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SPARSITY BASED FORMULATIONS FOR DEREVERBERATION

SUMMARY

Acoustic signals recorded in concerts, meetings or conferences are effected by the
room impulse response and noise. Estimating the clean source signals from the
observations is referred as the dereverberation problem. If the room impulse responses
are known, the problem is non-blind dereverberation problem. In this thesis non-blind
dereverberation problem is posed using convex penalty functions, with a convex
minimization procedure. The convex minimization problems are solved using iterative
methods. Through the thesis sparse nature of the time frequency spectrum is referred.
In order to transform the time domain signal to a time frequency spectrum Short Time
Fourier Transform is used.

In the thesis, to begin with, the general problem is defined in time domain. The basics
of the dereverberation is proposed. Basics of the convex minimization procedure is
explained. Douglas Rachford Algorithm which is used to solve complicated convex
minimization problems is explained.

The chapter 3 proposes a derevereberation formulation based on sparsity. The
dereverberation problem, with known room impulse response, is conventionally
posed as a sparsity based minimization problem, by masking Short Time Fourier
Transform coefficients. The sparsity constraint can be posed using an `1 norm type
penalty function. However, in such formulations, especially if the room impulse
response is longer than the windowing function of the Short Time Fourier Transform
the reverberation effects can not be directly represented in the transform domain.
Therefore, the minimization iterations require transform and its inverse in order to
mask Short Time Fourier Transform coefficients after time domain deconvolution.
Changing domains is more time consuming compared to masking STFT coefficients,
in turn increases computational time dramatically. In order to get rid of the
transformation requirement, the room impulse response is represented in Short Time
Fourier Transform frequency bands. With the approximation filters room impulse
response is denoted as a convolutive operator in each frequency band. In this chapter
an algorithm proposed, that does not require Short Time Fourier Transform and its
inverse, using the proposed approximates of the room impulse response. Also the room
impulse response approximation and the dereverberation with the sparsity constraint
are justified with experiments. Experiments show that, sparsity based solution yields
musical noise.

In the chapter 4, musical noise is suppressed using phase information of the coefficients
in a frequency band. It can be observed that in a frequency band, time consecutive
coefficients are active through a harmonic. These coefficients tend to have close
magnitudes. In addition, phase shift between coefficients in harmonics can be
considered as constant and phase information is unimportant outside the harmonics.
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It can be considered that for each harmonic, there lies a complex number that maps
time consecutive coefficients together. Outside the harmonics the matching constant is
tend to be 0. Therefore, a piece wise constant mask can be found that maps a frequency
band to its own phase shifted version. This mask, in fact, satisfies the sparsity property,
as it is mapping a sparse frequency band to another. In this chapter, a method for
estimating the mask is proposed. The mask is applied on least squares estimate of
the signal. The least squares estimate can be performed with known impulse response
and noise properties. The dereverberation performance is justified using experiments.
Through the experiments different audio signals with different input signal to ratio
values are taken into consideration. Also, different weight compositions are taken into
consideration.

In the chapter 5, different from the chapters 3 and 4, multiple microphone case is
taken into consideration. Multichannel case is often solved making use of microphone
array geometry or using multi channel penalty functions. Another important struggle
in dereverberation is estimating RIRs. Instead of measuring explicit RIRs for the
observations, a common filter can be obtained using preliminary observations. This
information can be exploited in multichannel estimation. In this chapter a minimization
procedure with a multi channel penalty function is proposed. In multiple microphone
case, the observations share a common information. A time frequency coefficient is
expected to be active in all the observations, if the microphones are close. In order
to make use of that information the estimation can be modified into multi channel
estimation. Instead of estimating the source signal from observations, it is assumed
that the observations are formed from different sources. The sources are defined as
shortly reverberated versions of the source signal. In order to obtain these observations,
relatively short room impulse response definition is required. With the definition the
room impulse response can be divided into two: the common part, which is the same
for all observations and the independent part, which differs with position. Thus, a
formulation for mixed norm is proposed using relatively short impulse responses.
However, this algorithm can be generalized. In order to relax the condition on time
frequency coefficients, it can be assumed that time shift between harmonics between
observations is relatively small. Thus the harmonic structure is investigated using
blocked mixed norm regularization. Both algorithms for mixed norm and blocked
mixed norm regularization are justified and compared using experiments on speech
signals.
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YANKILAŞIM GİDERMEK İÇİN
SEYREKLİK TABANLI DÜZENLEMELER

ÖZET

Konser, konferans, toplantı gibi ortamlarda kaydedilen akustik işaretler, kaydın
alındığı ortam nedeni ile yankıya ve gürültüye maruz kalır. Kaynak işaretinin elde
edilen gözlemlerden kestirimi yankı giderme problemi olarak isimlendirilir. Bu
kayıtlarda göze çarpan yankı etkileri bir süzgeç olarak zaman tanım bölgesinde
modellenebilir. Yankı etkilerini modelleyien bu süzgeç oda darbe cevabı olarak
isimlendirilir. Oda darbe cevabının bilindiği durumda problem gözü kapalı olmayan
yankı giderme problemine dönüşür. Tez boyunca oda darbe cevabının bilindiği
durumlar dikkate alınmıştır. Gözlemlenebilir ki, oda darbe cevabı kaynak ve gözlem
noktalarına çok bağımlıdır. Bu nedenle oda darbe cevabının bütün uzaydaki noktalar
için kestirimi çok zordur. Bu durumda oda darbe cevapları tezdeki deneylerde
sentetik olarak uygulanmış veya gözlem ortamında kayıt alındığı sırada gözlemden
elde edilmişlerdir. Bölüm 5, bu duruma farklı bir açıdan bakılmasının örneğidir. Bu
bölümde oda darbe cevabının kısmen bilindiği ve gözlem ortamı için tek bir süzgeç
tanımlanabileceği durumları göz önüne alınmıştır.

Bu tezde gözü kapalı olmayan yankı giderme problemi, dışbükey bir en küçükleme
problemi yardımıyla çözülmüştür. Dışbükey en küçükleme problemleri yinelemeli
yöntemler kullanılarak çözülmüştür. Tez boyunca, farklı ceza terimleri kullanılmış
olsa da, ceza terimleri, işaretin zaman sıklık dönüşümü altında seyrek yapıya sahip
olacağını varsaymaktadır. Seyreklik koşulundan anlaşılması gereken, sayılı zaman
sıklık katsayısının aktif olduğu ve aktif katsayı kümelerinin uzaya dağılmış olduğudur.
Seyrek zaman sıklık dönüşümü katsayıları yapısı kullanılarak kestirim daha iyi bir
biçimde sağlanabilir. Zaman sıklık dönüşümü olarak Kısa Zamanlı Fourier Dönüşümü
kullanılmıştır. Önerilen dönüşüm yerine herhangi bir doğrusal zaman sıklık dönüşümü
de kullanılabilir.

Tezde ilk olarak, zaman tanım bölgesinde, genel gözlem modeli verilmiştir. Bu yolla,
yankı giderme probleminin temelleri anlatılmıştır. Dışbükey en küçükleme modeli
verilmiştir. Karmaşık en küçükleme problemlerini çözmek amacıyla yinelemeli bir
yöntem olan Douglas Rachford Algoritması açıklanmıştır. Bu algoritma gradyan
hesaplaması kolay olmayan problemleri, hesabı kolay olan iki alt probleme ayırarak
yinelemeli olarak çözmektedir. Yinelemelerde her bir verilen alt problemlerin
kısıtlamaları, bu fonksiyonların yakınsal terimleri kullanılarak sağlanmaktadır. Bu
yinlemelerde, belirlenmiş olan bir adım değeri ile kısıtlara yaklaşılır. En son olarak
ise bu kısıt kümeleri arasındaki en yakın nokta bulunarak en uygun noktaya ulaşılmış
olunur.

Bölüm 3 seyreklik koşulu altında yankı giderme problemine ayrılmıştır. Geleneksel
yöntemler, yankı giderme problemini, oda darbe cevabı bilindiği durumda, Kısa
Zamanlı Fourier Dönüşümü katsayılarını maskeleyerek çözmektedir. Seyreklik koşulu
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dönüşüm katsayıları üzerine `1 normlu bir ceza terimi kullanılarak sağlanmaya
çalışılmıştır. Ancak, bu tip önermelerde oda darbe cevabının, Kısa Zamanlı
Fourier Dönüşümü alınırken kullanılan pencereden uzun olması durumunda, oda
darbe cevabu, dönüşüm tanım bölgesinde çarpım olarak ifade edilemez. Seyreklik
koşulunun dönüşüm katsayıları üzerinde arandığı ve oda darbe cevabının zaman
tanım bölgesinde bir evrişim işleci olarak tanımlandığı düşünülürse, en küçükleme
probleminin yinelemeleri sırasında tanım bölgesini değiştirmeye ihtiyaç olacaktır.
Tanım bölgesi değiştirmenin, maskeleme işlemine göre daha uzun süreceği açıktır.
Bu nedenle tanım bölgesi değiştirmek en küçükleme probleminin çözüm sürecini
çok arttırmaktadır. Bu etkiden kurtulmak amacıyla oda darbe cevabının etkileri
dönüşüm katsayılarının frekans bantları için bir evrişim işleci olarak ifade edilmiştir.
Bu bölümde yankı giderme işlemi için yinelemelerinde yanım bölgesi dönüşümü
olmayan bir algoritma önerilmiştir. Aynı zamanda deneyler ile dönüşüm tanım
bölgesinde yaklaşık olarak elde edilen oda darbe cevabı süzgeçlerinin ve yankı giderme
algoritmasının başarımı tartışılmıştır. Deneyler sonunda, seyreklik koşulu ile yankı
giderme işlemi sonucunda müzik gürültüsünün ortaya çıktığı görülmüştür.

Bölüm 4, faz bilgisi kullanılarak, müzik gürültüsünün azaltılmasına ayrılmıştır.
Seçili herhangi bir sıklık bandında, harmonikler üzerinde zamanda ardışık gelen
katsayıların etkin olduğu gözlemlenebilir. Bu katsayıların genlik değerleri birbirine
yakındır, aynı zamanda iki katsayı arasında faz kaymasının yaklaşık sabit olduğu
söylenebilir. Bu yolla her harmonik için faz kaymasını modelleyecek bir karmaşık
sayı bulunabilir. Harmonikler dışında, işaret zaman sıklık katsayılarının 0a yakın
genlikli olması beklendiği için, faz bilgisi anlamsızlaşır. Bu yolla parça başı sabit
bir maske ile bir sıklık bandı, kendisinin fazı kaymış biçimine bağlanabilir. Bu
maske, aynı zamanda dönüşüm katsayılarının özelliklerini de korumaktadır. Bir
dönüşüm sıklık bandını bir diğerine bağlaması nedeniyle seyrek bir yapıda olması da
beklenir. Bu bölümde, her sıklık bandı için tanımlanan maskelerin kestirimi için bir en
küçükleme problemi önerilmiştir. Bulunan maskeler, en küçük kareler kestirimi sıklık
bantlarına uygulanmıştır. En küçük kareler kestirimi, oda darbe cevabı ve gürültü
özellikleri bilindiği varsayımında, rahatlıkla hesaplanabilir. Deneylerde farklı ses
işaretleri kullanılarak önerilen yöntemin başarımı tartışılmıştır. Aynı zamanda kestirim
başarımları farklı seyreklik, faz sabitliği ağırlıkları için sunulmuştur.

