

Characterization of cyanobacterial cells synthesizing 10-methyl stearic acid

著者別名	鈴木 石根
journal or	Photosynthesis Research
publication title	
year	2018-06-25
権利	This is a post-peer-review, pre-copyedit
	version of an article published in
	Photosynthesis Research. The final
	authenticated version is available online at:
	https://doi.org/10.1007/s11120-018-0537-5".
URL	http://hdl.handle.net/2241/00152135

doi: 10.1007/s11120-018-0537-5

1	Characterization of cyanobacterial cells synthesizing 10-methyl
2	stearic acid
3	
4	Authors
5	Shuntaro Machida ^{a, b} and Iwane Suzuki ^{c,*}
6	
7	Affiliations
8	^a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-
9	1, Tsukuba, Ibaraki 305-8572, Japan
10	^b Food Research Institute, National Agriculture and Food Research Organization, Kannondai
11	2-1-12, Tsukuba, Ibaraki 305-8642, Japan
12	^c Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba,
13	Ibaraki 305-8572, Japan
14	
15	*Corresponding author
16	Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba,
17	Ibaraki 305-8572, Japan. Tel: +81-29-853-4908, Fax: +81-29-853-6614
18	E-mail address: iwanes6803@biol.tsukuba.ac.jp
	1

- 19 Abstract
- 20

Recently, microalgae have attracted attention as sources of biomass energy. However, fatty 2122acids from the microalgae are mainly unsaturated and show low stability in oxygenated environments, due to oxidation of the double bonds. The branched-chain fatty acid, 10-methyl 23stearic acid, is synthesized from oleic acid in certain bacteria; the fatty acid is saturated, but 24melting point is low. Thus, it is stable in the presence of oxygen and is highly fluid. We 25previously demonstrated that BfaA and BfaB in Mycobacterium chlorophenolicum are involved 26in the synthesis of 10-methyl stearic acid from oleic acid. In this study, as a consequence of the 2728introduction of bfaA and bfaB into the cyanobacterium, Synechocystis sp. PCC 6803, we succeeded in producing 10-methyl stearic acid, with yields up to 4.1% of the total fatty acid 29content. The synthesis of 10-methyl stearic acid in Synechocystis cells did not show a significant 30 effect on photosynthetic activity, but the growth of the cells was retarded at 34°C. We observed 31that the synthesis of 10-methylene stearic acid, a precursor of 10-methyl stearic acid, had an 32inhibitory effect on the growth of the transformants, which was mitigated under microoxic 33 conditions. Eventually, the amount of 10-methyl stearic 34acid present in the sulfoquinovosyldiacylglycerol and phosphatidylglycerol of the transformants was remarkably 35higher than that in the monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Overall, 36

37	we successfully synthesized 10-methyl stearic acid in the phototroph, Synechocystis,
38	demonstrating that it is possible to synthesize unique modified fatty acids via photosynthesis
39	that are not naturally produced in photosynthetic organisms.
40	
41	Keywords
42	
43	10-methyl octadecanoic acid, bfaAB, microalgae, mid-chain methyl-branched fatty acid,
44	Synechocystis sp. PCC 6803, tuberculostearic acid.
45	
46	Abbreviations
47	
48	MGDG; monogalactosyldiacylglycerol, DGDG; digalactosyldiacylglycerol, SQDG;
49	sulfoquinovosyldiacylglycerol, PG; phosphatidylglycerol, cobfaAB; codon optimized bfaA and
50	<i>bfaB</i> , GC; gas chromatography, FAME; fatty acid methyl ester, 16:0; palmitic acid, $16:1\Delta 9$;
51	palmitoleic acid, 18:0; stearic acid, 18:1 Δ 9; oleic acid, 18:2 Δ 9,12; linoleic acid, 18:3 Δ 6,9,12;
52	γ-linolenic acid, 18:3 Δ 9,12,15; α-linolenic acid, 18:4 Δ 6,9,12,15; stearidonic acid, 19:0Me10;
53	10-methyl stearic acid, 19:1 Δ Me10; 10-methylene stearic acid.
54	

55 Introduction

Contemporary society is dependent on the consumption of enormous quantities of fossil fuels. 57The fossil fuels are used not only as resources for transportation and generation of electricity at 58the large-scale but also as raw materials for the production of various chemicals. However, the 59use of fossil fuels is thought to accelerate global warming and increase environmental pollution. 60 Moreover, the demand for fossil fuels is rising due to global industrial expansion, while the 61 availability of these fuels is gradually diminishing. Therefore, exploitation of alternative 62 sources of liquid fuels is required to meet the needs of the society. In recent years, microalgae 63 64 have attracted attention as next-generation sources of biomass energy because of their high productivity and because they do not compete directly with the production of land crops, which 65are the primary sources of foods (Chisti 2007; Parmar et al. 2011). Methyl esters of fatty acids 66 from microalgae are primarily expected to serve as biodiesel. However, most of the fatty acids 67 in microalgae are C16-22 saturated and unsaturated fatty acids. The saturated fatty acids are 68 stable against atmospheric oxidation, but they solidify at ambient temperatures due to their 69 melting points being high. In contrast, the melting points of the polyunsaturated fatty acids are 70relatively low, and they are fluid at ambient temperatures. However, carbon-carbon double 71bonds in the carbon skeleton of polyunsaturated fatty acids are unstable due to susceptibility to 72

73	oxidation, making long-term storage difficult. These characteristics of fatty acids from the
74	microalgae limit their application as liquid fuels. Previously, we developed Synechocystis cells
75	which produce cyclopropane fatty acids, cis-9,10-methylene hexadecanoic and octadecanoic
76	acids, by the introduction of cfa for cyclopropane fatty acid synthase from Escherichia coli
77	(Machida et al. 2016). Finally, the ratio of the cyclopropane fatty acids in the total fatty acid
78	content in the cells comprises more than 30%. To obtain the more stable fatty acid than the
79	cyclopropane fatty acids, we attempted to develop cells producing branched-chain fatty acid.
80	In living organisms, modified fatty acids are essential for the functioning of the cellular
81	membranes and storage of lipids, where the fatty acids are esterified (Kniazeva et al. 2004).
82	Certain bacteria produce methylated fatty acids, such as cyclopropane fatty acids, branched-
83	chain fatty acids, and mycolic acids (Akamatsu and Law 1970; Cronan et al. 1974; Takayama
84	et al. 2005). As a branched-chain fatty acid, 10-methyl stearic acid (19:0Me10), also called
85	tuberculostearic acid or 10-methyl octadecanoic acid, is primarily known as a significant
86	component of the lipids of tubercle bacilli (Lennarz et al. 1962). The melting-point of 19:0Me10
87	is low (13.2°C), and the fatty acid is resistant to oxidation because it is saturated and branched.
88	It had been hypothesized that 19:0Me10 is produced by a two-step biosynthetic pathway
89	(Akamatsu and Law 1970; Jaureguiberry et al. 1965). The first step of biosynthesis is the
90	methylenation of oleic acid (18:1 Δ 9) with S-adenosyl-L-methionine as the methyl donor. The

