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SPARSITY BASED FORMULATIONS FOR DEREVERBERATION

SUMMARY

Acoustic signals recorded in concerts, meetings or conferences are effected by the
room impulse response and noise. Estimating the clean source signals from the
observations is referred as the dereverberation problem. If the room impulse responses
are known, the problem is non-blind dereverberation problem. In this thesis non-blind
dereverberation problem is posed using convex penalty functions, with a convex
minimization procedure. The convex minimization problems are solved using iterative
methods. Through the thesis sparse nature of the time frequency spectrum is referred.
In order to transform the time domain signal to a time frequency spectrum Short Time
Fourier Transform is used.

In the thesis, to begin with, the general problem is defined in time domain. The basics
of the dereverberation is proposed. Basics of the convex minimization procedure is
explained. Douglas Rachford Algorithm which is used to solve complicated convex
minimization problems is explained.

The chapter 3 proposes a derevereberation formulation based on sparsity. The
dereverberation problem, with known room impulse response, is conventionally
posed as a sparsity based minimization problem, by masking Short Time Fourier
Transform coefficients. The sparsity constraint can be posed using an ¢; norm type
penalty function. However, in such formulations, especially if the room impulse
response is longer than the windowing function of the Short Time Fourier Transform
the reverberation effects can not be directly represented in the transform domain.
Therefore, the minimization iterations require transform and its inverse in order to
mask Short Time Fourier Transform coefficients after time domain deconvolution.
Changing domains is more time consuming compared to masking STFT coefficients,
in turn increases computational time dramatically. In order to get rid of the
transformation requirement, the room impulse response is represented in Short Time
Fourier Transform frequency bands. With the approximation filters room impulse
response is denoted as a convolutive operator in each frequency band. In this chapter
an algorithm proposed, that does not require Short Time Fourier Transform and its
inverse, using the proposed approximates of the room impulse response. Also the room
impulse response approximation and the dereverberation with the sparsity constraint
are justified with experiments. Experiments show that, sparsity based solution yields
musical noise.

In the chapter 4, musical noise is suppressed using phase information of the coefficients
in a frequency band. It can be observed that in a frequency band, time consecutive
coefficients are active through a harmonic. These coefficients tend to have close
magnitudes. In addition, phase shift between coefficients in harmonics can be
considered as constant and phase information is unimportant outside the harmonics.

Xix



It can be considered that for each harmonic, there lies a complex number that maps
time consecutive coefficients together. Outside the harmonics the matching constant is
tend to be 0. Therefore, a piece wise constant mask can be found that maps a frequency
band to its own phase shifted version. This mask, in fact, satisfies the sparsity property,
as it is mapping a sparse frequency band to another. In this chapter, a method for
estimating the mask is proposed. The mask is applied on least squares estimate of
the signal. The least squares estimate can be performed with known impulse response
and noise properties. The dereverberation performance is justified using experiments.
Through the experiments different audio signals with different input signal to ratio
values are taken into consideration. Also, different weight compositions are taken into
consideration.

In the chapter 5, different from the chapters 3 and 4, multiple microphone case is
taken into consideration. Multichannel case is often solved making use of microphone
array geometry or using multi channel penalty functions. Another important struggle
in dereverberation is estimating RIRs. Instead of measuring explicit RIRs for the
observations, a common filter can be obtained using preliminary observations. This
information can be exploited in multichannel estimation. In this chapter a minimization
procedure with a multi channel penalty function is proposed. In multiple microphone
case, the observations share a common information. A time frequency coefficient is
expected to be active in all the observations, if the microphones are close. In order
to make use of that information the estimation can be modified into multi channel
estimation. Instead of estimating the source signal from observations, it is assumed
that the observations are formed from different sources. The sources are defined as
shortly reverberated versions of the source signal. In order to obtain these observations,
relatively short room impulse response definition is required. With the definition the
room impulse response can be divided into two: the common part, which is the same
for all observations and the independent part, which differs with position. Thus, a
formulation for mixed norm is proposed using relatively short impulse responses.
However, this algorithm can be generalized. In order to relax the condition on time
frequency coefficients, it can be assumed that time shift between harmonics between
observations is relatively small. Thus the harmonic structure is investigated using
blocked mixed norm regularization. Both algorithms for mixed norm and blocked
mixed norm regularization are justified and compared using experiments on speech
signals.
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YANKILASIM GIDERMEK ICIN
SEYREKLIK TABANLI DUZENLEMELER

OZET

Konser, konferans, toplanti gibi ortamlarda kaydedilen akustik isaretler, kaydin
alindig1 ortam nedeni ile yankiya ve giiriiltiiye maruz kalir. Kaynak isaretinin elde
edilen gozlemlerden kestirimi yanki giderme problemi olarak isimlendirilir. Bu
kayitlarda goze carpan yanki etkileri bir siizge¢ olarak zaman tanim bolgesinde
modellenebilir.  Yanki etkilerini modelleyien bu siizge¢c oda darbe cevabi olarak
isimlendirilir. Oda darbe cevabinin bilindigi durumda problem gozii kapali olmayan
yanki giderme problemine doniisiir. Tez boyunca oda darbe cevabinin bilindigi
durumlar dikkate alinmistir. Gozlemlenebilir ki, oda darbe cevabi kaynak ve gézlem
noktalarina cok bagimlidir. Bu nedenle oda darbe cevabinin biitiin uzaydaki noktalar
icin kestirimi cok zordur. Bu durumda oda darbe cevaplar1 tezdeki deneylerde
sentetik olarak uygulanmis veya gozlem ortaminda kayit alindig1 sirada gozlemden
elde edilmiglerdir. Boliim 5, bu duruma farkli bir agidan bakilmasinin 6rnegidir. Bu
boliimde oda darbe cevabinin kismen bilindigi ve gozlem ortami icin tek bir siizgec
tanimlanabilece8i durumlar: gbz oniine alinmigtir.

Bu tezde gozii kapali olmayan yanki giderme problemi, digbiikey bir en kiiciikleme
problemi yardimiyla ¢oziilmiistiir. Digbiikey en kiiciikleme problemleri yinelemeli
yontemler kullanilarak ¢oziilmiistiir. Tez boyunca, farkli ceza terimleri kullanilmig
olsa da, ceza terimleri, isaretin zaman siklik doniisiimii altinda seyrek yapiya sahip
olacagimi varsaymaktadir. Seyreklik kosulundan anlagilmasi gereken, sayili zaman
siklik katsayisinin aktif oldugu ve aktif katsay1 kiimelerinin uzaya dagilmis oldugudur.
Seyrek zaman siklik doniisiimii katsayilar1 yapisi kullanilarak kestirim daha iyi bir
bicimde saglanabilir. Zaman siklik doniisiimii olarak Kisa Zamanli Fourier Doniistimii
kullanilmustir. Onerilen déniisiim yerine herhangi bir dogrusal zaman siklik doniisiimii
de kullanilabilir.

Tezde ilk olarak, zaman tanim bolgesinde, genel gézlem modeli verilmistir. Bu yolla,
yanki giderme probleminin temelleri anlatilmistir. Digbiikey en kiiclikleme modeli
verilmigtir. Karmagik en kiiciikleme problemlerini ¢6zmek amaciyla yinelemeli bir
yontem olan Douglas Rachford Algoritmasi agiklanmigtir. Bu algoritma gradyan
hesaplamasi kolay olmayan problemleri, hesab1 kolay olan iki alt probleme ayirarak
yinelemeli olarak c¢ozmektedir. Yinelemelerde her bir verilen alt problemlerin
kisitlamalari, bu fonksiyonlarin yakinsal terimleri kullanilarak saglanmaktadir. Bu
yinlemelerde, belirlenmis olan bir adim degeri ile kisitlara yaklagilir. En son olarak
ise bu kisit kiimeleri arasindaki en yakin nokta bulunarak en uygun noktaya ulagilmig
olunur.

Boliim 3 seyreklik kosulu altinda yanki giderme problemine ayrilmigstir. Geleneksel
yontemler, yanki giderme problemini, oda darbe cevabi bilindigi durumda, Kisa
Zamanh Fourier Doniisiimii katsayilarin1 maskeleyerek cozmektedir. Seyreklik kosulu
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doniisiim katsayilar1 iizerine ¢; normlu bir ceza terimi kullanilarak saglanmaya
calistimigti. ~ Ancak, bu tip Onermelerde oda darbe cevabinin, Kisa Zamanlh
Fourier Doniigsiimii alinirken kullanilan pencereden uzun olmasi durumunda, oda
darbe cevabu, doniisiim tanim bolgesinde carpim olarak ifade edilemez. Seyreklik
kosulunun doniistim katsayilar1 {izerinde arandigi ve oda darbe cevabinin zaman
tanim bolgesinde bir evrisim igleci olarak tanimlandig1 diisiiniiliirse, en kii¢iikleme
probleminin yinelemeleri sirasinda tanim bolgesini degistirmeye ihtiya¢ olacaktir.
Tanim bolgesi degistirmenin, maskeleme islemine gore daha uzun siirecegi aciktir.
Bu nedenle tanim bdlgesi degistirmek en kiiciikleme probleminin ¢dziim siirecini
cok arttirmaktadir. Bu etkiden kurtulmak amaciyla oda darbe cevabinin etkileri
doniisiim katsayilarinin frekans bantlar icin bir evrisim igleci olarak ifade edilmistir.
Bu boliimde yanki giderme islemi i¢in yinelemelerinde yanim boélgesi doniisiimii
olmayan bir algoritma Onerilmigtir. Ayn1 zamanda deneyler ile doniisiim tanim
bolgesinde yaklagsik olarak elde edilen oda darbe cevabi siizgeclerinin ve yanki giderme
algoritmasinin basarimi tartigilmistir. Deneyler sonunda, seyreklik kosulu ile yanki
giderme islemi sonucunda miizik giiriiltiisiiniin ortaya ¢iktig1 goriilmiistiir.

Boliim 4, faz bilgisi kullanilarak, miizik giiriiltiisiiniin azaltilmasina ayrilmstr.
Secili herhangi bir siklik bandinda, harmonikler iizerinde zamanda ardisik gelen
katsayilarin etkin oldugu gozlemlenebilir. Bu katsayilarin genlik degerleri birbirine
yakindir, ayn1 zamanda iki katsay1 arasinda faz kaymasinin yaklagsik sabit oldugu
sOylenebilir. Bu yolla her harmonik icin faz kaymasim1 modelleyecek bir karmasik
say1 bulunabilir. Harmonikler disinda, isaret zaman siklik katsayilarinin Oa yakin
genlikli olmast beklendigi icin, faz bilgisi anlamsizlagir. Bu yolla parca basi sabit
bir maske ile bir siklik bandi, kendisinin fazi kaymis bicimine baglanabilir. Bu
maske, ayni zamanda doniisiim katsayilarinin 6zelliklerini de korumaktadir. Bir
doniigiim siklik bandini bir digerine baglamasi nedeniyle seyrek bir yapida olmasi da
beklenir. Bu boliimde, her siklik bandi i¢in tanimlanan maskelerin kestirimi i¢in bir en
kiiciikleme problemi Onerilmistir. Bulunan maskeler, en kiiciik kareler kestirimi siklik
bantlarina uygulanmistir. En kiiciik kareler kestirimi, oda darbe cevab1 ve giiriiltii
ozellikleri bilindigi varsayiminda, rahatlikla hesaplanabilir. Deneylerde farkli ses
isaretleri kullanilarak onerilen yontemin bagarimu tartisilmigtir. Ayni1 zamanda kestirim
basarimlar farkli seyreklik, faz sabitligi agirliklari i¢in sunulmustur.

