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1.1 Introduction 

Leaves are the major plant organs whose primary function involves photosynthesis. Leaves 

play a major role in sensing the quality, quantity and duration of light, all of which are crucial 

for complete plant growth and development. Understanding leaf initiation and development are 

important subjects in plant biology. Many aspects of leaf development have been well 

documented due to their importance and intriguing characteristics (Kalve at al., 2014).  

Formation and development of a normal leaf is a complex process that involves several 

stages including the initiation and differentiation of leaf primordia, the specification of leaf 

identity and polarity, the balanced cell division and expansion, as well as vascular formation 

and spesification (Yu et al., 2005; Liu et al., 2011). These processes are influenced by a 

combination of several factors, such as hormones, transcriptional and post-transcriptional 

regulators and the morphological properties of the tissue (Bar and Ori, 2014). Leaf initiation 

and development are also sensitive to genetic and environmental factors. In most 

dicotyledonous plants, leaf primordia are formed from proliferative and undifferentiated cells 

in the shoot apical meristem (SAM) (Blein at al., 2013; Floyd and Bowman, 2010). The rates 

of cell division and elongation at each stage are known to govern the final shape of the plant 

and throughout the leaf developmental process. Following leaf initiation, three axes are 

established, proximo-distal, medio-lateral, and dorso-ventral (reviewed by Bar and Ori, 2014).  

Most leaves are dorsoventrally (upper to bottom) flattened and develop distinct upper 

(adaxial) and lower (abaxial) surfaces. Balanced coordination of polarity, auxin response, and 

cell division is essential for formation of normal and flat leaves development. Any imbalance 

of these coordination results in altered leaf shapes such as curly, crinkly, twisted, rolled, radial, 

or shrunken leaves (Yu et al., 2005; Liu et al., 2010; Liu et al., 2011; Serrano-Cartagene et al., 

2000). The formation of flat leaves enables the optimum capture of sunlight during 

photosynthesis.  
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In recent decades, extensive studies have been carried out in several model species to 

dissect the complex mechanism of leaf initiation, growth, and development. Several genes and 

transcription factors (TFs) controlling leaf adaxial and abaxial fates have been characterized. 

Adaxial and abaxial fates are specified and regulated by the antagonistic interaction of several 

transcription factors. Six families of TFs have been reported to control adaxial-abaxial polarity 

in the model plant Arabidopsis thaliana; class III homeodomain-leucine zipper (HD-ZIP), 

ASYMMETRIC LEAVES (AS), KANADI (KAN), AUXIN RESPONSE FACTOR (ARF), 

FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3) (reviewed in Nakata and Okada, 

2013). Adaxial and abaxial fates are specified and regulated by the antagonistic interaction of 

these TFs. In addition to these TFs, micro RNAs (miRNAs) are also known to regulate abaxial-

adaxial leaf polarity through post-transcriptional gene expression (Han et al., 2004).  

Another important factor in controlling leaf morphogenesis is the phytohormone auxin. 

indole-3-acetic acid (IAA) is the natural form of auxin that controls various aspects plant 

growth and development, including cell division, expansion and differentiation, leaf initiation, 

and morphogenesis. One of the unique and intriguing features of auxin is its transport (Paciorek 

et al., 2005; Tromas and Perrot-Rechenmann, 2010). It is known that auxin is synthesized in 

young leaves and in the shoot apex and is transported basipetally to all plant organs (reviewed 

in Bennet et al., 1998; Tromas and Perrot-Rechenmann, 2010). Auxin transport involves two 

patterns: long-distance transport through phloem and short-distance or cell-to-cell transport 

called polar auxin transport (PAT). At the cellular level, IAA is distributed through a 

combination of membrane diffusion (passive uptake), carrier-mediated uptake or proton-driven 

distribution (Delbarre et al., 1996). PAT contributes to 85% of short-distance auxin transport. 

It is well established that polar auxin localization controls the direction of auxin movement in 

whole-plant organs. 

Several auxin carriers have been identified, including AUX1/LAX (LAX: like AUX1), PIN 
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and PGP/MDR-like proteins. AUX1/LAX is reported to be an auxin influx carrier that 

facilitates auxin movement from outside the cell to inside the cell, while PIN is an efflux carrier 

that pumps auxin from the cell into the intercellular space. PGP/MDR-like proteins are reported 

to have the ability to be either influx or efflux carriers (Yang and Murphy, 2009), but the 

contribution of these proteins is considerably small compared to that of the AUX1/LAX and 

PIN families (Kramer and Bennet, 2006; reviewed in Swarup and Peret, 2012). 

There are numerous studies highlighting the effects of mutations in AUX/LAX gene family 

in the model plant Arabidopsis. However, most studies have focused on root phenotypes. For 

instance, the AUX1/LAX family has been reported to promote lateral root emergence and 

formation (Marchant et al., 2002; Swarup et al., 2008; reviewed in Peret et al., 2009), root 

gravitropism (Bennet et al., 1996; Marchant et al., 1999), and root-pathogen interactions (Lee 

et al., 2011). Recently, AUX1 function in the aerial parts of plants has received interest, but 

studies are still considerably scarce. In Arabidopsis, AUX1 has been reported to control 

phyllotaxis patterning (Bainbridge et al., 2008), vascular patterning, xylem differentiation 

(Fabregas et al., 2015), and leaf serration (Kasprzewska et al., 2015). Additionally, although 

PAT is governed and maintained by the coordinated action of AUX1/LAX and PIN carrier 

proteins, among auxin carriers, PIN1 is the most studied. The role of the PIN protein family in 

leaf morphogenesis is well documented, yet the role of AUX1/LAX remains neglected or is 

underestimated. Furthermore, almost all studies have been carried out in the model plant 

Arabidopsis, while the role of auxin influx carriers in other model plants such as tomato is 

poorly understood. 

Our research group has developed a mutant tomato population of the ‘Micro-Tom’ cultivar 

generated by γ-ray irradiation and ethyl methanesulfonate (EMS) treatment (Saito et al., 2011). 

We isolated six lines of curly leaf (curl) mutants from the ‘Micro-Tom’ mutant population as 

previously described (Saito et al., 2011; Shikata et al., 2016). The curl mutants showed 
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dorsoventrally impaired leaf flatness, which exhibited severe upward bending on the 

transverse axis. Forward genetics is an approach of determining the responsible gene for a 

phenotype. Several forward genetics strategies based on WGS have been reported in the model 

plant species Arabidopsis and rice (reviewed in Schneeberger et al., 2009). Next-generation 

mapping and MutMap methods (Austin et al., 2011; Abe et al., 2012) used similar approach 

(reviewed in Garcia et al., 2016).  

To date, several publicly available DNA marker databases have led to map-based cloning 

strategies using PCR-based markers combined with next-generation sequencing (NGS) 

technology, dramatically reducing the time and cost of causal gene identification in mutants as 

well as improving the efficiency of the identification process (Ariizumi et al., 2014; Garcia et 

al., 2016). NGS has emerged as a powerful tool to detect numerous sequence variant within 

shorter time. In tomato, several years ago, a high-quality genome sequence has been publicly 

available for the cultivar ’Heinz 1706’ (Tomato Genome Consortium, 2012). More recently, 

the miniature cultivar ‘Micro-Tom’ has also been sequenced (Kobayashi et al., 2014). This 

effort has made utilizing NGS approach to investigate responsible gene largely possible. 

Exome sequence is a NGS method that target only small region in genome, which only target 

in the protein coding. The amount of data produced by whole-exome sequence (WES) much 

more manageable compared to WGS (reviewed in Warr et al., 2015). Recently, NGS strategy 

using WES has been proven to accelerate forward genetics in several plant species (Mascher 

et al., 2014; King et al., 2015; reviewed by Hashmi et al., 2015). In addition, the use of exome 

sequences has also been proven to be a significant tool for accelerating breeding programs. 

These advantages have made WES a promising approach for investigating the genes 

responsible for controlling mutant phenotypes. Therefore, in this study, I used the WES to 

investigate the responsible gene for the loss-of-function of mutant that preceded by map-based 

cloning approach. 
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By contrast, reverse genetics is the approach that starts from known a protein or DNA and 

then works backward to make a mutant gene, ending up with a mutant phenotype. Targeting- 

Induced Local Lesions IN Genomes (TILLING) has been established as a reverse genetic 

approach for mutant screening generated by point mutation like EMS. This method was 

initially reported in Arabidopsis (McCallum et al., 2000a, 000b), as a high- throughput reverse 

genetics tool for screening mutants. The TILLING technology has several advantages over 

other reverse genetic strategies. For example, with allelic series screening of mutants with 

known gene of interest, we could find unbiased by phenotype selection, in the loss-of-function 

and partial loss-of-function of mutants. And it is possible to screen novel function of alleles 

that often provide more valuable information (reviewed in Stemple et al., 2004). Our research 

group has successfully developed TILLING platform in tomato ‘Micro-Tom’ cultivar (Okabe 

et al., 2011), and the same author has also reported that the TILLING platform provides an 

opportunity to isolate novel mutant alleles for functional genomic studies and breeding (Okabe 

et al., 2012). Therefore, in this study, beside applying forward genetics approach to investigate 

the responsible gene for the curly leaf mutant phenotype, I applied TILLING as a reverse 

genetics approach to screen another nonsense mutation and to validate the phenotype 

consistency. 

In this study, through map-based cloning combined with WES, I characterized several 

alleles of the curly leaf mutants, which have nonsense mutation in the SlLAX1 gene. I reported 

that the SlLAX1 gene, potential as an auxin influx carrier, controls leaf flatness in tomato. This 

feature has never been characterized in any plant species. The characterization of several alleles 

of single curl mutants in this study sheds light on the pivotal role of SlLAX1 in controlling leaf 

flatness mediated by normal adaxial-abaxial cell expansion. I also combined forward and 

reverse genetic approaches to validate the candidate gene. Using TILLING technology, I 

screened another nonsense mutant allele that consistently shows an indistinguishable curly leaf 
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phenotype with that of the curl mutants obtained by a forward genetic approach. 

 

1.2 Objective of this study 

The objectives of this study are (1) to investigate the responsible gene controlling the curly 

leaf (curl) mutant phenotype (2) to characterize the morphology and genetic features of the 

curl mutants (3) to characterize the role of the responsible gene in leaf morphogenesis. 
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2.1. Introduction  

Tomato (Solanum lycopersicum L.) is an economically important crop in both tropical and 

in temperate regions. It is widely cultivated in almost all countries and it is used for both as 

fresh consumption and as raw material for processing industries. Tomato belongs to Solanaceae 

family that contains a large number of important crops consumed by human beings. It is 

considered as one of the main sources of nutrition to support our health. In fact, tomatoes 

contain a lot of nutrition, minerals and vitamins, recognized as important functional compounds 

such as lycopene, one of the bright red carotenoids, serving as antioxidant agent that contribute 

to human diet (Passam et al., 2007). Besides that, tomatoes are also known as a good source of 

folic acid, potassium, vitamin A and C (Davies and Hobson, 1981). Due to its potential health 

benefit, tomato has received much interest in recent years. 

Furthermore, tomato has been selected as an excellent model plant for genomic studies in 

the Solanaceae family, particularly as the most important model system for fleshy fruit 

development, vegetative development as well as a model for climacteric fruit (Giovannoni, 

2004). Additionally, in 2012, the tomato genome sequence has also been published (Tomato 

Genome Consortium, 2012). This effort can be valued as a significant achievement for 

accelerating tomato research both in basic and in applied researches as well as for breeding 

program. Among tomato cultivars, ‘Micro-Tom’ is widely used as research material due to its 

excellent characteristics such as rapid life cycle, suitable for indoor cultivation, and easy to 

transform (Meissner et al., 1997; Emmanuel and Levy, 2002; Marti et al., 2006). In recent 

decades, various aspects in tomato researches including physiology, biotic and abiotic stress 

response, genetic and molecular biology have been established.  

One of important factor in biological research to know gene function is mutagenesis. 

Physical and chemical mutagens are often used to induce genetic variation in genome. For 

instance, using EMS and fast-neutron mutagenesis, Menda et al., (2004) had developed tomato 
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mutant population which were generated from ‘M82’ cultivar background. And more recently, 

using EMS treatment Gady et al., 2009 and Minoia et al., 2010 had developed new mutant 

population derived from cv. Red Setter and cv. TPAADASU background. In ‘Micro-Tom’ 

background, several mutant collections generated from various either physical or chemical 

mutagen sources have also been reported (Meissner et al., 1997; Meissner et al., 2000; Mathews 

et al., 2003). 

Our research group has developed a mutant tomato population of the ‘Micro-Tom’ cultivar 

generated by γ-ray irradiation and EMS treatment (Saito et al., 2011). I isolated six lines of 

curly leaf (curl) mutants from the ‘Micro-Tom’ mutant population as previously described 

(Saito et al., 2011; Shikata et al., 2016). The curl mutants showed dorsoventrally impaired 

leaf flatness, which exhibited severe upward bending on the transverse axis/ hyponastic leaf. 

Forward genetic approach through the isolation of gain-of-function or loss-of-function mutants 

has accelerated our understanding of some biological processes and facilitated both 

investigations of genes responsible for phenotypes of interest and investigations of gene 

function. To date, several publicly available DNA marker databases have led to map-based 

cloning strategies using PCR-based markers combined with NGS technology, dramatically 

reducing the time and cost of causal gene identification in mutants as well as improving the 

efficiency of the identification process (Ariizumi et al., 2014; Garcia et al., 2016). Recently, 

NGS strategy using whole-exome sequence WES has been proven to accelerate forward 

genetics in several plant species (Mascher et al., 2014; King et al., 2015; reviewed by Hashmi 

et al., 2015). In addition, the use of exome sequences has also been proven to be a significant 

tool for accelerating breeding programs. Moreover, the use of exome sequences is also more 

affordable compared to the use of whole-genome sequences. These advantages have made 

WES a promising approach for investigating the genes responsible for controlling mutant 

phenotypes.  
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In this chapter, I conducted map-based cloning combined with the WES to investigate the 

responsible gene controlling the curl mutant phenotype. Then, the mutation was also confirmed 

by direct sequencing method. Furthermore, to check the phenotype consistency, using 

TILLING technology as a reverse genetic approach, I screened a new mutant allele which 

carried a nonsense mutation in the SlLAX1 gene. This new mutant allele was then grown and 

the sequence was checked by direct sequencing.  
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2.2 Material and Methods 

2.2.1 Plant Materials  

Tomato (Solanum lycopersicum cv. Micro-Tom) curly leaf (curl) mutants were generated 

by EMS (ethyl methanesulfonate) and γ-ray irradiation. The mutants were obtained from the 

National BioResources (NBRP) Project at the University of Tsukuba (Saito et al., 2011; Shikata 

et al., 2016). The NBRP accession numbers are listed in the Table 2.1. From the M3 

mutagenized population, I isolated six lines of the curly leaf phenotype mutants, herein referred 

to as ‘curl’ mutants. The mutant screening was carried out visually using mature plants showing 

severe curly leaf phenotypes. Five mutant alleles, curl 1-5, were generated by γ-ray irradiation, 

and one mutant allele, curl-6, was generated by EMS mutagenesis. Furthermore, using 

TILLING methodology, I screened another EMS mutant, curl-7. These mutants were registered 

in the TOMATOMA mutant database (Saito et al., 2011, http://tomatoma.nbrp.jp/). Unless 

otherwise stated, further analyses of the curl mutants were conducted after two backcrosses to 

the WT ‘Micro-Tom’ to remove any possible background mutation following the mutagenesis 

treatment.  

2.2.2 Growth Condition 

Plants were grown both in a cultivation room and a greenhouse facility of Gene Research 

Center, University of Tsukuba. In the cultivation room, light was supplied for 16 h. Air 

temperature was set at 25 ºC. The plants were watered once a day with commercial nutrient 

solution (Otsuka number 1 and 2, Otsuka Chemical Co. Ltd., Osaka, Japan). For seed 

germination, seeds of WT ‘Micro-Tom’ and the curl mutants were sown on wet filter paper to 

stimulate germination. Approximately seven days after sowing, seedlings were transplanted 

into a rock wool (5 cm3) pot. The rock wool pots were covered by aluminum foil to prevent 

fungal attack. 

 

http://tomatoma.nbrp.jp/
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2.2.3 Segregation analysis and allelism test 

To perform the segregation analysis, each mutant line was backcrossed to the wild-type 

(WT) ‘Micro-Tom,’ and the F1 hybrids were self-pollinated to obtain an F2 population. Then, 

the ratio between mutant and WT phenotype was recorded. The mutants were also crossed to 

another tomato cultivar ‘Ailsa Craig’. 

The allelism test was carried out by crossing all possible pairs of mutants to check for the 

presence of the curly leaf phenotype in the F1 generation. Reciprocal crossings were also 

performed.  

2.2.4 Genomic DNA Extraction  

Genomic DNA was extracted from 2-month-old plants. A maximum of 300 mg of fresh leaf 

sample was frozen in liquid nitrogen and immediately ground using a TissueLyser (Qiagen, 

Germany). Genomic DNA was extracted using a Maxwell 16 Tissue DNA Purification Kit 

(Promega, Madison, USA). DNA concentration was measured by a spectrophotometer 

(NanoDrop 2000c, Thermo Scientific). 

2.2.5 Construction of mapping population, DNA marker using SNP, CAPS and dCAPS.  

To perform rough mapping using DNA markers, curl-2 was crossed to another tomato cultivar, 

‘Ailsa Craig’, to obtain a mapping population. From approximately 100 plants of the F2 mapping 

population, 19 plants exhibiting the curly mutant phenotype were isolated, and genomic DNA was 

extracted from the leaves of the individual plants. These plants were subjected to rough mapping 

experiments. The PCR mix solution and PCR program are described in the table 2.2, 2.3, 2.4, and 

2.5, respectively. All SNP, CAPS and dCAPS DNA markers were designed according to the 

AMF2 (F2: S. lycopersicum ‘Ailsa Craig’ x  S. lycopersicum ‘Micro-Tom’) linkage map 

information that publicly available from the Kazusa DNA Research Institute (KDRI) webpage 

(http://marker.kazusa.or.jp/Tomato/, Shirasawa et al., 2010). The primers used for PCR are 

described in Table 2.6.  

https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjVzMLr0bfUAhWBurwKHY2-BzwQFggvMAA&url=https%3A%2F%2Fwww.promega.jp%2Fproducts%2Fdna-purification-quantitation%2Fgenomic-dna-purification%2Fmaxwell-16-tissue-dna-purification-kit%2F&usg=AFQjCNErbNAqy1J-715JEZhmHf_MEVLq2w&sig2=qA9fgwbJnRQ6EmZfsYaTQw
https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjVzMLr0bfUAhWBurwKHY2-BzwQFggvMAA&url=https%3A%2F%2Fwww.promega.jp%2Fproducts%2Fdna-purification-quantitation%2Fgenomic-dna-purification%2Fmaxwell-16-tissue-dna-purification-kit%2F&usg=AFQjCNErbNAqy1J-715JEZhmHf_MEVLq2w&sig2=qA9fgwbJnRQ6EmZfsYaTQw
http://marker.kazusa.or.jp/Tomato/
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Thermal cycling to amplify CAPS and SNP DNA markers was conducted using a 3-step 

cycle as follows: pre-denaturation at 95 °C for 2 min, denaturation at 95 °C for 25 sec, annealing 

at 55-58 °C for 45 sec, 30-35 extension cycles at 72 °C for 30 sec, and final extension at 72 °C 

for 5 min. After PCR amplification, 7.5 µl of PCR product, 2 µl of buffer, and 0.15 µl of 

restriction enzyme (New England Biolabs: Toyobo; Nippon Gene or Takara, Japan) were used 

for the enzymatic reaction. This reaction was incubated at 37 °C or 60 °C for at least six hours. 