Bölüm 5, 3 ve 4 bölümlerinden farklı olarak çok gözlemin olduğu duruma ayrılmıştır.
Çok mikrofon ile gözlem elde edilen durumlarda, yankı giderme problemi genel
olarak mikrofon yerleşimleri kullanılarak veya çok kanallı ceza terimleri yardımıyla
çözülür. Yankı giderme probleminde temel zorluklardan biri de oda darbe cevaplarının
bulunmasıdır. Bu süzgeçlerin bulunması yerine, kayıt ortamı için ortak bir süzgeç
tanımı yapılabilir ve bu tanımla çok kanallı en küçükleme ortaya atılabilir. Bu
temel süzgecin belirlenmesi gözlem anından önce yapılan deneylerle mümkün
olabilir. Temel süzgeçte öne atılan sav, oda darbe cevaplarının ortak bir noktalarının
bulunduğudur. Bu ortak nokta ise tüm gözlem ortamı için geçerlidir. Bu tanım
kullanılarak elde edilen temel süzgeç ve ardından elde edilen süzgeç artıkları yardımı
ile yankı etkilerinin kısaltılması sağlanabilir. Özellikle temel süzgecin oda özelliklerini
yansıttığı varsayıldığında, bu süzgecin gözlemlerden silinmesi yankıyı önemli ölçüde
ortadan kaldıracaktır. Bu bölümde, yankı giderme problemini çözmek amacıyla, çok
kanallı bir ceza terimi ortaya atılmıştır. Ceza terimi kullanılarak bir dışbükey en
küçükleme problemi ortaya konmuştur. Çok mikrofonlu kayıtlarda gözlemlerde ortak
bilgi göze çarpar. Bir zaman sıklık katsayısının, yaklaşık olarak tüm gözlemlerde
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etkin olması beklenir. Bu durum zaman sıklık katsayıları faklı gözlemler için
üst üste konumlandırıldıklarında görülebilir. Bu bilgiden faydalanmak amacıyla,
dışbükey en küçükleme problemi yardımıyla kaynak işareti kestirimi yerine, çok
kanallı kestirim yoluna gidilmiştir. Bu nedenle gözlemlerin farklı kaynaklardan elde
edildiği varsayılmıştır. Farklı kaynaklar, kaynak işaretinin kısa biçimde yankılanmış
biçimleri olarak düşünülmüştür. Bu kaynakları tanımlamak amacıyla görsel olarak
kısalmış oda darbe cevabı tanımı yapılmıştır. Bu tanımdan faydalanılarak karma norm
ceza terimi kullanılarak bir en küçükleme problemi ortaya atılmıştır. Önerilen yöntem
ceza teriminin rahatlatılması ile genelleştirilebilir. Zaman sıklık katsayılarındaki
mikrofon üzerinden seyreklik araştırması yerine, harmonik araştırması yapılabilir. Bu
amaçla bu bölümde kümelenmiş karma norm ceza terimi de ortaya atılmıştır. Bu
terimin ortaya atılmasındaki temel itici güç ise zaman sıklık katsayılarının gürültü
etkisinde her gözlemde bulunmayacağının garantisinin verilemeyeceğidir. Katsayıların
kümelenmesi yardımıyla bu gürültü terimlerinin ardışıl gelme olasılığı düşürülerek
daha temiz bir kestirim elde edilebilir. Her iki yöntem de deneyler bölümünde sınanmış
ve karşılaştırılmıştır.

Son bölümde ise tezde anlatılan konular tekrardan göz önüne serilmiştir. Bu serimler-
den yola çıkarak, tezden yararlanarak hangi konularda araştırma yapılabileceğine de
yer verilmiştir.
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1. INTRODUCTION

Audio signals recorded in conferences, meetings or concerts are effected by the

properties of the environment and the noise. Especially in recordings with

microphones, distant from the source or within a class or hall, the observations are

reverberated. This reverberation effect can be modeled with a linear operator. The

impulse response of that operator model is named as room impulse response. With

the presence of noise or other sources, the deteriorated signal is hard to understand for

human auditory system. In many possible applications like seminar or public meeting

recordings the aim is to obtain the speaker as clean as possible. In order to revert the

effects of reverberation, methods address the deconvolution problem. The problem

to estimate source signal from reverberated and noisy observation is referred as the

dereverberation. The problem model and some methods can be observed from [1].

In this thesis dereverberation problem with known impulse response is taken into

consideration. Therefore, it is called non blind dereverberation. The dereverbration

problem is posed as a convex minimization problem with variety of penalty functions.

In chapter 3 and chapter 4 single channel dereverberation is performed. In chapter 5

multiple observations are taken into consideration.

In the chapter 2, the system model is proposed. The convex optimization procedure

is explained. Douglas Rachford algorithm, which is an iterative solution for convex

optimization problems, is explained. DR algorithm requires proximity operators of

functions. The proximity of a function is defined and for some fundamental functions,

proximals are calculated. After explaining the basics used through this thesis, the

methods for the dereverberation is proposed.

It is conventional, in acoustic source estimation, to assume that time frequency

transformation of a signal is sparse. Thus, derevereberation can be performed with

a sparsity constraint on the estimate spectrum. In the chapter 3, a sparsity based

deconvolution problem in STFT domain is proposed. Least squares term is used

1



in order to minimize the error between the estimate and the original signal, linking

them with the knowledge of RIR. This process is conventionally done in time domain

because RIR is a convolutive operator defined in the time domain. However, the

penalty function is required to enforce the sparsity of the STFT coefficients. As a

result in the minimization procedure, it is required to use transform domain for sparsity

constraint and the time domain for deconvolution. It can be observed that, pursuing

penalty functions in different domains requires domain changes in calculations. This

point of view becomes more problematic if the solution is obtained using an iterative

method, as domain change is required at each iteration. In the steps, it is required

to use transform and its inverse at least once for each iteration. In order to avoid

domain changes, RIR is required to be represented in the transform domain. Therefore,

a room impulse response model in STFT domain is proposed. Such that impulse

response model provides the freedom of using convex constraints in STFT frequency

bands without increasing computational complexity. Dereverberation with sparsity

constraint is a common method, however, with proposing a method in transform

domain, the computational time is dramatically decreased. Using proposed method,

dereverberation is achieved with similar results to conventional methods. The negative

result of sparsity based dereverberation is the musical noise caused by high frequency

coefficients. These effects can be canceled by increasing the weight of sparsity

constraint. However, some harmonics are lost after that modification, which results

in decreased quality in estimation. In order to get rid of the musical noise without

losing any information, a new method is required.

In the chapter 4, a dereverberation formulation employing phase information is

proposed as a continuation of the first chapter. It is notified that, sparsity based

denoising methods reduce the noise by modifing magnitudes. However with the

effects of the reverberation the sparse nature of the coefficients is questionable and

these methods also yield musical noise. The musical noise caused by conventional

sparsity based methods can be erased using phase information of the time-frequency

coefficients of the transform. The phase information is used to relate the coefficients in

a harmonic. In a harmonic of a specified frequency band, consecutive time coefficients

tend to have similar magnitude value and a constant shift between coefficients. Phase

information of the coefficients are highly affected by noise and reverberation, however
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the phase shift manages to stay close to constant. In harmonics, with the usage

of constant phase shift property, consecutive coefficients can be related. Under the

assumption that phase shift constancy holds, a complex number can be found for

each harmonic that maps consecutive coefficients. Also this can be generalized such

that, the complex number also maps the harmonic to phase shifted version of itself.

Assuming there exists few harmonics in a frequency band, a piecewise constant mask

can be formed. This mask maps the signal to phase shifted version of itself. This

mask preserves harmonic structure. An algorithm employing this mask is proposed to

erase musical noise while preserving the harmonics. As stated before the algorithm

employs phase information of the coefficients in addition to magnitude information.

The quality of the proposed algorithm is justified and the improvement achieved is

compared to sparsity based estimate through experiments.

The methods proposed in chapters 3 and 4, are using a single microphone. In

applications microphone arrays are used in order to increase the efficiency where

there is a set of observations. Different from the previous chapters in the

chapter 5 multichannel dereverberation is taken into consideration. Multi channel

dereverberation problem is conventionally solved expoiting the microphone array

geometry or multi channel penalty functions. Therefore, using a multichannel convex

penalty function, this property can be exploited in order to obtain the estimate. Using

different RIR for each observation point with one source is challenging. In order

to prevent using different room impulse responses the shortened impulse response

concept is explained. It is assumed that room impulse responses of microphones

share a common and shorter part. Thus in the problem it is assumed that the common

part is the filter and the observations are obtained using different sources with the

same information. Therefore, the time frequency coefficients of these sources can be

linked together. Assuming that sources are located close enough, corresponding to

the geometry of the microphone array, it is acceptable to assume their time frequency

spectrogram can be related. With the assumption that, microphones are closely located,

it is expected that shift in time domain observations is considerably little compared

to the windowing function employed in STFT. Therefore in a frequency band the

harmonics are expected to be closely located. This property can be exploited using

multiple observations. In order to use that information, with the usage of shortened
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impulse response definition, shortly reverberated observations are considered as the

sources. Instead of estimating the source, the problem is modified to address estimating

shortly reverberated observations. In these observations, it is expected that if a time

frequency coefficient is active in one spectrum, it is also active in others. With that

information, while investigating the sparsity of the transform spectrum, all observation

spectra is taken into consideration. With a mixed norm penalty function the sparsity

of a a frequency band is enforced through all observation bands. An algorithm with

mixed norm penalty function defined. However, harmonics in shortly reverberated

observations are closely located. Also number of harmonics is limited. This leads to

grouping time frequency coefficients in a frequency band and investigating presence

of harmonic using all observation spectra. If the constraint proposed with mixed norm

is relaxed, a block mixed norm algorithm exploiting that information is proposed for

dereverberation. Also with assuming RIRs to be δ functions, problem becomes the

denoising problem. The denoising and dereverberation performances of the method

are justified separately using experiments.

In the final chapter conclusions and remarks are given. Also possible future research

is proposed.

All these methods are sparsity based dereverberation methods which can be considered

a common point. Sparse nature of time frequency spectrum of the audio signals

motivates defining sparsity based convex optimization problems. Also, with the

convergence of various algorithms applicable on such problems, different constraints

can be applied. With the motivation of proposing different methods for sparsity based

dereverberation, the performance of the estimates are tried to be improved. The aim of

this thesis is to pose various convex methods for both single channel and multichannel

data that can improve the efficiency and quality of source signal estimation.
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2. PRELIMINARY CHAPTER

In this chapter the dereverberation concept is tried to be explained. Additionally

Douglas Rachform Algorithm and proximal definitions are made. These definitions

are also remarked in other chapters if required.

The audio recording setup is demonstrated in Fig.2.1. The arrows between

microphones and speakers denote the reverberation effects, this setup can be modeled,

ya =
B

∑
b=1

hab ∗ xb +na a = 1, · · · ,A (2.1)

where ∗ denotes the convolution operator. There y’s denote the observations, x’s denote

the source signals, h’s denotes the room impulse responses that cause reverberation and

n’s denote the channel noise. As demonstrated in the setup for a microphone all the

sources has their own filters. It can be observed that RIR changes dramatically with

position. Here in Eq.(2.1), with that notation, the difference of RIR with respect to

location is modeled. This time domain model is used through the thesis.

In the thesis the convolution with RIR is denoted with the H in order to preserve

simplicity. Thus the problem defined in Eq.(2.1) becomes,

ya =
B

∑
b=1

Habxb +na a = 1, · · · ,A (2.2)

The room impulse responses are usually of few [s] length. Thus, with the reverberation,

each activity in time domain is expected to be extended. The reverberation effects are

visualized in Fig.2.2. As can be observed from the Fig.2.2 the observation is extended.

With the noise added, auditory quality decreases. The aim is to estimate original signal

from the reverberated observations. For example, from the noisy and reverberated

observation in Fig.2.2-(c), the aim is to estimate the original signal in Fig.2.2-(a).

2.1 System Model

In this thesis the RIR relations between microphones and sources are assumed to

be known. Thus this poses the non blind deconvolution problem, where the only
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Multi Channel Recording System

Figure 2.1: The general setup used for multi channel audio recording with multiple
sources.

unknown is the source signal. On the other hand, if the channel filters are required

to be estimated, the problem becomes blind deconvolution problem. However, this

problem is ill posed as it requires two concepts to be estimated at the same time [2–4].

Even with the known RIR, the estimate can be improved using some properties. The

most common property exploited is sparsity of the spectrum.

In order to employ this property time frequency transformation is required. In this

thesis short time Fourier transform is used. Assuming that g(n) is a low pass filter and

gk,l(n) = g(n− l∆t)exp(− jk∆w (n− l∆t)), where ∆w denote the frequency length and

∆l denotes the shift size of the window function. The STFT of a signal is calculated

with,

X(k, l) =
〈
x(n),gk,l(n)

〉
(2.3)

Where 〈·, ·〉 denotes the inner product. It can be observed that if a filter has a length

less than or equal to the windowing function, the effects caused by that filter can

be denoted as an elementwise multiplication in STFT domain. This, in case, can be

explained that the corresponding coefficients of the signal and room impulse response

lie in the same interval. Thus the convolution can be represented as elementwise

multiplication in these intervals. This can be proven in short, using the definition

of Fourier transform. Convolution in time domain corresponds to multiplication in

frequency domain. However, as can be seen from Fig.2.2-(b) the room impulse

response length is considerably long. In order to obtain acceptable resolution, the

window length in STFT for audio applications is chosen around 50[ms], where the

room impulse response is of length 1[s]. Thus the reverberation can not be represented

as an elementwise multiplication in STFT domain.
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Time Domain Models

(a) Source Signal (b) Room Impulse Response
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Figure 2.2: (a) Time domain model of the original signal. (b)Time domain model of
the room impulse response. It can be observed that the impulse response
has a decreasing nature over time. (c) Convolution result of the source
signal and the room impulse response. No noise is added in order to show
the effects of the reverberation.

The estimation in the thesis is obtained using convex optimization processes which is

explained in the next section. However the optimization problems are formed using

STFT coefficients. The trick required in order to define problems in STFT is explained

in chapter 3.

