

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

OCTOBER 2016

DESIGN AND COMPARISON OF CONTROLLER PERFORMANCE ON FOUR

MECANUM WHEELED MOBILE ROBOT

Doğukan Taha TAYFUR

Department of Mechanical Engineering

System Dynamics & Control Programme

Department of Mechanical Engineering

System Dynamics & Control Programme

OCTOBER 2016

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DESIGN AND COMPARISON OF CONTROLLER PERFORMANCE ON FOUR

MECANUM WHEELED MOBILE ROBOT

M.Sc. THESIS

Doğukan Taha TAYFUR

 (503121618)

Thesis Advisor: Assoc. Prof. Dr. Ayhan KURAL

Makine Mühendisliği Bölümü

Sistem Dinamiği ve Kontrol

EKİM 2016

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇOK YÖNLÜ HAREKET EDEBİLEN MOBİL ROBOTTA DENETLEYİCİ

TASARIMI VE PERFORMANS KIYASLAMASI

YÜKSEK LİSANS TEZİ

Doğukan Taha TAYFUR

(503121618)

Tez Danışmanı: Doç. Dr. Ayhan KURAL

v

Thesis Advisor : Assoc. Prof. Dr. Ayhan KURAL

 İstanbul Technical University

Jury Members : Assoc. Prof. Dr. Kenan Refah KUTLU

Istanbul Technical University

Assoc. Prof. Dr. Semih SEZER

Yıldız Technical University

Doğukan Taha TAYFUR, a M.Sc. student of ITU Graduate School of Science

Engineering and Technology student ID 503121618, successfully defended the

thesis entitled “Design and comparison of controller performance on four mecanum

wheeled mobile robot”, which he prepared after fulfilling the requirements

specified in the associated legislations, before the jury whose signatures are

below.

Date of Submission : 09 September 2016

Date of Defense : 07 October 2016

vi

vii

Widmung für einen langen Weg zur erfolgreichen Wissenschaft…

viii

ix

FOREWORD

This thesis study is completed with highly great patience and ambition.

I would like to thank to my advisor Assoc. Prof. Dr. Ayhan KURAL who has given

me a different point of view in the field of control and has guided me with his valuable

information.

I also want to thank to my family for their great love, patience, moral and

encouragement during all stages of my educational life.

October 2016

Doğukan Taha TAYFUR

(Mechanical Engineer)

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix

TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

SUMMARY ... xix

ÖZET .. xxi

1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 2

1.2 Objectives ... 3

1.3 A Brief History of Mecanum Wheels .. 3

2. MODELLING .. 7

2.1 Modeling Dc Motor.. 9

2.2 Kinematic Analysis of Mecanum Wheels .. 10

3. SYSTEM DESIGN ... 15

3.1 Mechanical Features of Mecanum Wheel .. 16

3.2 Dc Motor Driver ... 17

3.3 Mini Computer ... 19

3.4 Logic Level Shifter .. 20

3.5 Brushed Dc Motor .. 21

4. SYSTEM IDENTIFICATION .. 23

5. CONTOL OF SYSTEM .. 31

5.1 Linear Quadratic Regulator .. 31

5.2 Model Predictive Control ... 33

5.3 History of Model Predictive Control.. 34

5.4 Advantages and Disadvantages of Model Predicitive Control 34

5.5 MPC Algorithms .. 36

5.6 Receding Horizon Approach .. 36

5.7 Model Types Used in Model Predictive Control 37

5.7.1 Step response model ... 37

5.7.2 Impulse response model ... 38

5.7.3 Transfer function model ... 39

5.7.4 State space based model predictive control ... 39

5.8 Base Parameters of MPC ... 40

5.8.1 Prediction horizon .. 40

5.8.2 Control horizon .. 41

5.8.3 Weight matrix... 41

5.8.4 Reference trajectory ... 41

5.8.5 Cost function .. 41

6. SIMULATION RESULTS AND COMPARISON .. 43

6.1 Simulation of Linear Quadratic Regulator ... 43

6.2 Simulation of Model Predictive Control .. 48

xii

6.3 Comparison of MPC and LQR ... 55

7. CONCLUSION AND RECOMMENDATIONS ... 57

REFERENCES ... 59

APPENDIX ... 61

CURRICULUM VITAE .. 69

xiii

ABBREVIATIONS

MPC : Model Predictive Control

LQR : Linear Quadratic Regulator

MIMO : Multiple Input Multiple Output

GUI : Graphical User Interface

TTL : Transistor-Transistor Logic

GPIO : General Purpose Input/Output

I2C : Inter-Integrated Circuit

SPI : Serial-Peripheral Interface

RPM : Round Per Minute

PI : Performance Index

MAC : Model Algoritmic Control

GPC : Generalized Predictive Control

DMC : Dynamic Matrix Control

xiv

xv

LIST OF TABLES

Page

Table 2.1: List of directions according to wheels rotation .. 7

Table 3.1: Main features of dual motor driver .. 17

Table 3.2: Main features of mini controller .. 19

Table 3.3: Features of Brushed DC motor .. 21

Table 4.1: Estimated motor simulation parameters ... 27

Table 4.2: Identified transfer function for each motor .. 28

Table 6.1: Weighting factor constant relationship .. 50

Table 6.2: Comparison of control effort, response time, error for MPC and LQR ... 56