The primers and enzymes used are described in Table 2.6. After performing the enzymatic 

reaction, a 3-5 µl solution was used for electrophoresis. Electrophoresis was performed using 

1x TAE buffer at 100 V for 20-30 min. Electrophoresis was conducted using 2-3% agarose gel 

and 1 µl of SYBR Safe DNA Gel Stain (Invitrogen, USA) per 100 ml of TAE buffer. 

Subsequently, after conducting electrophoresis, the agarose gel was placed in an ethidium 

bromide (EtBr) solution for 10-15 min, after which the banding pattern was checked using a 

UV transilluminator. 

2.2.6 Exome sequence and variant identification 

WES was performed to narrow down the candidate genes. Four alleles, curl-1, curl-2, curl-

3, and curl-6, of the curl mutants of the F2 mutant population that was backcrossed to the WT 

were used. The mutants and WT phenotypes were selected in the F2 population based on the 

presence or absence of curly leaves among approximately 100 F2 plants for each line, after 

which their DNA samples were bulked based on phenotype. Exome sequence analysis was then 

performed based on the Roche exome sequence SeqCap® EZ SR protocol 

(http://sequencing.roche.com/). Briefly, genomic DNA was treated with a Covaris® S220 

Ultrasonicator (Covaris, Massachusetts, USA) to achieve an average length of 200 bp. Then, a 

multiplex NGS library was constructed using a KAPA® Library Preparation Kit and SeqCap® 

adapter kit (Roche, Basel, Switzerland). After constructing the NGS library, exome capture was 

conducted using a custom probe set that was designed based on the tomato genome reference 

http://sequencing.roche.com/
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version SL2.40 (supporting dataset, Sol Genomics Network, https://solgenomics.net). This 

probe set was designed to capture 49.5 Mb of exonic DNA regions (supplementary data S1). 

The resultant exome library was amplified by 14 cycles of post-capture ligation-mediated PCR 

with KAPA HiFi HostStart ReadyMix (Roche) and then subjected to Illumina HiSeq-2000 

sequencing set to the 100-bp paired-end mode. Paired-end short read data were subjected to 

quality filtering using FASTXToolkit with the parameters of –Q 20 –P 90. Then, short reads 

were aligned to the tomato genome reference version SL2.50 using bowtie2 software with the 

following parameters: L,0,-0.16 --mp 2,2 --np 1 --rdg 1,1 --rfg 1,1. On average, 98.8 ± 0.03% 

of the target exonic regions was covered by short reads. The average read depth was 18 ± 1.5. 

Genome-wide DNA polymorphisms and mutations were identified based on the alignment 

results by the HaplotypeCaller function of the Genome Analysis Toolkit (GATK) with the 

following parameters: -mmq 5 -forceActive -stand_call_conf 10 -stand_emit_conf 10. The 

resultant DNA variant information was further combined into one genomic VCF dataset with 

the GenotypeGVCFs function of the GATK. Three wild-type WES datasets (accession No. 

DRR097500 to DRR097502, DNA Data Bank of Japan (DDBJ)), two wild-type whole-genome 

NGS datasets (DDBJ accession No. DRR097503 and DRR097504), and one publicly available 

wild-type whole-genome NGS dataset (Kobayashi et al., 2014) were used as controls to remove 

intra-cultivar variations that are present between wild-type ‘Micro-Tom’ lines. DNA variants 

were further removed if their allele frequencies exceeded >90% in wild-type F2 bulked 

segregants because they were also expected to be intra-cultivar variations. Those variants with 

< 20% allele frequency or with a read depth < 6 were also removed because they were likely 

to be false-positives. WES datasets for curl mutants are available in DDBJ (accession No. 

DRR097492 to DRR097502). 

 

 

https://solgenomics.net/
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2.2.7 RNA extraction 

Maximum 100 mg of leaf was placed in 1.5 ml sterile tube and immediately frozen in liquid 

nitrogen and then grinded using pestle until completely become fine powder. RNA was 

extracted using a commercial kit, RNeasy Plant Mini Kit (Qiagen, Germany), according to 

manufacturer’s protocol. This step was combined with removing any contamination of 

genomic DNA using ‘on column DNA digestion step’ (RNase-Free DNase, Qiagen, Germany). 

RNA concentration was measured by a spectrophotometer (NANODROP, Thermo Scientific, 

2000c). Then, the extracted RNA was immediately stored in a -80 oC refrigerator.  

Subsequently, to avoid any contamination of genomic DNA, another step of genomic DNA 

removing procedure was conducted using RNA Clean & Concentrator™-5 (Zymo research, 

USA). Maximum 10 µg of RNA was used for this reaction according to manufacturer’s 

protocol. In the final step, RNA was diluted using 10-15 µl of nuclease free water and RNA 

concentration was measured.  

2.2.8 cDNA synthesis 

A 2000 ng RNA was used for the cDNA synthesis. cDNA was synthesis using a SuperScript 

III First-Strand Synthesis (Invitrogen, ThermoFisher Scientific, USA) in 20 µl reaction 

volume using oligo(dT)12-18 primer. Oligo(dT)12-18 primer was used because we expected to 

obtain full-length cDNA. During this process, 1µL of RNaseOUT was also applied. The final 

concentration of cDNA was 100 ng/ µL. This cDNA was used as stock for qRT-PCR gene 

expression as well as sequencing analysis. The synthesized cDNA was stored in a -30 oC 

refrigerator.  

2.2.9 qRT-PCR analysis 

mRNA expression was quantified using qRT-PCR. A 10 ng/µl cDNA template of three 

biological replicates was used for SlLAX1 gene expression analysis. The SlActin gene was used 

as an internal control (Lovdal and Lillo. 2009). qRT-PCR was carried out using a CFX96 Real-
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Time System (Bio-Rad) with SYBR Premix ExTaq II (Ili RNase H Plus; TaKaRa Bio, Japan). 

The primers used for qRT-PCR are listed in Table 2.7. Relative gene expression was quantified 

using the ΔΔCT method (Pfaffl, 2001). The primers for qRT-PCR were designed using the 

Primer3Plus website (http://primer3plus.com/), using joining two exons in either forward or 

reverse primer to exclude any potential contamination of genomic DNA. qRT-PCR mix 

reaction and thermal cycle condition is described in the Table 2.8 and Table 2.9 respectively. 

For the confirmation of the primers specificity, melting curve of amplified products was 

analyzed using a regular method, according to the manufacturer’s instructions. 

2.2.10 Cloning and sequencing of full-length coding sequence the SlLAX1 gene 

Sequencing analysis was performed to confirm the mutation site of the curl mutants 

according to exome sequence result. The full-length coding sequence (1236 bp) of the SlLAX1 

gene from three independent plants was amplified by PCR using KOD plus neo enzyme. Primer 

sequences are listed in the Table 2.7. PCR mix reaction and condition are described in Table 

2.10 and 2.11, respectively. Subsequently, PCR products were loaded onto a 0.8–1.5% agarose 

gel, which was then electrophoresed for 45-60 min. Next, the band was visualized under 70% 

UV and then cut either with a gel cutter or blade. Any visible desired product band was 

individually cut, removed, and subsequently subjected to purification using a Wizard® SV Gel 

and PCR Clean-Up System (Promega, Madison, USA). DNA purification by centrifugation 

was applied. The purified PCR product was then cloned into the entry vector pCR8/GW/TOPO 

(Invitrogen, http://www.lifetechnologies.com/) using an In-Fusion® HD Cloning Kit (Takara 

Bio USA, Inc.) according to manufacturer’s protocol. Then, plasmids from clones were 

purified using a FastGene Plasmid Mini Kit (Nippon Genetics, Japan). The plasmid fragment 

was sequenced using M13 primer (Table 2.7). In the sequencing mix reaction, 450-900 ng of 

plasmid cDNA and 1 µl of primer (10 pmol) were used, after which distilled water was added 

to reach a total volume of 21 µl. 

http://primer3plus.com/
http://www.lifetechnologies.com/
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Sequencing analysis was performed using a 96-capillary Applied Biosystems/ABI 3730xl 

DNA Analyzer (Thermo Fisher Scientific). The sequencing data were viewed using SnapGene 

Viewer software. The alignment of nucleotide and amino acid sequences was analyzed using a 

parallel editor of GENETYX Ver. 11 software. 

2.2.11 Screening new SlLAX1 mutant allele by TILLING 

To obtain new SlLAX1 mutant alleles and to validate the leaf phenotype consistency, I 

screened our EMS mutant population using TILLING technology. The TILLING population 

was previously described by Okabe et al. (2013), and the TILLING experiments were 

performed as described by Okabe et al. (2011). I attempted to screen for mutations in the coding 

region of the SlLAX1 gene. The primer pair was designed to span exon 6. Given that exon 6 is 

the longest exon, I also identified an EMS mutant line, curl-6, that carries a nonsense mutation 

in exon 6 of SlLAX1. The primer pairs used in the TILLING experiment were forward 5’-

TGGTACATGGGAACTAGCTAAGCC-3’ and reverse 5’-

ACCTGACGAGCGGATGATTTTC-3,’ which amplified 865 bp of genomic DNA template; 

the 5’ end of each primer was labeled with DY-681 or DY-781, which are equivalent of IRDye 

700 or IRDye 800 (https://www.biomers.net/), respectively. 

2.2.12 Statistical analyses  

Unless otherwise stated, the data are presented as the mean ± SE (standard error). Student’s 

t-test (at the 95 and 99% significance levels) was used to analyze the significant level between 

two values with equal variance. Chi-square (χ2) tests were performed using MS Excel 2016 to 

examine the goodness of fit between the expected and observed Mendelian ratio in the 

segregating F2 population of mutants backcrossed to WT ‘Micro-Tom’, and the degrees of 

freedom and expected Mendelian ratio used for monogenic traits were 1 and 3:1 (WT: mutant 

phenotype), respectively. 

 

https://www.biomers.net/
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2.3 Result 

2.3.1 Isolation of the curl mutants from the mutant population 

Our research group previously developed a large mutant population of ‘Micro-Tom’, a 

model tomato cultivar, using γ-ray irradiation and EMS mutagenesis (Saito et al., 2011; Shikata 

et al., 2016). From the M3 generation of this mutant population, I isolated six mutant lines 

exhibiting a severe curly leaf phenotype (Fig. 2.1 A and B). To investigate the gene responsible 

for controlling the mutant phenotype, I then characterized these mutants. The newly developed 

young leaves of the curl mutants were flat and indistinguishable from those of wild-type (WT) 

(Fig. 2.1, C and D), suggesting that the impairment of leaf curvature was not detectable at the 

early vegetative stage. The leaves became curly at the later stage and were continuously curly 

until the end of growing period. The initiation of curly leaves was not related to the transition 

from the vegetative to the reproductive stage, and the leaf phenotype could not be restored at 

any stage once the curly leaves had formed. Growing the curl mutants in a high-humidity 

environment in in vitro culture could not rescue the curly phenotype (Fig. 2.1 E). Additionally, 

curly leaves continuously appeared regardless of water availability in the soil medium (Fig. 2.1 

F and G). The plant water potential of the mutants and WT were also comparable (Table 2.12). 

These data suggested that the curly leaf mutant phenotype is persistent, irrespective of relative 

humidity or water availability.  

2.3.2 All The curl mutant alleles exhibited monogenic recessive inheritance pattern 

To examine the inheritance pattern of curl mutants, I crossed the mutants with WT and 

another tomato cultivar, ‘Ailsa Craig’, and observed the segregation ratio in the F2 population. 

Phenotypic observation was carried out visually according to the presence or absence of the 

curly leaf phenotype in the F2 generation. The mutant phenotype appeared in the F2 generation 

only, as a recessive genetic trait (Table 2.13). The ratio of WT and mutant phenotypes fit a 

Mendelian segregation ratio for monogenic traits (3:1), indicating a monogenic recessive 
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inheritance of all curl mutants. Similarly, in the ‘Ailsa Craig’ background, the inheritance of 

the curl mutants was also recessive (Table 2.14).  

2.3.3 Mutation occurred in the same allele  

Allelism test was performed to observe complementation effects among mutant alleles and 

to examine whether mutations occurred because of the same causal gene. Complementation 

effect was tested in the F1 generation. All crosses between each pair of mutants showed curly 

leaf phenotypes (Table 2.15), indicating that they are allelic (a mutation occurred in the same 

allele). The curl-6 mutant generated from EMS treatment (see Plant Material) was also allelic 

with the other mutants which were generated from γ-ray irradiation. After confirming that all 

curl mutants were allelic, for further analyses, I only used three mutant alleles, namely, curl-1, 

curl-2, and curl-6. 

2.3.4 Map position of the curl locus 

To identify the candidate gene controlling the curly leaf phenotype, I performed a map-

based cloning approach using PCR-based DNA markers including CAPS and SNPs (Shirasawa 

et al., 2010; Chusreeaeom et al., 2014; Ariizumi et al., 2014; Hao et al., 2017). Tomato has 12 

chromosomes, and I used DNA markers that covered all chromosomes (Table 2.16). I used 

publicly available linkage map information from the Kazusa DNA Research Institute (KDRI) 

webpage, http://marker.kazusa.or.jp/Tomato/, for AMF2 (F2: S. lycopersicum ‘Ailsa Craig’ x S. 

lycopersicum ‘Micro-Tom’). I developed a mapping population from curl-2 crossed with ‘Ailsa 

Craig’ (see Materials and Methods) and performed rough mapping. I found that the mutation 

likely occurred in the short arm of chromosome 9 (Table 2.16). The highest ‘Micro-Tom’ allele 

frequency was observed in this chromosome region between markers tomInf5375 and 

14109_151 and ranged from 0.68-0.89, suggesting that the responsible gene could be localized 

in the short arm of chromosome 9 close to marker 14109_151 (physical position SL2.40ch09: 

2052389), Fig. 2.2, Table 2.16. 

http://marker.kazusa.or.jp/Tomato/


21 
 

2.3.5 Exome sequence revealed that SlLAX1 gene is commonly mutated in several curl 

mutant alleles 

To narrow down the candidate region obtained by map-based cloning/rough mapping of 

chromosome, I performed WES. Four lines of the curl mutants, curl-1,2,3 and 6 were used for 

the WES analysis. The F2 progenies derived from the cross between mutant and wild-type 

‘Micro-Tom’ were divided into flat leaf and curly phenotype based on presence or absence of 

curly leaf phenotype, and then flat leaf and mutant bulked segregants were subjected to exome 

sequencing. By bowtie2-GATK pipeline using the tomato genome reference version SL2.50 as 

a reference (see Materials and Methods), I identified 5,430, 5,110, 5,050, and 4,829 genome-

wide mutations for curl-1, curl-2, curl-3, and curl-6 mutant segregants, respectively. When 

allele frequencies were compared between these mutants, a strong association was found 

around the top region of chromosome 9 in all of the four mapping populations (Fig. 2.3). This 

result suggested that the causal gene for curly phenotype is located in this chromosome region, 

in agreement with the result of map-based cloning (Table 2.16; Fig. 2.2). Furthermore, I then 

searched for the gene in which mutation is commonly occurring in some of the curl mutants. I 

found that mutations are commonly occurring in Solyc09g014380.2.1, which is a homologue 

of Arabidopsis AtAUX1 (AT2G38120; BLASTx E-value = 0.0, protein amino acid similarity = 

93 %). The SlLAX1 gene spans ~3.8 kb genomic region, while cDNA including UTR region 

spans 1.8 kb. The SlLAX1 has seven exons, including UTR region in both 5’ and 3’ end (Fig. 

2.3). The curl-2 and curl-6 had nucleotide substitution from G to A in the exon 6, physical 

position SL2.50ch09: 6010739 bp (Table 2.17). This SNP produced stop codon instead of 

tryptophan on the position 262 (W262X). Whereas, curl-1 and curl-3 had SNP from G to T in 

the splicing junction of intron 4, physical position SL2.50ch09: 6009292 bp. 
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2.3.6 Mutation validation by dideoxy sequencing: the curl mutants produced truncated 

amino acid and splicing variant 

To validate the mutation detected by the WES analysis, I performed dideoxy sequencing of 

cDNA prepared from the mature curly leaf of four mutant lines used in the WES. I thoroughly 

cloned the full-length coding sequence of SlLAX1 gene and used the vector primer, M13 (Table 

2.7) for sequencing. The genomic, cDNA and amino acid sequences were obtained from the 

Sol Genomics Network (https://solgenomics.net/) website.   

In the curl-2 and the curl-6 SlLAX1 cDNA, I found a single base pair substitution from G 

to A in the 786th bp within the exon 6 (Fig. 2.4A), in agreement with the WES analysis (Table 

2.17). This mutation led conversion amino acid (a.a.) tryptophane to stop codon (Fig. 2.4B). 

Normal WT produced 411 a.a. fitted to SlLAX1 a.a. reference sequence, whereas the curl-2 and 

curl-6 produced only 261 a.a., losing the last 150 a.a. (63.7% out of WT protein).  

As described above, exome sequencing found that  the curl-1 and curl-3 had a mutation in 

the 1st nucleotide or splicing junction of intron 4 (Table 2.17). Interestingly, sequencing of 

SlLAX1 cDNA in these alleles revealed that abnormal splicing is occurred around the intron 4, 

which led to deletion of five nucleotides within exon 4  (nucleic acid 433-437, Fig. 2.4C). 

Given that mutation in the curl-1 and curl-3 is G to T substitution in the first nucleotide of 

intron 4, presumably, there was an alteration in donor and recipient intron splicing. Splicing of 

intron 4 was occurred in the position of 435 bp from start codon in the tomato genome of the 

WT, whereas intron splicing is occurred in 5 bp upstream of the end of exon 4 (430 bp from 

start codon) in both the curl-1 and the curl-3 alleles. Then the next sequence from following 

exon 5 is GGTTGA; this TGA may produce premature stop codon, which is a position of 435 

bp from the start codon (Fig. 2.4D). Thus, curl-1 and curl-3 alleles could produce a C-terminal 

truncated SlLAX1 protein that is only 145 a.a. length of protein (35% of WT protein, Fig. 2.4 

E). Taken together, these dideoxy sequencing results confirmed the mutation revealed by WES 

https://solgenomics.net/
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analysis in all alleles of the curl mutants.  

2.3.7. Phenotype-genotype association of the curl mutants in F2 generation 

To confirm the exome sequence result whether Solyc09g014380.2.1 is truly responsible 

gene for this mutant phenotype, I performed several validation methods including dideoxy 

sequencing, gene expression analysis and checking association phenotype-genotype using 

dCAPS DNA markers in the mutation site from F2 mapping population in the WT ‘Micro-Tom’ 

background which were subjected to the WES. 

In the F2 generation of mutants which were back-crossed to the WT ‘Micro-Tom’, 

phenotypic of all individual was observed based on presence of absence of curly leaf phenotype 

among approximately 100 F2 plant. Then, the phenotype-genotype association was confirmed 

using dCAPS markers that designed in the predicted mutation site according to exome sequence 

result. For this observation, only three mutant lines were used as representative, curl-1, curl-3, 

and curl-6. Because they are allelic, I considered that testing these three lines were enough to 

obtain an evidence. The result showed that all mutant phenotype from each line was perfectly 

consistent with genotype (Table 2.18, 2.19, and 2.20), indicating the correct predicted SNP or 

mutation present between the WT and the curl mutant alleles tested in the curl-1, curl-3, and 

curl-6. 