The definition of the STFT is also given in the other chapters, because in each

of the scenario different properties of the STFT are exploited. STFT is just

a linear time frequency decomposition. Instead of STFT any other linear time

frequency transformation can be used [5]. However with different transformations

the representation of RIR in these domains is required to be calculated.

2.2 Convex Optimization Procedure

In order to estimate the original signal from reverberated data convex optimization

procedure is used through the thesis. The convex optimization procedure can be

generalized as,

min
x̄
‖ȳ− H̄x̄‖2

2 +∑
i

λi pi(x̄) (2.4)
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Where x̄ = [x1 x2 · · ·xN ]
T , ȳ = [y1 y2 · · ·yN ]

T and H̄ denotes the mixture matrix with

corresponding RIR. The quadratic term given in Eq.(2.4) minimizes the error between

the estimate and the observations. λi’s denote the weighting factors that determine the

importance on penalty functions. p(·)’s denote the convex penalty functions. In this

thesis, a variety of penalty functions are proposed for single channel and multi channel

cases.

Through the thesis convex minimization problems are solved iteratively. Douglas

Rachford Algorithm is used in chapter 4 and chapter 5. So the definition of the

algorithm is required.

Douglas-Rachford Algorithm

In a convex minimization process the solution may not be easily computed due to

the nature of penalty functions. With numerous penalty functions employed in the

minimization process, the computation of gradient is not cost effective. In order

to reduce the complexity, problem can be solved by dividing into less complex sub

problems [6]. Using these sub problems iteratively the algorithm converges to the

optimal point iteratively of the penalty function.

In DR Algorithm the penalty function is divided into two as,

x̂ = argmin
x

( f (x)+g(x)) (2.5)

Where f (x)+ g(x) form the penalty function of interest. In order to solve requiring

more divisions, variable splitting can be used. In this formulation, the estimate x̂ is

found iteratively. For iterations, the concept ’proximity operator’ is used. The proximal

of a function of f is defined as,

Jγ f (x) = argmin
a

1
2γ
‖a− x‖2

2 + f (a) (2.6)

Using this knowledge the estimate can be calculated,

Algorithm 1 Douglas-Rachford Algorithm

1: a0← x , γ ∈ (0,1), α ∈ R+, h← 0
2: repeat
3: b←

(
2Jγ f (ah)−ah)

4: ah+1← ah (1−α)+α
[
2Jγg(b)−b

]
5: h← h+1
6: until convergence criterion met
7: x̂← Jγ f (aN)
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using this iterative algorithm. It can be observed that, the algorithm basically tries to

satisfy the constraints one by one. The algorithm finds the optimum point that has the

minimum distance to the contraint subsets. The convergence of this algorithm can be

checked from [6].

The proximal definition is made in Eq.(2.6). Using this definition proximity operators

of widely used functions can be given as examples.

Proximity of `1

The sparsity of a function is checked widely using the `1 norm. The penalty function

of this norm is defined as,

p(x(n)) = λ‖x(n)‖1 = ∑
n
|x(n)| (2.7)

The proximity of this penalty function is required in many applications, especially if

used with other penalization functions, where taking gradient is not straightforward.

In order to find the proximity operator, the minimization procedure is required to be

solved. The problem,

Jγ p(x) = argmin
t

1
2γ
‖x− t‖2

2 +‖t‖1 (2.8)

Here in the Eq.(2.8), both the quadratic term and the `1 term are convex. Therefore, it

can be said that 0 is an element of the gradient of this function. If the gradient is taken

with respect to t and it is assumed that t̂ is the solution to the minimization problem in

Eq.(2.8). The result,

0 ∈ (t̂− x)+ γsgn(t̂) (2.9)

Vector derivation can be checked from [7]. Here sgn denotes the sign function. This

relation can be extended into two sub definitions as,

0 ∈ (t̂− x)+ γ where t̂ > 0
0 ∈ (t̂− x)− γ where t̂ < 0 (2.10)

The solution can be obtained with satisfying the equations and modifying the domain

constraints on t̂ with respect to x and λ . The solution can be obtained as,

t̂ = Jγ p(x) =


x− γ if x− γ > 0
x+ γ if x+ γ < 0

0 otherwise
(2.11)
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The function denoted in Eq.(2.11) results in soft thresholding operator. It can be

observed that with the `1 norm the magnitudes of the coefficients in the matrix are

cropped.

This proximity operator definition also refers to `1 norm minimization problem, which

is also used in chapter 3.

Proximity of `2

The `2 norm proximal calculation is taken into consideration. The `2 norm can be

defined as,

p(x) = ‖x(n)‖2 =
√

∑
n
|x(n)|2 (2.12)

In order to find the proximity operator of this function, the minimization procedure can

be used as,

Jγ p(x) = argmin
t

1
2γ
‖x− t‖2

2 +λ‖t‖2 (2.13)

Where sgn denotes the sign function. In order to solve this problem the matrix notation

for the `2 norm can be used. Assuming that ‖x‖2 =
(
xT x
) 1

2 , the problem defined in

Eq.(2.13) can be modified as,

argmin
t

1
2γ

(x− t)T (x− t)+(xT x)
1
2 (2.14)

Square of the `2 norm and `2 norm itself are convex. Therefore, in order to minimize

the problem, the solution can be searched where 0 is the element of the gradient. Taking

the gradient yields the result,

0 ∈ (t̂− x)+λ (t̂T t̂)−
1
2 t̂ (2.15)

From this point it can be observed that t̂ = cx where c is a scaling factor. Thus, the

proximal calculation defined in Eq.(2.13), can be modified into the problem,

min
c

1
2
‖cy− y‖2

2 + γc‖y‖2

=min
c≥0

1
2
(c−1)2‖y‖2

2 + γc‖y‖2

=min
c≥0

1
2
(c−1)2 + γ

c
‖y‖2

(2.16)

If the gradient with respect to c is set the zero, it can be found c = 1− γ/‖y‖2.

Therefore, the solution can be obtained as,

t̂ = Jγ p(x) =
(

1− γ

‖y‖2

)
y (2.17)
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It can be observed that the proximity operator of the euclidean norm thresholds the

magnitude of the given vector. Proximity on `2 norm is used in chapter 5 for calculating

proximity on mixed norm.
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3. A DEREVERBERATION FORMULATION BASED ON SPARSITY

The dereverberation problem can be cast as a sparsity based minimization with a

known room impulse response. By making use of sparse nature of the time-frequency

transform coefficients of the original signal estimate can be enhanced. Short time

Fourier transform is used as the time frequency decomposition. In such scenarios

where the room impulse response is longer than the window employed in STFT, the

convolution operator can not be described as an element wise multiplication in STFT

domain. This concept is explained in the chapter 2. Room impulse response, which is

a convolutive linear operator, is defined on time domain and the sparsity is defined

on time-frequency spectrum. As the conditions are defined in different domains,

transform operator and its inverse are required in each iteration. The computation

cost of the algorithm increases dramatically, because time required to change domains

is a burden. This problem can be prevented if the room impulse response is modeled

in the transform domain. Besides, sparsity constraint is set on the transform domain, it

can not be modeled in time domain, which makes the STFT domain definition of RIR

mandatory.

With the room impulse response expression in transform domain, the dereverberation

problem can be posed as a convex minimization problem on a frequency band of time

frequency transform spectrum with sparsity constraint. Therefore, the iterations of

this problem are free of the transform which is expected to increase computational

efficiency. The dereverbed signal can be obtained after these iterations with taking the

inverse transform only once.

In this chapter sparsity based dereverberation problem is cast using only time

frequency coefficients. For that purpose effects of the RIR is modeled in STFT. This

model proposes a filter for each frequency band of the transform coefficients, when

convolved with the corresponding band, represents the effects of the reverberation.

Therefore, this results in decreased computational burden and allows usage of other
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penalty functions in STFT domain. This concept is also exploited in other chapters in

order to use penalty functions defined on the time frequency spectrum. In addition,

dereverberation with sparsity constraint is obtained in this chapter. Both the RIR

estimates and the derevereberation algorithm are justified in the experiments section.

3.1 Proposed Method

In this section a methodology for estimating the original signal from the reverberated

and noisy observation is proposed. The single channel observations in time domain

can be modeled as,

y = Hx+n (3.1)

Where x denotes the source signal, H is the convolution operator with the room impulse

response h, n is white Gaussian noise and y is the observation.

The convex minimization procedure is posed using a penalty function, this penalty

function is formed by using a quadratic term, which penalizes the difference from

the observation and an `1 term which enforces sparsity of the spectrogram. With

assumption, S denotes the STFT operator and S∗ denote the adjoint operator. STFT

forms a tight frame, thus it can be said that S∗S = I. The problem is defined as,

min
X

1
2
‖y−HS∗X‖2

2 +λ‖X‖1 (3.2)

This notation is defined in [8] for sparse dereverberation. Here X denotes the STFT

of x. This problem can be solved using Iterative Shrinkage Thresholding Algorithm

(ISTA) which has the iterations as,

X̂k+1 = Tαλ

(
X̂k +α (HS∗)∗

(
y−HS∗X̂k

))
where Tα(x) =

{
0, if |x|< α

1−α

|x| x, if |x|≥ α

(3.3)

It can be easily observed that during the iterations the domain is changed twice. In

order to enforce sparsity of the STFT coefficients using thresholding the transform

is required. After this step deconvolution with RIR is required. Deconvolution is

performed using time domain representation of the signal. Therefore, an inverse

transform is required. Computational time required for changing to STFT domain

from time domain is considerably high compared to thresholding operator. As in
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thresholding elementwise multiplication and addition is required where within STFT

an elementwise multiplication is done and FT is taken over a windowed portion.

In order to prevent domain changes in the solution, an operator is defined. The operator

H represents the effects of the reverberation in STFT domain as,

SH ≈H S (3.4)

Here H is the operator that represents the convolution of the room impulse response

in STFT domain as explained in [9]. The definition of this operator is given in the next

section.

Using this operator, a new problem can be defined in STFT domain as,

X̂ = argmin
X

1
2
‖Y −H X‖2

2 +λ‖X‖1 (3.5)

It can be observed that the problems in (3.2) and (3.5) are not equal but the results are

equivalent. Both problems check the sparsity of the spectrum and the squared error

between the estimate and the observation with known RIR.

This problem can again be solved using ISTA with the iterations,

X̂k+1 = Tαλ

(
X̂k +αH ∗ (Y −H X̂

))
(3.6)

Since the iterations does not include domain changes (S or S∗), iterating using H

is more beneficial compared to calculating HS∗. The aim is to find such H that

approximately satisfies the reverberation effects in STFT domain. This idea is used

for single channel observation in [9] and for multichannel case in [10], however in

both applications sparsity is neglected.

An operator H can be found if Short Time Fourier Transform windowing function is

longer than the impulse response. Under this condition the operator directly represents

elementwise multiplication with the STFT of the RIR in the STFT domain. However,

typical windowing functions are in 30[ms] - 60[ms] interval where impulse responses

are around few hundreds of [ms]. As explained it is not possible to find a perfectly

fitting operator H , the aim is to estimate it by solving a linear system. The next

section explains the basics of the operator.
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3.1.1 Room impulse response estimate in STFT

In order to determine a filter that represents the effects of reverberation operator, the

properties of STFT should be exploited. In order to find such a filter definition of an

STFT frequency is needed. In this section the filter H is explained [9].

The filter is defined exploiting the filter bank representation of the STFT where this

relation is also visualized in Fig.3.1. Let (↓ N)(·) denote the down sampling with N,

∗ denote the convolution and under the assumption that g(n) is a low pass filter, STFT

can be defined as,

gk(n) = g(n)exp(− jk∆wn)

xk(n) = (↓ N)(x(n)∗gk(n))
(3.7)

(a)

x(n) h gk ↓ N yk(n)

(b)

x(n) gk ↓ N ĥk ŷk(n)

Figure 3.1: (a) Filter bank representation of one STFT frequency band after a filter h.
(b) Representing the effects of the convolution on STFT coefficients.

xk(n) denotes the kth frequency band of the STFT. The aim is to find a filter ĥk(n) for

each kth frequency band that satisfies,

xk(n)∗ ĥk ≈ (↓ N)((x(n)∗h(n))∗gk(n)) = yk(n) (3.8)

this relation.

Different from previous notation, where the capital letters denote the STFT

coefficients, FT of the frequency bands are denoted with capital letters for this section.

For example the transform of gk(n) is denoted in the form Gk(w). This notation can be

distinguished from STFT coefficients as the input variable of the function is denoted

with w. Assuming that the windowing function used in STFT is band limited and sk is

the center frequency, then,

Gk(w) = 0 if w ∈
[
sk−π,sk +

π

N

]
∪
[
sk +

π

N
,sk +π

]
(3.9)
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can be written. This says the filters Gks are band limited.

