope; LS, lower side slope; FT, flood 

terrace; RB, river bed.  
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3.6 Appendix 

 

Figure S3.1: Spatial distribution map of Wisteria floribunda genets and landforms. Genets are 

represented the same as in Fig. 3.3. For abbreviations of landforms, see Fig. 3.3.   
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Figure S3.2: Photograph of Wisteria floribunda ramets and stolons in the study plot.  
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Figure S3.3: Genotype accumulation curve. The top and bottom of each closed box represents the 

maximum and minimum number of multilocus genotypes (MLGs) observed with the number of given 

loci (from 1-10), respectively. The horizontal line in the box indicates the mean number of observed 

MLGs. 
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Figure S3.4: Histogram of (a) the number of ramets per genet and (b) clonal patch size.  
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Table S3.1: Number of multilocus linages (MLLs) and clonal diversity indices with changing 

thresholds of genetic distance. 

 

Threshold No. MLLs Clonal richness Simpson's evenness index Pareto index 

0 168 0.43 0.96 0.76 

1 168 0.43 0.96 0.76 

2 165 0.42 0.96 0.76 

3 165 0.42 0.96 0.76 

4 163 0.42 0.96 0.74 

5 163 0.42 0.96 0.74 
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Chapter 7 General discussion 

7.1 Overview of the role of clonal reproduction on the distribution of liana species in a temperate 

forest 

Ecology of lianas has become an area of increasing research interests in the past three decades 

due to the substantial role of lianas on forest ecological functions (i.e. forest dynamics) (Schnitzer and 

Bongers 2002, Schnitzer et al. 2015). However, fundamental ecological knowledge (e.g. life history, 

distribution patterns, community structure) of lianas is relatively lacking compared to trees. This 

tendency is far greater in temperate regions since most of the ecological studies of lianas had been 

carried out in tropics due to the high diversity of lianas in tropical forests (Schnitzer and Bongers 

2002). 

Liana community of Ogawa Forest Reserve was characterized by a deciduous stem twiner W. 

floribunda (Chapter 2); this species accounted for 85% and 57% of the total basal area and abundance, 

respectively. Root climbers (E. fortunei, S. hydrangeoides, R. ambigua, H. petiolaris) were also high 

in abundance. Distribution of liana species in ramet-level were mainly affected by host tree 

characteristics and past disturbances, while microsite characteristic was less influential. 

Liana species often produce clonal stems (stolons) on the forest floor for clonal growth, 

however, the role of clonal reproduction as a life history strategy and its contribution to the distribution 

patterns remained unexplored (Chapter 1). The results of the genetic analyses on W. floribunda 

revealed that clonal reproduction contributed greatly on forming a population, which was indicated by 

large proportion of clonal ramets (71%) to the total abundance of ramets (Chapter 3). Furthermore, 

clonal reproduction played an important role in characterizing distribution patterns over different 

micro-topography; clonally reproduced ramets were less frequently distributed in lower part of the 

slope (characterized by steep slopes) while non-clonal ramets (presumed to be derived from seed 

reproduction) were often found in steeper slopes. This probably reflects the sensitivity of clonal growth 

via stolons to the ground surface conditions. It is also important to note that the significant effect of 

micro-scale topography was not found for the ramet-level distribution of W. floribunda (Chapter 2), 

which indicates the necessity and effectiveness of applying genetic tools on liana ecological studies. 
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In conclusion, clonal reproduction of W. floribunda played a significant role in formation of a 

population and distribution patterns in a temperate forest. 

Clonal reproduction of lianas is considered as an important life history strategy for the rapid 

response to canopy gap disturbances (Chapter 1). However, there were no significant positive effect 

of canopy gap disturbances to the magnitude of clonal reproduction of Wisteria floribunda indicated 

by the maximum width of the clonal patches (Chapter 4). Moreover, individuals with small clonal 

patch width, which is mostly composed with non-clonal ramets, were positively correlated with 

canopy gap disturbances occurred in approximately 25 years ago. This indicates that canopy gap 

disturbances could be important for individuals that derived from seed reproduction to establish. 

Interestingly, these results did not support the mechanism—lianas respond to canopy gap disturbances 

with clonal reproduction—which has been reported in tropical forests. This could be due to the 

difference in types and strategies of clonal reproduction of lianas reported in temperate and tropical 

forests; like other clonal plants in the understory, clonal reproduction of W. floribunda could be 

enhanced under unfavourable environments (i.e. dark light conditions in closed canopy) where 

regeneration via seed reproduction is not likely to be accomplished. On the other hand, clonal 

reproduction of lianas reported in tropical forests might be similar to re-sprouting in tree species, which 

is a strategy for the rapid response (recovery) after disturbance. Therefore, it may be important to 

distinguish and pay careful attention to what type of life history of liana species is in consideration 

because lianas exhibit various shapes and complex growth forms. 

Precise evaluation of the contribution of seed reproduction to the distribution patterns of 

lianas is still limited in ability even using genetic approach. This is because information of ramets in 

the past is not available in most cases. Because post-dispersed seed to seedling stage shows the most 

dramatic response to the surrounding environment, investigation of current-seedlings can provide 

important information regarding to the role of seed reproduction to the distribution patterns. 