2.3.8 Reduced gene expression of SlLAX1 was observed in the curl mutants 

Furthermore, I analyzed the transcript level of the SlLAX1 by qRT-PCR using mature curly 

leaf cDNA. I designed primers that targeted downstream of the nonsense mutation in exon 6 

by joining exon 6 and exon 7 in the forward primer to remove any potential contaminants from 

genomic DNA. The expression of the SlLAX1 gene in the three curly leaf mutants was 

significantly reduced to only 35-40% of WT expression (Fig. 2.5), which indicates low 

abundance of this gene transcript in the mutants.  
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2.3.9 Screening a new allele of nonsense mutation of SlLAX1 by TILLING and validation 

the phenotype consistency 

Because our research group had previously developed large mutant resources in the ‘Micro-

Tom’ background and proved that TILLING is an efficient tool for isolating desired mutants 

from the mutant collection (Okabe et al., 2011), I utilized TILLING to search for other SlLAX1 

mutant alleles. Currently, we have 9,216 EMS mutant lines. Among them, I screened 4,608 

lines in the M2 and M3 generations to obtain new SlLAX1 mutant alleles. In addition, because 

I only had one EMS mutant screened by forward genetics (curl-6), I attempted to obtain other 

mutant alleles to confirm the phenotype consistency. 

I designed a primer pair to amplify 865 bp along exon 6 of the SlLAX1 gene for TILLING 

screening target and found five new mutant alleles that carried intron, missense, and nonsense 

mutations (Fig. 2.6, Table 2.21). The curl-6/TOMJPE8506, which was previously identified 

by forward genetics, was also confirmed by TILLING screening. Then, to validate the mutant 

phenotype, one line that carried a nonsense mutation, TOMJPW601-1, was renamed as ‘curl-

7’ and used for further analysis. TILLING screening showed that this line carries one base pair 

substitution from G to A in the 185th a.a. that led to the conversion of tryptophan to a premature 

stop codon that discarded the last 226 a.a. (Fig. 2.7A). I then grew the screened line and 

observed the presence of the curly leaf phenotype in the M3 generation. The curl-7 mutant 

exhibited curly leaf phenotype like as the other curl mutant alleles (Fig. 2.7B and C). This 

result supports the evidence that SlLAX1 is the gene responsible for the curly leaf phenotype 

in tomato. 

Furthermore, I performed dideoxy sequencing of the full-length coding sequence of the 

SlLAX1 gene to validate the TILLING result. Consistent with the predicted result, curl-7 

carried a G to A nucleotide substitution in 554th bp (Fig. 2.8A) that produced a nonsense 

mutation in the 185th a.a. (Fig. 2.8B), suggesting that the SlLAX1 mutation is associated with 
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the curly leaf phenotype. Taken together, using a forward genetic approach, I characterized 

multiple alleles showing that mutation in SlLAX1 produces the curly leaf phenotype, and a 

reverse genetic approach validated this finding. The mutations in the same gene consistently 

resulted the same phenotype, strongly suggesting that SlLAX1 functions in controlling tomato 

curly leaf phenotype. 
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2.4 Discussion 

2.4.1 Mutation in the curl mutants is affected by SlLAX1 gene 

In this study, I characterized several alleles of tomato mutants exhibiting severe leaf 

upward-curling phenotypes at the mature leaf stage (Fig. 2.1). This mutant phenotype occurs 

irrespective of water content or relative humidity (Fig. 2.1E, G; Table 2.12). Six lines were 

isolated using a forward genetic approach by visually selecting curly leaf phenotypes in a 

previously generated tomato mutant population (Saito et al., 2011; Shikata et al., 2016).  

Map-based cloning combined with WES revealed that the mutation occurred in the SlLAX1 

gene (Table. 2.16 and 2.17). Then, to validate the candidate gene by utilizing TILLING as a 

reverse genetic approach, I screened another nonsense mutation allelic line, curl-7, which was 

generated by EMS. The curl-7 mutant leaves were indistinguishable from those of the other 

previously selected lines (Fig. 2.7B, C). Furthermore, I confirmed the full-length coding 

sequence of SlLAX1 (Fig. 2.8A, B), which supported the evidence that SlLAX1 is likely the 

gene responsible for the curly leaf mutant phenotype. Taken together, the characterization of 

multiple alleles in this study that consistently showed indistinguishable phenotypes is strong 

evidence for the role of SlLAX1 in controlling the curly leaf phenotype.  

SlLAX1 (Solyc09g014380) encodes a transmembrane amino acid transporter protein and 

belongs to the amino acid/auxin permease (AAAP) family. Conserved domain searches 

indicate that the SlLAX1 amino acid sequence contains one conserved domain, SLC5-6-

like_sbd, which is a member of the solute-binding domain superfamily. This superfamily 

includes the solute-binding domain of SLC5 proteins, SLC6 proteins, and nucleobase-cation-

symport-1 (NCS1) transporters. SLC5s co-transports Na+ with sugars, amino acids, inorganic 

ions and vitamins (https://www.ncbi.nlm.nih.gov/cdd, Marchler-Bauer A et al., 2015, 2017). 

Homology searches indicated that the SlLAX1 protein sequence is homologous to 

Arabidopsis thaliana AtAUX1 (AT2G38120). In Arabidopsis, AUX1 is one of four auxin influx 

https://www.ncbi.nlm.nih.gov/cdd
https://www.ncbi.nlm.nih.gov/pubmed/27899674
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carriers belonging to AUX1/LAX family that controls several developmental processes 

including gravitropism responses, venation patterns, and lateral roots (Vieten et al., 2007; 

Bennet et al., 1996). Although recent findings have indicated that the AUX/LAX1 family also 

control aerial part development such as leaf serration (Kasprzewska et al., 2015), phyllotaxis 

patterning, vascular patterning, and xylem differentiation (Bainbridge et al., 2008; Fabregas et 

al., 2015), the role of AUX1/LAX gene family in leaf curling are poorly understood. In contrast, 

mutations in many auxin-related genes showed an impaired leaf flatness phenotype (Esteve-

Bruna et al., 2013; Zgurski et al., 2005). In tomato, few studies have shown a relationship 

between auxin and leaf flatness; for instance, SlARF4-RNAi lines produce hyponastic leaves 

(Sagar et al., 2013) and SlPIN4-RNAi lines show leaf flatness defects as well as altered plant 

architecture (Pattison and Catala, 2012). However, the role of SlLAX1 in controlling leaf curly 

phenotype has not been reported in tomato or other major crops. 

2.4.2 SlLAX1 is essential for controlling tomato leaf flatness  

The tomato AUX1/LAX family consists of five genes (SlLAX1-5). They share high identity 

and similarity; the identity of SlLAX2, SlLAX3, SlLAX4, and SlLAX5 with SlLAX1 are 80.36%, 

79.70%, 92.65%, and 80.87%, respectively (Sol Genomics Network). All SlLAX genes are 

expressed in the mature leave and root of tomato (Pattison and Catala, 2012). These authors 

reported that all SlLAX genes are expressed in the mature leaves of tomato. The single mutants 

depleting SlLAX1 used in this study, curl-1-7, showed a severe phenotype effect in leaf flatness, 

suggesting that the importance of SlLAX1 in controlling leaf flatness in mature leaves, and other 

SlLAX genes may not have strong function in this process. In agreement with this finding, a 

study of Arabidopsis roots revealed that among four auxin influx carriers conserved in the 

Arabidopsis genome, AUX1 was the influx carrier that had the strongest affinity (Peret et al., 

2012), although all AUX1/LAX family genes encode functional auxin influx carriers. This 

finding is also supported by a more recent study conducted by Rutschow et al., (2014), who 
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proposed that AUX1 dominates auxin flux into Arabidopsis protoplasts. This reason 

presumably explains why the single mutant curl1-7 produced a severe curly leaf phenotype. 

Although the functional redundancy of the AUX1/LAX family, in addition to the function 

of SlLAX1 itself, is poorly characterized in tomato, their function in Arabidopsis is well 

characterized especially in root development. Like tomato, Arabidopsis has several (four) 

AUX1/LAX genes that share high identity and similarity. Peret et al. (2012) reported that four 

Arabidopsis influx carrier family genes regulate the distinct auxin-dependent developmental 

program and that the coding sequences of AUX1/LAX genes have undergone 

subfunctionalization. AUX1/LAX genes exhibit nonredundant and complementary expression 

patterns in roots. Furthermore, these authors also reported evidence of the inability of LAX to 

rescue aux1 mutant phenotypes with respect to root development. Additionally, the authors also 

reported that Arabidopsis AUX1/LAX genes perform distinct developmental function. However, 

these results vary among Arabidopsis tissues observed in the context of phyllotaxy, vascular 

patterning, and xylem differentiation; AUX1/LAX could play redundant function (Bainbridge 

et al., 2008; Fabregas et al., 2015). Non-redundancy in tomato has not been reported; 

nonetheless, this possibility has also to be taken into account. The functional redundancy of 

SlLAXs family in tomato leaf curling phenotype awaits further investigation. 

2.4.3 Curly leaf phenotype of the curl mutants is induced by the loss-of-function of 

SlLAX1 

AUX1 protein is located in the plasma membrane (PM). Swarup et al., (2004) first reported 

on the basis of experimental evidence that AtAUX1 has 11 transmembrane domains. Then, by 

observing root gravitropism and resistance to 2,4-D as the most prominent and well-

characterized traits of this mutant, they also characterized several allele series of aux1 mutants 

ranging from null, partial loss-of-function, and missense mutations in order to understand the 

important functional domains and amino acids within the AUX1 polypeptide. The result 
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suggested that the central region of AUX1, between TM VI and VIII, proven to be particularly 

important for protein function. Using a publicly available server 

(http://www.cbs.dtu.dk/services/TMHMM/), I checked the prediction of transmembrane 

helices in the SlLAX1 protein. The curl-2 and curl-6 mutants carried a mutation in the W262X 

a.a., which located in transmembrane domain VII. Furthermore, independent research 

conducted by Peret et al., (2012) also revealed that the N-terminal half of AUX1 is essential 

for the correct localization of the AUX1 expression domain. I showed that both the curl-1 and 

curl-3 mutations are located in transmembrane helix IV, where the N-terminal half of SlLAX1 

is located (http://www.cbs.dtu.dk/services/TMHMM/). Furthermore, the curl-1/curl-3, curl-

2/curl-6, and curl-7 mutations caused nonsense mutations that can produce only 35, 63, and 

45% of the WT protein, respectively (Fig. 2.4B, D, and 2.8A). Additionally, the relative 

expression of the curl mutant alleles (curl-1, curl-2, and curl-6) was less than 40% compared 

to that of WT (Fig. 4F). These reasons presumably account for the loss-of-function mutations 

of the SlLAX1 gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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Table 2.1 Description of mutant lines in TOMATOMA mutant collection database and 

mutagen source 

 

γ-ray: gamma-ray irradiation 

EMS: ethyl methanesulphonate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutant lines used in 

this study 

Mutant line in 

TOMATOMA database 
Mutagen source 

curl-1 TOMJPG1056 γ-ray 

curl-2 TOMJPG1450 γ-ray 

curl-3 TOMJPG2156 γ-ray 

curl-4 TOMJPG2484 γ-ray 

curl-5 TOMJPG5605 γ-ray 

curl-6 TOMJPT8506 EMS 

curl-7 TOMJPW601-1 EMS 
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Table 2.2 Reaction mix for PCR amplification of CAPS or dCAPS marker using Ex-Taq   

     enzyme 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution Amount (µl)  

Forward primer (10 µM) 0.4  

Reverse primer (10 µM) 0.4  

dNTP 1.6  

10x buffer 2.0  

SDW (sterilized distillate water) 15.1  

Ex Taq enzyme 0.1  

Genome DNA template 0.4  

Total volume 20  
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Table 2.3 Thermal cycle condition for PCR amplification of CAPS or dCAPS marker using Ex 

Taq enzyme 

3-step cycle  

Pre-denaturation  : 94 ºC 2 m  

Denaturation        : 94 ºC 1 m  

35- 40 cycles Annealing            : 55-58 ºC 1 m 

Extension             : 72 ºC 2 m 

Final extension     : 72 ºC 5 m  
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Table 2.4 Reaction mix for PCR amplification of CAPS or dCAPS marker using Go Taq 

enzyme 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Amount (µl) 

Forward primer (10 µM) 0.4 

Reverse primer (10 µM) 0.4 

Go Taq 2x 7.5 

SDW (sterilized distillate water) 5.2 

Genome DNA template (10 ng/µl) 0.5 - 1 

Total volume 15 
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Table 2.5 Thermal cycle condition for PCR amplification of CAPS or dCAPS marker using Ex 

Taq enzyme 

 

 

 

 
 
 
 
 
 
 
 
 
 

3-step cycle  

Pre-denaturation  : 95 ºC 2 m  

Denaturation        : 95 ºC 25 s  

35 cycles Annealing            : 55-58 ºC 45 s 

Extension             : 72 ºC 30 s 

Final extension     : 72 ºC 5 m  
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Table 2.6 Primer sequence and enzymes used on chromosome mapping experiment 

 

 
a DNA markers locus according to AMF2 (F2: S. lycopersicum 'Ailsa Craig' x S. lycopersicum 'Micro-Tom) linkage map information that publicly available from the Kazusa DNA 

Research Institute (KDRI) homepage, http://marker.kazusa.or.jp/Tomato/ 

 

 

 

 

 

Locus Marker Restriction 

enzyme 

Ch Arm Position 

( cM ) 

Forward primer sequence 

5’ to 3’ 

Reverse primer sequence 

5’ to 3’ 

8181_419 CAPS Alu Ⅰ 1 S 27.874 AAATCATCATGCGAACACCA CATACGTTCATGCCACGTTC 

Tomlnf4286 
 

Hha Ⅰ 1 L 
 

CCTAGGTTGAGCACGACGAT GGCCTAAAGATCACAACCCA 

10431_124 
 

Rsa Ⅰ 3 S 0 TCATTGGGGGAAAAGAAAAA CTTGGCATTTCCCTTCAAAA 

1622_2500 
 

Alu Ⅰ 3 L 117.167 ATTGATGGACCATACGGAGC TGCTGAACCTGATTTACCCC 

2325_361 
 

Xho Ⅰ 4 S 37.911 ACGACCCTTCACAGTGTTCC ACTTCACATACCCTGCGGTC 

5264_772 
 

Hha Ⅰ 4 L 126.237 CGAAACAAAAGAGCCAAGGA CATCGACAAATTGGTTGTGC 

5799_537 CAPS Mbo Ⅰ 5 L 44.081 GGCGACCTGAACTACTTTGAG TCTGAAGTGCCATCAAATCG 

8669_1517 CAPS Hha Ⅰ 7 S 9.84 AACGAGAGGAAGGAAGAGCC TTTTCATGAGTTCTGCACGC 

19921_317 CAPS Alu Ⅰ 7 L 113.074 TGGGAGGAATGGCTTATCTC GGCCATATTAGTCTACCGAACAA 

2404_427 CAPS Alu Ⅰ 8 S 2.144 GCGCATAAAACACAACGAAA CCTACTGTTGCCTTGGGCTA 

3194_739 CAPS Rsa Ⅰ 8 L 108.942 CTAATAGCACAAATCGCGCA GTGGATTTGGAAGCTGCTGT 

tomInf5375 SNP Rsa Ⅰ 9 S 224180 CGAGTAACCAAGGGACCAAA AAAGTTGATGTGGGCAAAGG 

tomInf2042 SNP Rsa Ⅰ 9 S 527639 TTCAAAGCTTGTCTACCGGC TTTCAACAGGGTCAAAGCGT 

7195_279 CAPS Rsa Ⅰ 9 S 636025 GCTGGTTCGGTGAGATTGAT TCAGAAACTCCGCAAAATCC 

6033_534 CAPS Mbo I 9 S 1109483 CCATCCACCCCATGATATGT GGTGTTCCGGAAAGCAGTAA 

11485_183 CAPS Rsa Ⅰ 9 L 63818080 CTATGCTCAAATGGGGGCTA CAGGTAAAACAAAAATAGAGAGTGC 

12496_320 CAPS Hha Ⅰ 10 L 79.045 ACGAGCTACCACCGAAGCTA TGGCAGTTGGTAACTGAACG 

3033_96 CAPS Rsa Ⅰ 11 S 10.458 TAATTCTTGGGAACCAGCCA GCAGACACCATCGTTTTCCT 

5972_1026 CAPS Rsa Ⅰ 11 L 117.219 ATTAACAGCGACTGGGTTGG TCTACGTGCCTTTCCTTGCT 

15328_509 CAPS Hha Ⅰ 12 S 0 AATGTTTCAAAACCACCCCA ATGCAAGCAGGAACGTTAGG 

6139_385 CAPS Mbo Ⅰ 12 L 131.316 GTGCTGCCGTTACGTTTACA CCTTGGATCATTTGCAGCTT 

Ch: chromosome; S: short; L: long; cM: centi Morgan 

http://marker.kazusa.or.jp/Tomato/
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Table 2.7 Primer pair that used for qRT-PCR and gene cloning of SlLAX1 

 
Primer name Forward sequence 

5’- to -3 

Reverse sequence 

5’- to -3’ 

Purpose Remarks 

SlLAX1_infusion ATGGTATCAGGAATAGTACTACAAGTGTTCT TTAGTGATGGATAGGCGCGGTAT Cloning into a plasmid  

M13 vector TGTAAAACGACGGCCAG GTCATAGCTGTTTCCTG Sequencing  

qRT-PCR-SlLAX1 TCATCCGCTCGTCAGAATGC ATTGGTCATGCTAGCCCAAC qRT-PCR Span two 

exon junction 

in forward 

primer  
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Table 2.8 Reaction mix for qRT-PCR reaction of SlLAX1 gene 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Amount (µl) 

Forward primer (10 µM) 0.8 

Reverse primer (10 µM) 0.8 

SYBR Premix Ex Taq II (2x) 10 

RNase-free water 7.4 

cDNA template (10 ng/µl)  1 

Total volume 20 
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Table 2.9 Thermal cycle condition for for qRT-PCR reaction of SlLAX1 gene 

 

3-step cycle  

Pre-denaturation  : 95 ºC 30 s  

Denaturation        : 95 ºC 5 s  

40 cycles Annealing            : 60 ºC 30 s 

Extension             : 60 ºC 30 s 
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   Table 2.10 Reaction mix for PCR amplification of SlLAX1 gene sequencing using KOD-Plus- Neo 

enzyme 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution Amount (µl) 

Forward primer (10 µM) 1.5 

Reverse primer (10 µM) 1.5 

10x KOD-Plus-Neo buffer 5 

2 mM dNTPs 5 

25 mM MgSO4 4 

SDW (sterilized distillate water) 31 

KOD Plus-Neo enzyme 1 

cDNA template (10-25 ng/µl) 1 

Total volume 50 
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Table 2.11 Thermal cycle condition for PCR amplification of SlLAX1 gene sequencing using  

KOD-Plus-Neo enzyme 

 

3-step cycle  

Pre-denaturation  : 94 ºC 3 m  

Denaturation        : 98 ºC 10 s  

40 cycles Annealing            : 55-58 ºC 30 s 

Extension             : 68 ºC 2 m 

Final extension     : 68 ºC 7 m  
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Table 2.12 Leaf water potential of the curl mutants. 

 

 

Values are means ± SE (n=6). Leaf water potential was measured at well-watered condition at the 

1st leaflet. Leaf water potential of WT and the curl mutants was comparable. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line Leaf water potential (Psi) 

WT -18.3±0.6 

curl-1 -18.5±0.6 

curl-6 -18.8±0.4 



43 
 

 

Table 2.13 Segregation analysis of the curl mutants back-crossed to WT ‘Micro-Tom’. 
 