Boliim 5, 3 ve 4 boliimlerinden farkli olarak ¢cok gézlemin oldugu duruma ayrilmstir.
Cok mikrofon ile gozlem elde edilen durumlarda, yanki giderme problemi genel
olarak mikrofon yerlesimleri kullanilarak veya cok kanalli ceza terimleri yardimiyla
coziiliir. Yanki giderme probleminde temel zorluklardan biri de oda darbe cevaplarinin
bulunmasidir. Bu siizgeg¢lerin bulunmasi yerine, kayit ortami i¢in ortak bir siizgec
tanim1 yapilabilir ve bu tamimla c¢ok kanalli en kiiclikleme ortaya atilabilir. Bu
temel siizgecin belirlenmesi goézlem anindan Once yapilan deneylerle miimkiin
olabilir. Temel siizgecte 6ne atilan sav, oda darbe cevaplarinin ortak bir noktalarinin
bulundugudur. Bu ortak nokta ise tim gozlem ortami i¢in gecerlidir. Bu tanim
kullanilarak elde edilen temel siizge¢ ve ardindan elde edilen siizgeg artiklarr yardimi
ile yanki etkilerinin kisaltilmasi saglanabilir. Ozellikle temel siizgecin oda 6zelliklerini
yansittig1 varsayildiginda, bu siizgecin goézlemlerden silinmesi yankiy1 6nemli ol¢iide
ortadan kaldiracaktir. Bu boliimde, yanki giderme problemini ¢cozmek amaciyla, ¢cok
kanall1 bir ceza terimi ortaya atilmistir. Ceza terimi kullanilarak bir digbiikey en
kiigiikleme problemi ortaya konmustur. Cok mikrofonlu kayitlarda gozlemlerde ortak
bilgi goze carpar. Bir zaman siklik katsayisinin, yaklasik olarak tiim gozlemlerde
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etkin olmasi beklenir. Bu durum zaman siklik katsayilari fakli gézlemler icin
tist iiste konumlandirildiklarinda goriilebilir. Bu bilgiden faydalanmak amaciyla,
digbiikey en kiiciikleme problemi yardimiyla kaynak isareti kestirimi yerine, ¢ok
kanalli kestirim yoluna gidilmistir. Bu nedenle gozlemlerin farkli kaynaklardan elde
edildigi varsayilmistir. Farkli kaynaklar, kaynak isaretinin kisa bi¢cimde yankilanmis
bicimleri olarak diisiiniilmiistiir. Bu kaynaklar1 tanimlamak amaciyla gorsel olarak
kisalmis oda darbe cevabi tanimi1 yapilmistir. Bu tanimdan faydalanilarak karma norm
ceza terimi kullanilarak bir en kiigiikleme problemi ortaya atilmistir. Onerilen yontem
ceza teriminin rahatlatilmasi ile genellestirilebilir. Zaman siklik katsayilarindaki
mikrofon tizerinden seyreklik arastirmasi yerine, harmonik aragtirmasi yapilabilir. Bu
amacla bu boliimde kiimelenmis karma norm ceza terimi de ortaya atilmistir. Bu
terimin ortaya atilmasindaki temel itici giic ise zaman siklik katsayilarmin giiriilti
etkisinde her gozlemde bulunmayacaginin garantisinin verilemeyecegidir. Katsayilarin
kiimelenmesi yardimiyla bu giiriiltii terimlerinin ardisil gelme olasilig1 diisiiriilerek
daha temiz bir kestirim elde edilebilir. Her iki yontem de deneyler boliimiinde sinanmisg
ve karsilastirilmistir.

Son boliimde ise tezde anlatilan konular tekrardan goz oniine serilmistir. Bu serimler-
den yola cikarak, tezden yararlanarak hangi konularda arastirma yapilabilecegine de
yer verilmistir.
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1. INTRODUCTION

Audio signals recorded in conferences, meetings or concerts are effected by the
properties of the environment and the noise.  Especially in recordings with
microphones, distant from the source or within a class or hall, the observations are
reverberated. This reverberation effect can be modeled with a linear operator. The
impulse response of that operator model is named as room impulse response. With
the presence of noise or other sources, the deteriorated signal is hard to understand for
human auditory system. In many possible applications like seminar or public meeting
recordings the aim is to obtain the speaker as clean as possible. In order to revert the
effects of reverberation, methods address the deconvolution problem. The problem
to estimate source signal from reverberated and noisy observation is referred as the

dereverberation. The problem model and some methods can be observed from [1].

In this thesis dereverberation problem with known impulse response is taken into
consideration. Therefore, it is called non blind dereverberation. The dereverbration
problem is posed as a convex minimization problem with variety of penalty functions.
In chapter 3 and chapter 4 single channel dereverberation is performed. In chapter 5

multiple observations are taken into consideration.

In the chapter 2, the system model is proposed. The convex optimization procedure
is explained. Douglas Rachford algorithm, which is an iterative solution for convex
optimization problems, is explained. DR algorithm requires proximity operators of
functions. The proximity of a function is defined and for some fundamental functions,
proximals are calculated. After explaining the basics used through this thesis, the

methods for the dereverberation is proposed.

It is conventional, in acoustic source estimation, to assume that time frequency
transformation of a signal is sparse. Thus, derevereberation can be performed with
a sparsity constraint on the estimate spectrum. In the chapter 3, a sparsity based

deconvolution problem in STFT domain is proposed. Least squares term is used



in order to minimize the error between the estimate and the original signal, linking
them with the knowledge of RIR. This process is conventionally done in time domain
because RIR is a convolutive operator defined in the time domain. However, the
penalty function is required to enforce the sparsity of the STFT coefficients. As a
result in the minimization procedure, it is required to use transform domain for sparsity
constraint and the time domain for deconvolution. It can be observed that, pursuing
penalty functions in different domains requires domain changes in calculations. This
point of view becomes more problematic if the solution is obtained using an iterative
method, as domain change is required at each iteration. In the steps, it is required
to use transform and its inverse at least once for each iteration. In order to avoid
domain changes, RIR is required to be represented in the transform domain. Therefore,
a room impulse response model in STFT domain is proposed. Such that impulse
response model provides the freedom of using convex constraints in STFT frequency
bands without increasing computational complexity. Dereverberation with sparsity
constraint is a common method, however, with proposing a method in transform
domain, the computational time is dramatically decreased. Using proposed method,
dereverberation is achieved with similar results to conventional methods. The negative
result of sparsity based dereverberation is the musical noise caused by high frequency
coefficients. These effects can be canceled by increasing the weight of sparsity
constraint. However, some harmonics are lost after that modification, which results
in decreased quality in estimation. In order to get rid of the musical noise without

losing any information, a new method is required.

In the chapter 4, a dereverberation formulation employing phase information is
proposed as a continuation of the first chapter. It is notified that, sparsity based
denoising methods reduce the noise by modifing magnitudes. However with the
effects of the reverberation the sparse nature of the coefficients is questionable and
these methods also yield musical noise. The musical noise caused by conventional
sparsity based methods can be erased using phase information of the time-frequency
coefficients of the transform. The phase information is used to relate the coefficients in
a harmonic. In a harmonic of a specified frequency band, consecutive time coefficients
tend to have similar magnitude value and a constant shift between coefficients. Phase

information of the coefficients are highly affected by noise and reverberation, however



the phase shift manages to stay close to constant. In harmonics, with the usage
of constant phase shift property, consecutive coefficients can be related. Under the
assumption that phase shift constancy holds, a complex number can be found for
each harmonic that maps consecutive coefficients. Also this can be generalized such
that, the complex number also maps the harmonic to phase shifted version of itself.
Assuming there exists few harmonics in a frequency band, a piecewise constant mask
can be formed. This mask maps the signal to phase shifted version of itself. This
mask preserves harmonic structure. An algorithm employing this mask is proposed to
erase musical noise while preserving the harmonics. As stated before the algorithm
employs phase information of the coefficients in addition to magnitude information.
The quality of the proposed algorithm is justified and the improvement achieved is

compared to sparsity based estimate through experiments.

The methods proposed in chapters 3 and 4, are using a single microphone. In
applications microphone arrays are used in order to increase the efficiency where
there is a set of observations. Different from the previous chapters in the
chapter 5 multichannel dereverberation is taken into consideration. Multi channel
dereverberation problem is conventionally solved expoiting the microphone array
geometry or multi channel penalty functions. Therefore, using a multichannel convex
penalty function, this property can be exploited in order to obtain the estimate. Using
different RIR for each observation point with one source is challenging. In order
to prevent using different room impulse responses the shortened impulse response
concept is explained. It is assumed that room impulse responses of microphones
share a common and shorter part. Thus in the problem it is assumed that the common
part is the filter and the observations are obtained using different sources with the
same information. Therefore, the time frequency coefficients of these sources can be
linked together. Assuming that sources are located close enough, corresponding to
the geometry of the microphone array, it is acceptable to assume their time frequency
spectrogram can be related. With the assumption that, microphones are closely located,
it is expected that shift in time domain observations is considerably little compared
to the windowing function employed in STFT. Therefore in a frequency band the
harmonics are expected to be closely located. This property can be exploited using

multiple observations. In order to use that information, with the usage of shortened



impulse response definition, shortly reverberated observations are considered as the
sources. Instead of estimating the source, the problem is modified to address estimating
shortly reverberated observations. In these observations, it is expected that if a time
frequency coefficient is active in one spectrum, it is also active in others. With that
information, while investigating the sparsity of the transform spectrum, all observation
spectra is taken into consideration. With a mixed norm penalty function the sparsity
of a a frequency band is enforced through all observation bands. An algorithm with
mixed norm penalty function defined. However, harmonics in shortly reverberated
observations are closely located. Also number of harmonics is limited. This leads to
grouping time frequency coefficients in a frequency band and investigating presence
of harmonic using all observation spectra. If the constraint proposed with mixed norm
is relaxed, a block mixed norm algorithm exploiting that information is proposed for
dereverberation. Also with assuming RIRs to be § functions, problem becomes the
denoising problem. The denoising and dereverberation performances of the method

are justified separately using experiments.

In the final chapter conclusions and remarks are given. Also possible future research

is proposed.

All these methods are sparsity based dereverberation methods which can be considered
a common point. Sparse nature of time frequency spectrum of the audio signals
motivates defining sparsity based convex optimization problems. Also, with the
convergence of various algorithms applicable on such problems, different constraints
can be applied. With the motivation of proposing different methods for sparsity based
dereverberation, the performance of the estimates are tried to be improved. The aim of
this thesis is to pose various convex methods for both single channel and multichannel

data that can improve the efficiency and quality of source signal estimation.



2. PRELIMINARY CHAPTER

In this chapter the dereverberation concept is tried to be explained. Additionally
Douglas Rachform Algorithm and proximal definitions are made. These definitions

are also remarked in other chapters if required.

The audio recording setup is demonstrated in Fig.2.1. The arrows between

microphones and speakers denote the reverberation effects, this setup can be modeled,

hgp*xp+n, a=1,--- A (2.1)

B
Ya =

b=1
where * denotes the convolution operator. There y’s denote the observations, x’s denote
the source signals, /’s denotes the room impulse responses that cause reverberation and
n’s denote the channel noise. As demonstrated in the setup for a microphone all the
sources has their own filters. It can be observed that RIR changes dramatically with
position. Here in Eq.(2.1), with that notation, the difference of RIR with respect to

location is modeled. This time domain model is used through the thesis.

In the thesis the convolution with RIR is denoted with the H in order to preserve

simplicity. Thus the problem defined in Eq.(2.1) becomes,

Hypxp+n, a=1,--- A (2.2)

B
Ya =

b=1
The room impulse responses are usually of few [s] length. Thus, with the reverberation,
each activity in time domain is expected to be extended. The reverberation effects are
visualized in Fig.2.2. As can be observed from the Fig.2.2 the observation is extended.
With the noise added, auditory quality decreases. The aim is to estimate original signal
from the reverberated observations. For example, from the noisy and reverberated

observation in Fig.2.2-(c), the aim is to estimate the original signal in Fig.2.2-(a).

2.1 System Model

In this thesis the RIR relations between microphones and sources are assumed to

be known. Thus this poses the non blind deconvolution problem, where the only
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Multi Channel Recording System
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Figure 2.1: The general setup used for multi channel audio recording with multiple
sources.

unknown is the source signal. On the other hand, if the channel filters are required

to be estimated, the problem becomes blind deconvolution problem. However, this

problem is ill posed as it requires two concepts to be estimated at the same time [2—4].

Even with the known RIR, the estimate can be improved using some properties. The

most common property exploited is sparsity of the spectrum.