91	10-methylene stearic acid (19:1 Δ Me10) formed has been identified in cells of <i>Corynebacterium</i>
92	<i>urealyticum</i> (Couderc et al. 1991). The second step is the reduction of 19:1ΔMe10 to 19:0Me10,
93	with NADPH as the reducing agent (Akamatsu and Law 1970). Our previous study revealed
94	that BfaB and BfaA from Mycobacterium chlorophenolicum catalyze these two steps,
95	respectively (Machida et al. 2017). By heterologous expression of <i>bfaA</i> and <i>bfaB</i> in <i>Escherichia</i>
96	<i>coli</i> , 19:0Me10 is synthesized <i>in vivo</i> from 18:1 Δ 9, which was supplemented in the media; cells
97	expressing only <i>bfaB</i> produce 19:1 Δ Me10.
98	Fatty acids are the main constituents of cell membranes in all living organisms. The
99	unsaturated fatty acids are essential to maintaining membrane fluidity, which is critical for
100	membrane function. Acyl-lipid desaturases of cyanobacteria introduce double bonds at specific
101	positions in the fatty acids that are esterified with the glycerol backbone of the membrane lipids
102	(Murata et al. 1992). The genes desA, desB, desC, and desD of Synechocystis sp. PCC 6803
103	encode the acyl-lipid desaturases that introduce double bonds at the positions $\Delta 12$, $\Delta 15$, $\Delta 9$,
104	and $\Delta 6$, respectively, of the C18 fatty acids bound at the <i>sn</i> -1 position of the lipids. In
105	Synechocystis, the expression of desA, desB, and desD is induced under low-temperature
106	conditions (Los et al. 1997). The membrane lipids of Synechocystis cells are composed of
107	glycolipids, such as monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol
108	(DGDG), and sulfoquinovosyldiacylglycerol (SQDG) and a single phospholipid,

109	phosphatidylglycerol (PG). Oxygenic photosynthetic organisms producing the unusual
110	modified fatty acids, such as branched-chain fatty acids, were not found in nature until now.
111	The laboratory-based synthesis of 19:0Me10 in Synechocystis is the first attempt.
112	In this study, we synthesized the fatty acid 19:0Me10 which is saturated and has a low
113	melting point in Synechocystis by expressing the M. chlorophenolicum genes, bfaA and bfaB.
114	To increase the yield of 19:0Me10 in vivo, we also examined the effects of mutations in desA
115	and <i>desD</i> in <i>Synechocystis</i> , which lead to accumulation of $18:1\Delta 9$, such that $18:1\Delta 9$ comprises
116	more than 40% of the total fatty acid content (Tasaka et al. 1996). We analyzed changes in fatty
117	acid composition, growth, and respiratory and photosynthetic activities in the Synechocystis
118	transformants.
119	
120	
121	Materials and Methods
122	
123	Organisms and culture conditions
124	
125	A glucose-tolerant strain of Synechocystis sp. PCC 6803 (Williams 1988) was used as the wild-
126	type strain in this study. The Synechocystis cells were grown in BG11 medium (Stanier et al.

127	1971) buffered with 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-
128	NaOH (pH 7.5) at 34°C or 24°C under continuous illumination at 70 μ mole photons m ⁻² s ⁻¹ by
129	white fluorescent lamps and aerated with 1% (v/v) CO ₂ -enriched air (Wada and Murata 1989).
130	For screening of transformants and maintaining of Synechocystis cells, we used BG11 medium
131	solidified with 1.5% (w/v) Bacto-agar (BD Biosciences Japan, Tokyo, Japan) including the 25
132	μ g/mL kanamycin sulfate, 25 μ g/mL spectinomycin dihydrochloride pentahydrate, or 25 μ g/mL
133	chloramphenicol (Wako Pure Chemicals, Osaka, Japan), depending on the selection markers.
134	For growth under microoxic conditions, liquid cultures were bubbled with $1\% (v/v) CO_2$ -mixed
135	nitrogen gas (Japan Fine Products, Kanagawa, Japan).
136	E. coli strain JM109 (Yanisch-Perron et al. 1985) was grown in 1.8 mL of LB medium
137	(Bertani 1951) at 37°C with shaking at 200 rpm. All transformants of E. coli were maintained
138	on LB medium solidified with 1.5% (w/v) Bacto-agar in the presence of 50 $\mu g/mL$ sodium
139	ampicillin or 50 µg/mL spectinomycin dihydrochloride pentahydrate (Wako Pure Chemicals),
140	depending on the selection markers.
141	
142	Plasmid construction and transformation

To express the heterologous target genes in Synechocystis, we constructed five plasmids,

145	pTHT2031-bfaA-S, pTHT2031-bfaB-S, pTHT2031-bfaAB-S, pTHT2031-cobfaAB-S, and
146	pTC2031-cobfaAB-S (Table S1), which were derived from the expression vector,
147	pTCHT2031v (Ishizuka et al. 2006). Fig. S1 shows the processes for the construction of these
148	plasmids. The plasmid pTCHT2031v contains five DNA fragments in the following order: the
149	upstream sequence of <i>slr2031</i> (slr2031up), a chloramphenicol resistance gene cassette (Cm ^r),
150	the trc promoter sequence (Ptrc), the downstream sequence of slr2031 (slr2031dn), and the
151	plasmid backbone of the pUC vector (Ishizuka et al. 2006). First, to replace the selection marker
152	Cm ^r with the spectinomycin resistance gene cassette (Sp ^r), we constructed pTHT2031, a
153	plasmid lacking Cm ^r , from pTCHT2031v by polymerase chain reaction (PCR) amplification of
154	the entire sequence of pTCHT2031v, except the Cm ^r sequence, using the primer set,
155	pTCHT_Cm_remove_InF_F and pTCHT_Cm_remove_InF_R (Table S2). The resulting
156	fragment was circularized with In-Fusion® HD cloning kit (Takara Bio, Ōtsu, Japan). The
157	genomic fragments corresponding to only <i>bfaB</i> , and to both <i>bfaA</i> and <i>bfaB</i> , were amplified by
158	PCR using <i>M. chlorophenolicum</i> JCM 7439 chromosomal DNA as the template and primer sets,
159	bfaB_Nde_F and bfaB_Bam_R and bfaA_Nde_F and bfaB_Bam_R, respectively. The
160	amplified DNA fragments were subcloned into a T-vector pMD19 simple vector (Takara Bio)
161	to obtain the plasmids pMD-bfaB and pMD-bfaA-4-bfaB. The DNA sequences of the inserts
162	were confirmed by using BigDye [®] Terminator v.3.1 (Life Technologies, Foster City, CA, USA)

163	and ABI 3130 Genetic Analyzer (Life Technologies). We then performed PCR to amplify a
164	DNA fragment containing the Sp ^r cassette using pAM1146 (Tsinoremas et al. 1994) as the
165	template and the primer set, Sp_Bgl_F and Sp_Bam_R. The Sp ^r fragment was digested with
166	BglII and BamHI, inserted into BamHI-cleaved pMD-bfaB and pMD-bfaA-4-bfaB, to obtain
167	pMD-bfaB-S and pMD-bfaA-4-bfaB-S, respectively. We selected plasmids in which the Sp ^r
168	fragments were transcribed in the same orientation as the genes of interest that were to be
169	expressed. The fragments containing bfaB-Sp ^r and bfaA-4-bfaB-Sp ^r were excised from these
170	plasmids by NdeI and BamHI digestion, and inserted into pTHT2031 digested with the same
171	restriction enzymes, to obtain pTHT2031-bfaB-S and pTHT2031-bfaA-4-bfaB-S, respectively.
172	The native sequence of <i>bfaA</i> and <i>bfaB</i> shows a 4-bp overlap between the genes. We previously
173	observed that the Shine–Dalgarno (SD) sequence is essential for the stable translation of the
174	BfaB protein in E. coli cells (Machida et al. 2017). To insert the canonical SD sequence (5'-
175	AGGAGGAATAAACC-3'), which is also present in the trc promoter region of the original
176	pTCHT2031v (Ishizuka et al. 2006) between the two open reading frames of <i>bfaA</i> and <i>bfaB</i> ,
177	pTHT2031-bfaA-4-bfaB-S was amplified using the primer set, SD_add_I_F and SD_add_I_R,
178	and circularized using In-Fusion [®] HD cloning kit to obtain pTHT2031-bfaAB-S. To construct
179	pTHT2031-bfaA-S, pTHT2031-bfaA-4-bfaB-S was linearized by PCR using the primer set,
180	Sp_up_F and bfaA_dn_inf_R, and circularized using the In-Fusion [®] HD cloning kit.