Mutant 

linea 

F1
b 

WT: curly 

F2
b 

WT: curly 

χ2 valuec χ2 

referenced 

P-value Inheritance patterne 

curl-1 4:0 105:25 2.30 3.84 0.13 monogenic recessive 

curl-2 1:0 79:31 0.59 3.84 0.44 monogenic recessive 

curl-3 5:0 70:25 0.08 3.84 0.76 monogenic recessive 

curl-6 2:0 123:30 2.37 3.84 0.12 monogenic recessive 

 

aThe curl mutants were crossed to the WT ‘Micro-Tom’. 
bThe number of progeny exhibiting normal (WT) and curly leaf phenotype is shown. 
c χ2 value was calculated based on progeny segregation at F2 population. 
d χ2 distribution in the table reference value, with probability >0.05, and degree of freedom 1. 
e Inheritance pattern of the curl mutants, estimated based on χ 2 value at 95% (P<0.05) significant 

level. 
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Table 2.14 Segregation analysis of the curl mutants back-crossed to cv ‘Ailsa Craig’. 
 

Mutant 

linea 

F1
b 

WT: curly 

F2
b 

WT: curly 

χ2 valuec χ2 

referencesd 

P-value Inheritance patterne 

curl-1 5:0 n.d n.d 3.84 n.d monogenic recessive 

curl-2 5:0 100:19 1.92 3.84 0.16 monogenic recessive 

curl-3 2:0 n.d. n.d. 3.84 n.d monogenic recessive 

curl-6 2:0 409:120 1.51 3.84 0.21 monogenic recessive 

 

aThe curl mutants were crossed to the WT ‘Micro-Tom’. 
bThe number of progeny exhibiting normal (WT) and curly leaf phenotype is shown. 
c χ2 value was calculated based on progeny segregation at F2 population. 
d χ2 distribution in the table reference value, with probability >0.05, and degree of freedom 1. 
e Inheritance pattern of the curl mutants, estimated based on χ 2 value at 95% (P<0.05) significant 

level. 
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Table 2.15 The result of allelism test among the curl mutants. 

Mutant 

line ♀ 

Mutant line ♂ 

WT curl-1 curl-2 curl-3 curl-4 curl-6 

WT  normal normal normal normal normal 

curl-1 normal  n.d. n.d. n.d. curly 

curl-2 normal curly  n.d. n.d. curly 

curl-3 normal n.d. curly  curly curly 

curl-4 normal n.d. curly curly  curly 

curl-6 normal curly curly curly curly  

 

The allelism test was carried out by crossing all possible pairs and observing the results at the F1 

generation. 

The F1 generation phenotype was evaluated visually by observing the presence of a curly leaf 

phenotype. 

Normal represents the wild-type phenotype 

Curly represents the curly leaf phenotype. 

n.d. not determined. 

♀, ♂: female recipient and male donor, respectively. 
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Table 2.16 Chromosome mapping using CAPS, dCAPS and SNP markers in the curl-2 

Mutation in the curl mutants is likely located in short arm of chromosome 9, close to the marker 14109_151, physical position S.L2.40ch09: 2052389) 

DNA markers locus according to AMF2 (F2: S. lycopersicum 'Ailsa Craig' x S. lycopersicum 'Micro-Tom) linkage map information that publicly available from 

the Kazusa DNA Research Institute (KDRI) homepage, http://marker.kazusa.or.jp/Tomato/. 

Ch, chromosome; S, short arm; L, long arm; M, Micro-Tom, A, Ailsa Craig; H, Heterozygous; CAPS, cleaved amplified polymorphic sequences, SNP, single 

nucleotide polymorphism; dCAPS, derived CAPS.

Marker/locus 
Ch. 

 

arm 

 

Indivdual DNA sample from curl-2 x AC F2 
Allele frequency 

(%) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MT AC 

8181_419 1 S A H M H H A A H H H H H A H H H A H M 0.42 0.58 

tomlnf4286 1 L A H M H M A H H A H H H A M H H H H M 0.50 0.50 

tomInf6860 2 S A H H A M H H H M A A H A A A H A M A 0.34 0.66 

tomInf2289 2 L H H M A M A M H H H A H M H H M M H H 0.58 0.42 

10431_124 3 S H A A A A H H A H M H A M H H H M H M 0.45 0.55 

1622_2500 3 L H H H A M M H H M H H H A H A H H A A 0.45 0.55 

2325_361 4 S A A H A H A H H A A A H H H M A A A A 0.24 0.76 

5264_772 4 L H M M H H H H A H H H M H M H H A A M 0.55 0.45 

solCAP_51607 5 S M H M M H H H A H H H H H H M A M H H 0.58 0.42 

5799_537 5 L M H M M H H H A H H M H H H A H M H A 0.55 0.45 

8669_1517 7 S H M H A H H A M M M M H M H M H H A M 0.63 0.37 

19921_317 7 L A H H A M H A M H H M M M A A A H A H 0.45 0.55 

2404_427 8 S H M H A M H A H H H H M H M A A M M H 0.55 0.45 

3194_739 8 L H H H H M A A H H H M M A A H M A A H 0.45 0.55 

tomInf5375 9 S M M M H M M M H H H M  M M M H M A  0.79 0.21 

tomInf2042 9 S M A A H M M M H H H M M M M M A M H H 0.68 0.32 

7195_279 9 S M M M H M M M H H H M M M H M H M H H 0.79 0.21 

6033_534 9 S M M M H M M M H H M M M M M M H M H M 0.87 0.13 

14109_151 9 S M M M M M M H H H M M M M M M H M M M 0.89 0.11 

11485_183 9 L H H M H A A M H M H H H H H H M A M H 0.55 0.45 

tomInf3936 10 S H A A A A H A A  H H A H M M H H H H 0.36 0.64 

12496_320 10 L M H H H A A H H M A A H H H H H A A M 0.42 0.58 

3033_96 11 S M M H H M M H H  H M H H H H M M H A 0.67 0.33 

5972_1026 11 L H H M H A H M A H A M M A H H H H H M 0.53 0.47 

15328_509 12 S M H H H H H H H H A H H H H M A M H H 0.53 0.47 

http://marker.kazusa.or.jp/Tomato/
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Table 2.17 Predicted mutation position, amino acid substitution, and mutation type based on the whole exome sequence result. 

a The location in the chromosome in the tomato genome 

b Position of nucleotide substitution according to tomato genome sequence database, version SL2.50 (Sol Genomics Network) 

c Tomato genome sequence reference according to the position in column b 

d Alternative nucleotide sequence/ nucleotide substitution according to the position in column b 

e Location of nucleotide substitution of the gene in column f 

f Gene mutated according to Sol Genomic Network database 

* represents a stop codon 

 

 

Chromosomea 
Positionb 

(bp) 

REF 

nucc 

ALT 

nucd 
Withine Genef Strand 

Amino acid 

substitution 

Mutation 

type 

Arabidopsis 

homolog 

Arabidopsis 

homolog name 

curl mutant 

allele 

SL2.50ch09 6010739 G A Exon 6 Solyc09g014380.2.1 plus W262* nonsense AT2G38120.1 AtAUX1 curl-2, curl-6 

SL2.50ch09 6009292 G T Intron.4 Solyc09g014380.2.1 plus - intron AT2G38120.1 AtAUX1 curl-1, curl-3 
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Table 2.18. Phenotype-genotype association of the curl-1 in the ‘Micro-Tom’ background 

Individual plant 

sample 
phenotype curly intensity 

Genotype 

1 curly very strong Mutant 

2 curly very strong Mutant 

3 curly very strong Mutant 

4 curly very strong Mutant 

5 curly very strong Mutant 

6 curly very strong Mutant 

7 curly very strong Mutant 

8 curly very strong Mutant 

9 curly very strong Mutant 

10 curly very strong Mutant 

11 curly very strong Mutant 

12 curly very strong Mutant 

13 curly very strong Mutant 

14 curly very strong Mutant 

15 normal   Heterozygous 

16 normal   WT Micro-Tom 

17 normal   Heterozygous 

18 normal   WT Micro-Tom 

19 normal   WT Micro-Tom 

20 normal   Heterozygous 

21 normal   WT Micro-Tom 

22 normal   WT Micro-Tom 

23 normal   WT Micro-Tom 

24 normal   WT Micro-Tom 

25 normal   Heterozygous 

26 normal   WT Micro-Tom 

27 normal   WT Micro-Tom 

28 normal   WT Micro-Tom 

29 normal   Heterozygous 

30 normal   WT Micro-Tom 

31 normal   Heterozygous 

32 normal   WT Micro-Tom 

33 normal   WT Micro-Tom 

34 normal   WT Micro-Tom 

35 normal   WT Micro-Tom 

36 normal   WT Micro-Tom 

37 normal   WT Micro-Tom 

38 normal   WT Micro-Tom 

39 normal   Heterozygous 

40 normal   WT Micro-Tom 

41 normal   WT Micro-Tom 

42 normal   WT Micro-Tom 

43 normal   WT Micro-Tom 
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44 normal   Heterozygous 

45 normal   WT Micro-Tom 

46 normal   Heterozygous 

47 normal   WT Micro-Tom 

48 normal   WT Micro-Tom 

49 normal   WT Micro-Tom 

50 normal   WT Micro-Tom 

51 normal   Heterozygous 

52 normal   WT Micro-Tom 

53 normal   WT Micro-Tom 

54 normal   Heterozygous 

55 normal   WT Micro-Tom 

56 normal   WT Micro-Tom 

57 normal   WT Micro-Tom 

58 normal   WT Micro-Tom 

59 normal   WT Micro-Tom 

60 normal   WT Micro-Tom 

61 normal   WT Micro-Tom 

62 normal   WT Micro-Tom 

63 normal   WT Micro-Tom 

64 normal   Heterozygous 

65 normal   WT Micro-Tom 

66 normal   WT Micro-Tom 

67 normal   WT Micro-Tom 

68 normal   Heterozygous 

69 normal   WT Micro-Tom 

70 normal   Heterozygous 

71 normal   WT Micro-Tom 

72 normal   Heterozygous 

73 normal   WT Micro-Tom 

74 normal   WT Micro-Tom 

75 normal   WT Micro-Tom 

76 normal   WT Micro-Tom 

77 normal   WT Micro-Tom 

78 normal   WT Micro-Tom 

79 normal   WT Micro-Tom 

80 normal   WT Micro-Tom 

81 normal   WT Micro-Tom 

82 normal   WT Micro-Tom 

83 normal   WT Micro-Tom 

84 normal   WT Micro-Tom 

85 normal   WT Micro-Tom 

86 normal   Heterozygous 

87 normal   WT Micro-Tom 

88 normal   Heterozygous 

89 normal   WT Micro-Tom 
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90 normal   Heterozygous 

91 normal   WT Micro-Tom 

92 normal   WT Micro-Tom 

93 normal   Heterozygous 

94 normal   WT Micro-Tom 

95 normal   WT Micro-Tom 

96 normal   WT Micro-Tom 

97 normal   Heterozygous 

98 normal   Heterozygous 

99 normal   Heterozygous 

100 normal   WT Micro-Tom 

101 normal   WT Micro-Tom 

102 normal   Heterozygous 

103 normal   Heterozygous 

 

Phenotype-genotype association was tested in the F2 generation using dCAPS marker designed 

in the predicted mutation site. In the curl-1, among 103 F2 population, 14 plants showed curly 

leaf phenotype. Consistently, all plants showing mutant phenotype were also showed mutant 

genotype.  
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Table 2.19. Phenotype-genotype association of the curl-3 in the ‘Micro-Tom’ background 

Individual plant 

sample 

phenotype curly intensity 

Genotype 

1 curly very strong Mutant 

2 curly very strong Mutant 

3 curly very strong Mutant 

4 curly very strong Mutant 

5 curly very strong Mutant 

6 curly very strong Mutant 

7 curly very strong Mutant 

8 curly very strong Mutant 

9 curly very strong Mutant 

10 curly very strong Mutant 

11 curly very strong Mutant 

12 curly very strong Mutant 

13 curly very strong Mutant 

14 curly very strong Mutant 

15 curly very strong Mutant 

16 curly very strong Mutant 

17 curly very strong Mutant 

18 curly very strong Mutant 

19 curly very strong Mutant 

20 curly very strong Mutant 

21 curly very strong Mutant 

22 curly very strong Mutant 

23 curly very strong Mutant 

24 curly very strong Mutant 

25 curly very strong Mutant 
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26 normal   Heterozygous 

27 normal   Heterozygous 

28 normal   Heterozygous 

29 normal   WT Micro-Tom 

30 normal   WT Micro-Tom 

31 normal   Heterozygous 

32 normal   WT Micro-Tom 

33 normal   WT Micro-Tom 

34 normal   Heterozygous 

35 normal   WT Micro-Tom 

36 normal   WT Micro-Tom 

37 normal   Heterozygous 

38 normal   Heterozygous 

39 normal   WT Micro-Tom 

40 normal   Heterozygous 

41 normal   Heterozygous 

42 normal   Heterozygous 

43 normal   Heterozygous 

44 normal   Heterozygous 

45 normal   Heterozygous 

46 normal   Heterozygous 

47 normal   Heterozygous 

48 normal   WT Micro-Tom 

49 normal   Heterozygous 

50 normal   Heterozygous 

51 normal   Heterozygous 

52 normal   Heterozygous 

53 normal   Heterozygous 
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54 normal   Heterozygous 

55 normal   WT Micro-Tom 

56 normal   Heterozygous 

57 normal   Heterozygous 

58 normal   Heterozygous 

59 normal   WT Micro-Tom 

60 normal   Heterozygous 

61 normal   Heterozygous 

62 normal   Heterozygous 

63 normal   Heterozygous 

64 normal   Heterozygous 

65 normal   Heterozygous 

66 normal   Heterozygous 

67 normal   Heterozygous 

68 normal   Heterozygous 

69 normal   Heterozygous 

70 normal   Heterozygous 

71 normal   Heterozygous 

72 normal   WT Micro-Tom 

73 normal   Heterozygous 

74 normal   Heterozygous 

75 normal   Heterozygous 

76 normal   Heterozygous 

77 normal   Heterozygous 

78 normal   WT Micro-Tom 

79 normal   Heterozygous 

80 normal   Heterozygous 

81 normal   Heterozygous 
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82 normal   Heterozygous 

83 normal   WT Micro-Tom 

84 normal   Heterozygous 

85 normal   Heterozygous 

86 normal   Heterozygous 

87 normal   WT Micro-Tom 

88 normal   WT Micro-Tom 

89 normal   Heterozygous 

90 normal   Heterozygous 

91 normal   Heterozygous 

92 normal   Heterozygous 

93 normal   Heterozygous 

94 normal   Heterozygous 

95 normal   WT Micro-Tom 

 

Phenotype-genotype association was tested in the F2 generation using dCAPS marker designed 

in the predicted mutation site. In the curl-3, among 95 plants in the F2 population, 25 plants 

showed curly leaf phenotype. Consistently, all plants showing mutant phenotype were also 

showed mutant genotype.  
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Table 2.20. Phenotype-genotype association of the curl-6 in the ‘Micro-Tom’ background 

Individual plant 

sample 

Phenotype Curly intensity 

Genotype 

1 curly very strong Mutant 

2 curly very strong Mutant 

3 curly very strong Mutant 

4 curly very strong Mutant 

5 curly very strong Mutant 

6 curly very strong Mutant 

7 curly very strong Mutant 

8 curly very strong Mutant 

9 curly very strong Mutant 

10 curly very strong Mutant 

11 curly very strong Mutant 

12 curly very strong Mutant 

13 curly very strong Mutant 

14 curly very strong Mutant 

15 curly very strong Mutant 

16 curly very strong Mutant 

17 curly very strong Mutant 

18 curly very strong Mutant 

19 curly very strong Mutant 

20 curly very strong Mutant 

21 curly very strong Mutant 

22 curly very strong Mutant 

23 curly very strong Mutant 

24 curly very strong Mutant 

25 curly very strong Mutant 
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26 curly very strong Mutant 

27 curly very strong Mutant 

28 curly very strong Mutant 

29 normal   Heterozygous 

30 normal   Heterozygous 

31 normal   Heterozygous 

32 normal   Heterozygous 

33 normal   Heterozygous 

34 normal   WT Micro-Tom 

35 normal   Heterozygous 

36 normal   WT Micro-Tom 

37 normal   WT Micro-Tom 

38 normal   WT Micro-Tom 

39 normal   WT Micro-Tom 

40 normal   WT Micro-Tom 

41 normal   WT Micro-Tom 

42 normal   WT Micro-Tom 

43 normal   Heterozygous 

44 normal   WT Micro-Tom 

45 normal   WT Micro-Tom 

46 normal   Heterozygous 

47 normal   Heterozygous 

48 normal   Heterozygous 

49 normal   Heterozygous 

50 normal   Heterozygous 

51 normal   Heterozygous 

52 normal   WT Micro-Tom 

53 normal   Heterozygous 
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54 normal   Heterozygous 

55 normal   Heterozygous 

56 normal   WT Micro-Tom 

57 normal   WT Micro-Tom 

58 normal   Heterozygous 

59 normal   WT Micro-Tom 

60 normal   Heterozygous 

61 normal   Heterozygous 

62 normal   WT Micro-Tom 

63 normal   WT Micro-Tom 

64 normal   Heterozygous 

65 normal   Heterozygous 

66 normal   Heterozygous 

67 normal   WT Micro-Tom 

68 normal   WT Micro-Tom 

69 normal   WT Micro-Tom 

70 normal   Heterozygous 

71 normal   Heterozygous 

72 normal   WT Micro-Tom 

73 normal   Heterozygous 

74 normal   WT Micro-Tom 

75 normal   Heterozygous 

 

Phenotype-genotype association was tested in the F2 generation using dCAPS marker designed 

in the predicted mutation site. In the curl-6, among 75 plants in the F2 population, 28 plants 

showed curly leaf phenotype. Consistently, all plants showing mutant phenotype were also 

showed mutant genotype.  
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Table 2.21 The new alleles of SlLAX1 mutants screened by TILLING 

 a position of nucleotide substitution according to tomato genome sequence database, version 

SL2.50 (Sol Genomics Network) 
b Tomato genome sequence reference according to position in column a 
c Alternative nucleotide sequence/ nucleotide substitution according to position in column a 
d Location of nucleotide substitution of gene in the SlLAX1 gene 

*   This line was further analyzed to confirm mutant phenotype as well as mutation by Sanger 

sequencing 

** This line was previously found by forward genetic and mutation was also validated by 

TILLING 

TILLING: Targeted Induced Local Lesion IN Genome 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line 
Position in 

Ch. 9a (bp) 

Position from 

ATG start codon 

REF 

nucb 

ALT 

nucc 
Withind Strand 

Amino acid 

substitution 

Mutation 

type 

TOMJPW4247 6010486 1820 G A Intron 5 plus - intron 

TOMJPW4659 6010486 1820 G A Intron 5 plus - intron 

TOMJPW601/curl-7* 6010507 1841 G A Exon 6 plus W185* nonsense 

TOMJPW1386 6010567 1901 C A Exon 6 plus T205K missense 

TOMJPE8506/curl-6** 6010739 2073 G A Exon 6 plus W262* nonsense 

TOMJPW4310 6010768 2102 G A Exon 6 plus R272K missense 
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Fig. 2.1 Leaf morphology of the WT ‘Micro-Tom’ and three alleles of the curl mutants. 

(A-B) Mature leaf morphology of mature curl mutants in (A) adaxial and (B) abaxial view. The 

leaf images were captured from 2-month-old plants from the 5th leaflet. Scale bar: 2 cm. (C-D) 

Young leaf appearance of curl mutants. (C) adaxial and (D) abaxial view. The newly developed 

young leaves of the curl mutants were flat and indistinguishable from those of WT. Scale bar: 

1 cm) (E) Representative of the curl mutant (curl-1) when grown in in vitro culture. Scale bar: 

2 cm. The curly phenotype was not restored (F-G) Wild-type (F) and representative curl mutant 

(G, curl-1) grown under well-watered conditions in the greenhouse. Plant images were 

captured from 2- month-old plant. Scale bar: 1.5 cm. 
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Fig. 2.2 Partial chromosome mapping result of the curl mutant locus. 