In order to employ this property time frequency transformation is required. In this
thesis short time Fourier transform is used. Assuming that g(n) is a low pass filter and
gki(n) = g(n—I1A)exp (— jkA, (n—1A;)), where A,, denote the frequency length and
A; denotes the shift size of the window function. The STFT of a signal is calculated

with,

X (k,1) = (x(n), g (n)) (2.3)

Where (-,-) denotes the inner product. It can be observed that if a filter has a length
less than or equal to the windowing function, the effects caused by that filter can
be denoted as an elementwise multiplication in STFT domain. This, in case, can be
explained that the corresponding coefficients of the signal and room impulse response
lie in the same interval. Thus the convolution can be represented as elementwise
multiplication in these intervals. This can be proven in short, using the definition
of Fourier transform. Convolution in time domain corresponds to multiplication in
frequency domain. However, as can be seen from Fig.2.2-(b) the room impulse
response length is considerably long. In order to obtain acceptable resolution, the
window length in STFT for audio applications is chosen around 50[ms], where the
room impulse response is of length 1[s]. Thus the reverberation can not be represented

as an elementwise multiplication in STFT domain.



Time Domain Models

(a) Source Signal (b) Room Impulse Response

Magnitude
Magnitude
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(c) Reverberated Observation
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Figure 2.2: (a) Time domain model of the original signal. (b)Time domain model of
the room impulse response. It can be observed that the impulse response
has a decreasing nature over time. (c) Convolution result of the source
signal and the room impulse response. No noise is added in order to show
the effects of the reverberation.

The estimation in the thesis is obtained using convex optimization processes which is

explained in the next section. However the optimization problems are formed using

STFT coefficients. The trick required in order to define problems in STFT is explained

in chapter 3.

The definition of the STFT is also given in the other chapters, because in each
of the scenario different properties of the STFT are exploited. STFT is just
a linear time frequency decomposition. Instead of STFT any other linear time
frequency transformation can be used [5]. However with different transformations

the representation of RIR in these domains is required to be calculated.

2.2 Convex Optimization Procedure

In order to estimate the original signal from reverberated data convex optimization
procedure is used through the thesis. The convex optimization procedure can be

generalized as,

min||5 — A[|3 + ) Aipi() (24)



Where X = [x] x2 -«~xN]T, y=[1y - yN]T and H denotes the mixture matrix with
corresponding RIR. The quadratic term given in Eq.(2.4) minimizes the error between
the estimate and the observations. A;’s denote the weighting factors that determine the
importance on penalty functions. p(-)’s denote the convex penalty functions. In this
thesis, a variety of penalty functions are proposed for single channel and multi channel

cases.

Through the thesis convex minimization problems are solved iteratively. Douglas
Rachford Algorithm is used in chapter 4 and chapter 5. So the definition of the

algorithm is required.

Douglas-Rachford Algorithm

In a convex minimization process the solution may not be easily computed due to
the nature of penalty functions. With numerous penalty functions employed in the
minimization process, the computation of gradient is not cost effective. In order
to reduce the complexity, problem can be solved by dividing into less complex sub
problems [6]. Using these sub problems iteratively the algorithm converges to the

optimal point iteratively of the penalty function.
In DR Algorithm the penalty function is divided into two as,

& = argmin (f(x) +g(x)) 2.5
Where f(x)+ g(x) form the penalty function of interest. In order to solve requiring
more divisions, variable splitting can be used. In this formulation, the estimate X is

found iteratively. For iterations, the concept ’proximity operator’ is used. The proximal

of a function of f is defined as,
1
Jyr(x) :argmamilﬂa—xﬂg—i—f(a) (2.6)

Using this knowledge the estimate can be calculated,

Algorithm 1 Douglas-Rachford Algorithm

A< x,yc(0,1), 0 €RT, h<0
repeat
b+ (2Jyp(d") —a")
a1l a" (1— o) + o0 [2Jy4(b) — b]
h<h+1
until convergence criterion met
X Jyf(aN)

A A S ol e




using this iterative algorithm. It can be observed that, the algorithm basically tries to
satisfy the constraints one by one. The algorithm finds the optimum point that has the
minimum distance to the contraint subsets. The convergence of this algorithm can be

checked from [6].

The proximal definition is made in Eq.(2.6). Using this definition proximity operators

of widely used functions can be given as examples.

Proximity of /;

The sparsity of a function is checked widely using the ¢; norm. The penalty function

of this norm is defined as,

p(x(n)) = Allx(m)|lr = }_|x(n)] 2.7)

The proximity of this penalty function is required in many applications, especially if
used with other penalization functions, where taking gradient is not straightforward.
In order to find the proximity operator, the minimization procedure is required to be

solved. The problem,
= argmin + .
Yp X arg ! 2’}/ X 2 1

Here in the Eq.(2.8), both the quadratic term and the ¢; term are convex. Therefore, it
can be said that 0 is an element of the gradient of this function. If the gradient is taken
with respect to 7 and it is assumed that 7 is the solution to the minimization problem in
Eq.(2.8). The result,

0 € (f—x)+ ysgn(7) (2.9)

Vector derivation can be checked from [7]. Here sgn denotes the sign function. This
relation can be extended into two sub definitions as,

0e(f—x)+7y where? >0
F—

0€(f—x)—y wheref<0 (2.10)

The solution can be obtained with satisfying the equations and modifying the domain
constraints on 7 with respect to x and A. The solution can be obtained as,
x—y ifx—y>0

f:Jyp(x): x+7y ifx+v<0 2.11D)
0 otherwise



The function denoted in Eq.(2.11) results in soft thresholding operator. It can be
observed that with the /| norm the magnitudes of the coefficients in the matrix are

cropped.

This proximity operator definition also refers to £; norm minimization problem, which

is also used in chapter 3.

Proximity of /,

The ¢, norm proximal calculation is taken into consideration. The ¢, norm can be

defined as,
p(x) = [x(m)]2= [} |x(n)[? (2.12)

In order to find the proximity operator of this function, the minimization procedure can
be used as,

.1
Jyp(x) :argmth/Hx—tH%—k?LHtHz (2.13)

Where sgn denotes the sign function. In order to solve this problem the matrix notation
1
for the /> norm can be used. Assuming that ||x|> = (x"x)?2, the problem defined in

Eq.(2.13) can be modified as,

—_

argmtin %/(x—t)T(x—t) + (xTx)2 (2.14)

Square of the ¢, norm and ¢, norm itself are convex. Therefore, in order to minimize
the problem, the solution can be searched where 0 is the element of the gradient. Taking

the gradient yields the result,
0c (f—x)+A(FTFH) 2 (2.15)

From this point it can be observed that 7 = cx where c is a scaling factor. Thus, the

proximal calculation defined in Eq.(2.13), can be modified into the problem,

.1 2
min 2 fley =yl + ellyll2

o 1 2 2
—min (e~ 12lyI3-+ pelyl 2.16)
1 C
=min—(c—1 2+ —
DA

If the gradient with respect to ¢ is set the zero, it can be found ¢ = 1 — y/||yl|>.
Therefore, the solution can be obtained as,

A Y
=7 =(1=--"2_ 2.17
=)= (1- ) 17
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It can be observed that the proximity operator of the euclidean norm thresholds the
magnitude of the given vector. Proximity on #, norm is used in chapter 5 for calculating

proximity on mixed norm.
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3. A DEREVERBERATION FORMULATION BASED ON SPARSITY

The dereverberation problem can be cast as a sparsity based minimization with a
known room impulse response. By making use of sparse nature of the time-frequency
transform coefficients of the original signal estimate can be enhanced. Short time
Fourier transform is used as the time frequency decomposition. In such scenarios
where the room impulse response is longer than the window employed in STFT, the
convolution operator can not be described as an element wise multiplication in STFT
domain. This concept is explained in the chapter 2. Room impulse response, which is
a convolutive linear operator, is defined on time domain and the sparsity is defined
on time-frequency spectrum. As the conditions are defined in different domains,
transform operator and its inverse are required in each iteration. The computation
cost of the algorithm increases dramatically, because time required to change domains
is a burden. This problem can be prevented if the room impulse response is modeled
in the transform domain. Besides, sparsity constraint is set on the transform domain, it
can not be modeled in time domain, which makes the STFT domain definition of RIR

mandatory.

With the room impulse response expression in transform domain, the dereverberation
problem can be posed as a convex minimization problem on a frequency band of time
frequency transform spectrum with sparsity constraint. Therefore, the iterations of
this problem are free of the transform which is expected to increase computational
efficiency. The dereverbed signal can be obtained after these iterations with taking the

inverse transform only once.

In this chapter sparsity based dereverberation problem is cast using only time
frequency coefficients. For that purpose effects of the RIR is modeled in STFT. This
model proposes a filter for each frequency band of the transform coefficients, when
convolved with the corresponding band, represents the effects of the reverberation.

Therefore, this results in decreased computational burden and allows usage of other

13



penalty functions in STFT domain. This concept is also exploited in other chapters in
order to use penalty functions defined on the time frequency spectrum. In addition,
dereverberation with sparsity constraint is obtained in this chapter. Both the RIR

estimates and the derevereberation algorithm are justified in the experiments section.

3.1 Proposed Method

In this section a methodology for estimating the original signal from the reverberated
and noisy observation is proposed. The single channel observations in time domain
can be modeled as,

y=Hx+n 3.1

Where x denotes the source signal, H is the convolution operator with the room impulse

response A, n is white Gaussian noise and y is the observation.

The convex minimization procedure is posed using a penalty function, this penalty
function is formed by using a quadratic term, which penalizes the difference from
the observation and an ¢; term which enforces sparsity of the spectrogram. With
assumption, S denotes the STFT operator and S* denote the adjoint operator. STFT

forms a tight frame, thus it can be said that S*S = I. The problem is defined as,
. 1 * 2
min |y — HS"X[3+ A X | (3.2)

This notation is defined in [8] for sparse dereverberation. Here X denotes the STFT
of x. This problem can be solved using Iterative Shrinkage Thresholding Algorithm

(ISTA) which has the iterations as,

R =T, (Xk + o (HSY <y - HS*X"))
0, iflx<a (3.3)
where Ty (x) = { 1|;|“x, it [x|> o
It can be easily observed that during the iterations the domain is changed twice. In
order to enforce sparsity of the STFT coefficients using thresholding the transform
is required. After this step deconvolution with RIR is required. Deconvolution is
performed using time domain representation of the signal. Therefore, an inverse

transform is required. Computational time required for changing to STFT domain

from time domain is considerably high compared to thresholding operator. As in

14



thresholding elementwise multiplication and addition is required where within STFT

an elementwise multiplication is done and FT is taken over a windowed portion.

In order to prevent domain changes in the solution, an operator is defined. The operator

J represents the effects of the reverberation in STFT domain as,
SH ~ 7S (3.4)

Here 7 is the operator that represents the convolution of the room impulse response
in STFT domain as explained in [9]. The definition of this operator is given in the next

section.

Using this operator, a new problem can be defined in STFT domain as,
. !
X = argmin S |[Y — 22X |3+ A[1X]; (3.5)

It can be observed that the problems in (3.2) and (3.5) are not equal but the results are
equivalent. Both problems check the sparsity of the spectrum and the squared error

between the estimate and the observation with known RIR.

This problem can again be solved using ISTA with the iterations,
X = Ty (R4 @™ (v = #%)) (3.6)

Since the iterations does not include domain changes (S or S*), iterating using 7%
is more beneficial compared to calculating HS*. The aim is to find such 7 that
approximately satisfies the reverberation effects in STFT domain. This idea is used
for single channel observation in [9] and for multichannel case in [10], however in
both applications sparsity is neglected.

An operator 7 can be found if Short Time Fourier Transform windowing function is
longer than the impulse response. Under this condition the operator directly represents
elementwise multiplication with the STFT of the RIR in the STFT domain. However,
typical windowing functions are in 30[ms] - 60[ms] interval where impulse responses
are around few hundreds of [ms]. As explained it is not possible to find a perfectly
fitting operator .7, the aim is to estimate it by solving a linear system. The next

section explains the basics of the operator.
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3.1.1 Room impulse response estimate in STFT

In order to determine a filter that represents the effects of reverberation operator, the
properties of STFT should be exploited. In order to find such a filter definition of an

STFT frequency is needed. In this section the filter 7 is explained [9].