Continuous investigation of current-year seedlings of W. floribunda revealed that seedlings had higher 

survival rate in places where canopy openness is higher (Chapter 5).  This was consistent with the 

findings based on genetic analysis (Chapter 4). These results indicate the necessity of light 
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environment for establishment via seed reproduction. Interestingly, current-year seedlings showed 

higher survival rate compared to other co-occurring tree species, which indicates that seedlings of W. 

floribunda are more shade-tolerant than tree species (Chapter 5). The high shade-tolerance allow 

seedlings to perform “sit and wait” strategy—the strategy to persist in the understory until canopy 

opens—which is reported for an invasive liana species (Celastrus orbiclatus) in North America 

(Greenberg et al. 2001). Further investigation on current-year seedlings of multiple liana species would 

provide comprehensive understandings on high shade-tolerance of seedlings of liana species in the 

understory (“sit and wait” strategy). 

The contribution of clonal reproduction to three root climbing liana species (Schizophragma 

hydrangeoides, Euonymus fortunei, Rhus ambigua) was smaller compared to that of W. floribunda 

(Chapter 6). Similar tendency was also observed with clonal ramets on the forest floor for three liana 

species (W. floribunda, S. hydrangeoides, E. fortunei) (Chapter 7). These findings suggest that W. 

floribunda (a stem twiner) have greater clonal ability than root climbers. It is important to note that 

proportion of clonally reproduced ramets were larger on the forest floor compared to ramets that 

climbed trees. This indicates that a limited part of clonal ramets in the understory successfully climbed 

trees. Overall, the contribution of clonal reproduction was largest in W. floribunda, intermediate in S. 

hydrangeoides, and smallest in E. fortunei. The magnitude of clonal reproduction could be related to 

the shade-tolerance of three liana species. Species with high shade-tolerance such as E. fortunei (root 

climber, ever-green species) may allow this species to climb up to the tree canopy be via high ability 

to cope with dark light conditions in the understory (Chapter 2), which might result the clonal growth 

being less important compared to W. floribunda (stem twiner, deciduous species). Interestingly, this 

mechanism could be consistent to the findings of Kudzu (Pueraria lobata), a deciduous vine species 

that grows along roadsides and in abandoned farmlands (Kartzinel et al. 2015). Kudzu is an invasive 

species in North America and often controlled via mowing, which is large and intense disturbance. 

Kartzinel et al. (2015) reported that intense and frequent mowing enhanced genotypic diversity of 

Kudzu, which means that disturbance allowed Kudzu to establish via seed reproduction. Similar 

findings are also reported in non-liana tree species, such as Salix exigua (Douhovnikoff et al. 2005) 
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and Populus tremuloides (Shepperd et al. 2001) (see Chapter 4). Furthermore, understory herbaceous 

plants reproduce clonally when seed reproduction cannot be accomplished (reviewed in Lezberg et al. 

2001). Thus, liana species might also reproduce clonally when seed reproduction cannot be 

accomplished such as in shaded understory, which depends on the magnitude of the shade-intolerance 

of liana species. The role of clonal reproduction of lianas as a life history strategy could be similar to 

that of other clonal plants that reproduce clonally in the understory via stolons or rhizomes. 

 

7.2 Comparison of the role of disturbance and clonal reproduction on the distribution of lianas 

between temperate forests and tropical forests 

As mentioned earlier, the magnitude of the clonal reproduction of temperate liana species was 

comparable to that of lianas in tropical forests reported in the previous studies (Schnitzer et al. 2012). 

However, it is also important to highlight that there were some remarkable differences between 

temperate and tropical forests in terms of the role of clonal reproduction on life history of lianas. In 

the present series of studies, clonally reproduced individuals were not found based on the above-

ground observation (chapters 3 and 6), while tropical lianas were found to reproduce clonally with 

apparent above-ground connections to each other (Schnitzer et al. 2012). This contrasting result 

indicates that unapparent clonal reproduction (in below-ground via stolons or rhizomes) is relatively 

more important for liana species in temperate forests than tropical forests. The response to the canopy 

gaps via clonal reproduction was also different between temperate and tropical lianas. Canopy gaps 

had no significant impact on the distribution nor the magnitude of clonal reproduction of temperate 

liana species, but rather, seed reproduction seemed to require canopy gaps to establish (chapters 3, 4 

and 5), while tropical lianas are reported to respond to canopy gaps with clonal reproduction (Ledo 

and Schnitzer 2014). These differences could be explained by the different strategies of clonal 

reproduction for temperate and tropical lianas as mentioned earlier. Future study of clonality on species 

that belongs to the same family (i.e. Fabaceae) are needed to examine above hypothesis since 

phylogenetic bias could be also important. In summary, clonal reproduction seemed to play contrasting 

role on distribution patterns for liana species in temperate and tropical forests. 
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Disturbance dependency is often considered as an important mechanism for survival and 

growth of liana species in forests, which had been shown in number of previous studies (reviewed in 

Paul and Yavitt 2011; Letcher 2015). Lianas in tropical forests are highly adaptive to small-scale 

disturbances such as canopy gaps, which maintains species diversity of lianas (Schnitzer et al. 2012). 