The curl locus was found to associate with the marker 14109-151 on chromosome 9 in the F2 

mapping population derived from the cross between S. lycopersicum cv. ‘Ailsa Craig’ x S. 

lycopersicum cv. ‘Micro-Tom’. The marker information was obtained from the Kazusa DNA 

Research Institute AMF2 database (http://marker.kazusa.or.jp/). No such association was 

observed in other chromosomes (Table 2.16). 
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Fig. 2. 3 Identification of SlLAX1 (Solyc09g01480.2) as the most plausible candidate gene responsible for the curl phenotype.  

Genome-wide allele frequency data were obtained by exome sequencing of BCF2 bulked segregants that show the curl mutant phenotype. To 

narrow down candidate efficiently, four mapping populations derived from independent curl alleles (curl-1, 2, 3, 6) were constructed and subjected 

to exome sequencing. In all four mapping populations, a strong association was commonly observed for mutations within the SlLAX1 

(Solyc09g01480.2) gene, which is a homolog of the Arabidopsis AUXIN RESISTANT1 (AUX1) transporter gene. Black boxes indicate exons, 

transparent boxes indicate UTRs, and lines between boxes indicate introns. 
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Fig. 2. 4 Changes in nucleotide and protein amino acid sequence of the curl mutants.  

(A, B) A partial alignment of SlLAX1 cDNA sequence (A) or deduced protein amino acid sequence 

(B) among the tomato reference (SL2.50), wild-type Micro-Tom, curl-2, and curl-6. The mutation 

in curl-2 and curl-6 causes a premature stop codon, as shown by the red box (W262X). (C, D) A 

partial alignment of SlLAX1 cDNA sequence (C) or deduced protein amino acid sequence (D) 

among the tomato reference (SL2.50), wild-type Micro-Tom, curl-1, and curl-3. cDNA sequences 

were obtained by dideoxy sequencing (A, C). (E) Donor and acceptor splicing sites in intron 4 of 

the wild-type, curl-1, and curl-3 mutants. Square brackets indicate splicing sites. Double square 

brackets indicate alternative splicing site in the curl-1 and curl-3 mutants. The one-letter code 

indicates an amino acid. Uppercase indicates an exon, whereas lowercase indicates an intron 

sequence. The bold letter indicates a mutated sequence in intron 4 of the curl-1 and curl-3 mutants.  
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Fig. 2.5 Gene expression analysis of SlLAX1 in the WT and the curl mutants.  

 

Gene expression analysis was obtained by qRT-PCR. qRT-PCR primer was designed at 

downstream stop codon mutation in exon 6. The asterisks represent statistical significantly 

difference of means based on t-student test (* P<0.05, **P<0.01). 
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Fig. 2.6 SlLAX1 TILLING second screening result and nucleotide sequence alignment at the 

screening target site.  

(A) TILLING polyacrylamide gel image of the second screening. Mutations are shown as intense 

spots on the lanes both in IRD-700 (red circles) and IRD-800 (green circles). (B) Nucleotide 

sequence alignment at the targeted TILLING screening site. Point mutation are shown in each 

black transparent box. 
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Fig. 2.7 TILLING screening result and confirmation of phenotype of the new mutant allele, 

TOMJPW601-1/curl-7. 

 

(A) Polyacrylamide gel image of TILLING screening. The mutation in TOMJPW601-1/curl-7 is 

shown as an intense spot on the lanes both in IRD-700 (red circle) and IRD-800 (green circle). A 

single nucleotide change is shown on the sequence chromatogram (red arrowhead). (B-C) Whole-

plant images of curl-6 (left); a representative of the curl allele obtained using forward genetics; 

(middle and right) confirmation of the presence of curly leaves in the new selected allele, curl-7, 

in the M3 generation. Plant images were captured from 1 month (B) when curly leaf was just 

formed and 3-month-old plants (C) when the curly leaf phenotype progressed. Scale bar: 2 cm.  
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Fig. 2.8 cDNA and amino acid sequence of the new mutant allele, TOMJPW601-1/curl-7. 

 

(A) A partial alignment of SlLAX1 cDNA sequence among the tomato reference (SL2.50), wild-

type Micro-Tom, and TOMJPW601-1/curl-7. Nucleic acid substitution in the curl-7 mutant is 

shown by a gray highlight. (B) Partial protein amino acid sequence alignment of SlLAX1 

(Solyc09g01480.2) among the tomato reference (SL2.50), wild-type Micro-Tom, and 

TOMJPW601-1/curl-7. Mutation in curl-7 led to the conversion of tryptophan to a premature stop 

codon. The wild-type (WT) produced a 411-a.a. product, whereas curl-7 produced only a 185-a.a. 

product. The premature stop codon is indicated by a red box. 
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Chapter 3 

Phenotypic Characterization of the curl Mutants 
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3.1. Introduction 

Auxin has been reported to play central role in diverse plant growth and development including 

embryogenesis, organogenesis, root initiation and lateral root development, leaf initiation and 

development, flower initiation, fruit formation, vascular tissue formation, tropic response, and 

dormancy (Steinmann et al., 1999; Swarup et al., 2001; Aloni et al., 2006; Sieburth and Deyholos, 

2006; Bainbridge et al., 2008; Swarup et al., 2008; Péret et al., 2009; Vanneste and Friml, 2009; 

Wolters et al., 2011; Péret et al., 2012). Auxin controls almost all plant development aspects. Auxin 

also controls cell division, expansion, and differentiation.  

Leaves are the major plant organs whose primary function involves photosynthesis. Leaves 

play a major role in sensing the quality, quantity and duration of light, all of which are crucial for 

complete plant growth and development. Formation and development of flat leaf enable to capture 

optimum amount of sunlight for photosynthesis. Leaf initiation and morphogenesis have been 

known to be controlled by auxin (Bar and Ori, 2014). Leaf initiation and development are also 

sensitive to genetic and environmental factors. In most dicotyledonous plants, leaf primordia are 

formed from proliferative and undifferentiated cells in the shoot apical meristem (SAM) (Blein at 

al., 2013; Floyd and Bowman, 2010). The rates of division and elongation of cells at each stage 

are known to govern the final shape of the plant and throughout the leaf developmental process. 

Following leaf initiation, three axes are established, proximo-distal, medio-lateral, and dorso-

ventral (reviewed by Bar and Ori, 2014). Most leaves are dorsoventrally (upper to bottom) 

flattened and develop distinct upper (adaxial) and lower (abaxial) surfaces. Balanced 

coordination of polarity, auxin response, and cell division is essential for formation of normal and 

flat leaves development. Any imbalance of these coordination results in altered leaf shapes such 

as curly, crinkly, twisted, rolled, radial, or shrunken leaves (Yu et al., 2005; Liu et al., 2010; Liu et 



69 
 

al., 2011; Serrano-Cartagene et al., 2000). 

The unique and intriguing features of auxin are its polar transport. Auxin is synthesized in 

young leaf and shoot apex and transport basipetally into root tip (reviewed in Bennet et al., 1998; 

Blakeslee et al., 2005; Tromas and Perrot-Rechenmann, 2010). PAT directs auxin movement into 

other plant organs. PAT is governed and maintained by the coordinated action of AUX1/LAX and 

PIN carrier proteins, as an auxin influx and efflux carriers, respectively. Although PAT is 

maintained by synergistic action of AUX1/LAX and PIN, among auxin carriers, PIN1 is the most 

studied. The role of the PIN protein family in leaf morphogenesis is well documented, yet the role 

of AUX1/LAX remains neglected or is underestimated. For instance, mutation in PIN1 inhibits 

organ initiation in Arabidopsis, partially disrupt pin1 vegetative meristem (Okada et al., 1991; 

Guenot et al., 2012). In Cardamine hirasuta, mutation in PIN1 change compound leaf into simple 

leaf (Barkoulas et al., 2008). Also, the role of AUX1/ LAX genes in root development is well 

documented, but the role of these genes in leaf morphogenesis remains unclear. For instance, the 

AUX1/LAX family has been reported to promote lateral root emergence and formation (Marchant 

et al., 2002; Swarup et al., 2008; reviewed in Peret et al., 2009), root gravitropism (Bennet et al., 

1996; Marchant et al., 1999), and root-pathogen interactions (Lee et al., 2011). Recently, AUX1 

function in the aerial parts of plants has received interest, but studies are still considerably scarce. 

In Arabidopsis, AUX1 has been reported to control phyllotaxis patterning (Bainbridge et al., 2008), 

vascular patterning, xylem differentiation (Fabregas et al., 2015), and leaf serration (Kasprzewska 

et al., 2015). Moreover, most studies have been conducted in the plant model, Arabidopsis thaliana, 

while studies in tomato are still scarce. Isolation and characterization of curl mutants which has 

nonsense mutation in SlLAX1 in this study could help to investigate the pivotal role of this gene in 

normal leaf development. 



70 
 

In this chapter, I conducted some morphological experiments for detail characterization of the 

curl mutants in organ level. I checked root gravitropism of the mutant and lateral root formation 

as the most prominent trait of the aux1 mutant in Arabidopsis, the presence of mutant phenotype 

in seedling stage, early vegetative development, and I also checked the curvature index for 

quantifying the severity of leaf curvature. Furthermore, I also checked the effect of mutation in 

whole plant growth. 
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3.2 Materials and Methods 

3.2.1 Seedling stage 

Both quantitative measurement and qualitative characterization of seedling stage were 

performed at seven days after germination using 12 biological replications. In quantitative 

measurement, primary leaf length and width were recorded. In qualitative measurement, hypocotyl 

color and its intensity, as well as hypocotyl pubescence were observed according to “descriptor for 

tomato, IPGRI (International Plant Genetic Resources Institute)”. 

3.2.2 Observation of the first curly leaf formed and the evolution of curly leaf 

Time required for the first curly leaf formed was recorded right after the tip of leaf turned to 

curly. For quantification of the first curly leaf formed, eight plants from each line were recorded.  

3.2.3 Plant height and stem diameter measurement 

Plant height was measured from the basal stem to growth point of the main stem started from 

4 weeks after sowing (WAS). Four WAS was at the stage when plant start initiation from vegetative 

to reproductive growth. Plant height was measured every 2 weeks until 10 WAS. Fifteen plants 

were used for this measurement. 

Stem diameter was measured approximately 1 cm from the basal of stem, at the 3rd leaflet. It 

was measured at 4 and 6 WAS from 15 individual plants from each line. 

3.2.4 Fresh, dry weight, and dry matter content of shoot and fruits of the curl mutants 

Fresh, dry weight, and dry matter content were measured at the end of growing period (12 

weeks after sowing). Fruits were detached and measured separately. Plant shoots and fruits were 

cut and weighed freshly. Then, they were incubated in oven 60 oC for several days until completely 

dry. Dry matter content was determined by comparing dry weight/ fresh weight x 100%. For this 

measurement, 15 plants were used. 
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3.2.5 Curvature Index (CI) of the mutant leaf 

Curvature index (CI) of mutants was measured by a method introduced by Liu et al., 2010. 

The formula used to measure leaf curvature index is: 

CI= (ab-a’b’)/ab 

CI= curvature index 

ab= the distance between points a and b on two margins of curvature before flattening of leaves 

a’b’ = the distance between a and b on two margins after flattening 

Negative (-) CI represents upward curvature. 

By applying this method, Liu et al., (2010) had successfully quantified the curvature index of 

22 Arabidopsis mutants with has various degree of curvature. This method also allows us to 

characterize any subtle difference by numerical representation. In addition, this method is also 

applicable to know the global and local curvature, the direction, axis and the extent of curvature 

of phenotype of interest. Furthermore, because I have three mutant alleles that used for further 

characterization, comparing their phenotypic severity by quantification of CI was considerably 

valuable. In many cases, the mutants of several genes/ lines are similar in the phenotypes of 

curvature, and visual observation relies on the ability and skill of the observer and thus is not 

certain.  

Furthermore, the CI of young and mature leaves were measured to investigate the progression 

of leaf curvature. For measurement of CI, 15 mature leaves from the 5th leaflet were used. Young 

leaf CI was also measured. Young leaves were defined as newly formed leaves while progression 

of incurvature still slow, or slightly turned to curve in the tip and middle area, but the degree of 

curvature still very low. 

For the curvature measurement, two points exactly in the middle of leaf was recorded. The leaf 
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curvature along transverse and longitudinal axis was also measured using this formula. 

3.2.6 Petiole length, leaf width and length 

For petiole length, leaf width and length measurement, a leaf from each plant at the 5th leaflet 

was used, 15 leaves were used for each parameter measured. Most leaves had turned to curly at 

the time of measurement, then the leaves were flattened. Leaf width was examined by measuring 

of two distances of each edge at the middle area of leaf. Leaf length was examined by measuring 

of distance from proximal to distal edge of the leaves. 

Length and width ratio (LWR) was quantified by simply divided leaf length and width value 

of each measurement. Likewise, petiole length and leaf length ratio (PLR), petiole width to leaf 

width ratio (PWR) were quantified by comparing petiole length and leaf length and leaf width, 

respectively. 

3.2.7 Leaf area and perimeter measurement 

Leaf area and perimeter analysis were conducted at young and mature leaf stages, 15 leaves which 

harvested from the same position were used as the samples. Leaves photograph were captured using 

a digital camera, and the leaf area and perimeter were measured using CellSensStandard software 

(Olympus, Japan). The value of before and after flattening was compared to investigate percentage of 

the leaf area reduction as an effect of mutation, and the curly severity of young and mature leaves can 

also be clarified. Leaf perimeter and leaf area were measured by following the edge of leaf using a 

closed polygon measurement tool on the CellSensStandard software. Then, leaves were flattened and 

photograph after leaf flattening was taken. The reduction in leaf area and leaf perimeter (%) were 

measured by comparing the values before flattening and the values after flattening (multiplied by 100).  

 

3.2.8 Fresh and dry weight measurement 

Fresh weight was measure at the end of growing period (12 weeks after sowing). Fruits were 
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detached and measured separately. The plant’s shoot was incubated in oven 60 oC for several days 

until completely dry. Dry matter content was determined by comparing dry weight/ fresh weight x 

100%. 

3.2.9 Statistical analyses  

 Unless otherwise stated, data are presented as means ± SE (standard error). Analysis of variant 

(ANOVA) was carried out using IBM SPSS Statistics ver. 22. Student’s t-test (at 95 and 99% 

significant level) was used to analyze significant level between two values with the equal variant. 
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3.3 Result 

3.3.1 The mutation did not affect leaf curvature in the seedling stage 

To investigate the effect of mutation at seedling stage, quantitative and quantitative seedling 

parameters were measured at 7 days after germination. The curl-2 mutant showed reduce primary 

leaf length, however there was no significant reducing of leaf length in the curl-1 and curl-6. For 

the leaf width, the curl-6 was significantly reduced, in the other mutants were comparable (Table 

3.1). For the qualitative trait observation of the curl mutants at seedling stage, hypocotyl color and 

its intensity as well as hypocotyl pubescence were observed, they all were comparable between 

the WT and the mutants (Table 3.2, Fig 3.1). The curl lateral roots were less than of the WT, but 

the curl mutants had longer primary root (Fig. 3.1). Until 3 weeks after sowing, the mutant leaves 

were normal, incurvature could not be noticed (Fig 3.2). At 3 weeks after sowing, the curl mutant 

leaves slightly turned to curly at the lower part of stem at, however it was not so obvious. In this 

stage, the WT and mutant were slightly distinguishable (Fig.3.3). At 5 weeks after sowing the 

incurvature was clearly visible (Fig. 3.4). Furthermore, I investigated when the first curly leaf 

formed was initiated.  In all mutant lines observed, the first curly leaf was visible at 34 days after 

sowing (Table 3.3). At 2 months after sowing, almost all leaves (exclude newly developed leaves) 

had turned to curly, and the curly leaf could not be restored once it was formed (Fig. 3.5). 

3.3.2 The mutation affected overall plant growth 

In order to understand the effect of mutation in plant growth, plant height and stem diameter 

were observed. Plant height was measured every two weeks from 4 to 10 weeks after sowing 

(WAS). The plant height of all mutant lines was significantly reduced at all measurements and 

more obvious in the curl-1 (Table 3.4) suggested the inhibition of the stem elongation of the 

mutants. The stem diameter was measured at 4 and 6 WAS. Consistent with the plant height, stem 
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diameter of the curl mutants was also reduced (Table 3.5), and the reduction was more obvious in 

the curl-1. 

Furthermore, to investigate the effect of mutation in the plant growth more detail, at the end of 

growing period, the weight of shoot and fruits were measured (Table 3.6 and Table 3.7), 

respectively. Either the fresh weight or the dry weight of mutants were markedly reduced compared 

to that of WT. Likewise, the fresh weight and dry weight of fruits of all mutant lines were also 

significantly reduced. Consistently, the dry matter content of the mutant shoot and fruit was lower 

compared to that of WT. Taken together, these data suggested that the mutation affected overall 

plant growth of the mutants from the early developmental stage and growth inhibition effect was 

continuous until the latest stage of growth development. 

3.3.3 The mutation affected leaf flatness with high extent upward curvature 

To investigate how and when the curly leaf is formed and its progression in the organ level, the 

curvature index (CI) was measured both for young and mature leaves using the method introduced 

by Liu et al., (2010). Measuring the CI allows us to quantitatively understand both the direction of 

curvature and the specific curvature location (transversal or longitudinal axis) as well as the extent 

of the leaf curvature. Negative curvature represents upward bending of the leaf. At the early stage 

of leaf initiation and development Negative curvature represents upward bending of the leaf. At 

the early stage of leaf initiation and development, mutants developed and maintained flat leaves; 

after several (4-7) days following leaf initiation, the leaves gradually became curly, and the curly 

leaf severity increased concomitant leaf maturity (Fig. 3.6). The leaf incurvature was initiated from 

young leaves along the transversal axis to a low extent, while the longitudinal axis remained flat 

in all mutant lines (Table 3.8). To understand the curly leaf progression, the curvature of mature 

leaves of all mutants was also measured (Table 3.9). Consistently, leaf incurvature was observed 
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along the transversal axis to a high extent, and the longitudinal axis remained flat until the later 

stage of leaf development. These data suggested that the mutation was only restricted to the 

adaxial-abaxial (upper to bottom) impairment of the leaf; medio-lateral (center to edge) and 

proximo-distal (basal to tip) leaf curvatures were not affected. Furthermore, these data also 

suggested that leaf incurvature was more severe as leaf maturity progressed.  

In the young leaves, the tip and middle area were curly, while the basal area remained flat, 

which suggested that the leaf incurvature was initiated from the tip area followed by the middle 

area. In the mature leaves, the whole-leaf transversal axis had become curly (Fig. 3.7).  

3.3.4 The curl mutants showed narrower leaf and shorter petiole 

Furthermore, to investigate the effect of mutation on detail leaf features, petiole length, leaf 

length and width and their ratio were measured at young and mature leave stages. In the young 

leaves, the leaf length was affected by mutation, while the leaf length reduction was not so obvious 

(Table 3.10). The ratio of leaf length and width was comparable between the WT and all the curl 

mutants. In the mature leaves, the mutant leaves were shorter and slender as well as shorter petiole 

(Table 3.11, Fig. 3.8). 