The filter is defined exploiting the filter bank representation of the STFT where this
relation is also visualized in Fig.3.1. Let (| N) () denote the down sampling with N,
« denote the convolution and under the assumption that g(n) is a low pass filter, STFT

can be defined as,
gk(n) = g(n)exp (— jkAyn)
xg(n) = (LN) (x(n) * gi(n))

(3.7

(a)

s(m) — 0 | & »@» ye(n)

(b)
x(n) —| 8k —»@ﬁ by = Jk(n)

Figure 3.1: (a) Filter bank representation of one STFT frequency band after a filter 4.
(b) Representing the effects of the convolution on STFT coefficients.

xi(n) denotes the k™ frequency band of the STFT. The aim is to find a filter /(n) for

each k™ frequency band that satisfies,

xi(n) % by~ (L N) ((x(n) % h(n)) * gx(n)) = yi(n) (3.8)
this relation.

Different from previous notation, where the capital letters denote the STFT
coefficients, FT of the frequency bands are denoted with capital letters for this section.
For example the transform of g (n) is denoted in the form Gy(w). This notation can be
distinguished from STFT coefficients as the input variable of the function is denoted
with w. Assuming that the windowing function used in STFT is band limited and s is
the center frequency, then,

Gi(w) = 0ifwe sk—n,sk+£]u[sk+£,sk+7r (3.9)

N N
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can be written. This says the filters Gys are band limited.

Therefore, the relation expressed in Eq.(3.8) can be written in Fourier domain,

assuming that filters are band limited the relations are defined as,

Yi(w) = X (%) H (%) Gy (%) if w € [Nsg — 7, Nsy + 7] (3.10)
Yi(w) = X (%) (W) Gy (%) if w € [Nsg — 7, Nsy + 7] 3.11)

As the intention is to find the filter that satisfies Eq.(3.8), the solution can be formed
combining Eq.(3.10) and Eq.(3.11) yields,

A

Ao (w) :H<]%> if w € [Nsg — 7, Nsy + 7] (3.12)

But in practice it is not possible to find a perfectly band limited window as defined
in (3.9). Then, it can be observed that the approximate hys have a different effect
compared to h. In order to represent the effects of the RIR, it is desired to minimize
the squared error between the linear systems defined in Eq.3.10 and Eq.(3.11) can be

minimized. The filter can be found through the minimization process,

s [ o (3)n(3) vl
w=Ns—T

Thus .#s are the optimum filters that represent the effects of the RIR in corresponding

frequency band.

The minimization given in Eq.(3.13) is calculated for all k. Calculated filters /ys
represent the effect of the room impulse response in the corresponding channel. Thus

it is known that with the filter one can obtain,
Yi(n) = Xi(n) * hy(n) (3.14)
Using this relation, responses for corresponding channels can be computed. Using

these filters one can use the estimate in STFT coefficients. Assume that 7 is the

operator that maps STFT coefficients of x onto STFT coefficients of Y. The relation is;

VY= #Sx~SHx=Y (3.15)

Solution .77 denotes the operator that applies the effect of RIR in time frequency

spectrum (computing Eq.(3.14) for all frequency bands k). This notation shows that
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convolving each frequency band with corresponding estimate, approximately results in
the coefficients of the reverberated observation. It can be also noted that .77}, represents

convolution with the IFT of the calculated optimal filter .74,

In order to form a minimization procedure for a specified frequency band let .77; denote
the estimate of RIR for k" channel as defined before. In the section the minimization

procedure is presented.

3.1.2 Estimation on STFT coefficients

Using the filter estimate given in the previous section one can form a new observation

model instead of Eq.(3.1). The problem can be modeled for each frequency band as,
Y, = 56Xy + Uy where U, is the channel noise (3.16)

Here .77}, denotes the convolution operator with the estimated impulse response in

STFT from Eq.(3.13).

In the equation Uy does not only represent the effects of the Gaussian noise n given in
Eq.(3.1) but also represents the errors caused by the room impulse response estimate.
The advantage of this formulation, is one can penalize the sparsity of the frequency
band. Then, using this notation, a minimization problem can be formed using only
time frequency coefficients. A specific frequency band can be estimated using the
problem,

Ki(n) = argmzin%HYk(n) — Hiz(n)|3+2Az(n)]|1 (3.17)
in this form. In Eq.(3.17) X;(n) denotes the n™ time bin of the k™ frequency band of the
STFT coefficients. This problem indicates that each channel is treated separately. This
problem can be solved using ISTA again. Assuming that 77" represent the conjugate
of the convolution operator .77;. Thus, this denotes the convolution with time reversed

conjugate of the original filter. ISTA can be posed as,

Algorithm 2 Iterative Shrinkage Thresholding Algorithm

1: repeat

2 Re(n) « Ru(n) + (%7; (Y — ,fﬁf(k)), vk
3: Xk(n) — T)La(Xk(l’l)), Vk, n

4: until convergence criterion met

This algorithm converges if & is chosen small enough.
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Consider oy to be the biggest eigenvalue of J#*J7;. If oo, < 2 is satisfied it is
guaranteed that the algorithm converges to a solution of the penalty function given

in Eq.(3.17) [10].

The operator T}, is defined previously in Eq.(3.3) as the soft thresholding operator.
ISTA can be placed into the overall algorithm for the estimation process. The overall

algorithm can be posed as,

Algorithm 3 Dereverberation with ISTA

1: o from[10],A € RT

2: X0

3: repeat Vk

4: 4 from H; Eq.(3.13)
5. repeat

6: Xk — Xk +o (L%’jc* (Yk — ,%’%X]J)

7: Xk — 1o (Xk),

8:  until convergence criterion met

9: until finished
10: £+ §*X

Using this formulation dereverberation in STFT can be achieved. In next chapter

examples are demonstrated using this algorithm.

3.2 Experiments and Discussion

In order to justify the performance of room impulse response estimate and the

algorithm for dereverberation, a series of experiments are performed.

A measured room impulse response of length 1[s] is used with sampling frequency
44.1[kHz]. This impulse response is converted into frequency band filters that poses
the effects of RIR for the corresponding frequency band. The conversion is justified in
Fig.3.2. In order to form the figure an active band from the original signal, coefficients
are reverberated using the filter estimate. The same corresponding band is chosen
from the STFT of conventionally reverberated signal in time domain and comparison
is performed. In Fig.3.2-(a) it can be seen that the imaginary parts of the time domain
reverberated signal and the estimate channels fit. From Fig.3.2-(b), it can be observed

that the difference between the absolute values is negligible. Thus, it is proven
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that using the modified room impulse response for STFT domain is suitable, as the

difference caused by RIR estimates are negligible.

(a) Imaginary parts

0.5+

O Original RIR
|| — Model RIR

(b) Absolute Value

0.71| —— Reverberated Signal
0.6 —— Difference

05
0.4
03

0.2

0.1
0

Figure 3.2: For this experiment an active channel of the STFT is selected. (a)
Imaginary parts of the original and model coefficients. (b) Absolute value
of the band coefficients.

Through experiments a 3[s] long speech signal is used with 44.1[kHz] sampling
frequency. This signal is synthetically reverberated using the measured room impulse
response and noise is added with predetermined SNR value 10[dB]. The original
signal can be checked from Fig.3.3-(a). The reverberated and noisy signal can
be checked from Fig.3.3-(b). In this figure the effects of reverberation can be
observed. The harmonics of the original signal are extended through consecutive time
coefficient in the corresponding band. It can be said that this effect can be observed
because length of room impulse response is longer compared to the STFT window.
Otherwise reverberation can be modeled as an element wise multiplication of the STFT
coefficients in the transform domain, leaving an observation harmonic structure at the
same length of the source signal. In addition, the effects of the noise can be observed

as the activity in the time frequency coefficients outside the harmonics increased.

The estimate using proposed method is visualized in Fig.3.3-(c). It can be observed
that, in the estimate harmonics are shorter compared to the observation and similar to
the source signal. Therefore one can say that dereverberation is achieved. Also it can

be stated that denoising is achieved, as the spectrum is sparse. It can be observed that,
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(a) Original Signal (b) Reverberated Observation
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Figure 3.3: For this experiment an active channel of the STFT is selected. (a)
Imaginary parts of the original and model coefficients. (b) Absolute value
of the band coefficients.

coefficients with low magnitudes are suppressed. However during this process some

of the harmonics are lost. This can be explained with the magnitudes of the harmonics

being close to 0. With the increasing presence of noise these harmonics tend to lose

their information.

In order to visualize the reconstruction an active frequency band of the spectrogram
can be checked. In Fig.3.4 STFT coefficients are compared using both real parts and
imaginary parts. Figures show that the estimation in this active frequency band is also

fitting.

The estimation is also questioned with different input SNR values. Assuming that input
SNR is a preset value between the reverberated observation and the noisy reverberated
observation. As expected, estimate SNR values increase as lambda increases for worse
input SNR values. As noise increases, the observation carries less information about
the original signal. This can be clarified as the presence of the noise increases, sparsity
constraint becomes more reliable. This is visualized in Fig.3.4. It is clear that as input
SNR increases the estimation reaches its maximum value at lower A values. It can

also be observed from Eq.(3.17) A = 0 case is equal to the LSE. The estimate where
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Figure 3.4: The estimate and source signal coefficients for an active frequency band.
(a) Real parts of the coefficients. (b) Imaginary parts of the coefficients.

A # 0 yields better SNR values. Therefore, the proposd method yields better results
compared to LSE.

A - SNR Values

—+—5[dB]

—*—10[dB]
—e—15[dB]
— — -20[dB]

SNR[dB]

L L L
-9 -8 -7 -6

-5
log A

Figure 3.5: In this figure it is justified that the method requires higher values ofA
in order to achieve their best SNR values. Also the input SNR values
determine the quality of the estimate as well. The input SNR values are
higher compared to maximum achieved values. The reason is, estimate
and the observation SNR values are calculated differently.

Overall, it can be observed from the experiments that the dereverberation algorithm
shortens the effects of room impulse response and reduces the effects of noise. Also
the STFT and its inverse is note used in the algorithm decreases computational time.
Through the experients it is also noticed that the computational time required for the

time domain derevereberation is halved.
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4. DEREVERBERATION WITH EMPLOYING PHASE INFORMATION

In that chapter dereverberation problem is solved employing the phase information. In

time domain observations are modeled,
y=Hx+n 4.1)

in that form. It can be observed that single channel system model is similar to definition
in chapter 3. In the equation Eq.4.1 y denotes the noisy and reverberated observation,
x denotes the original signal, H is the convolution operator with the known impulse

response &, n is white Gaussian noise.

The dereverberation is performed using sparse nature of STFT coefficients, using ¢;
type penalty function as proposed in chapter 3. But, with the effects of reverberation,
STFT coefficients diverge from being sparse. Also a solution with modifying
only the magnitudes of the STFT coefficients yields a solution with musical noise.
Nevertheless, even with these outcomes the sparse nature of the time frequency
spectrum of an audio signal is robust to noise. This is why, magnitude information can
not be neglected and used in conventional methods. However, in order to compensate
the musical noise phase information can be taken into consideration. Phase information
is effected by noise dramatically, also fragile to the effects of reverberation. However,
even with these effects, phase information can be used to increase the efficiency if
employed. In that chapter, a method that employs magnitude and phase information is

given.

In a harmonic of a specified frequency band of STFT of a signal, time consecutive
coefficients have a correlated phase information. This relation can be referred as
a constant phase shift between coefficients. Phase difference between two STFT
coefficients on any harmonic is assumed to be approximately equal. Considering
each audio signal as a linear combination of sinusoidals, it is assumed that, there
lies a complex exponential mapping one coefficient to another one in the harmonic

[11-13]. Outside the harmonics magnitudes of the coefficients are 0 due to no activity,
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which makes the phase information meaningless. The phase within the harmonics
can be linked to other coefficients with a complex exponential and this property can
be disregarded outside the harmonics. So generalizing the property for a frequency
band is feasible. Thus, considering that a coefficient can be represented with the time
consecutive coefficient, a frequency band of the transform can be linked with phase
shifted version of itself. As defined before a complex number can be found for each
harmonic in the frequency band. Also it is known that there are few harmonics in a
frequency band. Thus a piece wise constant mask can be found for each frequency
band. The mask takes O value and a non-zero constant through each harmonic. outside
the harmonics. The mask can be obtained after a minimization procedure, which is
solved iteratively. Using that procedure, both phase shift stays constant with same
magnitude and sparsity in a frequency band is satisfied. Therefore, the harmonic
structure is preserved while suppressing the noise coefficients. This mask is applied

on the LSE of the signal as it requires an initial time frequency spectra to enhance.