Therefore, the relation expressed in Eq.(3.8) can be written in Fourier domain,

assuming that filters are band limited the relations are defined as,

Yk(w) = X
(w

N

)
H
(w

N

)
Gk

(w
N

)
if w ∈ [Nsk−π,Nsk +π] (3.10)

Yk(w) = X
(w

N

)
Ĥ (w)Gk

(w
N

)
if w ∈ [Nsk−π,Nsk +π] (3.11)

As the intention is to find the filter that satisfies Eq.(3.8), the solution can be formed

combining Eq.(3.10) and Eq.(3.11) yields,

Ĥk(w) = H
(w

N

)
if w ∈ [Nsk−π,Nsk +π] (3.12)

But in practice it is not possible to find a perfectly band limited window as defined

in (3.9). Then, it can be observed that the approximate ĥks have a different effect

compared to h. In order to represent the effects of the RIR, it is desired to minimize

the squared error between the linear systems defined in Eq.3.10 and Eq.(3.11) can be

minimized. The filter can be found through the minimization process,

Ĥk = argmin
U

Ns+π∫
w=Ns−π

∥∥∥Gk

(w
N

)[
H
(w

N

)
−U(w)

]∥∥∥2

2
dw (3.13)

Thus Ĥks are the optimum filters that represent the effects of the RIR in corresponding

frequency band.

The minimization given in Eq.(3.13) is calculated for all k. Calculated filters ĥks

represent the effect of the room impulse response in the corresponding channel. Thus

it is known that with the filter one can obtain,

Yk(n) = Xk(n)∗ ĥk(n) (3.14)

Using this relation, responses for corresponding channels can be computed. Using

these filters one can use the estimate in STFT coefficients. Assume that H is the

operator that maps STFT coefficients of x onto STFT coefficients of Y . The relation is;

Ŷ = H Sx≈ SHx = Y (3.15)

Solution H denotes the operator that applies the effect of RIR in time frequency

spectrum (computing Eq.(3.14) for all frequency bands k). This notation shows that
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convolving each frequency band with corresponding estimate, approximately results in

the coefficients of the reverberated observation. It can be also noted that Hk represents

convolution with the IFT of the calculated optimal filter Ĥk

In order to form a minimization procedure for a specified frequency band let Hk denote

the estimate of RIR for kth channel as defined before. In the section the minimization

procedure is presented.

3.1.2 Estimation on STFT coefficients

Using the filter estimate given in the previous section one can form a new observation

model instead of Eq.(3.1). The problem can be modeled for each frequency band as,

Yk = HkXk +Ũk where Ũk is the channel noise (3.16)

Here Hk denotes the convolution operator with the estimated impulse response in

STFT from Eq.(3.13).

In the equation Ũk does not only represent the effects of the Gaussian noise n given in

Eq.(3.1) but also represents the errors caused by the room impulse response estimate.

The advantage of this formulation, is one can penalize the sparsity of the frequency

band. Then, using this notation, a minimization problem can be formed using only

time frequency coefficients. A specific frequency band can be estimated using the

problem,

X̂k(n) = argmin
z

1
2
||Yk(n)−Hkz(n)||22 +λ ||z(n)||1 (3.17)

in this form. In Eq.(3.17) Xk(n) denotes the nth time bin of the kth frequency band of the

STFT coefficients. This problem indicates that each channel is treated separately. This

problem can be solved using ISTA again. Assuming that H ∗
k represent the conjugate

of the convolution operator Hk. Thus, this denotes the convolution with time reversed

conjugate of the original filter. ISTA can be posed as,

Algorithm 2 Iterative Shrinkage Thresholding Algorithm
1: repeat
2: X̂k(n)← X̂k(n)+α

(
H ∗

k

(
Yk−HkX̂k

))
, ∀k

3: X̂k(n)← Tλα

(
X̂k(n)

)
, ∀k, n

4: until convergence criterion met

This algorithm converges if α is chosen small enough.
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Consider σk to be the biggest eigenvalue of H ∗Hk. If ασk < 2 is satisfied it is

guaranteed that the algorithm converges to a solution of the penalty function given

in Eq.(3.17) [10].

The operator Tλα is defined previously in Eq.(3.3) as the soft thresholding operator.

ISTA can be placed into the overall algorithm for the estimation process. The overall

algorithm can be posed as,

Algorithm 3 Dereverberation with ISTA

1: α from [10], λ ∈ R+

2: X̂ ← 0
3: repeat ∀k
4: Hk from Hk Eq.(3.13)
5: repeat
6: X̂k← X̂k +α

(
H ∗

k

(
Yk−HkX̂k

))
7: X̂k← Tλα

(
X̂k
)
,

8: until convergence criterion met
9: until finished

10: x̂← S∗X̂

Using this formulation dereverberation in STFT can be achieved. In next chapter

examples are demonstrated using this algorithm.

3.2 Experiments and Discussion

In order to justify the performance of room impulse response estimate and the

algorithm for dereverberation, a series of experiments are performed.

A measured room impulse response of length 1[s] is used with sampling frequency

44.1[kHz]. This impulse response is converted into frequency band filters that poses

the effects of RIR for the corresponding frequency band. The conversion is justified in

Fig.3.2. In order to form the figure an active band from the original signal, coefficients

are reverberated using the filter estimate. The same corresponding band is chosen

from the STFT of conventionally reverberated signal in time domain and comparison

is performed. In Fig.3.2-(a) it can be seen that the imaginary parts of the time domain

reverberated signal and the estimate channels fit. From Fig.3.2-(b), it can be observed

that the difference between the absolute values is negligible. Thus, it is proven
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that using the modified room impulse response for STFT domain is suitable, as the

difference caused by RIR estimates are negligible.

(a) Imaginary parts
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Figure 3.2: For this experiment an active channel of the STFT is selected. (a)
Imaginary parts of the original and model coefficients. (b) Absolute value
of the band coefficients.

Through experiments a 3[s] long speech signal is used with 44.1[kHz] sampling

frequency. This signal is synthetically reverberated using the measured room impulse

response and noise is added with predetermined SNR value 10[dB]. The original

signal can be checked from Fig.3.3-(a). The reverberated and noisy signal can

be checked from Fig.3.3-(b). In this figure the effects of reverberation can be

observed. The harmonics of the original signal are extended through consecutive time

coefficient in the corresponding band. It can be said that this effect can be observed

because length of room impulse response is longer compared to the STFT window.

Otherwise reverberation can be modeled as an element wise multiplication of the STFT

coefficients in the transform domain, leaving an observation harmonic structure at the

same length of the source signal. In addition, the effects of the noise can be observed

as the activity in the time frequency coefficients outside the harmonics increased.

The estimate using proposed method is visualized in Fig.3.3-(c). It can be observed

that, in the estimate harmonics are shorter compared to the observation and similar to

the source signal. Therefore one can say that dereverberation is achieved. Also it can

be stated that denoising is achieved, as the spectrum is sparse. It can be observed that,
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(a) Original Signal (b) Reverberated Observation
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Figure 3.3: For this experiment an active channel of the STFT is selected. (a)
Imaginary parts of the original and model coefficients. (b) Absolute value
of the band coefficients.

coefficients with low magnitudes are suppressed. However during this process some

of the harmonics are lost. This can be explained with the magnitudes of the harmonics

being close to 0. With the increasing presence of noise these harmonics tend to lose

their information.

In order to visualize the reconstruction an active frequency band of the spectrogram

can be checked. In Fig.3.4 STFT coefficients are compared using both real parts and

imaginary parts. Figures show that the estimation in this active frequency band is also

fitting.

The estimation is also questioned with different input SNR values. Assuming that input

SNR is a preset value between the reverberated observation and the noisy reverberated

observation. As expected, estimate SNR values increase as lambda increases for worse

input SNR values. As noise increases, the observation carries less information about

the original signal. This can be clarified as the presence of the noise increases, sparsity

constraint becomes more reliable. This is visualized in Fig.3.4. It is clear that as input

SNR increases the estimation reaches its maximum value at lower λ values. It can

also be observed from Eq.(3.17) λ = 0 case is equal to the LSE. The estimate where
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Figure 3.4: The estimate and source signal coefficients for an active frequency band.
(a) Real parts of the coefficients. (b) Imaginary parts of the coefficients.

λ 6= 0 yields better SNR values. Therefore, the proposd method yields better results

compared to LSE.
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Figure 3.5: In this figure it is justified that the method requires higher values ofλ
in order to achieve their best SNR values. Also the input SNR values
determine the quality of the estimate as well. The input SNR values are
higher compared to maximum achieved values. The reason is, estimate
and the observation SNR values are calculated differently.

Overall, it can be observed from the experiments that the dereverberation algorithm

shortens the effects of room impulse response and reduces the effects of noise. Also

the STFT and its inverse is note used in the algorithm decreases computational time.

Through the experients it is also noticed that the computational time required for the

time domain derevereberation is halved.
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4. DEREVERBERATION WITH EMPLOYING PHASE INFORMATION

In that chapter dereverberation problem is solved employing the phase information. In

time domain observations are modeled,

y = Hx+n (4.1)

in that form. It can be observed that single channel system model is similar to definition

in chapter 3. In the equation Eq.4.1 y denotes the noisy and reverberated observation,

x denotes the original signal, H is the convolution operator with the known impulse

response h, n is white Gaussian noise.

The dereverberation is performed using sparse nature of STFT coefficients, using `1

type penalty function as proposed in chapter 3. But, with the effects of reverberation,

STFT coefficients diverge from being sparse. Also a solution with modifying

only the magnitudes of the STFT coefficients yields a solution with musical noise.

Nevertheless, even with these outcomes the sparse nature of the time frequency

spectrum of an audio signal is robust to noise. This is why, magnitude information can

not be neglected and used in conventional methods. However, in order to compensate

the musical noise phase information can be taken into consideration. Phase information

is effected by noise dramatically, also fragile to the effects of reverberation. However,

even with these effects, phase information can be used to increase the efficiency if

employed. In that chapter, a method that employs magnitude and phase information is

given.

In a harmonic of a specified frequency band of STFT of a signal, time consecutive

coefficients have a correlated phase information. This relation can be referred as

a constant phase shift between coefficients. Phase difference between two STFT

coefficients on any harmonic is assumed to be approximately equal. Considering

each audio signal as a linear combination of sinusoidals, it is assumed that, there

lies a complex exponential mapping one coefficient to another one in the harmonic

[11–13]. Outside the harmonics magnitudes of the coefficients are 0 due to no activity,

23



which makes the phase information meaningless. The phase within the harmonics

can be linked to other coefficients with a complex exponential and this property can

be disregarded outside the harmonics. So generalizing the property for a frequency

band is feasible. Thus, considering that a coefficient can be represented with the time

consecutive coefficient, a frequency band of the transform can be linked with phase

shifted version of itself. As defined before a complex number can be found for each

harmonic in the frequency band. Also it is known that there are few harmonics in a

frequency band. Thus a piece wise constant mask can be found for each frequency

band. The mask takes 0 value and a non-zero constant through each harmonic. outside

the harmonics. The mask can be obtained after a minimization procedure, which is

solved iteratively. Using that procedure, both phase shift stays constant with same

magnitude and sparsity in a frequency band is satisfied. Therefore, the harmonic

structure is preserved while suppressing the noise coefficients. This mask is applied

on the LSE of the signal as it requires an initial time frequency spectra to enhance.

In order to remark it is also assumed that a convolutive impulse response operator in the

STFT domain can be found. Where the problem in Eq.(4.1) can be defined in STFT,

Y = H X +U (4.2)

in that form. Here the operator H is the convolutive reverberation operation in STFT.

If the kth row of the operator is convolved with the kth frequency band of the STFT

coefficients it yields the kth frequency band of the observation. Assume that the STFT

operator is denoted with S where X = Sx. Assume that the kth band of the coefficients

is denoted with sub indent ·k and the convolution operation is denoted with ∗. Then the

relation between H and H can be shown,

Yk = [S (Hx)]k = Xk ∗Hk (4.3)

in this form [9]. This form is defined in the previous chapter . The definition is assumed

to be satisfied for this chapter as well.

4.1 Proposed Method

In that section, a method for dereverberation is proposed. In order to employ phase

information for that process, the phase relation between coefficients is explained.
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Assume that kth frequency band of the signal is taken into consideration. In that

frequency band, it can be observed that the activity is concentrated in the harmonics

and the remaining coefficients are zero. The coefficients in the harmonics tend

to have similar magnitude in STFT spectrum. Because each harmonic represented

in the spectrum is considerably short for an audio source to change its magnitude

dramatically. These coefficients can be represented as a vector with constant phase

shift in the complex plane. The equivalent magnitude and constant phase shift relation

is posed in [14]. This property can be modeled with a relation,

X(k, l +1)
X(k, l)

≈ X(k, l +n+1)
X(k, l +n)

(4.4)

in this form. The relation can also be explained with the model posing a complex

exponential between each coefficient in the harmonic Therefore, Eq.(4.4) sates that

there is only one complex exponential mapping consecutive coefficients in a harmonic.