Small-scale disturbance also contributes to the formation of the distribution of lianas with rapid 

response via clonal growth (Ledo and Schnitzer 2014), inhibits the establishment of shade-tolerant 

tree species (Schnitzer and Bongers 2002; Schnitzer and Carson 2010), and reduces the forest carbon 

gain in tropical forests (Schnitzer and Bongers 2011; Schnitzer et al. 2014). Conversely, light 

environment gradient caused by naturally occurred gaps in temperate forests often have little impact 

on liana abundance and distribution (Gianoli et al. 2010; 2012; Chapter 4), although the relations 

between canopy gaps and liana distribution in temperate forests are much less explored than tropics. 

On the other hand, large-scale disturbances such as clear cutting tend to have smaller or similar effect 

on stem density, biomass, and species richness of lianas when compared to that of trees, which had 

been shown in previous studies of post-agricultural secondary forests in temperate and tropical regions 

(Dewalt et al. 2000; Ladwig and Meiners 2010b; Letcher and Chazdon 2012). These results are not 

surprising because lianas are structural parasites, which potentially allow trees to be higher in density 

and larger in biomass than lianas in forests. However, because lianas have high host tree preferences 

(Chapters 2 and 4) with negative impact on trees (Ladwig and Meiners 2015), forest structure altered 

via large-scale disturbances could substantially contribute to the liana community structure and 

distribution patterns of lianas in both temperate and tropical forests (Chapter 2). Furthermore, lianas 

may alter tree community dynamics after large-scale disturbance with rapid growth and colonization, 

resulting an arrested succession (Tymen et al. 2016). In summary, most liana species are indeed 

adaptive to disturbances because 1) disturbance enhances establishment of liana seedlings that 

emerged from seeds and 2) disturbance allows rapid growth of lianas that climb trees. Thus, clonal 

growth of liana species in terms of re-sprouting may facilitate colonization to gaps due to the rapid 

growth of lateral shoots under plentiful of light environment. On the other hand, clonal growth with 

stolons or rhizomes is a common strategy to survive and persist in the dark light conditions under the 
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forest canopy. Thus, clonal reproduction of lianas with stolons or rhizomes are unlikely to be adaptive 

to canopy gap disturbances. 

 

7.3 Applications and future directions 

Because lianas are highly influential to host trees by negatively affecting tree growth and 

survival, fundamental ecological understanding of lianas could be used for the implications for forest 

management and conservation. Lianas are often problematic in forest management (e.g. timber 

production) because lianas often reduce tree growth and survival. Forest managers are required to 

conduct liana cutting to protect trees from lianas. As shown in the present study, lianas have an ability 

to grow horizontally via clonal growth in both understory and forest canopy (Chapter 3); thus, 

considering the magnitude of clonal reproduction of liana species could be significantly important for 

the effective management of forests. For example, it may be effective to cut not only lianas that are 

distributed inside the forest under management but also lianas that are distributed in surrounding area. 

Cutting stolons on the forest floor or in the below-ground could also be another effective way to 

suppress small clonal ramets that require physical connection to survive. Further study of effectiveness 

of the liana cutting and supressing clonal growth is necessary for the examination of the above 

hypothesis. On the other hand, lianas might act as an important component in forest conservation; 

lianas could induce canopy gaps through negative impact on host trees with enlarged tree mortality, 

and promote heterogeneity from darker to brighter light condition across the closed forest canopy. 

Consequently, lianas might act as a potential deriver for the higher species diversity in mature forests. 

One concern of this hypothesis is that lianas might colonize and predominate in the canopy gaps by 

covering the hole vegetation which is often reported in tropical forests (Schnitzer and Bongers 2011).  

However, because temperate liana species are less likely to colonize to canopy gaps via clonal 

reproduction (Chapter 4), induced canopy gaps in temperate forests may allow shade-intolerant species 

to establish. Both negative and positive roles of lianas in forests should be explored because 

fundamental ecological understanding is currently lacking, which necessitates the further ecological 

studies on lianas in order to facilitate the basic knowledge of lianas and their role in forest dynamics 
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which is essential for the application in forest management and conservation. For example, long-term 

ecological studies based on repeated observations on liana community would provide important 

insights into the evaluation of the role of lianas in forest dynamics because long-term dataset of liana 

and tree community are needed for the evaluation of the effect of lianas on gap dynamics and impact 

on tree community. Evaluation of the contribution of seed reproduction of lianas is also important for 

understanding life history strategy of liana species. Further studies using genetic tools will provide 

valuable insights into seed dispersal and pollen dispersal. Genetic tools are getting effective and 

powerful more than ever due to the rapid evolution of next-generation sequencing (NGS); thus, 

ecological studies with genetic approach could be a breakthrough for answering various research 

questions that remained unsolved in this study. 
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