In order to remark it is also assumed that a convolutive impulse response operator in the

STFT domain can be found. Where the problem in Eq.(4.1) can be defined in STFT,
Y=X+U 4.2)

in that form. Here the operator .77 is the convolutive reverberation operation in STFT.
If the k™ row of the operator is convolved with the k™ frequency band of the STFT
coefficients it yields the k™ frequency band of the observation. Assume that the STFT
operator is denoted with S where X = Sx. Assume that the k™ band of the coefficients
is denoted with sub indent -; and the convolution operation is denoted with . Then the

relation between .77 and H can be shown,
Y =[S (Hx)], = X x 74, 4.3)

in this form [9]. This form is defined in the previous chapter . The definition is assumed

to be satisfied for this chapter as well.

4.1 Proposed Method

In that section, a method for dereverberation is proposed. In order to employ phase

information for that process, the phase relation between coefficients is explained.
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Assume that k" frequency band of the signal is taken into consideration. In that
frequency band, it can be observed that the activity is concentrated in the harmonics
and the remaining coefficients are zero. The coefficients in the harmonics tend
to have similar magnitude in STFT spectrum. Because each harmonic represented
in the spectrum is considerably short for an audio source to change its magnitude
dramatically. These coefficients can be represented as a vector with constant phase
shift in the complex plane. The equivalent magnitude and constant phase shift relation
is posed in [14]. This property can be modeled with a relation,

X(kI+1) _ X(k,I+n+1)

X(k,) — X(k,+n) “44)

in this form. The relation can also be explained with the model posing a complex
exponential between each coefficient in the harmonic Therefore, Eq.(4.4) sates that
there is only one complex exponential mapping consecutive coefficients in a harmonic.
This relation can be also verified using sinusoidal models, where the audio signal can
be represented as a superposition of sinusoidals [11]. In the STFT spectrum of an
audio signal it is observable that the complex exponential does not satisfy the relation
between coefficients and instead using a complex number can form a robust method to

map coefficients. The relation can be shown,
X (k1) = X(k, 1+ 1)oy(1) 4.5)

in this form. This relation however becomes meaningless outside of the harmonics. As
explained before, it is known that outside the harmonics there is no activity and with
magnitudes approaching 0 phase information becomes meaningless. As the phase shift
assumed to be constant, the complex vector is expected to be constant. A penalty
function in order to force the phase shift to be constant, can be formed summing
the phase differences between the coefficients regardless of convexity. However, the
penalty function is desired to be convex. Thus, the mask defined in Eq.(4.5) is the point

of escape.

In order to form a convex penalty function, the phase shifted version of the signal is

defined,
- Xk D]
X(kJ)_—|X(k,l+1)|X(k’l+1) (4.6)
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in that form. Using the constancy relation in phase difference denoted in Eq.(4.4), the

phase shifted version and the signal can be linked,
X (k1) ~ X (k,1) o (1) 4.7)

using this relation. Here « is a complex valued vector. This vector should also satisfy
the properties of the mask proposed in Eq.(4.5). Thus « is required to be piecewise
constant [14]. In coefficients harmonics are assumed to have a constant shift, this leads
to constancy which can be explained linking the relation with Eq.(4.7) and harmonics

also have a sparse nature, which is a property of time frequency spectrum.

In that scenario the room impulse response and the properties of the noise are assumed
to be known. Thus, in the proposed method, the initial point can be set to the LSE.
Assume that .7 denotes the room impulse response operator in STFT domain and ¢
denotes the variance of the noise. The least squares estimate (LSE) can be obtained by

solving the complex minimization problem,
Xesg = argminE {|[Y — (X +U) |13} (4.8)

of that form. LSE only includes a quadratic term which is convex. Therefore, problem
has the O in its gradient. The solution to that problem can be found by taking the

gradient and setting it to zero. LSE is,
Xise = (1Y) (1|3 + o) (4.9)

calculated in that form. Estimating the original signal can be achieved by masking the
phase shifted version X;sg. Let X;sg denote the phase shifted version,

3 Xpse(k,1)|
X k1) =
Lse (k1) Xpse (k,1+1)|

as given. Let X denote the estimate, which can be obtained masking the phase shifted

X(k,1+1) (4.10)

version. This masking is proposed exploiting the mapping between two consecutive

time coefficients. The masking can be shown,

in that form. It can be observed that, the difference between X and X; gz is modeled
with a mask. That mask is the same as the vector defined in Eq.(4.7). This relation also
preserves the harmonic structure. With masking using the result of the minimization
procedure, quality of the LSE is expected to be increased. The mask can be obtained

using a minimization process, enforcing it to be piecewise constant.
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4.1.1 Minimization on mask

The optimum mask for estimate can be obtained using a convex optimization process.
In order to form the mask o, the vectors for each frequency band is calculated.
The vectors are required to be piece wise constant, as explained previously. The

minimization problem can be posed,

N .1
oy = argm&nEHY — %XLSEO‘I{H% —l—)L]TV(Olk) + AZHOCkHI 4.12)

in that form. Here ¢; enforces the sparsity. The mask is here calculated to be applied
on the phase shifted version of the LSE. The relation of the sparse nature of the phase
shifted version and the original signal is analogous. Sparsity is a property that takes
magnitudes into consideration. Shifting phase does not change the sparse nature of the
signal. Thus, this is proper to modify the phase shifted version with a sparse mask. This

can also be justified with the usage of the sparse mask on the phase shifted version.

TV(-) enforces the constancy of the mask. The operator can be defined,

TV (vi) = [|Dvills
1 -1 0
1 -1 4.13
D— - (4.13)
0 1 -1

in that form. Observe that the TV norm expressed in Eq.(4.12) is applied on each
frequency band. Thus, it is noticeable that the TV norm penalizes the differences
between consecutive elements in the vector. In the minimization problem defined in
Eq.(4.12), TV norm penalizes the magnitude difference of the consecutive coefficients

in the vector.

The minimization problem given in Eq.(4.12) can be solved for each time frequency
component in order to form the mask. The proposed method can be compared to
non-negative garrote in [15]. In non-negative garrote the problem is generalized with
a sparsity constraint. In the proposed method, the constancy of the mask is also taken

into consideration. Thus, the phase information is used to preserve harmonic structure.

In the next section a method is given in order to solve the proposed problem in

Eq.(4.12).
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4.1.2 Solution of the minimization

The problem proposed in Eq.(4.12) is a convex minimization problem. The problem
cannot be solved directly calculating the gradient, due to the complexity caused by
the TV norm and the /. However, it can be solved using the DR algorithm variable
splitting [16]. DR is explained in chapter 2 Alg.1. The next section clarifies the
variable splitting for DR Algorithm. For simplicity, instead of o4, & is used as the

vector of interest in the corresponding frequency band.

4.1.3 Variable splitting

In this section, a variable splitting for Eq.(4.12) is proposed. With a penalty function
including total variation norm, variable splitting can be achieved with the definition of
two new variables z = & and u = Do [17]. In order to preserve the original problem,
while using newly defined variables, characteristic function that links these variables
with each other is defined,

0, fu=Daandz=u

oo otherwise (*.14)

ic(o,u,z) = {

in that form. The relationship between newly defined variables is enforced using the
characteristic function. It can be observed that the characteristic function can not be
minimized if the conditions are not met, as it takes the infinity value. The function gets
zero only if the conditions are met. If the characteristic function is inserted into the

original problem with new variables into Eq.(4.12), the new penalty function,

[0, 2,2)" = argmin f (o, u,2) +g(et,u,2)
1
fla,u,z) = §||Y — AXspal|3+ M l|ull + A2ljz] (4.15)

g(a7 M7Z> = ic<a7 I/t, Z)
can be obtained in this form. The problem defined in Eq.(4.15) is equal to the problem

defined in Eq.(4.12). In order to apply DR Algorithm the proximals are required.

Proximal values are calculated in the next section,
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Proximal Calculation

The division of the penalty function is given in Eq.(4.15). Proximals for each of these
functions are required for the algorithm. Proximal for the function f can be calculated,
~]T

< - 1
hy(@.uz) = (@i g =argmin [la—al3-+ u— b3+ e ~2[3] -

: e (4.16)
+ EIIY — AXpseall5+ M|l + Aa|c|ly

in that form.
It can be easily observed that function is separable with respect to the variables,

~ 1 1

o= argrr%lmZ/Ha —al5+ §||Y — A Xpsgal

- 1

u:argngnZ/Hu—bH%—FMHqu 4.17)

- .1 2
Z=argmin o~ |[z—clz + A2lz]s
c 2'}/
in that form. All the functions that are going to be minimized are convex. Thus, the
proximal values for each variable can be found by setting the gradient to 0. Here, in

order to preserve simplicity, Q = J#Y is defined. The results,
a=(1+70"0) " (a+y0y)
T, y(1) (4.18)

1N}
Il

Z = leY(Z)
are in that form. 7., (+) denotes the soft thresholding operator defined in Eq.(3.3).

The proximal of g can be calculated using,

oo 1
Jyg(0t,u,2) = [0 2)" =argmin — [[| & —al3 + |Ju—bI3 + [|lv—z])3] - -~
a,b,c 2’}/
+i0(a7u7Z)

that form. This function, however, is not separable with respect to variables, because

(4.19)

the characteristic function links all the variables together. Because of the characteristic
function, the penalty function g can only be minimized if the equality is satisfied (when
the characteristic function gets the O value). This leads to the proximal functions for

each variable,
&= argmin 2 (| ~alB + |~ Dal3 + v —al3]
0= argrrzin% [lot —DTb|5+ ||u—b|j3+ ||v—DTb||%} (4.20)
¢ = argmin 2 [Jlot—cl+ e~ Del3 + v e[}
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in that form. Here DT denotes the transpose of the operator D.

The proximals can be calculated taking the gradient and setting it to 0. The results can

be obtained,
a=(D"D+21)"" (@+D"u+2)
i=D(D'D+21) " (a+D"u+z) 4.21)

¢=(D'D+21)" (a+D"u+2)

in that form. It can be observed that 7y is not important for the characteristic function
proximal. The reason is that, the only case interested in the characteristic function is

when it is equal to 0.

As the main ingredients of DR Algorithm are obtained, the algorithm can be formed.
In the next section, the dereverberation algorithm employing phase information is

explained.

4.2 Dereverberation Algorithm

Dereverberation is achieved by masking the phase shifted LSE. The LSE is estimated
basically under the assumption that the room impulse response and the noise properties
are known in Eq.(4.9). The phase of the LSE is shifted using Eq.(4.6). Then
the algorithm calculates optimal mask vectors for each frequency band. The STFT
coefficients of each frequency band for the mask are calculated for a convergence
criterion. This criterion can either be a maximum number of iterations or an upper
bound of tolerance. After obtaining the mask, it is used to obtain the estimate STFT
coefficients. Taking the inverse STFT after masking yields the estimate. The algorithm

can be posed,
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Algorithm 4 Dereverberation Algorithm

1: ye(0,1),4 eRT , A, eRT

2 Xpse = (207Y) [ (/1215 + 0%)

3: Y < PhaseShift (X;sg) Eq. (4.6)

4: repeat Vk € {0,K},

0« Y, ) < @ 20« D&, h 0

repeat
A 20yp(ad il gy — [ad al s)” Eq. (4.18)
B 2Jy(A) —A Eq. (4.21)
gt 2| ea-plata 2 s

10: h<h+1

11:  until convergence criterion met

12: Oy < Jyf(&,iv,ﬁiv,fiv)

13: until finished

14: X (k,1) < Y (k,1)é(k,1)

N

The convergence criteria of the algorithm is discussed in [6]. In that algorithm, the
input ¥ is chosen to be 0.5 in the experiments. The A values effect the priority of /; and

TV norms. In order to achieve better results these values are determined empirically.