This relation can be also verified using sinusoidal models, where the audio signal can

be represented as a superposition of sinusoidals [11]. In the STFT spectrum of an

audio signal it is observable that the complex exponential does not satisfy the relation

between coefficients and instead using a complex number can form a robust method to

map coefficients. The relation can be shown,

X(k, l)≈ X(k, l +1)αk(l) (4.5)

in this form. This relation however becomes meaningless outside of the harmonics. As

explained before, it is known that outside the harmonics there is no activity and with

magnitudes approaching 0 phase information becomes meaningless. As the phase shift

assumed to be constant, the complex vector is expected to be constant. A penalty

function in order to force the phase shift to be constant, can be formed summing

the phase differences between the coefficients regardless of convexity. However, the

penalty function is desired to be convex. Thus, the mask defined in Eq.(4.5) is the point

of escape.

In order to form a convex penalty function, the phase shifted version of the signal is

defined,

X̃(k, l) =
|X(k, l)|
|X(k, l +1)|

X(k, l +1) (4.6)
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in that form. Using the constancy relation in phase difference denoted in Eq.(4.4), the

phase shifted version and the signal can be linked,

X(k, l)≈ X̃(k, l)αk(l) (4.7)

using this relation. Here α is a complex valued vector. This vector should also satisfy

the properties of the mask proposed in Eq.(4.5). Thus α is required to be piecewise

constant [14]. In coefficients harmonics are assumed to have a constant shift, this leads

to constancy which can be explained linking the relation with Eq.(4.7) and harmonics

also have a sparse nature, which is a property of time frequency spectrum.

In that scenario the room impulse response and the properties of the noise are assumed

to be known. Thus, in the proposed method, the initial point can be set to the LSE.

Assume that H denotes the room impulse response operator in STFT domain and σ2

denotes the variance of the noise. The least squares estimate (LSE) can be obtained by

solving the complex minimization problem,

XLSE = argmin
x

E
{
‖Y − (H X +U)‖2

2
}

(4.8)

of that form. LSE only includes a quadratic term which is convex. Therefore, problem

has the 0 in its gradient. The solution to that problem can be found by taking the

gradient and setting it to zero. LSE is,

XLSE = (H HY )/
(
‖H ‖2

2 +σ
2) (4.9)

calculated in that form. Estimating the original signal can be achieved by masking the

phase shifted version XLSE . Let X̃LSE denote the phase shifted version,

X̃LSE(k, l) =
|XLSE(k, l)|
|XLSE(k, l +1)|

X(k, l +1) (4.10)

as given. Let X̂ denote the estimate, which can be obtained masking the phase shifted

version. This masking is proposed exploiting the mapping between two consecutive

time coefficients. The masking can be shown,

X̂(k, l) = α(k, l)X̃LSE(k, l) (4.11)

in that form. It can be observed that, the difference between X̂ and X̃LSE is modeled

with a mask. That mask is the same as the vector defined in Eq.(4.7). This relation also

preserves the harmonic structure. With masking using the result of the minimization

procedure, quality of the LSE is expected to be increased. The mask can be obtained

using a minimization process, enforcing it to be piecewise constant.
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4.1.1 Minimization on mask

The optimum mask for estimate can be obtained using a convex optimization process.

In order to form the mask α , the vectors for each frequency band is calculated.

The vectors are required to be piece wise constant, as explained previously. The

minimization problem can be posed,

α̂k = argmin
α

1
2
‖Y −H XLSEαk‖2

2 +λ1TV(αk)+λ2‖αk‖1 (4.12)

in that form. Here `1 enforces the sparsity. The mask is here calculated to be applied

on the phase shifted version of the LSE. The relation of the sparse nature of the phase

shifted version and the original signal is analogous. Sparsity is a property that takes

magnitudes into consideration. Shifting phase does not change the sparse nature of the

signal. Thus, this is proper to modify the phase shifted version with a sparse mask. This

can also be justified with the usage of the sparse mask on the phase shifted version.

TV(·) enforces the constancy of the mask. The operator can be defined,

TV(vk) = ‖Dvk‖1

D =


1 −1 0

1 −1
. . . . . .

0 1 −1

 (4.13)

in that form. Observe that the TV norm expressed in Eq.(4.12) is applied on each

frequency band. Thus, it is noticeable that the TV norm penalizes the differences

between consecutive elements in the vector. In the minimization problem defined in

Eq.(4.12), TV norm penalizes the magnitude difference of the consecutive coefficients

in the vector.

The minimization problem given in Eq.(4.12) can be solved for each time frequency

component in order to form the mask. The proposed method can be compared to

non-negative garrote in [15]. In non-negative garrote the problem is generalized with

a sparsity constraint. In the proposed method, the constancy of the mask is also taken

into consideration. Thus, the phase information is used to preserve harmonic structure.

In the next section a method is given in order to solve the proposed problem in

Eq.(4.12).
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4.1.2 Solution of the minimization

The problem proposed in Eq.(4.12) is a convex minimization problem. The problem

cannot be solved directly calculating the gradient, due to the complexity caused by

the TV norm and the `1. However, it can be solved using the DR algorithm variable

splitting [16]. DR is explained in chapter 2 Alg.1. The next section clarifies the

variable splitting for DR Algorithm. For simplicity, instead of αk, α is used as the

vector of interest in the corresponding frequency band.

4.1.3 Variable splitting

In this section, a variable splitting for Eq.(4.12) is proposed. With a penalty function

including total variation norm, variable splitting can be achieved with the definition of

two new variables z = α and u = Dα [17]. In order to preserve the original problem,

while using newly defined variables, characteristic function that links these variables

with each other is defined,

ic(α,u,z) =
{

0, if u = Dα and z = u
∞ otherwise (4.14)

in that form. The relationship between newly defined variables is enforced using the

characteristic function. It can be observed that the characteristic function can not be

minimized if the conditions are not met, as it takes the infinity value. The function gets

zero only if the conditions are met. If the characteristic function is inserted into the

original problem with new variables into Eq.(4.12), the new penalty function,

[α̂, û, ẑ]T = arg min
α,u,z

f (α,u,z)+g(α,u,z)

f (α,u,z) =
1
2
‖Y −H XLSEα‖2

2 +λ1‖u‖1 +λ2‖z‖1

g(α,u,z) = ic(α,u,z)

(4.15)

can be obtained in this form. The problem defined in Eq.(4.15) is equal to the problem

defined in Eq.(4.12). In order to apply DR Algorithm the proximals are required.

Proximal values are calculated in the next section,
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Proximal Calculation

The division of the penalty function is given in Eq.(4.15). Proximals for each of these

functions are required for the algorithm. Proximal for the function f can be calculated,

Jγ f (α,u,z) = [α̃ ũ z̃]T =argmin
a,b,c

1
2γ

[
‖α−a‖2

2 +‖u−b‖2
2 +‖c− z‖2

2
]
· · ·

+
1
2
‖Y −H XLSEa‖2

2 +λ1‖b‖1 +λ2‖c‖1

(4.16)

in that form.

It can be easily observed that function is separable with respect to the variables,

α̃ = argmin
a

1
2γ
‖α−a‖2

2 +
1
2
‖Y −H XLSEa‖2

2

ũ = argmin
b

1
2γ
‖u−b‖2

2 +λ1‖u‖1

z̃ = argmin
c

1
2γ
‖z− c‖2

2 +λ2‖z‖1

(4.17)

in that form. All the functions that are going to be minimized are convex. Thus, the

proximal values for each variable can be found by setting the gradient to 0. Here, in

order to preserve simplicity, Q = H Ỹ is defined. The results,

α̃ =
(
I + γQHQ

)−1 (
α + γQHY

)
ũ = Tλ1γ(u)

z̃ = Tλ2γ(z)

(4.18)

are in that form. T(·)(·) denotes the soft thresholding operator defined in Eq.(3.3).

The proximal of g can be calculated using,

Jγg(α,u,z) = [α̇ u̇ ż]T =argmin
a,b,c

1
2γ

[
‖α−a‖2

2 +‖u−b‖2
2 +‖v− z‖2

2
]
· · ·

+ ic(α,u,z)
(4.19)

that form. This function, however, is not separable with respect to variables, because

the characteristic function links all the variables together. Because of the characteristic

function, the penalty function g can only be minimized if the equality is satisfied (when

the characteristic function gets the 0 value). This leads to the proximal functions for

each variable,

α̇ = argmin
a

1
2
[
‖α−a‖2

2 +‖u−Da‖2
2 +‖v−a‖2

2
]

u̇ = argmin
b

1
2
[
‖α−DT b‖2

2 +‖u−b‖2
2 +‖v−DT b‖2

2
]

ż = argmin
c

1
2
[
‖α− c‖2

2 +‖u−Dc‖2
2 +‖v− c‖2

2
] (4.20)
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in that form. Here DT denotes the transpose of the operator D.

The proximals can be calculated taking the gradient and setting it to 0. The results can

be obtained,

α̇ =
(
DT D+2I

)−1 (
α +DT u+ z

)
u̇ = D

(
DT D+2I

)−1 (
α +DT u+ z

)
ż =

(
DT D+2I

)−1 (
α +DT u+ z

) (4.21)

in that form. It can be observed that γ is not important for the characteristic function

proximal. The reason is that, the only case interested in the characteristic function is

when it is equal to 0.

As the main ingredients of DR Algorithm are obtained, the algorithm can be formed.

In the next section, the dereverberation algorithm employing phase information is

explained.

4.2 Dereverberation Algorithm

Dereverberation is achieved by masking the phase shifted LSE. The LSE is estimated

basically under the assumption that the room impulse response and the noise properties

are known in Eq.(4.9). The phase of the LSE is shifted using Eq.(4.6). Then

the algorithm calculates optimal mask vectors for each frequency band. The STFT

coefficients of each frequency band for the mask are calculated for a convergence

criterion. This criterion can either be a maximum number of iterations or an upper

bound of tolerance. After obtaining the mask, it is used to obtain the estimate STFT

coefficients. Taking the inverse STFT after masking yields the estimate. The algorithm

can be posed,
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Algorithm 4 Dereverberation Algorithm

1: γ ∈ (0,1) , λ1 ∈ R+ , λ2 ∈ R+

2: XLSE =
(
H HY

)
/
(
‖H ‖2

2 +σ2)
3: Ỹ ← PhaseShift(XLSE) Eq. (4.6)
4: repeat ∀k ∈ {0,K},
5: α̂0

k ← Ỹk , û0
k ← α̂0

k , ẑ0← Dα̂0
k , h← 0

6: repeat
7: A← 2Jγ f (α̂

h
k , û

h
k , ẑ

h
k)−

[
α̂h

k ûh
k ẑh

k

]T Eq. (4.18)
8: B← 2Jγg(A)−A Eq. (4.21)

9:
[
α̂

h+1
k ûh+1

k ẑh+1
k

]T
← (1− γ)

[
α̂h

k ûh
k ẑh

k

]T
+ γB

10: h← h+1
11: until convergence criterion met
12: α̂k← Jγ f (α̂

N
k , û

N
k , ẑ

N
k )

13: until finished
14: X̂(k, l)← Ỹ (k, l)α̂(k, l)

The convergence criteria of the algorithm is discussed in [6]. In that algorithm, the

input γ is chosen to be 0.5 in the experiments. The λ values effect the priority of `1 and

TV norms. In order to achieve better results these values are determined empirically.

Even if λ values are determined empirically, they tend to show a pattern for better

estimation with changing input SNR values. It is natural that if input SNR values

increase it is more suitable to rely on the observation. Therefore the λ values decrease.

With increasing noise presence in the observation, the estimate tends to rely more

on constraints. Thus, sparsity and constancy in phase shift becomes increasingly

important, which requires increased λ values.

4.3 Experiments and Discussion

In that section, experiments using the proposed method given in Alg.4 are proposed.

Through these experiments, the reliability of the method is questioned.

This method is proposed to compensate the effects of the musical noise. As explained

before, musical noise is a natural outcome of sparsity based modifications in low input

SNR values.

Through the experiments, measured RIRs in a reverberant room are used. Signals

are reverberated in some scenarios with the measured impulse response or the RIR
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measurement is achieved at the same time audio signal is recorded. In both options, it

is assumed that RIRs are known.

Tables for output SNR, different λ values for different input SNRs are given in order

to demonstrate the effects of the constraints.