xvi

xvii

LIST OF FIGURES

Page

Figure 1.1: Drawing of probably the first omnidirectional wheel, as described in

Grabowiecki’s US Patent of 1919 ... 4

Figure 1.2: Omnidirectional wheel view from side and front 4

Figure 2.1: Mecanum drive wheels position and enumaration 7

Figure 2.2: Wheels forces according to system directions.. 8

Figure 2.3: Dc motor mathematical model ... 9

Figure 2.4: Dc motor model in simulink ... 10

Figure 2.5: Force distrubution of system .. 11

Figure 3.1: Completed view of designed system .. 15

Figure 3.2: Mecanum wheel with 12 rollers ... 16

Figure 3.3: Roboclaw 2x30A Motor driver .. 17

Figure 3.4: Main pinout of Roboclaw 2x30A ... 18

Figure 3.5: Ion motion motor driver card interface .. 18

Figure 3.6: Beaglebone Black Rev C .. 19

Figure 3.7: Bidirectional logic level shifter .. 20

Figure 3.8: 24v DC motor with gearbox ... 21

Figure 4.1: System identification process ... 23

Figure 4.2: Plant and Model relationship .. 24

Figure 4.3: Data log example .. 24

Figure 4.4: General view of system identification toolbox 25

Figure 4.5: Step response of dc motor model and transfer function for motor 1 26

Figure 4.6: Step response of dc motor model and transfer function for motor 2 26

Figure 4.7: Step response of dc motor model and transfer function for motor 3 27

Figure 4.8: Step response of dc motor model and transfer function for motor 4 27

Figure 4.9: Cross correlation results for motor 1 .. 28

Figure 4.10: Cross correlation results for motor 2 .. 28

Figure 4.11: Cross correlation results for motor 3 .. 29

Figure 4.12: Cross correlation results for motor 4 .. 29

Figure 5.1: Basic block diagram of LQR controller ... 32

Figure 5.2: Discrete MPC receding horizion scheme ... 37

Figure 5.3: MPC step response model scheme ... 38

Figure 5.4: MPC step response model scheme ... 39

Figure 6.1: Simulation block diagram of full system with state feedback 43

Figure 6.2: LQR control of dc motor .. 44

Figure 6.3: LQR control increased R (1.5) value .. 44

Figure 6.4: LQR control increased Q matrix value ... 45

Figure 6.5: LQR control optimum Q and R values ... 46

Figure 6.6: LQR motor inputs and outputs respect to optimum Q and R values 46

Figure 6.7: Simulation block diagram of MPC controlled system 48

Figure 6.8: MPC controller structure in Simulink... 49

Figure 6.9: MPC controller tuning interface ... 50

Figure 6.10: MPC weights inputs and outputs .. 51

xviii

Figure 6.11: MPC control simulation results a=10, b=2, c=0.01, d=0.1 52

Figure 6.12: MPC control simulation results a=10, b=2, c=0.1, d=0.1 52

Figure 6.13: MPC control simulation results a=6, b=1, c=0.1, d=0.1 53

Figure 6.14: MPC control simulation results a=6, b=5, c=0.1, d=0.1 53

Figure 6.15: MPC control simulation results a=6, b=5, c=0.1, d=1 54

Figure 6.16: MPC control simulation results a=6, b=5, c=0.1, d=2 54

Figure 6.17: MPC control signal comparing with user input 55

Figure 6.18: LQR and MPC comparison a = 5, b = 2, c=0.05, d =1 56

xix

DESIGN AND COMPARISON OF CONTROLLER PERFORMANCE ON

FOUR MECANUM WHEELED MOBILE ROBOT

SUMMARY

In this thesis the main aim is to design and compare controller performance on

omnidirectional mobile robot based on mecanum wheels and it can be use for further

researches for elemination system errors. On the purpose of to increase orientation

capability the system is equipped with four mecanum wheels which have twelve rollers

around it. In the scope of this thesis to control dc motor speeds according to user

demans and to minimize heading errors in the band of accaptable area.

Before start to develop controller for the large scale system experimental test rig has

been equipped with system components which are mecanum wheels, dc motors,

encoders and controller.

Also before start design controller all system elements should have mathematical

models to take best controller results. Such as Dc motor model, system forward and

backward kinematics, which help to minimize heading errors in real nonlinear

environment.

For the developing linear quadratic regulator and model predictive controller transfer

function of the system is needed. Especially for LQR controller owing to feedback

constants. The dc motor model is implemented to the simulation enviroment to see

system output according to user inputs. In order to validate designed model, different

system scenarios are tested independetly. After validation of system outputs cross

validation test is conducted to maximize dependability.