Even if A values are determined empirically, they tend to show a pattern for better
estimation with changing input SNR values. It is natural that if input SNR values
increase it is more suitable to rely on the observation. Therefore the A values decrease.
With increasing noise presence in the observation, the estimate tends to rely more
on constraints. Thus, sparsity and constancy in phase shift becomes increasingly

important, which requires increased A values.

4.3 Experiments and Discussion

In that section, experiments using the proposed method given in Alg.4 are proposed.

Through these experiments, the reliability of the method is questioned.

This method is proposed to compensate the effects of the musical noise. As explained
before, musical noise is a natural outcome of sparsity based modifications in low input

SNR values.

Through the experiments, measured RIRs in a reverberant room are used. Signals

are reverberated in some scenarios with the measured impulse response or the RIR
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measurement is achieved at the same time audio signal is recorded. In both options, it

1s assumed that RIRs are known.

Tables for output SNR, different A values for different input SNRs are given in order

to demonstrate the effects of the constraints.

In order to justify overall effects, the experiment is repeated for a preset input SNR for
the entire signal. Again, A values are searched in an interval. With changing values
of A the SNR values can differ. With lower SNR values auditory quality can increase.
Through experiments it can be observed that with reduced SNR the choice of A can
decrease the effect of musical noise. In each experiment, in order to prove this, the

time-frequency coefficients are given for different composition of A’s.

4.3.1 Experiment-1

In this experiment a speech signal is used. A clean audio signal is obtained at first
with 44.1[kHz] sampling frequency. The clean signal is synthetically reverbed with
the measured room impulse response. Therefore, the SNR can be modified manually.
The input SNR is defined on the reverbed signal itself and the noisy observation. The
reverberated and noisy observation is used in the proposed method in order to obtain

the estimate.

In order to determine the quality of the proposed method, an active frequency band
of the reverberated signal is chosen. Complex noise is added to that channel with
pre-determined SNR value. The proposed method is applied on that channel in order
to obtain the estimate. With different /; norm weights (A;) and TV norm weights (4;)
for different input SNR values the experiment is repeated. The results can be checked
from Table 4.1. [A;,A;] = [0,0] corresponds to least squares estimation. Output SNR
values for LSE are not given as it is determined as the starting point of the iterations.
It can be observed that, the output SNR values are lower compared to preset input
SNR value. Input SNR ratio is calculated using the noisy reverberated channel and
the noiseless reverberated channel, output SNR is calculated using the estimate and
the original signal itself. Output SNR comparison also includes the effects of the
RIR. Under these conditions, Table 4.1 shows that with the presence of TV norm,
SNR increases. This is why A, = 0 is given in each scenario. This case shows the

sparsity solution only. It can also be observed that with the increasing values of 4,
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SNR increases. Thus, with A; = O the results are lower than other cases. This may
seem as a contradiction to the importance of the magnitude information. However, as
an active frequency band is chosen for the Table 4.1, it is expected to satisfy phase
shift to be constant more likely compared to sparsity. Overall, it can be observed that

the proposed method yields better results as SNR increases for such scenarios where

A1 #£0.

Table 4.1: Output SNR Values (Experiment-1)

Input SNR = 12[dB]

A
M 0 1075 10% 103 102 107!
0 318 597 776 1026 5.51

107> 380 464 6.09 778 1027 551
1074 633 637 6.65 792 103 551
1073 8.06  8.07 816 888 10.55 5.51
1072 10.81 10.82 10.85 11.11 1131 5.3

107! 872 872 873 881 9.02 5.19
Input SNR = 7[dB]
A
M 0 1073 10725 1072 10715 107!
0 1.49 27 442 581 486

1073 167 229 32 468 59 487
10725 279 32 39 513 609 488
1072 445 47 515  6.06 653 492
10713 585 598 622 672 682 49
1071 569 576 59 618 616 46

Input SNR = 2[dB]

A2
A 0 1072 1075 107! 10705
0 -5 039 232 213 0.62

1072 -13 -0066 134 266 212 0.6l
10715 068 1.49 25 316 21 059
107! 27 316 369 356 197 052
10795 301 324 345 304 158 04
1 211 225 238 212 1.1 022

In order to justify the method, the entire signal is required to be examined. The method
is proposed to counter the effects of musical noise. The musical noise components at
high frequency components can be encountered with higher A values. The composition

of these values highly depends on the observation.

Effects of the TV and ¢; norms can be observed from Fig.4.1. In Fig.4.1-(c) the
estimate is obtained using a moderate level for sparsity and low level for constant phase
shift. Thus, the result tend to be sparse. However, this reconstruction still contains
unusual activity in high frequency terms, which are the reason of the musical noise. In
order to decrease the effects of musical noise the effect of TV norm can be increased.

However, increasing both A values does not increase efficiency. Using a moderate TV
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norm and low ¢; norm weight gets rid of the musical noise components, however this
also yields a small reverb effect in reconstruction. The process can be observed from
Fig.4.1-(d).
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Figure 4.1: (a) Original signal STFT coefficients. (b) Reverbered and noisy
observation STFT coefficients (Initial SNR = 12[dB]). (c) Moderate A,
and low A, estimate. (d) Low A; and moderate A,.

Estimating speech signals with higher ¢/; norm priority and lesser TV norm priority
for erasing musical noise gives better SNR values in time domain. However, auditory

quality is questionable.

4.3.2 Experiment-2

In this experiment, a violin is used to give an example of a musical instrument signal.
Same procedure is repeated. The sampling frequency for the signal is chosen as
44.1[kHz]. The original signal is reverberated synthetically. Noise is added satisfying
10[dB] input SNR.

Similar to the first experiment one band SNR values are calculated for time frequency
coefficients. It can be seen from the figures that the musical time frequency spectrum
has a constant nature. Compared to speech time frequency spectrum it can be assumed

that the constant phase shift is reliable. It can be also seen from Table 4.2 that TV norm
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weight affects SNR gain more compared to sparsity weight. Also it is again justified

that employing phase information increases the quality of reconstruction.

It can be observed that, harmonics in coefficients are more distinguishable compared
to speech signal given in Fig.4.1. Therefore, the TV norm is expected to have greater
impact on estimate. With constant phase shift enforced in mask estimation, the results
can be checked from 4.2. Increasing weight of the TV term does not yield dramatic

reverb effects which can be compared from Fig.4.1-(d) and Fig.4.2-(d).

Similar to the first experiment, better SNR values in time domain are obtained using
moderate A; values and low A, values. However, using a high A, value erases the

effects of the musical noise and increases auditory quality.

Table 4.2: Output SNR Values (Experiment-2)

Input SNR = 12[dB]

A
A 0 105 10* 103 102 107!
0 799 84 10.86 13.57 548

1073 8.02 808 846 109 13,57 548
1074 852 856 891 11.19 1359 548
1073 1115 11.18 1144 1325 1371 547
1072 1424 1425 1437 14.88 1345 534

107! 99 99 993 10.12 996 5.05
Input SNR = 7[dB]
A
A 0 1073 10725 1072 10715 107!
0 464 65 957 928 541

1073 479 593 765 1014 928 541
10725 6.69 776 938 1099 927 541
1072 93 1034 11.66 11.82 923 538

1072 1021 1091 11.52 11.17 877 5.16
1071 889 925 956 944 774 477
Input SNR = 2[dB]
A
A 0 102 10°'% 107! 10795 1
0 149 455 488 233 037

1072 195 458 603 505 236 035
10715 518 7.06 711 507 242 032
1070 625 714 667 463 249 025
10795 497 588 571 42 229 0.098
1 362 4.1 423 305 158 0.005
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EXPERIMENT - 2
(a ) Source Signal STFT Coefficients
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Figure 4.2: (a) Original signal STFT coefficients.
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(b) Reverbered and noisy

observation STFT coefficients (Initial SNR = 10[dB]). (¢c) Moderate A,
and low A, estimate. (d) Low A; and moderate A,.
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5. MIXED NORM REGULARIZATION

Dereverberation using single observation channel is demonstrated with sparsity
constraint in chapter 3 and additionally, employing phase information in chapter 4.
In applications microphone arrays are used for audio recordings which yield multiple
observations. It is expected to increase the estimation quality. Because with more
observations sharing the same information, it is natural to assume that the original

information can be obtained explicitly.

In most cases, the array geometry is tried to be exploited using the phase shift in
observations. In denoising cases, mostly delay and sum beamformers are used in
order to obtain a clean signal [18, 19]. In derevereberation case, however, room
impulse responses vary dramatically due to location. This limits the usage of the
geometry, as the reverb operators differ with source location. With the unstable nature
of RIR, multiple observations can be taken into consideration together. It is observed
that observations recorded close enough share a closely related information about the
source. This information can be extracted from these observations. This also poses
the idea that a common filter can be defined for the recording environment. Obtaining
RIRs for each observation location is problematic. Instead, preliminary experiments
can be performed in order to obtain a common filter that forms the RIRs. Using that
common filter the RIR can be assumed to be known. Also this common filter can be

used in order to shorten the effects of reverberation.

With known impulse responses for the multichannel case, a convex optimization
problem can be posed. The convex problems are often address to multichannel
convex penalty functions using principle components of the sources. [20-24]. It
is assumed that, as the source is active in observations, the observations share a
common information. Different from these methods, the penalty function explained
and used in this chapter is mixed norm [25]. Mixed norm penalty function uses time

frequency coefficients of each observation, where principle component investigation
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requires an extraction. Thus, without a special decomposition required, mixed norm
basically checks the similarities in observations. This penalty function, for a fixed time
and a fixed frequency, checks the similarities in a microphone vector which consists

time-frequency coefficients.

The microphones in an array are located close to each other (1-2[cm] away from each
other). Therefore, wave front of the acoustic signal does not reach microphones with
dramatic difference. Each of the observations are in similar in pattern. Therefore
the time shift between observations is expected to be considerably little. If the
STFT of these signals are taken, in a specified frequency band, corresponding time
coefficients show similar activity. Thus, a harmonic is expected to be found in the
other observations with a little time shift. This information is used in order to separate
noise with the source activity in the spectrum. It is known that the source signal
appears in each observation with different RIR effects. However, source observation
is common in each observation which results in similarities. For dereverberation
case, effects of the reverberation can be shortened assuming that RIR filters are
different. Also noise terms are not expected to be active in all microphones at the exact
time frequency coefficient. With mixed norm regularization, it is checked if a time
frequency coefficient is active in all observation spectra. Using the vectors for fixed
a time and fixed a frequency, it is checked if for this time-frequency bin enough of
the observations are active. It is also considered that with the effects of reverberation
and noise presence one time-frequency does not give enough information. Instead
of checking sparsity of the spectrum, sparsity of the harmonics in the spectrum can
be investigated. In order to investigate the presence of a harmonic in a frequency
band, neighboring coefficients are also taken into consideration by using a block
form of coefficients. With forming a block of coefficients in a frequency band,
harmonic structure is tried to be recognized. With grouping coefficients, it is desired
to limit of harmonics in a frequency band. The number of harmonics are tried to
limited by checking the ¢, norm of the blocks. This addresses to a new penalty
function, that groups up the coefficients, in order to check if the activity in a time
frequency coefficient belongs to a harmonic. Audio denoising is achieved using block

thresholding in [26]. In this chapter, multichannel data is grouped up.
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In a harmonic of a specified frequency band, time sequential coefficients are active.
In order to check whether the coefficient belongs to the harmonic structure, the values
of sequential coefficients together are taken into consideration. Different from mixed
norm regularization, this process groups up the coefficients in order to form a block.
Block mixed norm regularization calculates mixed norm over coefficient blocks. In
this regularization for a specified frequency, time axis is divided into non-overlapping
groups of the same size. Each of these portions form a matrix of time-microphone
coefficients. In here, it can be observed that, with the presence of a harmonic, the
matrix coefficients tend to be active. The harmonic is also expected to be observed
in each observation. Thus, it can be said that the matrix is expected to have a high /¢,
norm. Using this information the time interval can be suppressed if its £, norm is below
a threshold. Thus, with limiting the number of these blocks, effects of reverberation
is shortened. As the reverberation effect in each microphone is different and the RIRs
are modelled as decreasing sequences, active coefficients caused by reverberation tend

to have low /, norms.