In order to justify overall effects, the experiment is repeated for a preset input SNR for

the entire signal. Again, λ values are searched in an interval. With changing values

of λ the SNR values can differ.With lower SNR values auditory quality can increase.

Through experiments it can be observed that with reduced SNR the choice of λ can

decrease the effect of musical noise. In each experiment, in order to prove this, the

time-frequency coefficients are given for different composition of λ ’s.

4.3.1 Experiment-1

In this experiment a speech signal is used. A clean audio signal is obtained at first

with 44.1[kHz] sampling frequency. The clean signal is synthetically reverbed with

the measured room impulse response. Therefore, the SNR can be modified manually.

The input SNR is defined on the reverbed signal itself and the noisy observation. The

reverberated and noisy observation is used in the proposed method in order to obtain

the estimate.

In order to determine the quality of the proposed method, an active frequency band

of the reverberated signal is chosen. Complex noise is added to that channel with

pre-determined SNR value. The proposed method is applied on that channel in order

to obtain the estimate. With different `1 norm weights (λ1) and TV norm weights (λ2)

for different input SNR values the experiment is repeated. The results can be checked

from Table 4.1. [λ1,λ2] = [0,0] corresponds to least squares estimation. Output SNR

values for LSE are not given as it is determined as the starting point of the iterations.

It can be observed that, the output SNR values are lower compared to preset input

SNR value. Input SNR ratio is calculated using the noisy reverberated channel and

the noiseless reverberated channel, output SNR is calculated using the estimate and

the original signal itself. Output SNR comparison also includes the effects of the

RIR. Under these conditions, Table 4.1 shows that with the presence of TV norm,

SNR increases. This is why λ2 = 0 is given in each scenario. This case shows the

sparsity solution only. It can also be observed that with the increasing values of λ1,
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SNR increases. Thus, with λ1 = 0 the results are lower than other cases. This may

seem as a contradiction to the importance of the magnitude information. However, as

an active frequency band is chosen for the Table 4.1, it is expected to satisfy phase

shift to be constant more likely compared to sparsity. Overall, it can be observed that

the proposed method yields better results as SNR increases for such scenarios where

λ1 6= 0.

Table 4.1: Output SNR Values (Experiment-1)

Input SNR = 12[dB]
λ2

λ1 0 10−5 10−4 10−3 10−2 10−1

0 3.18 5.97 7.76 10.26 5.51
10−5 3.89 4.64 6.09 7.78 10.27 5.51
10−4 6.33 6.37 6.65 7.92 10.3 5.51
10−3 8.06 8.07 8.16 8.88 10.55 5.51
10−2 10.81 10.82 10.85 11.11 11.31 5.53
10−1 8.72 8.72 8.73 8.81 9.02 5.19

Input SNR = 7[dB]
λ2

λ1 0 10−3 10−2.5 10−2 10−1.5 10−1

0 1.49 2.7 4.42 5.81 4.86
10−3 1.67 2.29 3.2 4.68 5.9 4.87
10−2.5 2.79 3.2 3.9 5.13 6.09 4.88
10−2 4.45 4.7 5.15 6.06 6.53 4.92
10−1.5 5.85 5.98 6.22 6.72 6.82 4.9
10−1 5.69 5.76 5.9 6.18 6.16 4.6

Input SNR = 2[dB]
λ2

λ1 0 10−2 10−1.5 10−1 10−0.5 1
0 -1.5 0.39 2.32 2.13 0.62
10−2 -1.3 -0.066 1.34 2.66 2.12 0.61
10−1.5 0.68 1.49 2.5 3.16 2.1 0.59
10−1 2.7 3.16 3.69 3.56 1.97 0.52
10−0.5 3.01 3.24 3.45 3.04 1.58 0.4
1 2.11 2.25 2.38 2.12 1.1 0.22

In order to justify the method, the entire signal is required to be examined. The method

is proposed to counter the effects of musical noise. The musical noise components at

high frequency components can be encountered with higher λ values. The composition

of these values highly depends on the observation.

Effects of the TV and `1 norms can be observed from Fig.4.1. In Fig.4.1-(c) the

estimate is obtained using a moderate level for sparsity and low level for constant phase

shift. Thus, the result tend to be sparse. However, this reconstruction still contains

unusual activity in high frequency terms, which are the reason of the musical noise. In

order to decrease the effects of musical noise the effect of TV norm can be increased.

However, increasing both λ values does not increase efficiency. Using a moderate TV
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norm and low `1 norm weight gets rid of the musical noise components, however this

also yields a small reverb effect in reconstruction. The process can be observed from

Fig.4.1-(d).

EXPERIMENT - 1
(a) Source Signal STFT Coefficients (b) Observation STFT Coefficients
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(c) Estimate - 1 (d) Estimate - 2
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Figure 4.1: (a) Original signal STFT coefficients. (b) Reverbered and noisy
observation STFT coefficients (Initial SNR = 12[dB]). (c) Moderate λ1
and low λ2 estimate. (d) Low λ1 and moderate λ2.

Estimating speech signals with higher `1 norm priority and lesser TV norm priority

for erasing musical noise gives better SNR values in time domain. However, auditory

quality is questionable.

4.3.2 Experiment-2

In this experiment, a violin is used to give an example of a musical instrument signal.

Same procedure is repeated. The sampling frequency for the signal is chosen as

44.1[kHz]. The original signal is reverberated synthetically. Noise is added satisfying

10[dB] input SNR.

Similar to the first experiment one band SNR values are calculated for time frequency

coefficients. It can be seen from the figures that the musical time frequency spectrum

has a constant nature. Compared to speech time frequency spectrum it can be assumed

that the constant phase shift is reliable. It can be also seen from Table 4.2 that TV norm
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weight affects SNR gain more compared to sparsity weight. Also it is again justified

that employing phase information increases the quality of reconstruction.

It can be observed that, harmonics in coefficients are more distinguishable compared

to speech signal given in Fig.4.1. Therefore, the TV norm is expected to have greater

impact on estimate. With constant phase shift enforced in mask estimation, the results

can be checked from 4.2. Increasing weight of the TV term does not yield dramatic

reverb effects which can be compared from Fig.4.1-(d) and Fig.4.2-(d).

Similar to the first experiment, better SNR values in time domain are obtained using

moderate λ1 values and low λ2 values. However, using a high λ2 value erases the

effects of the musical noise and increases auditory quality.

Table 4.2: Output SNR Values (Experiment-2)

Input SNR = 12[dB]
λ2

λ1 0 10−5 10−4 10−3 10−2 10−1

0 7.99 8.4 10.86 13.57 5.48
10−5 8.02 8.08 8.46 10.9 13.57 5.48
10−4 8.52 8.56 8.91 11.19 13.59 5.48
10−3 11.15 11.18 11.44 13.25 13.71 5.47
10−2 14.24 14.25 14.37 14.88 13.45 5.34
10−1 9.9 9.9 9.93 10.12 9.96 5.05

Input SNR = 7[dB]
λ2

λ1 0 10−3 10−2.5 10−2 10−1.5 10−1

0 4.64 6.5 9.57 9.28 5.41
10−3 4.79 5.93 7.65 10.14 9.28 5.41
10−2.5 6.69 7.76 9.38 10.99 9.27 5.41
10−2 9.3 10.34 11.66 11.82 9.23 5.38
10−1.5 10.21 10.91 11.52 11.17 8.77 5.16
10−1 8.89 9.25 9.56 9.44 7.74 4.77

Input SNR = 2[dB]
λ2

λ1 0 10−2 10−1.5 10−1 10−0.5 1
0 1.49 4.55 4.88 2.33 0.37
10−2 1.95 4.58 6.03 5.05 2.36 0.35
10−1.5 5.18 7.06 7.11 5.07 2.42 0.32
10−1 6.25 7.14 6.67 4.63 2.49 0.25
10−0.5 4.97 5.88 5.71 4.2 2.29 0.098
1 3.62 4.1 4.23 3.05 1.58 0.005
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EXPERIMENT - 2
(a) Source Signal STFT Coefficients (b) Observation STFT Coefficients
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(c) Estimate - 1 (d) Estimate - 2
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Figure 4.2: (a) Original signal STFT coefficients. (b) Reverbered and noisy
observation STFT coefficients (Initial SNR = 10[dB]). (c) Moderate λ1
and low λ2 estimate. (d) Low λ1 and moderate λ2.
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5. MIXED NORM REGULARIZATION

Dereverberation using single observation channel is demonstrated with sparsity

constraint in chapter 3 and additionally, employing phase information in chapter 4.

In applications microphone arrays are used for audio recordings which yield multiple

observations. It is expected to increase the estimation quality. Because with more

observations sharing the same information, it is natural to assume that the original

information can be obtained explicitly.

In most cases, the array geometry is tried to be exploited using the phase shift in

observations. In denoising cases, mostly delay and sum beamformers are used in

order to obtain a clean signal [18, 19]. In derevereberation case, however, room

impulse responses vary dramatically due to location. This limits the usage of the

geometry, as the reverb operators differ with source location. With the unstable nature

of RIR, multiple observations can be taken into consideration together. It is observed

that observations recorded close enough share a closely related information about the

source. This information can be extracted from these observations. This also poses

the idea that a common filter can be defined for the recording environment. Obtaining

RIRs for each observation location is problematic. Instead, preliminary experiments

can be performed in order to obtain a common filter that forms the RIRs. Using that

common filter the RIR can be assumed to be known. Also this common filter can be

used in order to shorten the effects of reverberation.

With known impulse responses for the multichannel case, a convex optimization

problem can be posed. The convex problems are often address to multichannel

convex penalty functions using principle components of the sources. [20–24]. It

is assumed that, as the source is active in observations, the observations share a

common information. Different from these methods, the penalty function explained

and used in this chapter is mixed norm [25]. Mixed norm penalty function uses time

frequency coefficients of each observation, where principle component investigation
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requires an extraction. Thus, without a special decomposition required, mixed norm

basically checks the similarities in observations. This penalty function, for a fixed time

and a fixed frequency, checks the similarities in a microphone vector which consists

time-frequency coefficients.

The microphones in an array are located close to each other (1-2[cm] away from each

other). Therefore, wave front of the acoustic signal does not reach microphones with

dramatic difference. Each of the observations are in similar in pattern. Therefore

the time shift between observations is expected to be considerably little. If the

STFT of these signals are taken, in a specified frequency band, corresponding time

coefficients show similar activity. Thus, a harmonic is expected to be found in the

other observations with a little time shift. This information is used in order to separate

noise with the source activity in the spectrum. It is known that the source signal

appears in each observation with different RIR effects. However, source observation

is common in each observation which results in similarities. For dereverberation

case, effects of the reverberation can be shortened assuming that RIR filters are

different. Also noise terms are not expected to be active in all microphones at the exact

time frequency coefficient. With mixed norm regularization, it is checked if a time

frequency coefficient is active in all observation spectra. Using the vectors for fixed

a time and fixed a frequency, it is checked if for this time-frequency bin enough of

the observations are active. It is also considered that with the effects of reverberation

and noise presence one time-frequency does not give enough information. Instead

of checking sparsity of the spectrum, sparsity of the harmonics in the spectrum can

be investigated. In order to investigate the presence of a harmonic in a frequency

band, neighboring coefficients are also taken into consideration by using a block

form of coefficients. With forming a block of coefficients in a frequency band,

harmonic structure is tried to be recognized. With grouping coefficients, it is desired

to limit of harmonics in a frequency band. The number of harmonics are tried to

limited by checking the `2 norm of the blocks. This addresses to a new penalty

function, that groups up the coefficients, in order to check if the activity in a time

frequency coefficient belongs to a harmonic. Audio denoising is achieved using block

thresholding in [26]. In this chapter, multichannel data is grouped up.
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In a harmonic of a specified frequency band, time sequential coefficients are active.

In order to check whether the coefficient belongs to the harmonic structure, the values

of sequential coefficients together are taken into consideration. Different from mixed

norm regularization, this process groups up the coefficients in order to form a block.

Block mixed norm regularization calculates mixed norm over coefficient blocks. In

this regularization for a specified frequency, time axis is divided into non-overlapping

groups of the same size. Each of these portions form a matrix of time-microphone

coefficients. In here, it can be observed that, with the presence of a harmonic, the

matrix coefficients tend to be active. The harmonic is also expected to be observed

in each observation. Thus, it can be said that the matrix is expected to have a high `2

norm. Using this information the time interval can be suppressed if its `2 norm is below

a threshold. Thus, with limiting the number of these blocks, effects of reverberation

is shortened. As the reverberation effect in each microphone is different and the RIRs

are modelled as decreasing sequences, active coefficients caused by reverberation tend

to have low `2 norms.