3.3.5 Leaf area was markedly reduced in the curl mutants 

Leave is important plant organ that capture sunlight for photosynthesis. As a consequence of 

the curly leaf phenotype, the leaf surface that is exposed to sunlight could also be reduced. I also 

checked the percentage of reduced leaf area and perimeter both in young and mature leaves of 

mutants by flattening the curl mutant leaves. In the young leaves, leaf area was markedly reduced 

(41-56%, Table 3.12). The leaf perimeters of the WT and mutants were comparable. Consistently, 

in the mature leaves, the reduction in leaf area was more evident (55.8 – 64.0%) (Table 3.13), 

indicating a progression of severity that was concomitant with leaf maturity. 
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3.4 Discussion 

Our understanding of auxin-dependent leaf morphogenesis has significantly improved by the 

characterization of several auxin mutants combined with molecular approaches. For instance, axr-

1 (auxin-resistant 1) shows leaf defects (Lincoln et al.,1990). Mutation in incurvata13 (icu13), a 

recessive allele of axr6, causes leaf hyponasty (Esteve-Bruna et al., 2013), and mutations in ARF3, 

ARF4, ASSYMETRIC LEAF 1 (AS) and AS2 (Zgurski et al., 2005) in Arabidopsis show an impaired 

leaf flatness phenotype. In particular, it has been reported that mutation in the auxin efflux carrier 

PIN1 produces trumpet-like and rod-like leaves (Qi et al., 2014). Studies on the AUX1/LAX gene 

family in aerial parts of plants are scarce. In Arabidopsis, the AUX1/LAX1 family has been reported 

to control leaf serration (Kasprzewska et al., 2015), phyllotaxis patterning, vascular patterning, 

and xylem differentiation (Bainbridge et al., 2008; Fabregas et al., 2015). In tomato, transgenic 

SlARF4-RNAi lines produce hyponastic leaves (Sagar et al., 2013). Tomato SlPIN4-RNAi lines 

show leaf flatness defects and altered plant architecture (Pattison et al., 2012). However, the role 

of SlLAX1 has not been characterized. 

The curly leaf phenotype was not observed at the early stage of leaf development and does not 

related to relative humidity and water availability. Thus, the curly leaf phenotype was not caused 

by impairment adaxial-abaxial polarity since adaxial-abaxial polarity is established at the very 

early stage of leaf development, that is, at the primordium stage. The regulation of leaf incurvature 

in the curl mutants is likely distinct from that of previously characterized adaxial-abaxial polarity 

Arabidopsis mutants, such as kan1/kan2/kan3, rev/phb/phv, as1 and as2. In these mutants, adaxial-

abaxial polarity defects were evidenced at very early stages; consequently, the mutant leaves 

became radial, needle like or trumpet shaped (Eshed et al., 2004; McConnell and Barton 1998; 

McConnell et al., 2001). 
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The progression of curly in the mature leaf or later development stage presumably related to 

auxin distribution and gradient through SlLAX1. Auxin is synthesized in young tissue. The main 

sites of auxin biosynthesis are young leaf and shoot apex. In this study, the curly leaf initiated from 

leaf tip/distal area (Fig. 3.6). Probably due to defective auxin transport mediated by SlLAX1 

mutation, auxin depletion is occurred firstly at the tip. This idea is supported by Reindhardt et al. 

(2003) work. By observing auxin accumulation using PIN: GFP, they concluded that leaf 

primordial tip is an auxin sink. In the same analogy, as PIN1 and AUX/LAX act sinegically as auxin 

transport carriers, presumably the impairment of auxin influx in the curl mutants make depletion 

of auxin in the tip area. Also, Ljung et al. (2001) experiment data could explain this phenomenon. 

They reported that auxin content in the tobacco single leaf varied, the highest auxin content was 

in the petiole, and auxin gradient was gradually decrease in proximo-distal (basal to tip) direction, 

supporting the evident the initiation of the curly leaf was first observed in the leaf tip region, 

followed by middle and basal.  

Also, the mutation in the curl mutants had effect in the whole plant growth (Table 3.4-3.7). 

The mutants leaf diameter and leaf area were also markedly narrower and reduced compared to 

that of WT (Table 3.12, 3.13 Fig. 3.8). It is also possible controlled by the mutation in SlLAX1. 

Alternatively, the severe curly leaf may also affect photosynthesis that led the reducing the overall 

growth of leaf. These two possibilities could not be distinguished in the current experimental data. 
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Table 3.1 Quantitative measurement of the curl seedling 

Line Primary leaf 1 Primary leaf 2 

Length (cm) Width (cm) Length (cm) Width (cm) 

WT 2.2 ± 0.05 0.6 ± 0.01 2.1 ± 0.05 0.6 ± 0.01 

curl-1 2.2 ± 0.05 0.6 ± 0.02 2.2 ± 0.05 0.6 ± 0.01 

curl-2 1.8 ± 0.03** 0.6 ± 0.02 1.8 ± 0.03** 0.5 ± 0.02 

curl-6 2.1 ± 0.06 0.5 ± 0.01** 2.1 ± 0.06 0.5 ± 0.01** 

 

Seedling was measured at seven days after germination. 

The curl mutants showed reduced primary leaf length in the curl-2. 

Values are means ± SE (n=12). The asterisks represent statistical significantly difference of means 

based on t-student test (**P<0.01). 
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Table 3.2 Qualitative observation of the curl seedling 

Line Seedling qualitative traits** 

Hypocotyl color Hypocotyl color 

intensity 

Hypocotyl 

pubescence 

WT purple intermediate present 

curl-1 purple intermediate present 

curl-2 purple intermediate present 

curl-6 purple intermediate present 

 

** according to descriptor for tomato, IPGRI (International Plant Genetic Resources Institute). 

There was no different in seedling qualitative traits between WT and the curl mutants. 
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Table 3.3 The first curly leaf observed in each mutant allele 

Mutant line The first curly leaf observed (days) 

curl-1 34.5 

curl-2 34.4 

curl-3 34.4 

curl-4 34.3 

curl-5 34.4 

curl-6 34.5 

 

Values are means, n=8. There was no different in the time of the first curly leaf formed, among all 

mutant alleles.  
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Table 3.4 The height of plants in 4, 6, 8 and 10 weeks after sowing (WAS) 

Line 

Plant height (cm) 

4 WAS 6 WAS 8 WAS 10 WAS 

WT 12.6 ± 0.24 17.9 ± 0.67 20.1 ± 0.77 21.7 ± 0.74 

curl-1 8.4 ± 0.30** 12.3 ± 0.41** 13.2 ± 0.48** 14.0 ± 0.44** 

curl-2 10.2 ± 0.21** 15.7 ± 0.24** 17.4 ± 0.43** 18.3 ± 0.54** 

curl-6 9.8 ± 0.14* 14.5 ± 0.41** 16.1 ± 0.58** 17.0 ± 0.61** 

 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on t-student test (*P<0.05**P<0.01). Plant height was measured from the basal stem to 

growth point of the main stem. WAS: week after sowing 
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Table 3.5 Stem diameter of the curl mutants at 4 and 6 weeks after sowing (WAS) 

Line 

Stem diameter (mm) 

4 WAS 6 WAS 

WT 6.1 ± 0.06 6.59 ± 0.09 

curl-1 4.6 ± 0.08** 5.07 ± 0.15** 

curl-2 5.5 ± 0.10** 5.75 ± 0.09** 

curl-6 4.9 ± 0.06** 5.30 ± 0.09** 

 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on t-student test (*P<0.05**P<0.01). Stem diameter was measured approximately 1 cm from 

the basal stem, at the 3rd leaflet. The curl mutation significantly reduced stem diameter at 4 and 6 

WAS. 

WAS: week after sowing 
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Table 3.6 Fresh, dry weight, and dry matter content of shoot of the curl mutants 

Line Fresh weight (g) Dry weight (g) 
Dry matter content 

(%) 

WT 30.64 ± 1.32 2.89 ± 0.14 9 ± 0.00 

curl-1 14.52 ± 0.73** 0.84 ± 0.08** 6 ± 0.00** 

curl-2 22.52 ± 0.80** 1.79 ± 0.11** 8 ± 0.00 

curl-6 16.18 ± 0.41** 1.21 ± 0.06** 7 ± 0.00 

 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on t-student test (**P<0.01). Fresh, dry weight and dry matter content of the curl mutants 

were significantly reduced in the curl mutants suggested reduced growth of mutants. 
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Table 3.7 Fresh, dry weight, and dry matter content of fruits of the curl mutants 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on t-student test (**P<0.01). Fresh weight was measure at the end of growing period (12 

weeks after sowing). Fruits were detached and measured. The fruits were incubated in oven 60o C 

for several days until completely dry. Dry matter content was determined by comparing dry weight/ 

fresh weight x 100%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line Fresh weight (g) Dry weight (g) 
Dry matter 

content (%) 

WT 15.70 ± 1.11 1.18 ± 0.08 8 ± 0.00 

curl-1 **1.21 ± 6.77 **090. ± 0.42 **010. ± 6 

curl-2 **860. ± 6.25 **060. ± 0.46 **010. ± 7 

curl-6 **840. ± 6.98 **060. ± 0.52 **000. ± 7 
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Table 3.8 The curvature of the young leave of the curl mutants 

Line Direction Axis Transverse CI Longitudinal CI Extent 

WT flat - 0.0 ± 0.0 0.0 ± 0.0  

curl-1 upward transverse -0.3 ± 0.0** 0.0 ± 0.0 low 

curl-2 upward transverse -0.2 ± 0.0** 0.0 ± 0.0 low 

curl-6 upward transverse -0.3 ± 0.0** 0.0 ± 0.0 low 

 

Values are means ± SE (n=15). Curvature index (CI) of mutants was measured by a method introduced 

by Liu et al. 2010. 

CI= (ab-a’b’)/ab 

CI= curvature index 

ab= the distance between points a and b on two margins of curvature before flattening of leaves 

a’b’ = the distance between a and b on two margins after flattening 

Negative (-) CI represents upward curvature. 

Values are means ± SE (n=15). The asterisks represents statistical significantly difference of means 

based on Student’s t-test (**P<0.01).  

The flatness of either young or mature leaf curl mutants was impaired along transverse axis, 

whereas longitudinal axis was normal. 
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Table 3.9 The curvature of mature leave of the curl mutants 

Line Direction Axis Transverse CI Longitudinal CI Extent 

WT flat - 0.0 ± 0.0 0.00 ± 0.0 - 

curl-1 upward transverse -0.7 ± 0.2** -0.02 ± 0.0 high 

curl-2 upward transverse -0.8 ± 0.2** 0.00 ± 0.0 high 

curl-6 upward transverse -0.8 ± 0.2** -0.01 ± 0.0 high 

 

Values are means ± SE (n=15). Curvature index (CI) of mutants was measured by a method introduced 

by Liu et al. 2010. 

CI= (ab-a’b’)/ab 

CI= curvature index 

ab= the distance between points a and b on two margins of curvature before flattening of leaves 

a’b’ = the distance between a and b on two margins after flattening 

Negative (-) CI represents upward curvature. 

Values are means ± SE (n=15). The asterisks represents statistical significantly difference of means 

based on Student’s t-test (**P<0.01).  

The flatness of either young or mature leaf curl mutants was impaired along transverse axis, 

whereas longitudinal axis was normal. 
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Table 3.10 Young leaf quantitative measurement of the curl mutants 

Line Leaf length (cm) Leaf width (cm) LWR 

WT 3.7 ± 0.1 1.4 ± 0.0 2.6 ± 0.1 

curl-1 3.4 ± 0.1 1.3 ± 0.0 2.6 ± 0.1 

curl-2 3.6 ± 0.1 1.3 ± 0.0 2.8 ± 0.1 

curl-6 3.5 ± 0.1 1.3 ± 0.0 2.7 ± 0.1 

 

LWR: length and width ratio 

Values are means ± SE (n=15). The young leaf length and width of WT and the curl mutants was 

comparable. 
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 Table 3.11 Mature leaf quantitative measurement of the curl mutants 

LWR: Length to width ratio 

PLR: Petiole length and leaf length ratio 

PWR: Petiole width to leaf width ratio 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on t-student test (*P<0.05, **P<0.01). The curl mutants showed shorter and narrower leaf 

as well as shorter petiole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line 

Leaf length 

(cm) 

Leaf width 

(cm) 

Petiole length 

(cm) LWR PLR PWR 

WT 5.15 ± 0.14 2.43 ± 0.07 0.50 ± 0.02 2.1 ± 0.06 0.10 ± 0.0 0.20 ± 0.01 

curl-1 3.76 ± 0.09** 2.00 ± 0.08 0.38 ± 0.02* 1.9 ± 0.05 0.10 ± 0.01 0.19 ± 0.01 

curl-2 4.13 ± 0.10* 2.01 ± 0.07 0.44 ± 0.03 2.1 ± 0.07 0.11 ± 0.01 0.22 ± 0.02 

curl-6 3.86 ± 0.09** 2.07 ± 0.06** 0.38 ± 0.02** 1.9 ± 0.06** 0.10 ± 0.01 0.18 ± 0.01* 
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Table 3.12 Leaf area and leaf perimeter of young leaves of the curl mutants 

Values are means ± SE (n=15). The asterisks represent statistical significantly difference of means 

based on Student’s t-test (**P<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line 

Leaf area Leaf perimeter 

Before 

flattening 

(mm2) 

After 

flattening 

(mm2) 

Reduction 

(%) 

Before 

flattening 

(mm) 

After 

flattening 

(mm) 

Reduction 

(%) 

WT 685.2 ± 47.7 662.0 ± 40.4 3.5 125.7 ± 5.6 124.6 ± 5.7 0.9 

curl-1 397.1 ± 54.7** 694.3 ± 45.4 -42.8 119.3 ± 3.7 118.9 ± 3.9 0.3 

curl-2 289.3 ± 54.3** 664.9 ± 24.1 -56.5 130.1 ± 3.1 129.4 ± 2.4 0.5 

curl-6 316.6 ± 27.7** 649.7 ± 36.1 -51.3 121.1 ± 5.3 118.4 ± 3.5 2.3 
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Table 3.13 Leaf area and leaf perimeter of mature leaves of the curl mutants 

Line 

Leaf area  Leaf perimeter  

Before 

flattening 

(mm2) 

After 

flattening 

(mm2) 

Reduction 

(%) 

Before 

flattening 

(mm) 

After 

flattening 

(mm) 

Reduction 

(%) 

WT 1489.2 ± 63.2 1440.4 ± 57.3 3.4 188.1 ± 4.3 190.0 ± 5.8 -1.0 

curl-1 530.4 ± 72.9** 1471.8 ± 77.1 -64.0 175.0 ± 7.9 191.3 ± 7.8 -8.6 

curl-2 314.9 ± 70.4** 1362.1 ± 98.0 -76.9 180.6 ± 5.9 190.7 ± 7.2 -5.3 

curl-6 697.2 ± 81.6** 1575.5 ± 122.7 -55.8 189.9 ± 9.2 214.7 ± 11.3 -11.6 

 

Values are means ± SE (n=15). The asterisks represents statistical significantly difference of means 

based on Student’s t-test (**P<0.01). 
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Fig. 3.1 The WT and the curl mutant seedlings grown in in vitro culture at 7 days old. 

 

The curl mutants showed less and longer lateral root compared to that of the WT. Scale bar: 1 cm 
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Fig. 3.2 The WT and the curl mutant seedlings at 10 days old. 

 

The curly leaf phenotype was not evident at the seedling stage. The WT and curl mutants were 

similar at this stage. Scale bar: 1 cm 
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Fig. 3.3 The WT and the curl mutant seedlings at 3 weeks after sowing. 

 

The curl mutant leaves slightly turn to curly at the lower part of stem at the 3 weeks after showing, 

however it was not so obvious. In this stage, the WT and mutant were distinguishable. Scale bar: 

2 cm. 

 
 
 
 
 
 
 
 
 

WT curl-1 

curl-2 curl-6 
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Fig. 3.4 The WT and the curl mutant seedlings at 5 weeks after sowing. 

 

The curl mutant leaves gradually turned to curly at 5 weeks after showing. The leaves turned to 

curly for almost all leaflet (exclude newly developed leaf). Scale bar: 3 cm. 

 
 
 
 
 
 
 
 

WT curl-1 

curl-2 curl-6 
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Fig. 3.5 The curl mutant images at two months after sowing. 

 

At two months after showing, almost all leaves (exclude newly developed leaves) had turned to 

curly, and the curly leaf could not be restored once it was formed. Scala bar: 3 cm. 
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Fig. 3.6 Representative mutant leaf transition from normal to curly in curl-2.  

 

(A) Newly developed leaf. (B) Early curly leaf (4 days after image (A)). (C) Fully curly leaf (7 

days after (B)). Scale bar: 2 cm. The curl mutants formed normal flat leaf in the beginning. Leaf 

curly was initiated about four days after initiation. 
 
 

C 

A B 
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Fig. 3.7 Adaxial and abaxial surfaces of young (upper panel) and mature (bottom panel) tomato 

leaflets.  

 

(A) Adaxial (upper) surface of young tomato leaflets. (B) Abaxial (bottom) surface of young 

tomato leaflets. Young leaflets were detached from 1.5-month-old plants. (C) Adaxial (upper) 

surface of mature tomato leaflets. (D) Abaxial (bottom) surface of mature tomato leaflet. Mature 

leaflets were detached from the 5th leaflet of 2.5-month-old plants. Scale bar: upper panel, 3 cm; 

bottom panel, 2 cm. 
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Fig. 3.8 The curl mutants showed shorter petiole and narrower leaf. Scale bar: 2 cm. 
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Chapter 4 

Hormonal Content, Histological, and Gene Expression Analysis  

of the curl mutants 

 

  

 

 

 

 

 



103 
 

4.1 Introduction 

Phytohormones play important role in leaf morphogenesis and development. One of important 

factors governing leaf adaxial-abaxial polarity is auxin. Auxin signal and environmental cues 

direct plant morphogenesis and development. It has been reported that auxin acts in a dose or 

concentration dependent manner. Auxin, which is controlled by its biosynthesis and transport, 

forms concentration gradient in developing plant organs that governing different cellular process, 

including cell division, expansion, and proliferation (Benjamins and Scheres, 2008; Vanneste and 

Friml, 2009).  

Most leaves are dorsoventrally (upper to bottom) flattened and develop distinct upper 

(adaxial) and lower (abaxial) surfaces. Balanced coordination of polarity, auxin response, and cell 

division is essential for formation of normal and flat leaves development. Any imbalance of these 

coordination results in altered leaf shapes such as curly, crinkly, twisted, rolled, radial, or shrunken 

leaves (Yu et al., 2005; Liu et al., 2010; Liu et al., 2011; Serrano-Cartagene et al., 2000). The flat 

leave can be successfully formed by coordinated growth of epidermal, vascular, spongy cell in 

abaxial and palisade cell in adaxial surface (Horiguchi et al., 2006). The development of normal 

leaf requires cell expansion and division in precision manner. Although other phytohormones also 

control this polarity, auxin is reported to be a main player (reviewed in Enders et al., 2015). The 

increased growth in adaxial surface as compared to the abaxial surface cause epinastic (downward 

bending) curvature. Conversely, the increased growth of abaxial surface as compared to adaxial 

cause hyponastic (upward bending) curvature of leaf (reviewed in Sandalio et al., 2016). It has 

been reported that auxin plays role to control this mechanism. Any imbalance in auxin 

accumulation or gradient can lead this abnormality. Besides auxin, it has been well established that 

adaxial and abaxial fates are specified and regulated by the antagonistic interaction of several 
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transcription factors. Six families of TFs have been reported to control adaxial-abaxial polarity in 

the model plant Arabidopsis thaliana; class III homeodomain-leucine zipper (HD-ZIP), 

ASYMMETRIC LEAVES (AS), KANADI (KAN), AUXIN RESPONSE FACTOR (ARF), 

FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3) (reviewed in Nakata and Okada, 2013). 

Adaxial and abaxial fates are specified and regulated by the antagonistic interaction of these TFs.  