In the next section, the generalized multichannel problem is defined in STFT
domain. This definition is mandatory because this chapter explains both denoising
and dereverberation using the same penalty function. The genaralized definition can
be compared with the definition proposed in Eq.(2.4). This chapter has the generalized
problem definition entirely on STFT coefficients. In this chapter mixed norm and block
mixed norm are defined. The algorithm for solving the convex optimization processes
for denoising and dereverberation are proposed. Also the quality for both scenarios are

questioned with the experiments.

5.1 Proposed Method

In this chapter multiple microphone case is taken into consideration. In multichannel
signal processing, the observations are assumed to be effected by different filters and
the noise. The general multichannel signal observation in time domain can be modeled
as,

Ym = Hpx+ny, 5.1

Y is the observation signal at m™ microphone. H,,’s are the convolution operator with

the filters for each channel. If all H,,’s are assumed to be / the model becomes a model
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for denoising problem, otherwise we have to solve the multichannel deconvolution

problem. n,,’s are the additive Gaussian noise for each channel.

It is assumed that the room impulse response can be expressed in STFT domain, which
is explained in Chapter 3. With this assumption the problem can be defined on time

frequency coefficients. The problem can be rewritten,

Here in this definition, .7, denotes reverberation operator for corresponding
observation. As the proposed filters represent the effects of RIR, the estimation can

be formed for each frequency band. Thus, the problem can be solved separately.

In order to revert the effects of reverberation and remove noise, a convex optimization
problem can be used. In order to estimate the signal of interest, a minimization can be
performed over penalty functions. The minimization process of the penalty function in

general can be given as,
min § gm(X) = Y — X5+ Y. Aipi(X) (5.3)
i

In this notation p;(-) defines the penalty functions with weights A;s. For example ¢,

norm enforces sparsity by penalizing magnitude distance from 0.

The solution to this problem is troublesome, because the room impulse responses differ
dramatically for each microphone with a constant source signal. Instead of solving
this problem in order to explicitly obtain the source, the reverberation effects can be
shortened. This equivalent problem can be formed with a relatively short impulse
response definition. The problem has a common filter that maps different sources
to corresponding observations. In order to pose such a problem, relatively short
impulse response concept is proposed. The shortened impulse response divides the
RIRs into a common part and the independent parts. The common part is assumed to
be same for each RIR where independent parts are the residuals. The residuals can be
inserted into sources in order to leave common filter being the same reverberation filter
for each observation. Therefore, the problem becomes estimating different sources
(source convolved with residual RIRs) sharing common information with the same
reverberation filter (common RIR). This modification allows the usage of mixed norm
in the problem. Within this multichannel estimation, the aim is to preserve harmonic

structure.
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The next section explains the relatively short RIR concept.

5.1.1 Relatively short impulse response

It is explained that, in an environment the RIR is hard to determine explicitly for
each observation location. Therefore with preliminary experiments a shorter but a
common filter that represents the RIR can be found. With that model assumption
common RIR of the environment can be considered as the only filter. Instead of using
one source signal and different filters, it is aimed to have different sources with the
same reverberation filter. Using the shortened RIR definition, the reverberation filters
can be shortened, which also allows to use this common filter to define moderately
reverberated observations. These observations can be treated as different source
signals, which share the common source signal. Shortened impulse response concept
can be replaced with relative transfer function, where the common part of the RIR is
assumed to be one of the RIRs. The residuals are set to the relative transfer functions.
However, for this application shortened impulse response is used. For further reading
about relative transfer function or shortened impulse response concepts [27-30]can be

checked.

RIR differs dramatically according to the position of the microphone. Room impulse
response is expressed as two filters. The common filter, is independent of location
and the same for all observation points. The second filter is position dependent which
is different for each microphone location. Let * denote the convolution operator, the

relation is defined as,
Vi = Ny % X 2 @C % Gl ¥ X = gC* Zyy, 5.4

In the equation Eq.(5.4), gc denotes the common filter of the room impulse response
independent of the location, gi,,s denote the independent filter of the room impulse
response differing for each observation point. Modified impulse response can be
inserted into the original problem. Using modified impulse responses, reverberation
effects can be shortened. Observations with shortened RIR is denoted as z,, in Eq.(5.4).
These modified signals are assumed to have different sources for each observation.

Therefore, the problem given in Eq.(5.5) turns into,

mzin{g(z) = ||Y—5¢Z||%+Zlipi(z)} (5.5)
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Here ¢ is the common filter for each channel. Where Y = [V},Y>,- ~-YM]T and Z =
Z1,2,,-- ~ZM]T are the STFT coefficients of y,,’s and z,,’s respectively. Here ¥ is
obtained as the LSE of a linear system. Using the shortened impule response relation

the length of the common and residual parts are determined previously.

With the help of relatively short room impulse responses, single channel estimation
turns into multichannel estimation. With the definition of ¢, instead of estimating X
only, the aim is to estimate Z’s, where Z’s denote the moderately reverberated versions
of X. Therefore, this gives the independence of solving the problem with separating

for each observation.

Different from Eq.(5.1) , here the overall penalty function is multichannel. Therefore,

the penalty functions p (-) have the freedom of penalizing multichannel data.

In the next section Mixed Norm is discussed as the multichannel penalty function.

5.2 Mixed Norm

Assume that the multichannel time-frequency spectrum can be considered as a three
dimensional data. Window employed in STFT is 60[ms] long, which is a common
length for audio signals. Also, microphone array is uniformly distributed and the
distance between two corresponding microphone is relatively low. Thus, this can
be assumed that the 60[ms] differences in time domain does not make marginal
differences in STFT domain. Also it is known that in order to have this long difference
the microphones are required to be afar. In the given geometry microphones are
closely located. Under these conditions there can not be marginal differences between
observation STFT spectra. Therefore, as a natural result, if a time frequency coefficient
is active in a microphone coefficient it is expected to be active in other microphones
as well. Consequently, if there is an activity caused by the source in a specific time
frequency bin of the coefficients it is expected to have activity in other microphones as

well. Therefore this relation can be penalized.

Vectors of interest are of length M for each time-frequency coefficient, where M
denotes the microphone number. It can be observed that the mixed norm uses all
provided observations If the vector has a high ¢/, norm it is assumed that there exists

an activity as it exists in all observations. The mixed norm enforces sparsity on
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time-frequency plane employing the ¢, norm of these vectors. It is desired to have
a limited number of active vectors in time-frequency plane. Mixed norm penalty

function is defined as,

p(Z)=Z|ln = kZ (Z!Zq<k,l>|2|> (5.6)
q

Here, depending on the ¢, norm of microphone vectors for each time frequency
coefficient, the sparsity constraint is enforced. To explain, this constraint checks the
total activity in each time frequency bin, using all observations. The final penalty

function can be defined as,
min||Y —GZ |3+ A Z]m (5.7)

In addition, it is mandatory to mention that Y = [¥; ¥, - -YM]T here is a vector which
consist all observations. Z = [Z; Zz---ZM]T is the source convolved with relative
transfer function. ¢ is the convolution operator with the common part of the shortened
impulse response.Relatively short transfer function is used for denoising in [31].
Differenty from the given scenario, multichannel data is penalized with a penalty

function.

This problem can be solved using DR Algorithm. Assuming that the penalty function
can be divided into two parts. The penalty function can be divided as,

f(2)=ly -9ZI3

8(Z) =2 Z|m

(5.8)

In order to form DR iterations, the proximity operators of these functions are required.

Proximal calculation

Proximal of the quadratic term can be calculated as,
= argmin Ol + 0 .
v g o 2y 272 2

As the problem is convex, it can be said that O is an element of the gradient of this
problem. Assume that O minimizes the problem, solution can be obtained. By taking
the gradient and setting it to O as,
0€(0-2)+y4* (90-Y)
Iy (Z) = (¥ 9+ 1)~ (v 7Y + Z)
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Proximal of the mixed norm can be found using,
1 2
Iy(2) = argmin 512 — 0|3+ 2|l 5.11)

It can be observed from Eq.(5.6), that the mixed norm can be considered as a /3
norm calculation for each microphone vector for specified time frequency coefficient.
Therefore, the proximity function of mixed norm can be calculated as ¢, norm
proximity functions for each time frequency coefficient. Let Z;; denote the 1 x M
microphone vector at the /" time and k™ frequency bin and let (J4(Z)) 1 denote the

value of the proximal at the /™ time and k™ frequency bin. The proximal function is,

soft (HZ[ kHz,/l)
Jvo(Z = :
( 78( ))17]{ HZk,lHZ k,l

This statement can be checked from Eq.(2.17), where the definition is obtained using

(5.12)

positive values of the scaling factor. If this factor is generalized the result is the soft
thresholding operator. The proximals can be inserted into DR Algorithm. The solution

18,

Algorithm 5 DR-Solution for Eq.5.7

y€(0,1),A eR"

Z(l,m) =0, A(l,m) =0, B(I,m) =0Vl,m

repeat
A2y (2) -2 Eq.(5.10)
B < Jy(A) Eq.(5.12)
Z+ (1—=y)Z+y(2B—-A)

until convergence criterion met

Z  Jyy(2)

PN S e

This solution may be improved by modifying the penalty function as explained before.
In order to increase the efficiency. Block mixed norm regularization is defined in the

next subsection.

5.2.1 Block mixed norm regularization

In this section Block mixed norm is taken into consideration which is visualized in

Fig.5.1.

Mixed norm treats the time frequency coefficients over microphones as a vector.
Thus, this only takes one coefficient vector into consideration. In STFT domain the

coefficients tend to be closely valued in magnitude especially in harmonics. Instead
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Block Mixed Norm Layout
Iy I L ... I1 I

mic (m)

time (/)

Figure 5.1: For a specified frequency band, / denotes the time axis, m denotes the
microphone axis. Here each I; has the same size.
of comparing all time frequency bins one by one, it is more suitable to group up
time consecutive coefficients in a specified frequency band and check for harmonic
existence in this interval. This idea is also employed in single observation denoising
application in [26]. Therefore, the nature of the harmonics are aimed to be preserved
even when there is a slight time shift between microphones. Instead of 1 x M vectors
the coefficients of interest here form a matrix of size K x M. Consider that /; denotes
the i interval of length K in the frequency band. Therefore, the length of the signal is
required to be integer multiple of K for non-overlapping blocks. With the assumption
X, denotes k™ frequency band of the time frequency spectrum X, block mixed norm

on a specified k™ frequency band can be denoted as,

1

Xl lgm = |} < ) ||X(/<717Q)||2> where [£i]x .y (5.13)

i \gl€l;

With the block mixed norm definition, the problem defined in Eq.(5.7) can be modified.
In order to apply the block mixed norm procedure, a specific frequency band should
be chosen. Let Z; denote a specified frequency band of the STFT coefficients. Then

the problem can be formed as,

A 1
Zj = argmin  [[Y — 973+ Al|Z]

Km (5.14)

In this problem definition one frequency band at a time is taken into consideration.
Therefore, the overall solution can be obtained after solving this problem for entire

frequency vectors.

The penalty function given in Eq.(5.14) can be solved using DR Algorithm. The
algorithm requires the proximal values of the functions. Proximal of the quadratic

term is analogous to the previous problem and can be checked from Eq.(5.10).
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Here, the mixed norm is defined on the small intervals on the frequency band. It is
assumed that these intervals, which are K X M matrices, are functions of microphone
and time. It can be observed that the proximity operator of the blocked mixed norm can
be done for each block separately. In this problem the matrix is penalized with ¢, norm.
Here, different from mixed norm regularization, a matrix is taken into consideration.
Let O denote the matrix of size K x M visualized in Fig.5.1 and O; the i matrix of
interest. Thus, the calculation is again can be done analogous to the vector scenario.