181	Both <i>bfaA</i> and <i>bfaB</i> were artificially synthesized (Life Technologies Japan, Tokyo),
182	and optimized for codon usage by Synechocystis (cobfaAB) (Fig. S2). The cobfaAB fragment
183	was amplified from pEX-cobfaAB using the primer set, coBfaAB_trc_inf_F and
184	coBfaAB_Sp_inf_R. After linearization of pTHT2031-bfaAB-S, using the primer set, Sp_up_F
185	and pTHT_trcdn_R, it was ligated with the cobfaAB fragment using In-Fusion® HD cloning
186	kit, resulting in the formation of pTHT2031-coBfaAB-S.
187	Two fragments, which were amplified from pTHT2031 and Synechocystis
188	chromosomal DNA using the primer sets, pTHT_cpc_inf_F and pTHT_cpc_inf_R and
189	cpc560_F and cpc560_R, respectively, were ligated using the In-Fusion [®] HD cloning kit to
190	produce pTC2031. We then performed PCR to amplify a DNA fragment containing the Sp ^r
191	cassette using pAM1146 as the template and the primer set, Sp_Bgl_F and Sp_Bam_R. After
192	digestion of pTC2031 and the amplified fragment containing Sp ^r with NdeI and BglII, we
193	constructed pTC2031-S by ligation. To obtain plasmid pTC2031-cobfaAB-S, pTC2031-S was
194	linearized by PCR using the primer set, Sp_up_F and cpc560_R, and ligated with the cobfaAB
195	fragment using primer set coBfaAB_cpc_inf_F and coBfaAB_Sp_inf_R.

197 Fatty acid analysis

199	The fatty acid profiles of the Synechocystis transformants were examined using the methods
200	described in our previous studies (Kotajima et al. 2014; Machida et al. 2016; Machida et al.
201	2017). The cells were precipitated by centrifugation, re-suspended in 2 mL of methanol, and
202	transferred to glass test tubes. After thoroughly drying by a concentrating centrifuge (CC-105,
203	Tomy Seiko, Tokyo, Japan), the residue was re-suspended in 0.1 M hydrochloric acid
204	methanolic solution (Wako Pure Chemicals). The tubes were tightly capped and incubated at
205	100°C for 1 h to allow for methyl esterification of the acyl groups in the lipids and conversion
206	into fatty acid methyl esters (FAMEs). The resulting FAMEs were recovered using <i>n</i> -hexane.
207	The recovered hexane phases were evaporated, and the residues containing the FAMEs were
208	dissolved in 200 μ L of <i>n</i> -hexane. To identify the FAMEs of palmitic acid (16:0), palmitoleic
209	(16:1 Δ 9), stearic acid (18:0), 18:1 Δ 9, linoleic acid (18:2 Δ 9,12), γ -linolenic acid (18:3 Δ 6,9,12),
210	α-linolenic acid (18:3Δ9,12,15), stearidonic acid (18:4Δ6,9,12,15), 19:0Me10, and 19:1 Δ Me10,
211	we performed gas chromatography (GC) using a GC-2010 gas chromatograph equipped with a
212	QP-2010 mass spectrometer (Shimadzu, Kyoto, Japan). Helium was used as a carrier gas at a
213	constant flow rate of 1.25 mL/min in splitless mode. A CP-Sil5 CB column (Agilent
214	Technologies, Santa Clara, CA, United States) was used at the following temperatures: 60°C
215	for 1.5 min, followed by 130°C at a temperature increase rate of 20°C/min, and then a further
216	increase to 230°C at an increase rate of 4°C/min. We confirmed the retention times and mass

217	spectra using commercial FAME standards (Nu-Chek Prep, Elysian, MN, >99%) and
218	methylesterified standard of 19:0Me10 (Larodan Fine Chemicals, Malmö, Sweden, ≥97%). To
219	quantify the FAMEs, we applied 1 μ L of the hexane solution to a GC-2014 gas chromatograph
220	equipped with a flame ionization detector (Shimadzu). The conditions of GC were identical to
221	those used for FAME identification.

223 Separation of lipid classes

224

225In order to analyze the fatty acid composition attached to the lipids, the harvested cells were 226stored at -80°C, and freeze-dried using FDU-1100 (Tokyo Rikakikai, Tokyo, Japan). The lipids were extracted with chloroform/methanol solution (2:1, v/v). The cell debris was precipitated 227by centrifugation, and the resulting supernatant was transferred into new tubes and evaporated. 228229 The samples were then re-suspended in 300 µl chloroform/methanol solution (2:1, v/v), and applied to a silica gel plate (Silicagel 70 FM Plate, Wako Pure Chemicals). The lipids were 230separated by thin-layer chromatography using acetone/toluene/water (91:30:7, v/v/v) as an 231eluent. The spots of each lipid were detected by staining with primulin, and then the silica gel 232corresponding to the lipid spots was scraped off. The fatty acids in the lipids obtained from 233silica gel were saponified and analyzed as described above. 234

Photosynthetic and respiratory activities

- Photosynthetic and respiratory activities were measured as evolution and absorption of oxygen, respectively, using an oxygen electrode (Oxytherm System, Hansatech, Norfolk, UK). The liquid culture of Synechocystis cells were grown at 34°C or 24°C for 1 d and assayed at the same temperature. Photosynthetic activity in the samples was measured at a light intensity of μ mole photons m⁻² s⁻¹, which represented saturated light conditions. Sodium bicarbonate (2.5 mM) was added to the cell suspensions as the carbon source. Respiratory activity was measured under dark conditions. **Results** Fatty acid analysis of Synechocystis cells transformed with bfaA and bfaB
- and *Corynebacterium*, synthesize the branched-chain fatty acid 19:0Me10. In our previous

Mycobacteria, including the members of the genera Mycobacterium, Nocardia, Rhodococcus,

study (Machida et al. 2017), we demonstrated that BfaA and BfaB from *M. chlorophenolicum* are involved in the biosynthesis of 19:0Me10 using $18:1\Delta 9$ as a substrate, which is one of the main components of fatty acids in *Synechocystis*. In the present study, we examined whether 19:0Me10 was synthesized from $18:1\Delta 9$ and incorporated into membrane lipids *in vivo* by the heterologous expression of *bfaA* and *bfaB* in wild-type *Synechocystis*.

In wild-type *Synechocystis* cells, $18:1\Delta 9$, which is believed to be the substrate for BfaB, comprised $10.3 \pm 0.8\%$ of the total fatty acid content (Table 1). In the strain containing *bfaA* and *bfaB* (*bfaAB*⁺), 19:0Me10 comprised $1.7 \pm 0.4\%$ of the total fatty acid content. Simultaneously, the $18:1\Delta 9$ content was slightly decreased to $9.3 \pm 2.0\%$. The relative amount of $18:2\Delta 9,12$ in the *bfaAB*⁺ strain was $16.5 \pm 1.3\%$, which was also lower than that in the wildtype cells ($24.0 \pm 0.4\%$). These results indicated that BfaA and BfaB were functional in the *Synechocystis* cells and that $18:1\Delta 9$ was used as the substrate.