In the next section, the generalized multichannel problem is defined in STFT

domain. This definition is mandatory because this chapter explains both denoising

and dereverberation using the same penalty function. The genaralized definition can

be compared with the definition proposed in Eq.(2.4). This chapter has the generalized

problem definition entirely on STFT coefficients. In this chapter mixed norm and block

mixed norm are defined. The algorithm for solving the convex optimization processes

for denoising and dereverberation are proposed. Also the quality for both scenarios are

questioned with the experiments.

5.1 Proposed Method

In this chapter multiple microphone case is taken into consideration. In multichannel

signal processing, the observations are assumed to be effected by different filters and

the noise. The general multichannel signal observation in time domain can be modeled

as,

ym = Hmx+nm (5.1)

ym is the observation signal at mth microphone. Hm’s are the convolution operator with

the filters for each channel. If all Hm’s are assumed to be I the model becomes a model
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for denoising problem, otherwise we have to solve the multichannel deconvolution

problem. nm’s are the additive Gaussian noise for each channel.

It is assumed that the room impulse response can be expressed in STFT domain, which

is explained in Chapter 3. With this assumption the problem can be defined on time

frequency coefficients. The problem can be rewritten,

Ym = HmX +Um (5.2)

Here in this definition, Hm denotes reverberation operator for corresponding

observation. As the proposed filters represent the effects of RIR, the estimation can

be formed for each frequency band. Thus, the problem can be solved separately.

In order to revert the effects of reverberation and remove noise, a convex optimization

problem can be used. In order to estimate the signal of interest, a minimization can be

performed over penalty functions. The minimization process of the penalty function in

general can be given as,

min
X

{
gm(X) = ‖Ym−HmX‖2

2 +∑
i

λi pi(X)

}
(5.3)

In this notation pi(·) defines the penalty functions with weights λis. For example `1

norm enforces sparsity by penalizing magnitude distance from 0.

The solution to this problem is troublesome, because the room impulse responses differ

dramatically for each microphone with a constant source signal. Instead of solving

this problem in order to explicitly obtain the source, the reverberation effects can be

shortened. This equivalent problem can be formed with a relatively short impulse

response definition. The problem has a common filter that maps different sources

to corresponding observations. In order to pose such a problem, relatively short

impulse response concept is proposed. The shortened impulse response divides the

RIRs into a common part and the independent parts. The common part is assumed to

be same for each RIR where independent parts are the residuals. The residuals can be

inserted into sources in order to leave common filter being the same reverberation filter

for each observation. Therefore, the problem becomes estimating different sources

(source convolved with residual RIRs) sharing common information with the same

reverberation filter (common RIR). This modification allows the usage of mixed norm

in the problem. Within this multichannel estimation, the aim is to preserve harmonic

structure.
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The next section explains the relatively short RIR concept.

5.1.1 Relatively short impulse response

It is explained that, in an environment the RIR is hard to determine explicitly for

each observation location. Therefore with preliminary experiments a shorter but a

common filter that represents the RIR can be found. With that model assumption

common RIR of the environment can be considered as the only filter. Instead of using

one source signal and different filters, it is aimed to have different sources with the

same reverberation filter. Using the shortened RIR definition, the reverberation filters

can be shortened, which also allows to use this common filter to define moderately

reverberated observations. These observations can be treated as different source

signals, which share the common source signal. Shortened impulse response concept

can be replaced with relative transfer function, where the common part of the RIR is

assumed to be one of the RIRs. The residuals are set to the relative transfer functions.

However, for this application shortened impulse response is used. For further reading

about relative transfer function or shortened impulse response concepts [27–30]can be

checked.

RIR differs dramatically according to the position of the microphone. Room impulse

response is expressed as two filters. The common filter, is independent of location

and the same for all observation points. The second filter is position dependent which

is different for each microphone location. Let ∗ denote the convolution operator, the

relation is defined as,

ym = hm ∗ x≈ gc∗gim ∗ x = gc∗ zm (5.4)

In the equation Eq.(5.4), gc denotes the common filter of the room impulse response

independent of the location, gims denote the independent filter of the room impulse

response differing for each observation point. Modified impulse response can be

inserted into the original problem. Using modified impulse responses, reverberation

effects can be shortened. Observations with shortened RIR is denoted as zm in Eq.(5.4).

These modified signals are assumed to have different sources for each observation.

Therefore, the problem given in Eq.(5.5) turns into,

min
Z

{
g(Z) = ‖Y −G Z‖2

2 +∑
i

λi pi(Z)

}
(5.5)
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Here G is the common filter for each channel. Where Y = [Y1,Y2, · · ·YM]T and Z =

[Z1,Z2, · · ·ZM]T are the STFT coefficients of ym’s and zm’s respectively. Here G is

obtained as the LSE of a linear system. Using the shortened impule response relation

the length of the common and residual parts are determined previously.

With the help of relatively short room impulse responses, single channel estimation

turns into multichannel estimation. With the definition of G , instead of estimating X

only, the aim is to estimate Z’s, where Z’s denote the moderately reverberated versions

of X . Therefore, this gives the independence of solving the problem with separating

for each observation.

Different from Eq.(5.1) , here the overall penalty function is multichannel. Therefore,

the penalty functions p(·) have the freedom of penalizing multichannel data.

In the next section Mixed Norm is discussed as the multichannel penalty function.

5.2 Mixed Norm

Assume that the multichannel time-frequency spectrum can be considered as a three

dimensional data. Window employed in STFT is 60[ms] long, which is a common

length for audio signals. Also, microphone array is uniformly distributed and the

distance between two corresponding microphone is relatively low. Thus, this can

be assumed that the 60[ms] differences in time domain does not make marginal

differences in STFT domain. Also it is known that in order to have this long difference

the microphones are required to be afar. In the given geometry microphones are

closely located. Under these conditions there can not be marginal differences between

observation STFT spectra. Therefore, as a natural result, if a time frequency coefficient

is active in a microphone coefficient it is expected to be active in other microphones

as well. Consequently, if there is an activity caused by the source in a specific time

frequency bin of the coefficients it is expected to have activity in other microphones as

well. Therefore this relation can be penalized.

Vectors of interest are of length M for each time-frequency coefficient, where M

denotes the microphone number. It can be observed that the mixed norm uses all

provided observations If the vector has a high `2 norm it is assumed that there exists

an activity as it exists in all observations. The mixed norm enforces sparsity on
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time-frequency plane employing the `2 norm of these vectors. It is desired to have

a limited number of active vectors in time-frequency plane. Mixed norm penalty

function is defined as,

p(Z) = ‖Z‖m =

∣∣∣∣∣∣∑k,l
(

∑
q

∣∣Zq(k, l)|2
∣∣) 1

2
∣∣∣∣∣∣ (5.6)

Here, depending on the `2 norm of microphone vectors for each time frequency

coefficient, the sparsity constraint is enforced. To explain, this constraint checks the

total activity in each time frequency bin, using all observations. The final penalty

function can be defined as,

min
Z
‖Y −G Z‖2

2 +λ‖Z‖m (5.7)

In addition, it is mandatory to mention that Y = [Y1 Y2 · · ·YM]T here is a vector which

consist all observations. Z = [Z1 Z2 · · ·ZM]T is the source convolved with relative

transfer function. G is the convolution operator with the common part of the shortened

impulse response.Relatively short transfer function is used for denoising in [31].

Differenty from the given scenario, multichannel data is penalized with a penalty

function.

This problem can be solved using DR Algorithm. Assuming that the penalty function

can be divided into two parts. The penalty function can be divided as,

f (Z) = ‖Y −G Z‖2
2

g(Z) = λ‖Z‖m

(5.8)

In order to form DR iterations, the proximity operators of these functions are required.

Proximal calculation

Proximal of the quadratic term can be calculated as,

Jγ f (Z) = argmin
Q

1
2γ
‖Z−Q‖2

2 +
1
2
‖Y −G Q‖2

2 (5.9)

As the problem is convex, it can be said that 0 is an element of the gradient of this

problem. Assume that Q̂ minimizes the problem, solution can be obtained. By taking

the gradient and setting it to 0 as,

0 ∈
(
Q̂−Z

)
+ γG ∗

(
G Q̂−Y

)
Jγ f (Z) = (γG ∗G + I)−1 (γH ∗Y +Z)

(5.10)
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Proximal of the mixed norm can be found using,

Jγg(Z) = argmin
Q

1
2
‖Z−Q‖2

2 +λ‖Q‖m (5.11)

It can be observed from Eq.(5.6), that the mixed norm can be considered as a `2

norm calculation for each microphone vector for specified time frequency coefficient.

Therefore, the proximity function of mixed norm can be calculated as `2 norm

proximity functions for each time frequency coefficient. Let Zl,k denote the 1×M

microphone vector at the lth time and kth frequency bin and let (Jg(Z))l,k denote the

value of the proximal at the lth time and kth frequency bin. The proximal function is,

(
Jγg(Z)

)
l,k =

soft
(
‖Zl,k‖2,λ

)
‖Zk,l‖2

Zk,l (5.12)

This statement can be checked from Eq.(2.17), where the definition is obtained using

positive values of the scaling factor. If this factor is generalized the result is the soft

thresholding operator. The proximals can be inserted into DR Algorithm. The solution

is,

Algorithm 5 DR-Solution for Eq.5.7

1: γ ∈ (0,1), λ ∈ R+

2: Ẑ(l,m) = 0, A(l,m) = 0, B(l,m) = 0 ∀l,m
3: repeat
4: A← 2Jγ f (Ẑ)− Ẑ Eq.(5.10)
5: B← Jγg(A) Eq.(5.12)
6: Ẑ← (1− γ) Ẑ + γ (2B−A)
7: until convergence criterion met
8: Ẑ← Jγ f (Ẑ)

This solution may be improved by modifying the penalty function as explained before.

In order to increase the efficiency. Block mixed norm regularization is defined in the

next subsection.

5.2.1 Block mixed norm regularization

In this section Block mixed norm is taken into consideration which is visualized in

Fig.5.1.

Mixed norm treats the time frequency coefficients over microphones as a vector.

Thus, this only takes one coefficient vector into consideration. In STFT domain the

coefficients tend to be closely valued in magnitude especially in harmonics. Instead
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Block Mixed Norm Layout

I0 I1 I2

time (l)

m
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)

· · · IL−1 IL

Figure 5.1: For a specified frequency band, l denotes the time axis, m denotes the
microphone axis. Here each Ii has the same size.

of comparing all time frequency bins one by one, it is more suitable to group up

time consecutive coefficients in a specified frequency band and check for harmonic

existence in this interval. This idea is also employed in single observation denoising

application in [26]. Therefore, the nature of the harmonics are aimed to be preserved

even when there is a slight time shift between microphones. Instead of 1×M vectors

the coefficients of interest here form a matrix of size K×M. Consider that Ii denotes

the ith interval of length K in the frequency band. Therefore, the length of the signal is

required to be integer multiple of K for non-overlapping blocks. With the assumption

Xk denotes kth frequency band of the time frequency spectrum X , block mixed norm

on a specified kth frequency band can be denoted as,

‖Xk‖K,m =

∣∣∣∣∣∣∑i

(
∑

q,l∈Ii

‖X(k, l,q)‖2

) 1
2
∣∣∣∣∣∣ where [Ii]K×M (5.13)

With the block mixed norm definition, the problem defined in Eq.(5.7) can be modified.

In order to apply the block mixed norm procedure, a specific frequency band should

be chosen. Let Zk denote a specified frequency band of the STFT coefficients. Then

the problem can be formed as,

Ẑk = argmin
Z

1
2
‖Y −G Zk‖2

2 +λ‖Zk‖K,m (5.14)

In this problem definition one frequency band at a time is taken into consideration.

Therefore, the overall solution can be obtained after solving this problem for entire

frequency vectors.

The penalty function given in Eq.(5.14) can be solved using DR Algorithm. The

algorithm requires the proximal values of the functions. Proximal of the quadratic

term is analogous to the previous problem and can be checked from Eq.(5.10).
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Here, the mixed norm is defined on the small intervals on the frequency band. It is

assumed that these intervals, which are K×M matrices, are functions of microphone

and time. It can be observed that the proximity operator of the blocked mixed norm can

be done for each block separately. In this problem the matrix is penalized with `2 norm.

Here, different from mixed norm regularization, a matrix is taken into consideration.

Let Õ denote the matrix of size K×M visualized in Fig.5.1 and Õi the ith matrix of

interest. Thus, the calculation is again can be done analogous to the vector scenario.