The proximal of the function for the matrix O; can be calculated as,

~ soft (]|0ill2, ) ~
J’)/g(Oi) = WO, (515)

This proximity calculation is required to be done for each interval. This form can
be generalized for the entire frequency band. Thus, each proximal calculated for the

matrix, is the element of the specified frequency band. The proximal of the frequency

band can be expressed as,

T
Tye(Zi) = [Iyg(1) Tyg () -+ Ty (1) (5.16)
With the knowledge of proximity functions, the penalty function can be minimized
using DR algorithm. The Algorithm for minimizing the problem in Eq.(5.14) is

analogous to the problem in Eq.(5.7). Overall, the complete algorithm can be proposed

with the help of Alg.5 as,

Algorithm 6 Mixed Norm Penalized Dereverberation

1: ye(0,1),A eR",KeZ"

2: Z(1,k,m) =0, A(l,k,m) =0, B(I,k,m) =0 VI, k,m

3: repeat Vk

4:  repeat

5 A 2Ty (Zk) — Zi Eq.(5.10)
6: B < Jye(A) Eq.(5.15),(5.16)
7. i+ (1—y)Z+y(2B—A)

8:  until convergence criterion met

9: Zk — Jyf(Zk)
10: until finished

The algorithm steps for blocked mixed norm regularization can be performed easily.
However, the matrix inversion, considering the inversion of RIR effects which denoted
in Eq.(5.10), is time consuming. In order to decrease required computational time, the

trick is to make us of the Taylor Series expansion,

1 = 1
=) x (5.17)
1—x ngb
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In that sense the matrix inversion, if I — (—1)0¥ Tz is assumed, can be calculated as

infinite multiplication. Thus the inversion can be stated,

o)

Y ()" (9'9)" (5.18)
n=0

(I+a9*4)"

In this inversion, the ¢ denotes the convolution matrix with the common room impulse
response in STFT domain. A convolution matrix can be denoted with a toeplitz matrix,
if the signal to be convolved is extended to the observation length [32]. Thus, the
toeplitz matrix multiplied with the transpose form a symmetric matrix with non zero
diagonal. Therefore, the singular value decomposition will yield FT coefficients as

singular values and the FT as the singular vectors.

Then, taking the n'™ power corresponds to taking FT, taking the power of the roots then
taking the inverse transform. The inversion stated in Eq.(5.18) becomes,

(I+ax* ) =c! <i(—1)"a”2’l> C (5.19)
n=0

Where C and C~! denotes the FT and its inverse. Therefore the multiplication with the
inverse matrix can be represented as a circular convolution. The convolution can be
performed as multiplication in time domain. Thus the computational time decreases.
In Alg.6 ’A’ can be calculated entirely in Fourier domain. However, since mixed norm
is applied on the time axis for specified frequency bin, transform and its inverse is

required. This is because FT is applied on each frequency band.

It can be observed that the algorithm proposed in Alg.6 can be used for both
dereverberation and denoising. Assuming that H,,’s defined in Eq.(5.1) are identity
matrices, the problem directly denotes the denoising. Analogously, shortened impulse
response becomes equal to the identity and the observations with different noise are
used in the algorithm. Denoising algorithm can be derived from dereverberation
algorithm just by considering all the impulse responses are identity. Simplifications
are mandatory in this process, because, with all filters are considered to be identity,
the convolution operators are not required. Also the matrix inversion becomes division

with a real number.
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Mixed norm regularization is used for both denoising and dereverberation purposes.
In the next section experiments are demonstrated and the advantage of blocked mixed

norm regularization is tried to be explained.

5.3 Experiments

In this section the denoising and dereverberation experiments are proposed. As
explained in the previous sections, denoising application uses the same algorithm as
assuming the room impulse response as §(n). With suitable simplifications .7, the
modified impulse response is equal to the identity matrix. In the next subsections
experiments for denoising application and dereverberation application is taken into

consideration separately.

5.3.1 Denoising experiment

In order to justify the quality of the method proposed in Alg.6, a multichannel data
is created using different noises for each observation. A speech signal is taken with
44.1[kHz] sampling frequency and Gaussian noise is added synthetically. The aim in

this application is to estimate the original signal in each channel with reduced noise.

Observations are formed synthetically with different input SNR values for each
experiment. Regularization takes two input values for this scenario: the filter
length and the thresholding parameter. In order to justify that, using block
mixed norm regularization yields better results compared to conventional mixed
norm regularization, experiments on an active frequency channel are performed.

Experiments are performed using 4 and 8 microphone cases.

Table 5.1: Denoising Output Gains.

K

mic. SNR 1 3 5 7 9 11 13

0 449 496 515 493 478 506 491

5 274 297 336 322 298 312 312
10 2077 2218 2337 2329 2207 2092 2.134
15 1476 1.614 1.554 1.623 1.575 1.529 1.429
0 463 486 491 511 488 4.64 438
5 323 336 32 341 331 316 29%
10 2253 2338 2149 2283 2301 2226 2.09
15 1476 1.524 14838 1396 1498 1472 1418

(el R~ I~ T SN S N

For corresponding input SNR values and for different number of microphones, SNR

gains are calculated for different values of filter length K. The SNR gains are the best
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values for different A values. The results can be checked from Table 5.1. K = 1 defines
the conventional mixed norm regularization. It can be said that using a block mixed
norm penalty function increases the efficiency of regularization. Also, as expected

with increasing the input SNR values the gain decreases.

In order to visualize the effects of the algorithm on the time frequency coefficients,
the speech signal is used. With input SNR 5[dB] and 4 observations, the proposed
method is used in order to achieve the best gain. The parameters A and K are chosen

empirically after some experiments. The results are visualized in Fig.5.2.

Denoising Experiment
(a) Clean Observation (b) Noisy

Observation
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Figure 5.2: (a) Original observation at mic. number 4. (b) Noisy observation.
(c) Estimate using proposed method. There are 3 more reconstruction
examples because the method is applied on 4 microphone case.

The estimate is obtained 7.12[dB] gain from the noisy observation. In this experiment,
the SNR value is calculated in time domain comparing the estimate and the clean
signal. Different from this experiment, Table 5.1 is formed calculating SNR using this
frequency vector which explains the difference between best obtained SNR values of

one channel case and this experiment.

5.3.2 Dereverberation experiment

In order to perform dereverberation, measured impulse responses in the lab

environment are used. The microphones for room impulse response measurement are
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in an array layout with 3[cm] distance between each. The room impulse responses are
of length 1.5[s]. As explained before in order to form closely related observations, it
is required to calculate the shortened RIR. The common part of the RIR is factorized

with length 1[s].

In order to justify using block mixed norm regularization over conventional mixed
norm regularization a series of experiments are performed. In the experiments an
active frequency band of time-frequency transform is used. The band is chosen from
reverberated signals of each microphone and complex noise is added with previously
set SNR values. With the knowledge of common impulse response, the moderate
reverbed estimates are obtained. SNR values are obtained comparing the estimate

band and the original moderate reverbed band.

Table 5.2: Dereverberation Output SNR

K
mic. SNR 1 3 5 7 9 11 13
4 0 457 5 5.4 514 495 508 5.08
4 5 784 827 815 826 835 836 8.18
4 10 114 11.83 1198 11.81 119 11.96 11.88
4
8
8
8
8

15 15 1551 15.87 1569 15.74 1577 15.77
0 489 508 514 486 496 519 504
5 784 804 833 818 805 819 8.18
10 11.63 11.81 1199 1191 11.83 11.76 11.77
15 1552 1575 1591 1593 1583 158 15.65

Different from denoising experiments, the SNR gain is irrelevant in this situation
since there exists a linear operator between the observation and the original signal.
The results can be checked from Table 5.2. It can be observed, by making the
same comparison in previous section, that block mixed norm regularization has better

performance compared to conventional method.

In order to visualize the effects of the algorithm on the time frequency spectrum,
the speech signal is used again. In order to highlight the effects of dereverberation,
input SNR is chosen as 15[dB] which is calculated using reverberated observation and
noisy and reverberated observation. The reconstruction is obtained with SNR 20[dB].
Output SNR is calculated using moderate reverberated observation and the estimate.
Removing the effects of the common part of the room impulse response is visualized in
Fig.5.3. It can be observed that, using the proposed method shortens the effects of the
impulse response by removing the effects of the common part of the impulse response.
It can also be stated that, the common part of the RIR is relatively long compared to

the independent parts. Therefore, the auditory quality increases.
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Dereverberation Experiment.

(a) Clean Moderate Reverb (b) Noisy, Reverberated
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Figure 5.3: (a) Original observation at mic. number 4. (b) Noisy observation.
(c) Estimate using proposed method. There are 3 more reconstruction
examples because the method is applied on 4 microphone case.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis dereverberation problem is taken into consideration where RIRs are
known. The non-blind deconvolution problem is solved with the help convex

optimization problems using different types of penalty functions.

In chapter 3 sparsity based derevereberation is taken into consideration. Sparsity of
time frequency coefficients is enforced using ¢; norm in STFT domain. However, time
domain expression is also required to work with RIR and its inverse. This induces
domain changes in solution. As the solution is obtained iteratively, computational load
increases dramatically with changing domain twice in each iteration. As it is explained
in the chapter, in order to avoid domain changes in iterations, RIR is represented as a
convolutive operator in STFT frequency bands. This representation is justified with
the experiments. With the representation, convex minimization problem is defined in
STFT domain. Compared to conventional sparsity based methods, proposed method
achieved the similar results with reduced computational time. Considering these
benefits, RIR representation is used through the thesis. However, it is also observed
that assuming sparsity of the coefficients alone yields musical noise. Increasing the
weight of the sparsity constraint in the minimization is not a solution, even it removes
the musical noise. Increasing the threshold, also damages the harmonics and decreases

quality.

Solution to the musical noise problem is defined in chapter 4. It is observed that
only modifying the magnitudes of time frequency coefficients does not yield a perfect
solution. In order to increase the efficiency phase information is exploited. Compared
to magnitude information, phase information in STFT coefficients is not robust to noise
and reverberation effects. Also phase information is reliable only on harmonics which
is not that fragile. However, there is a constant phase shift between coefficients in
harmonics. This information is used to define a mask between the signal frequency

bands and phase shifted frequency bands. Therefore, an optimal mask can increase the
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estimate quality when applied on the LSE. It is also stated in the chapter that, the masks
for each frequency band are required to be piece wise constant. The constant nature of
the mask is expected to preserve the harmonic structure, because harmonics are formed
by consecutively active coefficients. Musical noise terms however are assumed to be
erased, because the coefficients are not correlated. Thus the experiments section in the
chapter shows that an optimal composition of constraint weights preserves harmonic
structure while erasing the musical noise components. The weight coefficients are
chosen to be same for each frequency band mask calculation. However, it can be
observed that in active frequency bands, as expected, the vectors diverge from being
sparse. Thus, the phase constancy is more valid in these vectors. In order to get better
results, weight composition can be modified with taking band activity in consideration.
Active bands satisfy being constant more than being sparse. Inactive bands on the other
hand are strictly sparse. With a weight factor depending on the band activity the quality

is expected to increase. This is aimed to be solved in future.

In chapter 3 and chapter 4 the dereverberation problem is solved with a single
observation. In chapter 5, derevereberation problem with multiple microphone case
is taken into consideration. In that chapter multichannel derevereberation problem is
defined in STFT coefficients using relatively short RIR definition. In multichannel
model, observations are formed from the same source with different RIRs and noises.
However, with the given geometry of the microphone array, it can be observed that
the observations are not disperse. It is observed that, in STFT domain harmonics do
not shift dramatically in time between observations. Thus this property addresses that
if a time frequency coefficient is active in all observation spectra, it is supposedly a
harmonic component. In order to use that property, instead of estimating the source
explicitly, the effects of reverberation is aimed to be shortened. For that purpose, it is
considered that RIR is the same for all observations where the sources are different.
With the definition of relatively short RIR definition, the reverberation operator is
divided into two parts. Using the common part only, the problem is modified as
a multiple source estimation problem. In that scenario the signals of interest are
the moderately reverberated signals (independent RIR convolved with the source).
each time frequency coefficient forms a vector with the same coefficient in other

observations. As it is assumed that the spectrum is sparse, the number of these vectors
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should be limited. In order to satisfy this property mixed norm is defined. In order to
include the nature of the harmonics blocked mixed norm regularization is defined. Both
definitions are supported and questioned with experiments. In the experiments section
denoising and dereverberation applications are proposed. For future step, mixed norm

regularization is aimed to be used in a multichannel source separation problem.
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