To increase the amount of 19:0Me10 in the *Synechocystis* cells, we attempted to introduce *bfaA* and *bfaB* into the *desAD*⁻ strain, in which *desA* and *desD*, encoding for Δ 12 and Δ 6 desaturases, respectively, are disrupted and does not produce C18 polyunsaturated fatty acids (Tasaka et al. 1996). 18:1 Δ 9 constituted 43.1 ± 0.3% of the total fatty acid content of the *desAD*⁻ strain. Although we attempted to increase the amount of 19:0Me10 in the *desAD*⁻ */bfaAB*⁺ strain, it unexpectedly constituted only 2.8 ± 0.5% of the total fatty acid content.

271	Moreover, the fatty acid composition of the <i>Synechocystis</i> cells grown at 24°C was analyzed.
272	As a result, $bfaAB^+$ and $desAD^-/bfaAB^+$ strains comprised 0.8 ± 0.1% and 4.0 ± 0.4% of
273	19:0Me10 to total fatty acid (Table 2).
274	
275	Analysis of growth and photosynthetic activity in Synechocystis transformants
276	
277	In Synechocystis cells, 19:0Me10 is an unnatural fatty acid. Therefore, we examined the effects
278	of synthesis of this fatty acid on growth and photosynthetic activity of the Synechocystis cells.
279	The photosynthetic and respiratory activities of $bfaAB^+$ and $desAD^-/bfaAB^+$ cells at 24°C and
280	34°C showed no significant difference compared to those in each parental strain (Fig. 1),
281	respectively, whereas the growth of $bfaAB^+$ and $desAD^-/bfaAB^+$ cells, at the 34°C, was reduced
282	compared to those of the wild-type and <i>desAD</i> ⁻ cells, respectively (Fig. 2A and B). These results
283	suggested that 19:0Me10 biosynthesis, or the expression of BfaA and BfaB, may disturb cell
284	growth, but not the function of photosynthesis.
285	The cells of $bfaAB^+$ cultured at 24°C showed lower growth rate than the wild-type cells
286	as well as the both types of cells cultured in 34°C (Fig. 2C). The <i>desAD</i> ⁻ strain scarcely grew at
287	24°C, whereas the growth of the $desAD^-/bfaAB^+$ strain was slightly recovered (Fig. 2D) and
288	was similar to the growth of the $bfaAB^+$ strain (Fig. 2C). It seems that the synthesis of 19:0Me10

in the *desAD*⁻ strain which cannot synthesize any polyunsaturated fatty acids was helpful for
maintenance of the membrane fluidity.

291

292 Heterologous expression of *bfaA* or *bfaB* in *Synechocystis* cells

Because the cells transformed with *bfaA* and *bfaB* showed a decline in growth, we hypothesized 294that the production or incorporation of 19:0Me10 into the membrane lipids, and the expression 295of BfaA and/or BfaB, were harmful to the cells. To investigate this, cells expressing either BfaA 296or BfaB were generated and assayed. 297 298In our previous study, *E. coli* cells expressing the only *bfaB* accumulated 19:1 Δ Me10, which is the precursor of 19:0Me10 (Machida et al. 2017). Similarly, Synechocystis cells of 299300 strains $bfaB^+$ and $desAD^-/bfaB^+$, which were transformed with only the bfaB gene, produced $1.2 \pm 0.1\%$ and $1.8 \pm 0.2\%$, respectively, of 19:1 Δ Me10 relative to the total fatty acid content 301(Table 1). The cells of $bfaA^+$ and $desAD^-/bfaA^+$ expressing the only bfaA, which is essential 302for the reduction of 19:1\DeltaMe10 to 19:0Me10, did not show a significant difference in fatty 303 acid composition compared with the respective parental strains. The growth of $bfaA^+$ and 304 $desAD^{-}/bfaA^{+}$ strains was also almost the same as that of the wild-type and $desAD^{-}$ cells, 305306 respectively (Fig. 2A and B). In contrast, $bfaB^+$ and $desAD^-/bfaB^+$ strains showed significant

307	decreases in growth compared with their respective parental strains. Moreover, the growth of
308	cells expressing both <i>bfaA</i> and <i>bfaB</i> (<i>bfaAB</i> ⁺ and <i>desAD</i> ⁻ / <i>bfaAB</i> ⁺) was slightly better than that
309	of the cells expressing only $bfaB$ ($bfaB^+$ and $desAD^-/bfaB^+$). These results indicated that
310	19:1 Δ Me10, which is a precursor of 19:0Me10, may be toxic to the cells, and its reduction by
311	BfaA decreased the toxicity.

313 Cultivation of cells under microoxic conditions

314

A methylene group (C=CH₂) is present in the middle of the acyl chain of 19:1ΔMe10. Because 315316this functional group may be somewhat reactive, it is predicted that it may produce radicals 317under an oxygenic environment, resulting in oxidative stress in the cells. In the studies 318 mentioned above, the Synechocystis cells were cultured under conditions bubbling of air containing 1% (v/v) CO_2 through the media. In the present study, to diminish the oxidative 319 stress to cells, which is anticipated to be caused by the synthesis of 19:1\DeltaMe10, the cells were 320 cultured under microoxic conditions with 1% (v/v) CO₂ mixed in nitrogen gas. 321322Fig. 2E shows the cell growth in microoxic conditions. The decreased growth of $bfaB^+$ and $bfaAB^+$ strains shown in Fig. 2A was alleviated by the microoxic conditions. However, the 323

324 growth of the transformants was still slightly lower than that of the wild-type strain. Even a

325	small amount of oxygen synthesized during photosynthesis may trigger oxidative stress in the
326	cells producing 19:1 Δ Me10. The growth of the wild-type cells in microoxic conditions was
327	slightly slower than that in aerobic conditions. It is speculated that the cells cultivated in the
328	microoxic conditions may have interfered with respiration, which subsequently retarded the
329	growth rate. Moreover, analysis of the fatty acid composition of the cells cultured under
330	microoxic conditions revealed no significant difference compared with that of cells cultured
331	under aerobic conditions (Table S3).
332	
333	Transfection of codon-optimized <i>bfaA</i> and <i>bfaB</i> and the <i>cpc</i> promoter
334	
335	In the <i>bfaAB</i> ⁺ and <i>desAD</i> ⁻ / <i>bfaAB</i> ⁺ strains, 19:0Me10 constituted $1.7 \pm 0.4\%$ and $2.8 \pm 0.5\%$ of
336	the total fatty acid content, respectively (Table 1). To improve the production of 19:0Me10 in
337	Synechocystis cells, we introduced codon optimized (co) bfaA and bfaB (Fig. S2), and the cpc
338	promoter instead of the trc promoter. The cpc promoter is involved in the expression of the
339	genes for the cyanobacterial antenna protein phycocyanin, which is one of the most abundantly
340	synthesized proteins in the cells, and has been reported to be one of the most robust promoters
341	inducing higher expression in Synechocystis cells of exogenous genes than the trc promoter (Ng
342	et al. 2015; Zhou et al. 2014).