In addition to these TFs, micro RNAs (miRNAs) are also known to regulate abaxial-adaxial 

leaf polarity through post-transcriptional gene expression (Han et al., 2004). In Arabidopsis, 

several genes involved in miRNAs pathways have been reported such as ARGOUNATE1 (AGO1), 

HYPONASTIC LEAVES (HYL1), Hasty, AUXIN RESPONSE FACTOR (ARF3 and ARF4), 

(reviewed in Nakata and Okada, 2013). 

Numerous findings have indicated that AtAUX1 plays an important role in root gravitropism 

and lateral root development (Bennet et al., 1996; Marchant et al., 1999). Root gravitropism 

response is also commonly used to check auxin response and distribution. In this chapter, I checked 

root gravitropism response of the curl mutant as well as endogenous content of auxin and 

cytokinins in three leave developmental stages, namely young leave, early curling leave, and 

mature leave when curly leave was fully developed. Also, I investigated the epidermal cell features 

of the curl mutants using a scanning electron microscope Furthermore, I also checked gene 

expression analyses of auxin-related leaf flatness, and an adaxial specification gene, SlREV, at 

mature leaf of the curl mutants. 
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4.2 Materials and Methods 

4.2.1 Hormone analysis 

Leaves were sampled at three stages from the same positions: young stage, early curling stage, 

and fully curled stage. Three biological replications were included at each stage. At least 100 mg 

of fresh leaves was immediately frozen in liquid nitrogen and crushed into a fine powder using a 

TissueLyser (Qiagen, Germany). Endogenous hormones were measured using a UHPLC-Q-

Exactive (Thermo Fisher Scientific) system. Measurements were conducted as described by 

Kojima et al., 2009 and Shinozaki et al., 2015. 

4.2.2 Root gravitropism response 

For gravitropism response experiment, tomato seedlings were grown in in vitro culture for 4 

days, and then the plant boxes were rotated 90° for one day. 

4.2.3 Scanning electron microscope (SEM) experiment  

The leaf epidermal surface was observed using a scanning electron microscope (Hitachi 

Tabletop Microscope TM3000, Japan) integrated with a monitor and Hitachi TM3000 software, 

set to Analy observation mode. The cell feature was measured at the mature leaf stage when the 

leaves were completely turned to curly, precisely in the same regions on adaxial and abaxial 

surfaces. Mature fresh leaves were sampled and flattened before being subjected to microscopic 

observation. Approximately 0.5 x 0.5 cm2 of abaxial or adaxial surface was placed into a sample 

box, after which the epidermal pavement cell was imaged at 400x magnification for at least three 

biological replications. The cell size was quantified separately using CellSensStandard software. 

All measurements were obtained for at least three independently captured SEM images for each 

replication and three fields of view for each image. 
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For the number of pavement cell quantification, leaf samples were cut from midway precisely 

between the midrib to the margin of fully curly leaves. I used precisely the same position both in 

adaxial and in abaxial side, one side was used for adaxial pavement cell observation, and the other 

was used for abaxial. About 2-4 mm leaf sample in the tip area of transversal axis was cut 

irrespective the size from the midrib to the margin, and it was subjected to SEM experiment (Fig. 

4.1). The cell number was counted thoroughly in that region. Measurements were obtained from 

three biological replications. 

4.2.4 RNA extraction and cDNA synthesis, and qRT-PCR analysis 

Total RNA was extracted from young and mature leaves (when the leaves were completely 

curly) using an RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. To remove 

genomic DNA contamination, two steps were applied: an on-column RNase-free DNase Set 

(QIAGEN) and an RNA Clean & Concentrator™-5 (Zymo Research). Subsequently, cDNA was 

synthesized from 2000 ng of total RNA by a SuperScript VILO master mix (Invitrogen, Thermo 

Fisher Scientific, USA) according to the manufacturer’s instructions. 

The mRNA expression was quantified by qRT-PCR. A 10 ng/µl of cDNA template of three 

biological replicates was used for SlLAX1 gene expression analysis. SlActin  gene was used as an 

internal control (Lovdal and Lillo, 2009). The qRT-PCR reaction was carried out using CFX96 

Real-Time System (Bio-Rad, http://www.bio-rad.com) with SYBR Premix ExTaq II (Ili RNase H 

Plus; TaKaRa Bio, Japan). The primers used in the qRT-PCR are listed in Table 4.1. Relative gene 

expression was quantified using ΔΔCT method (Pfaffl, 2001). qRT-PCR mix reaction and thermal 

cycle condition are performed as described by Shinozaki et al., 2015. The primers for qRT-PCR 

were designed using the Primer3Plus website (http://primer3plus.com/), using joining two exons 

in either forward or reverse primer to exclude any possibility contamination of genomic DNA. 

http://primer3plus.com/
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4.3 Result 

4.3.1 Endogenous auxin and cytokinins contents of the curl mutants were normal 

As described above, all curl mutants commonly have mutation in the SlLAX1 gene, which 

encodes an auxin influx carrier. Functional characterization of this tomato gene has not been 

reported. To test the potential function of SlLAX1 as an auxin transporter in tomato, I measured 

the leaf endogenous level of auxin the curl mutants at three stages: in young leaves, before curly 

leaves formed; during early curly leaf formation; and in mature leaves, after leaves were fully curly. 

There was no significance different auxin between the WT and the curl mutants (Fig. 4.2). The 

IAA content significantly decreased from young leaves to mature leaves in both the WT and three 

curl mutants (Fig. 4.2 A). However, the auxin content at each leaf stage was comparable between 

the WT and curl mutants. Similarly, IAA conjugates and total IAA between the WT and the curl 

mutants were also comparable (Fig. 4.2B, C). 

4.3.2 The curl-6 showed gravitropism and lateral root formation defects 

In Arabidopsis, numerous findings have indicated the role of LAX1/AUX1 family in root 

gravitropism and lateral root formation (Bennet et al., 1996; Marchant et al., 2002, reviewed in 

Swarup and Peret, 2012). Importantly, root agravitropism is the most prominent defect and well-

characterized trait of the Arabidopsis aux1 mutant. In addition, the aux1 mutant also showed lateral 

root formation defects (Marchant et al., 2002). Thus, I further tested these traits in the curl-6 

mutant; as expected, the curl-6 mutant showed agravitropism as well as reduced lateral root 

formation, in agreement with Arabidopsis aux1 mutant phenotype (Fig. 4.3), suggesting the 

possibility of involvement of SlLAX1 as an auxin influx carrier in tomato similar to AtAUX1 

4.3.3 Abaxial pavement cell size of the curl mutants was significantly larger 

As the curl mutant phenotype is not related to water availability and relative humidity, and 
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the leaf was normal at the initiation which means not related to adaxial-abaxial polarity 

establishment, since the adaxial-abaxial polarity is established in the leaf primordia stage. I 

hypothesized that the curly leaf formation may related to differential cell growth on adaxial and 

abaxial surfaces. To observe histological features of the curl mutants, I measured pavement cell 

size and cell area using a scanning electron microscope (SEM) in the adaxial and abaxial surfaces 

at the mature leaf stage at the curly part (Table 4.2, Fig. 4.4). I noted that cell enlargement in the 

curl mutants was more prominent in the abaxial side. As a consequence, abaxial/adaxial pavement 

cell ratio was more prominent in the curl mutants. I also quantified the pavement cell number both 

in adaxial and abaxial surfaces. The number of pavement cells in both surfaces was comparable 

(Table 4.3). These data revealed that the leaf flatness impairment of the curl mutants is likely due 

to the differential cell growth between the adaxial and abaxial epidermal layers. Most likely, the 

curly leaf phenotype is related to cell enlargement in abaxial side. 

4.3.4 Relative expression of auxin-related genes in the curl mutants 

Recently, some studies have reported that impairment auxin biosynthesis, signaling, 

degradation, and conjugation result in leaf development defect such as wrinkled, curled leaf, and 

rounded leaf phenotype. I checked relative expression of some putative tomato auxin-related genes 

which were reported involved to control leaf flatness phenotype such as AtDof5.1 (Kim et al. 2010) 

which is homologous to SlDof25 and SlDof28 in tomato (Cai et al. 2013), LCR (LEAF CURLING 

RESPONSIVENESS) (Song et al. 2012), PNH (PINHEAD) (Newman et al. 2012), YUC1 (Cheng 

et al. 2007). At the young leaf stage, the expression level of LCR gene was slightly decreased in 

the curl mutants compared to that of WT but increased in the mature leaf (Fig. 4.5C, I). YUC1 

expression was also significantly decreased both in the young and mature leaves of the curl 

mutants (Fig. 4.5D, J) There was no significant different in Sldof28, and PNH at both stages (Fig. 
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4.5B, H, E, K). SlDof25 expression level was increased in the curl mutants at the mature leaf stage 

(Fig. 4.5G), while there was no significant change at the young leaf stage (Fig. 4.5A). It has been 

reported that Arabidopsis activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf 

phenotype by promoting Revoluta transcription (Kim et al. 2010). Revoluta (Rev) is an adaxial 

specification gene (Emery et al. 2003, Prigge et al. 2015). And most importantly, in tomato, it has 

also been reported that overexpression of a microRNA166-resistant version of SLREV 

(35S::REVRis) showed upward curly leaf phenotype (Hu et al. 2014). The gene expression of SlDof 

25 and SlRev was consistent with these findings (Fig. 4.5L). 
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4.4. Discussion 

To test the potential function of SlLAX1 as an auxin transporter, I first measured leaf 

endogenous auxin content. However, IAA content was comparable between WT and the curl 

mutants at all stages (Fig. 4.2). Numerous findings have indicated that AtAUX1 plays an important 

role in root gravitropism and lateral root development (Bennet et al., 1996; Marchant et al., 1999). 

Root gravitropism response is also commonly used to check auxin response and distribution. 

Therefore, I next tested these assays and found that the root gravitropism response of the curl 

mutant was affected by the SlLAX1 mutation. In addition, lateral root emergence was also disrupted 

(Fig. 4.3). Although the functional characterization of SlLAX1 has not been conducted in tomato 

and I do not yet have direct evidence in this study, agravitropism and lateral root formation defects 

of the curl mutants indicated that SlLAX1 may have a potential function as an auxin transporter 

similar to AtAUX1, and SlLAX1 might participate in local auxin distribution without affecting total 

endogenous auxin content of the whole leaf.  Functional analysis of SlLAX1 gene remains to be 

determined. Alternatively, in this study, I subjected whole leaves to auxin measurement, which 

would make it difficult to see spatial auxin accumulation in leaves. The quantification of local 

measurements would help explain the effect of spatial auxin accumulation in the formation of curly 

leaf phenotype. 

The curly leaf phenotype was not observed at the early stage of leaf development (Fig. 2.1C, 

D, Fig. 3.5), and does not related to relative humidity and water availability (Fig. 2.1E, G). Thus, 

I hypothesized that the curly leaf phenotype was caused by the alteration of adaxial/abaxial cell 

ratio rather than impairment adaxial-abaxial polarity since adaxial-abaxial polarity is established 

at the very early stage of leaf development, that is, at the primordium stage. To test this hypothesis, 

I measured pavement cell size in the epidermal adaxial and abaxial cell side at the mature leaves 
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when the leaf completely became curly. As I expected, pavement cell size in the abaxial in the curl 

mutants was significantly larger compared to that of WT, while there was no significant difference 

in the adaxial side. The number of pavement cell in adaxial and abaxial sides was comparable. The 

upward curling of the curl mutants might be explained by the differential growth of pavement cells 

in adaxial and abaxial cell surfaces, which is supported by similar observation of incurvata6 (icu6), 

semi-dominant allele of the AUXIN RESISTANT3 (AXR3), that showed an upward curly phenotype 

caused by a reduced adaxial/abaxial cell size ratio (Perez-Perez et al., 2010). The imbalance 

epidermal adaxial-abaxial cell growth which led to either epinastic (downward curvature) or 

hyponastic leaf is not new phenomenon. In previous finding, it was reported that auxin hyper 

accumulation plant produced leaf epinastic curvature  that was formed due to an increased growth 

of the leaf adaxial side (Klee et al., 1987;  Romano et al., 1993;  Kim et al., 2007), that induced by 

reduced auxin export that may cause its hyper-accumulation on the adaxial side. Taken together, 

SlLAX1 might have a function not in the establishment of adaxial-abaxial polarity but rather in 

balancing adaxial/abaxial cell size ratio in later stages of leaf development. The evaluation of auxin 

distribution and/or analysis of SlLAX1 gene expression on adaxial and abaxial leaf surfaces should 

allow for a better understanding of the SlLAX1 function in this process. 

According to the relative expression of some tomato putative auxin-related genes controlling 

leaf flatness, SlYuc1 showed prominent changes in both young and mature leaves of the curl 

mutants. YUC is a family of genes that are orthologs to ToTFZY (Expo´sito-Rodrı´guez et al., 2007), 

which has a function in local auxin biosynthesis (Zhao et al., 2001). In the previous finding, it has 

been reported that aux1 and yuc mutants in Arabidopsis have a synergistic effect to enhance each 

other to control leaf development. In Arabidopsis, activation tagging of AtDof5.1 resulted in an 

upward curly leaf phenotype (Kim et al., 2010). Dof5.1 was demonstrated to promote the Revoluta 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b36
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b52
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b34
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gene expression by binding to its promoter. Similarly to these finding (Kim at al., 2010), expression 

of SlDof25, an ortholog of Dof5.1, was increased in the all curl mutants (Fig. 4.5G). The SlRev 

expression level was also increased (Fig. 4.5L). Up regulation of AtDof5.1 also repressed transcript 

levels of auxin biosynthesis genes, which is consistent with low expression level of SlYuc1 in the 

curl mutants (Fig. 4.5D, J). In tomato, it has also been reported that overexpression of a 

microRNA166-resistant version of SLREV (35S::REVRis) showed upward curly leaf phenotype 

(Hu et al., 2014). Collectively, our findings are similar to previous findings which reinforce the 

partial disturbance of auxin homeostasis in the SlLAX1 mutants.  
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Table 4.1 Primer pairs that used for qRT-PCR  

 
Primer name Forward sequence 

5’- -3’ 

Reverse sequence 

5’- -3’ 

SlDof25 TCCCAATTTGCATCAGTTACAACA AACCTGGTCTGATTGAGCCC 

SlDof28 CTGATCGAGCCCGGATGG CCAGTACCTTTTAAAGCCTTGC 

LCR CCACTTGTACACCTACCAAGATGT GGAGGCTTTCCTGGTTCCAA 

Yuc1/ToFZY1 GGTGGTCAGAAATTCTGTGCA AGTGCTACCTAAGGTTAAGTTAGCA 

PNH CGTTGGGCATGCATCAACTT GGGTCCGGATTGAACTCCATT 

SlREV ACTCGACATGCTGGAGACAAC AGATACCACCAGGCAAACACG 
 

qRT-PCR primers were designed to span two exons either in forward or reverse sequence to 

remove possible contamination of genomic DNA. 
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Table 4.2 Adaxial and abaxial pavement cell size the curl mutants in the curly part measured by 

      a scanning electron microscope 

Line Pavement cell size (µm) Abaxial/adaxial pavement 

cell size ratio Adaxial Abaxial 

WT 43.36 ± 2.1 42.11 ± 3.4 0.97 

curl-1 36.04 ± 1.8 57.83 ± 6.4** 1.59** 

curl-2 36.90 ± 1.2 58.69 ± 4.1** 1.61** 

curl-6 38.07 ± 1.8 60.18 ± 1.3** 1.66** 

 

Values are means ± SE (n=9). The asterisks represent statistically significant differences in means 

with equal variants based on Student’s t-test (**P<0.01).  

The cell feature was measured at the mature leaf stage when the leaves were completely turned to 

curly, precisely in the same regions on adaxial and abaxial surfaces. 

The curl mutants showed a significantly larger abaxial/adaxial pavement cell size ratio compared 

to that of the wild-type (WT). 
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Table 4.3 Adaxial and abaxial pavement cell number of the curl mutants measured by a scanning 

     electron microscope 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line Pavement cell number (cells) Abaxial/adaxial pavement 

cell number ratio Adaxial Abaxial 

WT 1317.3 ± 49.5 1110.6 ± 70.8 0.84 

curl-1 1207.5 ± 80.6  1073.5 ± 65.2 0.89 

curl-2 1389.2 ± 105.2 1173.9 ± 26.9 0.85 

curl-6 1304.3 ± 73.6 1156.8 ± 59.6 0.89 
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Fig. 4.1 Illustration of the method and leaf area that were used for adaxial-abaxial cell number 

quantification in the scanning electron microscope experiment. 

Leaf samples were cut from midway precisely between the midrib to the margin of fully curly 

leaves. We used the same position both in adaxial and in abaxial side; one side was used for 

observation of adaxial pavement cell, and the other was used for observation of abaxial pavement 

cell. About 2-4 mm leaf sample in the tip area of transversal axis was cut irrespectively the 

size from the midrib to the margin. The cell number was counted thoroughly in that region. 

Measurements were carried out three biological replications. 
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Fig. 4.2 Auxin content of the curl mutants measured at three stages. Young leaf (grey), early curly 

developed (black), and mature leaf (strip).  

  

(A) Endogenous IAA (B) IAA in conjugate form (C) Total endogenous auxin content 

IAA: indole-3-acetic acid, the active from of auxin, IAA-Asp: IAA conjugates with aspartate, 

inactive form of auxin 
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Fig. 4.3 Gravitropism response and lateral root formation of wild-type and a representative of curl 

mutants, curl-6. 

 

(A) Wild-type (WT) seedlings showed a normal root gravitropism response and produced lateral 

roots. (B) The curl-6 showed agravitropism and failed to form lateral roots at the early seedling 

stage. Scale bar: 2 cm. 
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Fig. 4.4 Adaxial and abaxial pavement cell in the WT and the curl mutants at the curly part. 

 

(A) The adaxial pavement cell size of WT and mutants was comparable Scale bar: 20 µm (B) The pavement cell size of all curl mutants 

in abaxial surface was significantly larger compared to that of wild-type.  Scale bar: 10 µm. 

 

 

 

 

 

 



121 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4.5 Relative expression of auxin-related genes which were reported to control leaf flatness, 

observed by qRT-PCR at young and mature leaf stages. 

(A-E) Relative expression of gene at young leaf stage (A) SlDof25 (B) SlDof28 (C) SlLCR (D) 

SlYUC1 (E) SlPNH (F) Adaxial specification gene SlRev (G-L) Relative expression of gene at 

mature leaf stage, when leaf completely turned to curly (G) SlDof25 (H) SlDof28 (I) SlLCR (J) 

SlYUC1 (K) SlPNH (L) Adaxial specification gene SlRev. 

Values are means ± SE (n=3). The asterisks represent statistically significant differences in means 

with equal variants compared to the wild-type (WT) based on Student’s t-test (*P<0.05, **P<0.01). 

SlActin gene was used as an internal control. The expression level of the curl-1, curl-2, and curl-6 

mutants was relative by the wild-type (WT) expression.  



122 
 

 

 

 

 

 

 

 

Chapter 5 

General Discussion and Summary 

 

 

 

 

 

 

 

 

 



123 
 

5.1 General discussion 

I characterized several alleles of tomato mutants exhibiting severe leaf upward-curling 

phenotypes at the mature leaf stage (Fig. 2.1). This mutant phenotype occurs irrespective of water 

content or relative humidity. Six lines were isolated using a forward genetic approach by visually 

selecting curly leaf phenotypes in a previously generated tomato mutant population (Saito et al., 

2011; Shikata et al., 2016).  