The proximal of the function for the matrix Õi can be calculated as,

Jγg(Õi) =
soft

(
‖Õi‖2,γ

)
‖Õi‖2

Õi (5.15)

This proximity calculation is required to be done for each interval. This form can

be generalized for the entire frequency band. Thus, each proximal calculated for the

matrix, is the element of the specified frequency band. The proximal of the frequency

band can be expressed as,

Jγg(Zk) =
[
Jγg(I1),Jγg(I2), · · · ,Jγg(Ii)

]T (5.16)

With the knowledge of proximity functions, the penalty function can be minimized

using DR algorithm. The Algorithm for minimizing the problem in Eq.(5.14) is

analogous to the problem in Eq.(5.7). Overall, the complete algorithm can be proposed

with the help of Alg.5 as,

Algorithm 6 Mixed Norm Penalized Dereverberation

1: γ ∈ (0,1), λ ∈ R+, K ∈ Z+

2: Ẑ(l,k,m) = 0, A(l,k,m) = 0, B(l,k,m) = 0 ∀l,k,m
3: repeat ∀k
4: repeat
5: A← 2Jγ f (Ẑk)− Ẑk Eq.(5.10)
6: B← Jγg(A) Eq.(5.15),(5.16)
7: Ẑk← (1− γ) Ẑ + γ (2B−A)
8: until convergence criterion met
9: Ẑk← Jγ f (Ẑk)

10: until finished

The algorithm steps for blocked mixed norm regularization can be performed easily.

However, the matrix inversion, considering the inversion of RIR effects which denoted

in Eq.(5.10), is time consuming. In order to decrease required computational time, the

trick is to make us of the Taylor Series expansion,

1
1− x

=
∞

∑
n=0

xn (5.17)
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In that sense the matrix inversion, if I− (−1)αG T G is assumed, can be calculated as

infinite multiplication. Thus the inversion can be stated,

(I +αG ∗G )−1 =
∞

∑
n=0

(−1)n
α

n (G ∗G )n (5.18)

In this inversion, the G denotes the convolution matrix with the common room impulse

response in STFT domain. A convolution matrix can be denoted with a toeplitz matrix,

if the signal to be convolved is extended to the observation length [32]. Thus, the

toeplitz matrix multiplied with the transpose form a symmetric matrix with non zero

diagonal. Therefore, the singular value decomposition will yield FT coefficients as

singular values and the FT as the singular vectors.

Then, taking the nth power corresponds to taking FT, taking the power of the roots then

taking the inverse transform. The inversion stated in Eq.(5.18) becomes,

(I +αH ∗H )−1 =C−1

(
∞

∑
n=0

(−1)n
α

n
Σ

n

)
C (5.19)

Where C and C−1 denotes the FT and its inverse. Therefore the multiplication with the

inverse matrix can be represented as a circular convolution. The convolution can be

performed as multiplication in time domain. Thus the computational time decreases.

In Alg.6 ’A’ can be calculated entirely in Fourier domain. However, since mixed norm

is applied on the time axis for specified frequency bin, transform and its inverse is

required. This is because FT is applied on each frequency band.

It can be observed that the algorithm proposed in Alg.6 can be used for both

dereverberation and denoising. Assuming that Hm’s defined in Eq.(5.1) are identity

matrices, the problem directly denotes the denoising. Analogously, shortened impulse

response becomes equal to the identity and the observations with different noise are

used in the algorithm. Denoising algorithm can be derived from dereverberation

algorithm just by considering all the impulse responses are identity. Simplifications

are mandatory in this process, because, with all filters are considered to be identity,

the convolution operators are not required. Also the matrix inversion becomes division

with a real number.

47



Mixed norm regularization is used for both denoising and dereverberation purposes.

In the next section experiments are demonstrated and the advantage of blocked mixed

norm regularization is tried to be explained.

5.3 Experiments

In this section the denoising and dereverberation experiments are proposed. As

explained in the previous sections, denoising application uses the same algorithm as

assuming the room impulse response as δ (n). With suitable simplifications H , the

modified impulse response is equal to the identity matrix. In the next subsections

experiments for denoising application and dereverberation application is taken into

consideration separately.

5.3.1 Denoising experiment

In order to justify the quality of the method proposed in Alg.6, a multichannel data

is created using different noises for each observation. A speech signal is taken with

44.1[kHz] sampling frequency and Gaussian noise is added synthetically. The aim in

this application is to estimate the original signal in each channel with reduced noise.

Observations are formed synthetically with different input SNR values for each

experiment. Regularization takes two input values for this scenario: the filter

length and the thresholding parameter. In order to justify that, using block

mixed norm regularization yields better results compared to conventional mixed

norm regularization, experiments on an active frequency channel are performed.

Experiments are performed using 4 and 8 microphone cases.

Table 5.1: Denoising Output Gains.

K
mic. SNR 1 3 5 7 9 11 13
4 0 4.49 4.96 5.15 4.93 4.78 5.06 4.91
4 5 2.74 2.97 3.36 3.22 2.98 3.12 3.12
4 10 2.077 2.218 2.337 2.329 2.207 2.092 2.134
4 15 1.476 1.614 1.554 1.623 1.575 1.529 1.429
8 0 4.63 4.86 4.91 5.11 4.88 4.64 4.38
8 5 3.23 3.36 3.2 3.41 3.31 3.16 2.94
8 10 2.253 2.338 2.149 2.283 2.301 2.226 2.09
8 15 1.476 1.524 1.488 1.396 1.498 1.472 1.418

For corresponding input SNR values and for different number of microphones, SNR

gains are calculated for different values of filter length K. The SNR gains are the best
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values for different λ values. The results can be checked from Table 5.1. K = 1 defines

the conventional mixed norm regularization. It can be said that using a block mixed

norm penalty function increases the efficiency of regularization. Also, as expected

with increasing the input SNR values the gain decreases.

In order to visualize the effects of the algorithm on the time frequency coefficients,

the speech signal is used. With input SNR 5[dB] and 4 observations, the proposed

method is used in order to achieve the best gain. The parameters λ and K are chosen

empirically after some experiments. The results are visualized in Fig.5.2.

Denoising Experiment
(a) Clean Observation (b) Noisy Observation
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(c) Denoised Estimate
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Figure 5.2: (a) Original observation at mic. number 4. (b) Noisy observation.
(c) Estimate using proposed method. There are 3 more reconstruction
examples because the method is applied on 4 microphone case.

The estimate is obtained 7.12[dB] gain from the noisy observation. In this experiment,

the SNR value is calculated in time domain comparing the estimate and the clean

signal. Different from this experiment, Table 5.1 is formed calculating SNR using this

frequency vector which explains the difference between best obtained SNR values of

one channel case and this experiment.

5.3.2 Dereverberation experiment

In order to perform dereverberation, measured impulse responses in the lab

environment are used. The microphones for room impulse response measurement are
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in an array layout with 3[cm] distance between each. The room impulse responses are

of length 1.5[s]. As explained before in order to form closely related observations, it

is required to calculate the shortened RIR. The common part of the RIR is factorized

with length 1[s].

In order to justify using block mixed norm regularization over conventional mixed

norm regularization a series of experiments are performed. In the experiments an

active frequency band of time-frequency transform is used. The band is chosen from

reverberated signals of each microphone and complex noise is added with previously

set SNR values. With the knowledge of common impulse response, the moderate

reverbed estimates are obtained. SNR values are obtained comparing the estimate

band and the original moderate reverbed band.

Table 5.2: Dereverberation Output SNR

K
mic. SNR 1 3 5 7 9 11 13
4 0 4.57 5 5.14 5.14 4.95 5.08 5.08
4 5 7.84 8.27 8.15 8.26 8.35 8.36 8.18
4 10 11.4 11.83 11.98 11.81 11.9 11.96 11.88
4 15 15 15.51 15.87 15.69 15.74 15.77 15.77
8 0 4.89 5.08 5.14 4.86 4.96 5.19 5.04
8 5 7.84 8.04 8.33 8.18 8.05 8.19 8.18
8 10 11.63 11.81 11.99 11.91 11.83 11.76 11.77
8 15 15.52 15.75 15.91 15.93 15.83 15.8 15.65

Different from denoising experiments, the SNR gain is irrelevant in this situation

since there exists a linear operator between the observation and the original signal.

The results can be checked from Table 5.2. It can be observed, by making the

same comparison in previous section, that block mixed norm regularization has better

performance compared to conventional method.

In order to visualize the effects of the algorithm on the time frequency spectrum,

the speech signal is used again. In order to highlight the effects of dereverberation,

input SNR is chosen as 15[dB] which is calculated using reverberated observation and

noisy and reverberated observation. The reconstruction is obtained with SNR 20[dB].

Output SNR is calculated using moderate reverberated observation and the estimate.

Removing the effects of the common part of the room impulse response is visualized in

Fig.5.3. It can be observed that, using the proposed method shortens the effects of the

impulse response by removing the effects of the common part of the impulse response.

It can also be stated that, the common part of the RIR is relatively long compared to

the independent parts. Therefore, the auditory quality increases.
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Dereverberation Experiment.
(a) Clean Moderate Reverb (b) Noisy, Reverberated
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(c) Dereverberated Estimate
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Figure 5.3: (a) Original observation at mic. number 4. (b) Noisy observation.
(c) Estimate using proposed method. There are 3 more reconstruction
examples because the method is applied on 4 microphone case.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis dereverberation problem is taken into consideration where RIRs are

known. The non-blind deconvolution problem is solved with the help convex

optimization problems using different types of penalty functions.

In chapter 3 sparsity based derevereberation is taken into consideration. Sparsity of

time frequency coefficients is enforced using `1 norm in STFT domain. However, time

domain expression is also required to work with RIR and its inverse. This induces

domain changes in solution. As the solution is obtained iteratively, computational load

increases dramatically with changing domain twice in each iteration. As it is explained

in the chapter, in order to avoid domain changes in iterations, RIR is represented as a

convolutive operator in STFT frequency bands. This representation is justified with

the experiments. With the representation, convex minimization problem is defined in

STFT domain. Compared to conventional sparsity based methods, proposed method

achieved the similar results with reduced computational time. Considering these

benefits, RIR representation is used through the thesis. However, it is also observed

that assuming sparsity of the coefficients alone yields musical noise. Increasing the

weight of the sparsity constraint in the minimization is not a solution, even it removes

the musical noise. Increasing the threshold, also damages the harmonics and decreases

quality.

Solution to the musical noise problem is defined in chapter 4. It is observed that

only modifying the magnitudes of time frequency coefficients does not yield a perfect

solution. In order to increase the efficiency phase information is exploited. Compared

to magnitude information, phase information in STFT coefficients is not robust to noise

and reverberation effects. Also phase information is reliable only on harmonics which

is not that fragile. However, there is a constant phase shift between coefficients in

harmonics. This information is used to define a mask between the signal frequency

bands and phase shifted frequency bands. Therefore, an optimal mask can increase the
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estimate quality when applied on the LSE. It is also stated in the chapter that, the masks

for each frequency band are required to be piece wise constant. The constant nature of

the mask is expected to preserve the harmonic structure, because harmonics are formed

by consecutively active coefficients. Musical noise terms however are assumed to be

erased, because the coefficients are not correlated. Thus the experiments section in the

chapter shows that an optimal composition of constraint weights preserves harmonic

structure while erasing the musical noise components. The weight coefficients are

chosen to be same for each frequency band mask calculation. However, it can be

observed that in active frequency bands, as expected, the vectors diverge from being

sparse. Thus, the phase constancy is more valid in these vectors. In order to get better

results, weight composition can be modified with taking band activity in consideration.

Active bands satisfy being constant more than being sparse. Inactive bands on the other

hand are strictly sparse. With a weight factor depending on the band activity the quality

is expected to increase. This is aimed to be solved in future.

In chapter 3 and chapter 4 the dereverberation problem is solved with a single

observation. In chapter 5, derevereberation problem with multiple microphone case

is taken into consideration. In that chapter multichannel derevereberation problem is

defined in STFT coefficients using relatively short RIR definition. In multichannel

model, observations are formed from the same source with different RIRs and noises.

However, with the given geometry of the microphone array, it can be observed that

the observations are not disperse. It is observed that, in STFT domain harmonics do

not shift dramatically in time between observations. Thus this property addresses that

if a time frequency coefficient is active in all observation spectra, it is supposedly a

harmonic component. In order to use that property, instead of estimating the source

explicitly, the effects of reverberation is aimed to be shortened. For that purpose, it is

considered that RIR is the same for all observations where the sources are different.

With the definition of relatively short RIR definition, the reverberation operator is

divided into two parts. Using the common part only, the problem is modified as

a multiple source estimation problem. In that scenario the signals of interest are

the moderately reverberated signals (independent RIR convolved with the source).

each time frequency coefficient forms a vector with the same coefficient in other

observations. As it is assumed that the spectrum is sparse, the number of these vectors
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should be limited. In order to satisfy this property mixed norm is defined. In order to

include the nature of the harmonics blocked mixed norm regularization is defined. Both

definitions are supported and questioned with experiments. In the experiments section

denoising and dereverberation applications are proposed. For future step, mixed norm

regularization is aimed to be used in a multichannel source separation problem.
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