343	Plasmids pTHT2031-cobfaAB-S, in which the codon-optimized <i>bfaA</i> and <i>bfaB</i> genes
344	are driven by trc promoter, and pTC2031-cobfaAB-S, in which these genes driven by cpc
345	promoter, were transformed into wild-type Synechocystis and desAD ⁻ cells. As a result, in the
346	wild-type cells expressing both cobfaA and cobfaB under the regulation of trc and cpc
347	promoters, 19:0Me10 constituted 2.3 \pm 0.2% and 1.3 \pm 0.1% of the total fatty acid content,
348	respectively (Table 3). In contrast, in the $desAD^{-}$ cells expressing the cobfaA and cobfaB under
349	the regulation of <i>trc</i> and <i>cpc</i> promoters, 19:0Me10 consisted of $4.1 \pm 0.6\%$ and $2.7 \pm 0.1\%$ of
350	the total fatty acid content, respectively. The $desAD^{-}$ strain expressing both $cobfaA$ and $cobfaB$
351	under the regulation of trc promoter showed the highest production of 19:0Me10 in the study,
352	which was approximately two times higher than that in the wild-type cells expressing both <i>bfaA</i>
353	and <i>bfaB</i> under regulation of <i>trc</i> promoter at $1.7 \pm 0.4\%$. While the production of 19:0Me10 in
354	the cells expressing cobfaA and cobfaB under the control of cpc promoter was lower than that
355	in the cells expressing <i>bfaA</i> and <i>bfaB</i> under the control of <i>trc</i> promoter. These results indicated
356	that optimization of codon usage improved the efficiency of translation of BfaA and BfaB, and
357	contributed to increased production of 19:0Me10.

- **Fatty acid composition of each lipid class in** *Synechocystis* cells

361	The highest production of 19:0Me10 reported in this study was $4.1 \pm 0.6\%$ of the total fatty acid
362	content (Table 3). The source of <i>bfaA</i> and <i>bfaB</i> is <i>M. chlorophenolicum</i> , in which 19:0Me10
363	constitutes 14% of the total fatty acid content (Hagglblom et al. 1994). Although the target
364	genes were overexpressed in <i>Synechocystis</i> cells, along with a significant amount of $18:1\Delta 9$ as
365	the substrate for 19:0Me10, the production of 19:0Me10 in Synechocystis transformants was
366	lower than that in <i>M. chlorophenolicum</i> . As a reason why the productivity of 19:0Me10 was
367	kept at the low level, we considered the differences in the lipid classes in <i>Synechocystis</i> and <i>M</i> .
368	chlorophenolicum. The lipids in M. chlorophenolicum are phospholipids, including
369	phosphatidylethanolamine, PG, diphosphatidylglycerol, phosphatidylinositol, and
370	phosphatidylinositol mannosides (Hagglblom et al. 1994). In contrast, the lipids in
371	Synechocystis are primarily glycolipids, including 50% of MGDG 10% to 20% of DGDG,
372	SQDG, and PG (Wada and Murata 1990; Wada et al. 1994). Based on this information, we
373	speculated that BfaA and BfaB would preferentially modify $18:1\Delta 9$ bound to the phospholipid,
374	as the substrate. We fractionated the lipids extracted from Synechocystis transformants using
375	thin-layer chromatography and analyzed the fatty acid composition in each lipid class.
376	The composition of MGDG, DGDG, SQDG, and PG was approximately 49%, 18%,
377	30%, and 3% of the total lipid extracted from the $bfaAB^+$ strain, respectively. These percentages
378	were not significantly different from those previously reported for the wild-type cells (Wada

379	and Murata 1990; Wada et al. 1994), or from values obtained in this study (data not shown),
380	suggesting that the expression of <i>bfaA</i> and <i>bfaB</i> did not affect the lipid composition of the cells.
381	As a result, the amount of 19:0Me10 esterified to MGDG was $0.3 \pm 0.1\%$ of the total fatty acid
382	content and it esterified to DGDG was trace amount in the $bfaAB^+$ strain, whereas for SQDG
383	and PG, it was 3.4 ± 0.4 and $6.4 \pm 1.6\%$ (Table 4). Moreover, in the <i>desAD⁻/bfaAB</i> ⁺ strain,
384	MGDG was included only 0.6 \pm 0.1% of 19:0Me10, while SQDG and PG were included 5.7 \pm
385	1.6% and 8.8 \pm 2.2%. In both the <i>bfaAB</i> ⁺ and <i>desAD</i> ⁻ / <i>bfaAB</i> ⁺ strains, the amount of 19:0Me10
386	bound to the SQDG and PG was remarkably higher than that bound to MGDG and DGDG.
387	Especially, the ratios of 19:0Me10 to total fatty acid comprised in PG extracted from the $bfaAB^+$
388	and $desAD^{-}/bfaAB^{+}$ strains were approximately 4 and 3 times higher than those in total lipid
389	contents extracted from both strains, respectively. On the other hand, the ratios of $18:1\Delta9$ to the
390	total fatty acid comprised in SQDG and PG was not significantly altered in that in MGDG, and
391	DGDG in the $bfaAB^+$ and $desAD^-/bfaAB^+$ strains. These results indicated that 18:1 Δ 9 which
392	binds to SQDG and PG is likely to be specifically converted into 19:0Me10 by the action of
393	BfaA and BfaB.
394	

Discussion

Synthesis of branched-chain fatty acid in *Synechocystis* and substrate specificity of BfaA
 and BfaB

401	We succeeded in synthesizing 19:0Me10 in vivo by the introduction of bfaA and bfaB into
402	Synechocystis, with 18:1 Δ 9 accumulation in the cells being slightly decreased (Table 1). To
403	increase the total relative amount of 19:0Me10 in the cells, we introduced <i>bfaA</i> and <i>bfaB</i> into
404	the <i>desAD</i> ⁻ strain, which accumulates $18:1\Delta 9$ to a much higher level than do the wild-type cells.
405	However, the amount of 19:0Me10 in $bfaA_{\star}^+$ and $desAD^-/bfaA_{\star}^+$ strains showed no significant
406	difference. Additionally, we attempted to employ codon optimized <i>bfaA</i> and <i>bfaB</i> , and the <i>cpc</i>
407	promoter, but the amount of 19:0Me10 in the transformants remained at less than 5% of the
408	total fatty acid content (Table 3). We predicted that differences in the lipid composition between
409	Synechocystis and M. chlorophenolicum, the source of bfaA and bfaB, might be problematic.
410	Fatty acid analysis of each lipid type revealed the amount of 19:0Me10 incorporated in SQDG
411	and PG was remarkably higher than that in MGDG and DGDG of the Synechocystis
412	transformants (Table 4). These results suggest that BfaA and BfaB may specifically modify the
413	18:1 Δ 9 that is bound to SQDG and PG, and the production of 19:0Me10 may be limited in
414	Synechocystis since the amount of SQDG and PG in Synechocystis is only about 20%-40% of