Map-based cloning combined with WES revealed that the mutation occurred in the SlLAX1 

gene (Fig. 2.6 and 2.7). Then, to validate the phenotype consistency, by utilizing TILLING as a 

reverse genetic approach, I screened another nonsense mutation allelic line, curl-7, which was 

generated by EMS. The curl-7 mutant leaves were indistinguishable from those of the other 

previously selected lines (Fig. 2.7B, C). Furthermore, I confirmed the full-length coding sequence 

of SlLAX1 (Fig. 2.8A, B), which supported the evidence that SlLAX1 is the gene responsible for 

the curly leaf mutant phenotype. Taken together, the characterization of multiple alleles in this 

study that consistently showed indistinguishable phenotypes is strong evidence for the role of 

SlLAX1 in controlling the curly leaf phenotype. To our knowledge, this study is the first example 

of the successful exome sequence application in tomato in the identification of causal gene 

preceded by a forward genetic approach. 

SlLAX1 encodes a transmembrane amino acid transporter protein and belongs to the amino 

acid/auxin permease (AAAP) family. Homology searches indicated that the SlLAX1 protein 

sequence is homologous to Arabidopsis thaliana AtAUX1 (AT2G38120). In Arabidopsis, AUX1 

is one of four auxin influx carriers belonging to AUX1/LAX family that controls several 

developmental processes including gravitropism responses, venation patterns, and lateral roots 

(Vieten et al., 2007; Bennet et al., 1996). Although recent findings have indicated that the 
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AUX/LAX1 family also control aerial part development such as leaf serration (Kasprzewska et al., 

2015), phyllotaxis patterning, vascular patterning, and xylem differentiation (Bainbridge et al., 

2008; Fabregas et al., 2015), the role of AUX1/LAX gene family in leaf curling are poorly 

understood. In contrast, mutations in many auxin-related genes showed an impaired leaf flatness 

phenotype (Esteve-Bruna et al., 2013; Zgurski et al., 2005). In tomato, few studies have shown a 

relationship between auxin and leaf flatness; for instance, SlARF4-RNAi lines produce hyponastic 

leaves (Sagar et al., 2013) and SlPIN4-RNAi lines show leaf flatness defects as well as altered plant 

architecture (Pattison and Catala 2012). However, the role of SlLAX1 in controlling leaf curly 

phenotype has not been reported in tomato or other major crops. 

The tomato AUX1/LAX family consists of five genes (SlLAX1-5). They share high identity and 

similarity; the identity of SlLAX2, SlLAX3, SlLAX4, and SlLAX5 with SlLAX1 are 80.36%, 79.70%, 

92.65%, and 80.87%, respectively (Sol Genomics Network). All SlLAX genes are expressed in the 

mature leave and root of tomato (Pattison and Catala, 2012). The single mutants depleting SlLAX1 

used in this study, curl-1-7, showed a severe phenotype effect in leaf flatness, suggesting that the 

importance of SlLAX1 in controlling leaf flatness in mature leaves. Although the functional 

redundancy of the AUX1/LAX family, in addition to the function of SlLAX1 itself, is poorly 

characterized in tomato, their function in Arabidopsis is well characterized especially in root 

development. Although four AUX1/LAX genes share high sequence identity and similarity, 

AtAUX1 has the strongest auxin affinity and auxin influx activity (Peret et al., 2012, Rutschow et 

al., 2014). Peret et al. (2012) also reported that subfunctionalization of the AUX1/LAX family in 

root based on their distinct pattern of spatial expression and the subcellular localization. In contrast, 

the AUX1/LAX genes play redundantly in the context of phyllotaxy, vascular patterning, and xylem 

differentiation (Bainbridge et al., 2008; Fabregas et al. 2015). Therefore, the functional redundancy 
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of SlLAXs family in tomato leaf curling phenotype awaits further investigation. 

Arabidopsis AUX1 protein has eleven transmembrane (TM) helixes and is located in the 

plasma membrane. Using publicly available server, I checked the prediction of transmembrane 

helices in the SlLAX1 protein. The curl-2 and curl-6 mutants (Fig.2.4B) carry a nonsense mutation 

at the 262nd a.a., which is located in the TM helix VII (http://www.cbs.dtu.dk/services/TMHMM/), 

which is equivalent to the central region of AtAUX1 and has proven to be particularly important 

for protein function (Swarup et al. 2004). In addition, both curl-1 and curl-3 mutations (Fig. 2.4D) 

are located in the 145th a.a., which is located in TM helix IV, which is in the similar part of the N-

terminal half of AtAUX1 and is essential for its correct localization (Peret et al., 2012). 

Furthermore, the curl-1/curl-3, curl-2/curl-6, and curl-7 mutations caused nonsense mutations that 

can produce only 35, 63, and 45% of the WT protein, respectively (Fig. 2.4B, D, and 2.8A). 

Additionally, the relative expression of the curl mutant alleles (curl-1, curl-2, and curl-6) was less 

than 40% compared to that of WT (Fig. 2.5). These reasons presumably account for the loss-of-

function mutations of the SlLAX1 gene. 

To test the potential function of SlLAX1 as an auxin transporter, I first measured leaf 

endogenous auxin content. However, IAA content was comparable between WT and the curl 

mutants at all stages (Fig. 4.2). Numerous findings have indicated that AtAUX1 plays an important 

role in root gravitropism and lateral root development (Bennet et al., 1996; Marchant et al., 1999). 

Root gravitropism response is also commonly used to check auxin response and distribution. 

Therefore, I next tested these assays and found that the root gravitropism response of the curl 

mutants was affected by the SlLAX1 mutation. In addition, lateral root emergence was also 

disrupted (Fig. 4.3). Although the functional characterization of SlLAX1 has not been conducted 

in tomato and I do not yet have direct evidence in this study, agravitropism and lateral root 

http://www.cbs.dtu.dk/services/TMHMM/
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formation defects of the curl mutants indicated that SlLAX1 may have a potential function as an 

auxin transporter similar to AtAUX1, and SlLAX1 might participate in local auxin distribution 

without affecting total endogenous auxin content of the whole leaf. Functional analysis of SlLAX1 

gene remains to be determined. Alternatively, in this study, I subjected whole leaves to auxin 

measurement, which would make it difficult to see spatial auxin accumulation in leaves. The 

quantification of local measurements would help explain the effect of spatial auxin accumulation 

in the formation and severity of leaf flatness. 

The progression of curly in the mature leaf or later development stage presumably related to 

auxin distribution and gradient through SlLAX1. Auxin is synthesized in young tissue. The main 

sites of auxin biosynthesis are young leaf and shoot apex. In this study, the curly leaf initiated from 

leaf tip/distal area (Fig. 3.6). Probably due to defective auxin transport mediated by SlLAX1 

mutation, auxin depletion is occurred firstly at the tip. This idea is supported by Reindhardt et al. 

(2003) work. By observing auxin accumulation using PIN: GFP, they concluded that leaf 

primordial tip is an auxin sink. In the same analogy, as PIN1 and AUX/LAX act sinegically as auxin 

transport carriers, presumably the impairment of auxin influx in the curl mutants make depletion 

of auxin in the tip area. Also, Ljung et al. (2001) experiment data could explain this phenomenon. 

They reported that auxin content in the tobacco single leaf varied, the highest auxin content was 

in the petiole, and auxin gradient was gradually decrease in proximo-distal (basal to tip) direction, 

supporting the evident the initiation of the curly leaf was first observed in the leaf tip region, 

followed by middle and basal.  

The curly leaf phenotype was not observed at the early stage of leaf development (Fig. 2.1C, 

D, Fig. 3.5), and does not related to relative humidity and water availability (Fig. 2.1E, G). Thus, 

I hypothesized that the curly leaf phenotype was caused by the alteration of adaxial/abaxial cell 
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ratio rather than impairment adaxial-abaxial polarity since adaxial-abaxial polarity is established 

at the very early stage of leaf development, that is, at the primordium stage. To test this hypothesis, 

I measured pavement cell size in the epidermal adaxial and abaxial cell side at the mature leaves 

when the leaf completely became curly. As I expected, pavement cell size in the abaxial in the curl 

mutants was significantly larger compared to that of WT, while there was no significant difference 

in the adaxial side. The number of pavement cell in adaxial and abaxial sides was comparable. The 

upward curling of the curl mutants might be explained by the differential growth of pavement cells 

in adaxial and abaxial cell surfaces, which is supported by similar observation of incurvata6 (icu6), 

semi-dominant allele of the AUXIN RESISTANT3 (AXR3), that showed an upward curly phenotype 

caused by a reduced adaxial/abaxial cell size ratio (Perez-Perez et al., 2010). The imbalance 

epidermal adaxial-abaxial cell growth which led to either epinastic (downward curvature) or 

hyponastic leaf is not new phenomenon. In previous finding, it was reported that auxin hyper 

accumulation plant produced leaf epinastic curvature  that was formed due to an increased growth 

of the leaf adaxial side (Klee et al., 1987;  Romano et al., 1993;  Kim et al., 2007), that induced by 

reduced auxin export that may cause its hyper-accumulation on the adaxial side. Taken together, 

SlLAX1 might have a function not in the establishment of adaxial-abaxial polarity but rather in 

balancing adaxial/abaxial cell size ratio in later stages of leaf development. The evaluation of auxin 

distribution and/or analysis of SlLAX1 gene expression on adaxial and abaxial leaf surfaces should 

allow for a better understanding of the SlLAX1 function in this process. 

According to the relative expression of some tomato putative auxin-related genes controlling 

leaf flatness, SlYuc1 showed prominent changes in both young and mature leaves of the curl 

mutants. YUC is a family of genes that are orthologs to ToTFZY (Expo´sito-Rodrı´guez et al., 2007), 

which has a function in local auxin biosynthesis (Zhao et al., 2001). In the previous finding, it has 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b36
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b52
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04895.x/full?wol1URL=/doi/10.1111/j.1365-313X.2011.04895.x/full&regionCode=JP-13&identityKey=e6e1341b-ca3b-4277-bd33-e5c931dc5b6b#b34
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been reported that aux1 and yuc mutants in Arabidopsis have a synergistic effect to enhance each 

other to control leaf development. In Arabidopsis, activation tagging of AtDof5.1 resulted in an 

upward curly leaf phenotype (Kim et al., 2010). Dof5.1 was demonstrated to promote the Revoluta 

gene expression by binding to its promoter. Similarly to these finding (Kim at al., 2010), expression 

of SlDof25, an ortholog of Dof5.1, was increased in the all curl mutants (Fig. 4.5G). The SlRev 

expression level was also increased (Fig. 4.5L). Up regulation of AtDof5.1 also repressed transcript 

levels of auxin biosynthesis genes, which is consistent with low expression level of SlYuc1 in the 

curl mutants (Fig. 4.5D, J). In tomato, it has also been reported that overexpression of a 

microRNA166-resistant version of SLREV (35S::REVRis) showed upward curly leaf phenotype 

(Hu et al., 2014). Collectively, our findings are similar to previous findings which reinforce the 

partial disturbance of auxin homeostasis in the SlLAX1 mutants.  

The fact that lower auxin content triggers cell expansion is well established (Ishida et al., 2012, 

reviewed in Velasquez et al., 2016). I hypothesize that the loss-of-function of SlLAX1 in the curl 

mutants results in imbalance adaxial/abaxial pavement cell growth leading to curly leaf phenotype. 

Depletion of SlLAX1 in the curl mutants disrupts auxin transport in either adaxial or abaxial leaf 

surface. Given that there was no significant different in the adaxial pavement cell size (Table 4.2, 

Fig. 4.4), SlLAX1 action appears to be restricted to the abaxial side. SlLAX1 belongs to the 

SlLAXs family and other members are known to be expressed in leaves (Pattison and Catala, 2012). 

It is possible that other influx transporters compensate for the loss-of-function of SlLAX1 in the 

adaxial side. In contrast, the data suggest that SlLAX1 is a major determinant of auxin 

transportation dominant in the abaxial side. In adaxial side, where SlLAX1 is not a major auxin 

influx carrier, presumably auxin content of the curl mutants was similar or higher than that of the 

WT, while decreased auxin content in abaxial side due to low influx carrier activity. Auxin which 
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is not uptake by abaxial cell, may be accumulated in the adaxial side, or alternatively accumulated 

in the extracellular space (most likely the latter because the cell number in the adaxial and abaxial 

was comparable, means there was no increasing of cell division in adaxial). Therefore, the auxin 

content in the curl mutants could be maintained at the similar level with the WT, although local 

auxin content in the local region was disturbed (Fig. 4.2). Imbalance adaxial/abaxial cell growth 

due to differential auxin accumulation is also well established (Perez-Perez et al., 2010, reviewed 

in Sandalio et al., 2016). I speculate that the lower auxin content in abaxial cell surface triggers 

cell expansion and imbalance cell growth in both surface leading to curly leaf emergence. This 

hypothesis awaits further investigation. Locally depletion auxin content in the leaf causes different 

gene expression compared to the WT (Fig. 4.5). Differential of the expression level is determined 

by which type of cells corresponding gene mainly expressed (whether SlLAX1 is a major auxin 

transport in that cell) and the gene respond to auxin. Lower expression of SlYuc1 does not change 

leaf auxin content presumably because SlYuc is family genes (Expósito-Rodríguez et al., 2007). 

Other SlYuc genes may compensate total auxin biosynthesis, resulting in comparable amounts of 

auxin content in entire leaf.  

The mutation in the curl mutants had also effects in the whole plant growth (Table 3.4-3.7). 

The mutants leaf diameter and leaf area were also markedly narrower and reduced compared to 

that of WT (Table 3.12, 3.13 Fig. 3.8). It is also possible controlled by the mutation in SlLAX1. 

Alternatively, the severe curly leaf may also affect photosynthesis that led the reducing the overall 

growth of leaf. These two possibilities could not be distinguished in the current experimental data. 

In brief, this study contributes to the newly characterized role of SlLAX1 in controlling leaf 

development in tomato by balancing the adaxial-abaxial pavement cell enlargement potentially 

mediated by auxin. The evaluation of auxin distribution and/or analysis of SlLAX1 gene expression 
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on adaxial and abaxial leaf surfaces should allow for a better understanding of the SlLAX1 function 

in this process. Additionally, analysis of double mutants with other LAX or PIN family members 

and other adaxial-abaxial-specification genes would be helpful to dissect the precise mechanism 

of SlLAX1 in normal leaf development in plants. 
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5.2 Summary 

Tomato (Solanum lycopersicum L.) is an economically important crop in both tropical and in 

temperate regions. It is widely cultivated in almost all countries and it is used for both as fresh 

consumption and as raw material for processing industries. It is considered as one of the main 

sources of nutrition to support our health. Furthermore, tomato has been selected as an excellent 

model plant for genomic studies in the Solanaceae family, particularly as the most important model 

system for fleshy fruit development, vegetative development as well as a model for climacteric 

fruit. Additionally, in 2012, the tomato genome sequence has also been published. This effort can 

be valued as a significant achievement for accelerating tomato research both in basic and in applied 

research as well as for breeding program.  

Leaves are the major plant organs whose primary function involves photosynthesis. It has been 

known that auxin controls various aspects of plant growth and development, including leaf 

initiation, expansion, and differentiation. Unique and intriguing auxin features include its polar 

transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux 

carriers, respectively. The role of AUX1/ LAX genes in root development is well documented, but 

the role of these genes in leaf morphogenesis remains unclear. In this study, I isolated six lines of 

the curly leaf phenotype ‘curl’ mutants from a γ-ray and ethyl methanesulfonate (EMS) 

mutagenized population.  

The objectives of this study are (1) to investigate the responsible gene controlling the mutant 

phenotype (2) to characterize the morphology and genetic features of the curl mutants (3) to 

characterize the role of the responsible gene in leaf morphogenesis. 

Allelism test revealed that all mutants were allelic. Using a forward genetic approach and a 

map-based cloning strategy combined with whole-exome sequencing, I observed that a mutation 
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likely occurred in the SlLAX1 (Solyc09g014380) gene, which is homologous to Arabidopsis AUX1 

(AtAUX1), which encodes an auxin influx carrier. SlLAX1 encodes a transmembrane amino acid 

transporter protein and belongs to the amino acid/auxin permease (AAAP) family. In Arabidopsis, 

several studies have reported that AUX1 is an auxin influx carrier that controls several 

developmental processes including gravitropism responses, venation patterns and lateral leaf 

development. The function of SlLAX1 in controlling leaf flatness has not been reported in tomato 

or other major crops. Then, to validate the candidate gene by utilizing TILLING as a reverse 

genetic approach, I screened another nonsense mutation allelic line, curl-7, which was generated 

by EMS. The curl-7 mutant leaves were indistinguishable from those of the other previously 

selected lines. Taken together, the characterization of multiple alleles in this study that consistently 

showed indistinguishable phenotypes is strong evidence for the role of SlLAX1 in controlling the 

curly leaf phenotype. To our knowledge, this study is the first example of the successful exome 

sequence application in tomato in the identification of causal gene preceded by a forward genetic 

approach. 

SlLAX1 encodes a transmembrane amino acid transporter protein and belongs to the amino 

acid/auxin permease (AAAP) family. The tomato AUX1/LAX family consists of five genes 

(SlLAX1-5). They share high identity and similarity; the identity of SlLAX2, SlLAX3, SlLAX4, and 

SlLAX5 with SlLAX1 are 80.36%, 79.70%, 92.65%, and 80.87%, respectively. All SlLAX genes are 

expressed in the mature leave and root of tomato. The single mutants which has loss-of-function 

of SlLAX1 used in this study, curl-1-7, showed a severe phenotype effect in leaf flatness, suggesting 

that the importance of SlLAX1 in controlling leaf flatness in mature leaves. 
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Numerous findings have indicated that AtAUX1 plays an important role in root gravitropism 

and lateral root development. Root gravitropism response is also commonly used to check auxin 

response and distribution. The root gravitropism response of the curl mutants was affected by the 

SlLAX1 mutation. In addition, lateral root emergence was also disrupted, indicated that SlLAX1 

may have a potential function as an auxin transporter similar to AtAUX1, and SlLAX1 might 

participate in local auxin distribution without affecting total endogenous auxin content of the 

whole leaf.  

The curly leaf phenotype was not observed at the early stage of leaf development and does not 

related to relative humidity and water availability. I hypothesized that the curly leaf phenotype was 

caused by the alteration of adaxial/abaxial cell ratio rather than impairment adaxial-abaxial 

polarity since adaxial-abaxial polarity is established at the very early stage of leaf development, 

that is, at the primordium stage. As I expected, pavement cell size in the abaxial in the curl mutants 

was significantly larger compared to that of WT, while there was no significant difference in the 

adaxial side. The number of pavement cell in adaxial and abaxial sides was comparable. The 

upward curling of the curl mutants might be explained by the differential growth of pavement cells 

in abaxial cell surfaces.  

Briefly, through map-based cloning combined with WES, I characterized several alleles of the 

curly leaf mutants, which have nonsense mutation in the SlLAX1 gene. I reported that the SlLAX1 

gene controls curly leaf phenotype in the tomato curl mutants. This feature has never been 

characterized. The characterization of several alleles of single curl mutants in this study sheds light 

on the pivotal role of SlLAX1 in controlling leaf flatness mediated by normal adaxial-abaxial 

pavement cell growth. I also combined forward and reverse genetic approaches to validate the 

candidate gene. Using TILLING technology, I screened another nonsense mutant allele that 
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consistently shows a similar curly leaf phenotype with that of the curl mutants obtained by a 

forward genetic approach. This finding contributes to the newly characterized role of SlLAX1 in 

controlling or maintaining leaf adaxial-abaxial polarity in tomato by balancing the adaxial-abaxial 

cell expansion that potentially mediated by auxin. The evaluation of auxin distribution on the 

adaxial and abaxial leaf surfaces remains to be determined. Additionally, analysis of double 

mutants with other LAX or PIN family members and other adaxial-abaxial-specification genes 

would be helpful to dissect the precise mechanism of SlLAX1 in normal leaf development in plants. 
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