415	the total lipid (Wada and Murata 1990; Wada et al. 1994). The head groups of both SQDG and
416	PG are negatively charged by sulfate- and phosphate-groups, respectively. BfaA and BfaB
417	might have high affinity to the negatively charged lipids, rather than galactolipids. However,
418	acyl groups in Synechocystis cells exist as free fatty acid, bound to acyl carrier protein, and as
419	lipids. In particular, fatty-acid desaturases, which modify acyl groups like those of BfaA and
420	BfaB, have the following characteristics. There are three types of fatty acid desaturase, acyl-
421	lipid, acyl-CoA, and acyl-ACP desaturase (Murata and Wada 1995). The acyl-lipid desaturases
422	introduce unsaturated double bond into fatty acids bound to lipids (Murata et al. 1992; Murata
423	and Wada 1995) and possess a transmembrane domain (e.g., DesA, DesB, DesC, and DesD).
424	In contrast, the acyl-CoA and acyl-ACP desaturases recognize acyl groups bound to coenzyme
425	A or acyl-carrier protein, respectively, as substrates (Murata et al. 1992; Murata and Wada 1995).
426	In particular, one of the acyl-ACP desaturases, stearoyl-ACP desaturase from Arabidopsis
427	thaliana (e.g., AC002333), does not possess a transmembrane domain. From these features of
428	fatty acid desaturases, it is predicted that the enzymes that modify fatty acids bound to lipids
429	are insoluble, while enzymes that modify fatty acids bound to ACP are soluble. Both, BfaA and
430	BfaB, do not possess any transmembrane domains. As mentioned above, if BfaA and BfaB
431	specifically modify oleic acid bound to SQDG and PG, it is uncommon that BfaA and BfaB do
432	not possess any transmembrane domains. However, the cyclopropane fatty acid synthase (Cfa)

from *E. coli*, which can methylate oleic acid and convert it to cyclopropane fatty acid, does not
contain a transmembrane domain (Wang et al. 1992). Moreover, in a previous study, it was
reported that Cfa can modify oleic acid that is bound to phospholipid (Grogan and Cronan 1997).
These phenomena are consistent with our hypothesis regarding substrate specificity of BfaA
and BfaB.

Small amounts of 19:0Me10 were detected not only from SQDG and PG, but also from 438the MGDG. The fatty acids in the cells are ACP bound, lipid bound, and are also present as free 439fatty acids; these are synthesized by acyl-ACP synthase, acyltransferase, and hydrolase, 440 respectively. However, Gao et al. (2012) demonstrated that the amount of free-oleic acid is 441442much lower than that of the other free fatty acids, including 16:0; 18:0; 18:2 Δ 9,12; and 18:3 Δ 6,9,12 accumulated in the *Synechocystis* cells with a disrupted *slr1609* (encodes acyl-ACP) 443synthase) (Gao et al 2012). This result indicates that oleic acid may tend to be present in the 444 lipid-bound. In our study, if 19:0Me10 synthesized on the SQDG and PG was rapidly 445transferred to other lipids without any deflection, there should have been no significant 446 difference in the amount of 19:0Me10 for each lipid class; however, a difference was observed. 447448 19:0Me10 may not be easily released into the free-fatty acid pool, like oleic acid. Besides, 19:0Me10 might be difficult to catalyze by an acyl-ACP synthase or acyltransferases because 449 the fatty acid is non-native in Synechocystis. 450

452 Effect of synthesizing 10-methylene stearic acid (19:1 Δ Me10) on cell growth

Although the growth of the cells transformed with *bfaA* and *bfaB* was lower than that of the 454parental strain expressing neither bfaA nor bfaB, the cells transformed with the only bfaA 455exhibited no significant difference in growth compared with the parental strain at 34°C (Fig. 4562A, B). The cells expressing only *bfaB* accumulated 19:1 Δ Me10 (Table 1), and showed a lower 457growth rate than the cells transformed with both bfaA and bfaB at 34°C. These results indicate 458that 19:1\DeltaMe10 produced by BfaB may be toxic to the cells, and may, thereby, inhibit cell 459460 growth. In contrast, the growth of the cells expressing both bfaA and bfaB was slightly better than that of the cells expressing only bfaB at 34°C. From this result, it is hypothesized that the 461toxicity of 19:1\DeltaMe10 was reduced by the activity of BfaA. Because the photosynthetic and 462 respiratory activities of four strains, wild-type, $bfaAB^+$, $desAD^-$, and $desAD^-/bfaAB^+$, did not 463 show any significant differences (Fig. 1), the toxicity of 19:1\DeltaMe10 may have a negative 464influence on a physiological response other than photosynthesis. Moreover, because the 465 466 reduction in the growth of cells transfected with *bfaB* was mitigated by microoxic conditions, it is assumed that 19:1\DeltaMe10 induced oxidative stress in the cells. To produce 19:0Me10 467 efficiently, the expression level of bfaA and bfaB should be regulated, and the toxicity of 468

469 19:1 Δ Me10 must be avoided.

470	At present, only C. <i>urealyticum</i> is found to be a natural producer of $19:1\Delta Me10$
471	(Couderc et al. 1991). In contrast, the production of 19:0Me10 has been reported in many
472	mycobacteria and related species, including Mycobacterium tuberculosis (Khuller et al. 1982),
473	Corynebacterium tuberculostearicum (Brown et al. 1984), Rhodococcus ruber (Hwang et al.
474	2015), and Nocardia donostiensis (Ercibengoa et al. 2016). This information may suggest that
475	a system was adopted in nature to avoid the toxicity of $19:1\Delta$ Me10 by reducing it to $19:0$ Me10.
476	Moreover, the accumulation of $19:1\Delta$ Me10 in <i>C. urealyticum</i> suggests that this organism uses
477	another strategy for detoxifying the oxidants of fatty acids.
478	
479	
480	Conclusions
481	
482	We succeeded in the synthesis of 19:0Me10, which is saturated and has a low melting point in
483	Synechocystis by the introduction of bfaA and bfaB from M. chlorophenolicum. The production
484	of 19:0Me10 in Synechocystis was 4.1% of the total fatty acid content due to the use of cells
485	with disruptions in genes <i>desA</i> and <i>desD</i> and the optimization of codon usage for <i>bfaA</i> and <i>bfaB</i>
486	in Synechocystis. For Synechocystis cells synthesizing 19:1\DeltaMe10, the precursor of 19:0Me10,

487	growth was decreased, but the decline was mitigated by microoxic conditions. This indicates
488	that 19:1 Δ Me10 caused oxidative stress on the cells. The amount of 19:0Me10 present in SQDG
489	and PG in the Synechocystis transformants was remarkably higher than that in MGDG and
490	DGDG. This suggests that the substrate specificity of BfaA and BfaB is for oleic acid bound to
491	SQDG and PG. Based on our findings, it is expected that the efficient production of 19:0Me10
492	in microalgae can be achieved through the regulation of <i>bfaA</i> and <i>bfaB</i> expression levels, and
493	the modification of the substrate recognition site for BfaA and BfaB. Finally, our study indicates
494	that by genetic manipulations via the action of photosynthesis, photosynthetic organisms can
495	produce unconventional modified fatty acids that are not found naturally in the cells. This
496	technique will be key in the production of useful compounds related to the fatty acids in the
497	microalgae.
498	
499	
500	Acknowledgments
501	
502	The genomic DNA of <i>M. chlorophenolicum</i> JCM 7439 ^T was obtained from RIKEN BRC, which
503	is a participant in the National BioResources Project of the MEXT, Japan.

Tables

505	Table 1. Fatty	acid composition	of Synechocystis	cells expressing bfa	A and <i>bfaB</i> at 34	l°C
-----	----------------	------------------	------------------	----------------------	-------------------------	-----

50	6
----	---

				Fatty a	cid (mol %)			
Strain	16:0	16:1Δ9	18:0	18:1Δ9	18:2Δ9,12	18:3Δ6,9,12	19:0Me10	19:1Me10
Wild type	52.8 ± 0.4	2.8 ± 0.1	1.0 ± 0.4	10.3 ± 0.8	24.0 ± 0.4	9.0 ± 0.5	_ ^a	-
$bfaA^+$	54.2 ± 0.9	2.3 ± 0.4	2.3 ± 0.9	14.6 ± 2.6	18.2 ± 0.9	8.4 ± 1.0	-	-
$bfaB^+$	58.8 ± 0.4	2.3 ± 0.5	0.8 ± 0.1	13.9 ± 0.6	16.8 ± 1.5	6.2 ± 0.6	-	1.2 ± 0.1
$bfaAB^+$	59.0 ± 1.2	1.7 ± 0.9	1.4 ± 0.3	9.3 ± 2.0	16.5 ± 1.3	10.4 ± 1.2	1.7 ± 0.4	-
desAD ⁻	53.8 ± 0.2	1.6 ± 0.9	1.4 ± 0.7	43.1 ± 0.3	-	-	-	-
desAD ⁻ /bfaA ⁺	54.0 ± 3.7	2.5 ± 0.4	2.1 ± 0.1	41.4 ± 3.3	-	-	-	-
$desAD^{-}/bfaB^{+}$	55.5 ± 1.6	1.5 ± 0.5	1.4 ± 0.8	39.8 ± 2.0	-	-	-	1.8 ± 0.2
desAD⁻/bfaAB+	54.3 ± 0.6	2.9 ± 0.4	2.4 ± 0.3	37.6 ± 0.4	-	-	2.8 ± 0.5	-

^a not detected.

508 Table 2 Fatty acid composition of *Synechocystis* cells expressing *bfaA* and *bfaB* at 24°C

50)9
----	----

					Fatty acid	l (mol %)			
Strain	16:0	16:1Δ9	18:0	18:1Δ9	18:2Δ9,12	18:3Δ6,9,12	18:3Δ9,12,15	18:4∆6,9,12,15	19:0Me10
Wild type	54.1 ± 0.3	2.8 ± 0.8	1.7 ± 0.4	14.1 ± 4.4	12.9 ± 1.8	10.9 ± 2.1	1.9 ± 0.1	1.6 ± 0.3	_a
$bfaAB^+$	57.9 ± 2.2	3.4 ± 0.3	1.8 ± 0.6	5.9 ± 0.9	10.0 ± 1.1	13.8 ± 2.6	3.7 ± 0.5	2.7 ± 0.5	0.8 ± 0.1
desAD ⁻	54.4 ± 1.3	3.3 ± 0.2	4.6 ± 1.4	37.7 ± 0.4	-	-	-	-	-
desAD ⁻ /bfaAB ⁺	51.3 ± 0.1	2.4 ± 0.4	1.5 ± 0.2	40.8 ± 0.1	-	-	-	-	4.0 ± 0.4
^a not detecte	d.								

511 Table 3 Fatty acid composition of *Synechocystis* cells expressing cobfaA and cobfaB

512

				H	Fatty acid (m	ol %)		
Parental cell	Gene type	16:0	16:1Δ9	18:0	18:1Δ9	18:2Δ9,12	18:3Δ6,9,12	19:0Me10
Wild type	trc-bfaAB	59.0 ± 1.2	1.7 ± 0.9	1.4 ± 0.3	9.3 ± 2.0	16.5 ± 1.3	10.4 ± 1.2	1.7 ± 0.4
	trc-cobfaAB	57.1 ± 0.7	2.7 ± 0.4	2.0 ± 0.4	7.5 ± 0.2	19.1 ± 0.2	9.3 ± 0.3	2.3 ± 0.2
	cpc-cobfaAB	55.8 ± 0.6	2.7 ± 0.6	2.0 ± 0.3	8.5 ± 0.1	19.8 ± 0.2	10.0 ± 0.2	1.3 ± 0.1
desAD ⁻	trc-bfaAB	54.3 ± 0.6	2.9 ± 0.4	2.4 ± 0.3	37.6 ± 0.4	_ ^a	-	2.8 ± 0.5
	trc-cobfaAB	57.8 ± 0.7	1.7 ± 0.5	2.8 ± 0.2	33.6 ± 0.4	-	-	$4.1\pm0.6^{\ast}$
	cpc-cobfaAB	56.1 ± 0.2	2.5 ± 0.7	2.6 ± 0.4	36.1 ± 0.3	-	-	2.7 ± 0.1

^a not detected. The results of wild-type-*trc-bfaAB* and *desAD⁻-trc-bfaAB* were the same result

for strains $bfaAB^+$ and $desAD^-/bfaAB$ listed in Table 1. * Significant difference was indicated

by Student's t-test when compared with *trc-bfaAB* of Wild type (P < 0.01).

516 Table 4. Fatty acid composition of each lipid class in *Synechocystis* cells expressing *bfaA*

517 and *bfaB*

518

		Fatty acid (mol %)						
Strain	Lipid class	16:0	16:1Δ9	18:0	18:1Δ9	18:2Δ9,12	18:3∆6,9,12	19:0Me10
Wild type	MGDG	50.5 ± 0.7	3.3 ± 0.3	0.4 ± 0.1	4.8 ± 0.2	27.4 ± 0.3	13.5 ± 0.6	_ ^a
	DGDG	49.7 ± 0.6	3.8 ± 0.1	0.6 ± 0.2	6.3 ± 0.3	19.8 ± 0.5	20.0 ± 0.7	-
	SQDG	61.0 ± 1.3	6.0 ± 1.0	0.8 ± 0.3	15.4 ± 1.2	16.1 ± 1.0	0.6 ± 0.1	-
	PG	58.4 ± 3.3	5.2 ± 1.1	2.4 ± 1.5	19.4 ± 3.0	13.7 ± 0.6	0.9 ± 0.1	-
	Total ^b	53.8 ± 0.2	4.0 ± 0.8	0.7 ± 0.2	8.8 ± 0.6	22.6 ± 0.3	10.1 ± 0.4	-
$bfaAB^+$	MGDG	53.5 ± 0.1	3.0 ± 0.3	0.6 ± 0.1	5.6 ± 1.8	20.0 ± 0.8	17.0 ± 0.9	0.3 ± 0.1
	DGDG	53.7 ± 1.7	3.6 ± 0.2	0.6 ± 0.3	6.2 ± 1.7	14.3 ± 1.6	21.4 ± 1.6	t
	SQDG	72.4 ± 0.7	4.4 ± 0.2	1.0 ± 0.1	9.1 ± 1.5	9.1 ± 0.6	0.6 ± 0.1	$3.4 \pm 0.4*$
	PG	58.6 ± 1.4	2.0 ± 1.3	4.9 ± 2.8	10.8 ± 2.7	17.0 ± 3.4	0.3 ± 0.1	$6.4\pm1.6^*$
	Total	59.5 ± 0.6	3.0 ± 1.1	0.9 ± 0.2	7.1 ± 1.4	15.7 ± 0.8	12.2 ± 0.5	1.5 ± 0.2
desAD ⁻	MGDG	44.2 ± 1.4	4.1 ± 0.8	2.1 ± 0.4	49.6 ± 1.9	-	-	-
	DGDG	49.1 ± 0.4	3.1 ± 0.4	3.2 ± 1.5	44.6 ± 1.5	-	-	-
	SQDG	68.8 ± 4.8	6.2 ± 1.1	0.5 ± 0.2	24.5 ± 5.3	-	-	-
	PG	50.2 ± 0.7	3.0 ± 0.5	3.0 ± 2.4	43.7 ± 2.4	-	-	-
	Total	52.9 ± 2.6	4.4 ± 2.0	1.3 ± 0.4	41.4 ± 4.2	-	-	-
desAD ⁻ /	MGDG	42.9 ± 0.7	3.2 ± 0.7	2.6 ± 0.2	50.7 ± 0.3	-	-	0.6 ± 0.1
$bfaAB^+$	DGDG	46.8 ± 0.6	2.9 ± 0.3	1.6 ± 0.5	48.7 ± 0.3	-	-	t
	SQDG	64.4 ± 2.7	4.7 ± 1.1	0.6 ± 0.3	24.6 ± 2.1	-	-	$5.7 \pm 1.6^{**}$
	PG	54.8 ± 3.2	2.1 ± 1.5	4.0 ± 2.3	30.3 ± 1.7	-	-	$8.8 \pm 2.2*$
	Total	49.7 ± 1.4	3.6 ± 1.0	1.8 ± 0.3	42.1 ± 1.9	-	-	2.7 ± 0.2

^a not detected. ^b results from lipids analyzed prior to fractionation. ^c trace amount (less than

520 0.04%). * Significant difference was indicated by Student's t-test when compared with total 521 lipid (P < 0.02). ** (P < 0.05)

References 522

523

524	Akamatsu Y, Law JH (1970) Enzymatic alkylenation of phospholipid fatty acid chains by
525	extracts of <i>Mycobacterium phlei</i> . J Biol Chem 245:701–708.

- Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic 526 Escherichia coli. J Bacteriol 62:293-300. 527
- Brown S, Laneelle MA, Asselineau J. Barksdale L (1984) Description of Corynebacterium 528
- tuberculostearicum sp. nov., a leprosy-derived Corynebacterium. Ann Microbiol 529
- 135B:251-267. 530
- Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294-306. 531
- Couderc F, Briel DD, Demont N, Gilard V, Promé JC (1991) Mass spectrometry as a tool for 532
- identifying group D2 corynebacteria by their fatty acid profiles. J Gen Microbiol 533
- 137:1903-1909. 534

- Cronan JE Jr, Nunn WE, Batchelor JG (1974) Studies on the biosynthesis of cyclopropane fatty 535acids in Escherichia coli. Biochim Biophys Acta 348:63-75.
- Ercibengoa M, Bell M, Marimón JM, Humrighouse B, Klenk HP, Pötter G, Pérez-Trallero E 537
- (2016) Nocardia donostiensis sp. nov., isolated from human respiratory specimens. 538
- Antonie Van Leeuwenhoek 109:653-660. 539

540	Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic
541	production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol
542	Biofuels 5:17.
543	Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria.
544	Microbiol Mol Biol Rev 61:429–441.
545	Hagglblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-
546	Salonen MS, Klatte S, Kroppenstedt RM (1994) Transfer of polychlorophenol-
547	degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus
548	Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol
549	44:485–493.
550	Hwang CY, Lee I, Cho Y, Lee YM, Baek K, Jung YJ, Yang YY Lee T, Rhee TS, Lee HK
551	(2015) Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int J Syst Evol
552	Microbiol 65:465–471.
553	Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M, Ikeuchi M (2006)
554	Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium
555	Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 47:1251–1261.
556	Jaureguiberry G, Law JH, McCloskey JA, Lederer E (1965) Studies on the mechanism of
557	biological carbon alkylation reactions. Biochemistry 4:347–353.

558	Khuller GK, Taneja R, Kaur S, Verma JN (1982) Lipid composition and virulence of
559	Mycobacterium tuberculosis H ₃₇ Rv. Aust J Exp Biol Med Sci 60:541–547.
560	Kniazeva M, Crawford QT, Seiber M, Wang CT, Han M (2004) Monomethyl branched-chain
561	fatty acids play an essential role in Caenorhabditis elegans development. PLOS Biol
562	2:1446–1459.
563	Kotajima T, Shiraiwa Y, Suzuki I (2014) Functional screening of a novel $\Delta 15$ fatty acid
564	desaturase from the coccolithophorid Emiliania huxleyi. Biochim Biophys Acta
565	1842:1451–1458.
566	Lennarz WJ, Scheuerandt G, Bloch K (1962) The biosynthesis of oleic and 10-methylstearic
567	acids in Mycobacterium phlei. J Biol Chem 237:664–671.
568	Los DA, Ray MK, Murata N (1997) Differences in the control of the temperature-dependent
569	expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol
570	25:1167–1175.
571	Machida S, Shiraiwa Y, Suzuki I (2016) Construction of a cyanobacterium synthesizing
572	cyclopropane fatty acids. Biochim Biophys Acta 1861:980–987.
573	Machida S, Bakku RK, Suzuki I (2017) Expression of Genes for a flavin adenine dinucleotide-
574	binding oxidoreductase and a methyltransferase from Mycobacterium
575	chlorophenolicum is necessary for biosynthesis of 10-methyl stearic acid from oleic acid

- in *Escherichia coli*. Front Microbiol 8:2061.
- 577 Murata N, Wada H, Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant
- 578 Cell Physiol 33:933–941.
- 579 Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and
- 580 acclimatization to cold of cyanobacteria. Biochem J 308:1–8.
- 581 Ng AH, Berla BM, Pakrasi HB (2015) Fine-tuning of photoautotrophic protein production by
- 582 combining promoters and neutral sites in the cyanobacterium *Synechocystis* sp. strain
- 583 PCC 6803. Appl Environ Microbiol 81:6857–6863.
- 584 Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and
- 585 microalgae: a positive prospect for biofuels. Bioresour Technol 102: 10163–10172.
- 586 Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of

587 unicellular blue–green algae (order Chroococcales). Bacteriol Rev 35:171–205.

- Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids
 in *Mycobacterium tuberculosis*. Clin Microbiol Rev 18:81–101.
- 590 Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N (1996) Targeted
- 591 mutagenesis of acyl-lipid desaturases in *Synechocystis*: evidence for the important roles
- 592 of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO
- 593 J 15:6416–6425.

594	Tsinoremas NF, Kutach AK, Strayer CA, Golden SS (1994) Efficient gene transfer in
595	Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and
596	chromosomal recombination. J Bacteriol 176:6764-6768.
597	Wada H, Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty

- acids. Plant Cell Physiol 30:971–978.
- Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the
 cyanobacterium, *Synechocystis* PCC6803. Plant Physiol 92:1062–1069.
- Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the
- photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA
 91:4273–4277.
- Wang AY, Grogan DW, Cronan JE Jr (1992) Cyclopropane fatty acid synthase of Escherichia
- 605 *coli*: deduced amino acid sequence, purification, and studies of the enzyme active site.
- 606 Biochemistry 31:11020–11028.
- 607 Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic
- reaction center by genetic engineering methods in *Synechocystis* 6803. Meth Enzymol
 167:766–778.
- Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host
 strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.

- 612 Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-
- 613 strong promoter enables efficient production of heterologous proteins in
- 614 cyanobacteria. Sci Rep 4:4500.

615 Figure Captions

Fig. 1. O₂ evolution and absorption of *Synechocystis* cells expressing *bfaA* and *bfaB*

- Black and white bars show respiratory and photosynthetic activities, respectively. The panels A
- and B are results at 34°C and 24°C, respectively.

619

620 Fig. 2. Growth of Synechocystis cells expressing bfaA and bfaB

- 621 The cells shown in panels A, B, C, and D were cultured in aerobic conditions. The cells shown
- 622 in panel E were cultured in microoxic conditions. The cells shown in panels A, B, and E were
- 623 cultured at 34°C. The cells shown in panels C and D were cultured at 24°C. Closed red circle,
- wild-type cells; open red circle, $bfaA^+$ cells; closed green circle, $bfaB^+$ cells; open green circle,
- $bfaAB^+$ cells; closed purple circle, $desAD^-$ cells; open purple circle, $desAD^-/bfaA^+$ cells; closed
- 626 light blue circle, $desAD^{-}/bfaB^{+}$ cells; and open light blue circle, $desAD^{-}/bfaAB^{+}$ cells.

Figure 1

Figure 2

Supplementary material

Click here to access/download **Supplementary material** Supplementary data.pptx