Designed model simulated in Matlab/Simulink environment with real dc motor

coefficients. To improve controller performance for LQR controller different Q

matrixes and R constants are tested and simulated. In the end admissible feedback

constants are chosen. For MPC system inputs and outputs are simulated with modelled

system. The controller performance is adjusted according to time interval, control

horizon, weights of inputs and prediction horizon constants.

Based on simulated model the aim is to take smooth response from system without

overshoot, minimal oscillation and minimize settling time. Simulated results will be

compared to real system results in future.

xx

xxi

ÇOK YÖNLÜ HAREKET EDEBİLEN MOBİL ROBOTTA DENETLEYİCİ

TASARIMI VE PERFORMANS KIYASLAMASI

ÖZET

Bu tez çalışmasında çok yönlü hareket edebilen dört tekerlekli mobil robotun tasarımı

ve farklı tipteki denetleyicilerin dizayn edilmesi ve bunların sonuçlarının kıyaslanması

hedeflenmiştir. Denetim algoritması oluşturmaktaki amaç, gerçek sistem üzerinde

oluşabilecek üretim hataları, motorların stabil olmaması ve diğer dış etkenler

dolayısıyla meydana gelen hataları kabul edilebilir düzeye indirmektir. Çünkü

herhangi bir kontrol algoritması kullanmadan sistemin istenilen stabilitede hareket

etmesi ve farklı yüklerin motorlara binmesi durumunda hızların istenilen düzeyde

tutulması zor bir durumdur.

Gerek dıştan gelen etkiler, gerekse içten kaynaklanan birtakım sebeplerden dolayı

sisteme uygulanacak denetleyiciler seçilmiş olup, bunların sonuçları kıyaslanmıştır.

Fakat denetleyici tasarlamadan önce sistemin matematik modelinin bilinmesi

gerekmektedir. Bunun için sistemin ilk önce ileri ve ters kinematik denklemleri matris

şeklinde çıkarılmıştır. Matematiksel modeli oluştururken sistemin hesaplamaları

kolaylaştırmak amacıyla bazı kabuller yapılmıştır. Bunlara örnek olarak sistemin rijit

olduğu varsayılmış, zemin ile tekerler arasında oluşan yuvarlanma direncinin

tekerlerin kaymadan ilerlemesi varsayılmış, tekerlerin zemin ile sürekli temasta

olduğu ve diğer sistem bileşenleri modellenirken lineer denklemler kullanılmıştır.

Model de tekerlerde üretim hatalarının olmadığı göz önüne alınmıştır. Her tekerin açısı

45° olduğu ve sistem simetrik şekilde dizayn edildiği varsayılmıştır.

Oluşturulan matematiksel model ile sistemin istenilen doğrultuda gitmesi için herbir

tekerin birbirinden bağımsız olarak hangi hıza sahip olacağı bu model sayesinde

hesaplanabilmektedir. İleri kinematik denklemleri sayesinde sistemin kartezyen

kordinat üzerindeki hızları ve her bir motorun devir sayısı elde edilebilmektedir.

Oluşturulmuş olan ters kinematik denklemleri sayesinde ise sistemin dışarıdan

kaynaklanan bozucu etkenlere karşı sistemin istenilen doğrultuda hareket etmesini

sağlamak için yeniden motor hızları hesaplanmasına imkan vermektedir.

Matematiksel denklemleri elde edilen sistemin sonuçlarını almak için model

simulasyon ortamına aktarılmıştır. Bu ortamda sistemin oluşturulan ters ve ileri

kinematik denklemleri, dc motor modeli, denetleyici ve input output arasındaki

sistemler arası dönüştürücü denklemler yer almaktadır. Oluşturulan model sayesinde

simulasyonlar gerçekleştirilmiştir ve alınan sonuçlar neticesinde denetleyici için

gerekli olan katsayılar belirlenmiştir. Kontrolcü performansını denetlemek amacıyla

ise alınan bu veriler gerçek sistem üzerinde test edilmek amacıyla kullanılmıştır.

Gerçek sistem ise dört adet dc motor, dört adet manyetik enkoder, iki adet dc motor

sürücü kartı ve mikrodenetleyiciden oluşmaktadır. Sistemde kullanılmış olan dc motor

350 wattlık güce sahip ve bu motorlar 12v luk seri bağlanmış iki adet kuru tip akülerle

beslenmektedir. Sistemin istenilen tork değerlerine ulaşması için redüktör

kullanılmıştır. Kullanılan iki adet dc motor sürücü kartı kanal başına 30 amper çıkış

verebilmektedir ve her kart iki adet motoru sürebilmektedir. Ayrıca kartı kullanmak

için üretici firma C++ ve python2.x kütüphanelerini de vermektedir. İstenilen datalar

xxii

bu kartlar üzerinden bilgisayara seri haberleşme ile aktarılabilmektedir. Kullanılan

çokyönlü tekerler 12 adet dış dış tekere sahip olup bunların yanında tekerin hareketini

kolaylaştırmak amacıyla da 24 adet küçük yarım tekerleklerde ilave edilmiştir. Amaç

tekerlerin dönüşü esnasında süreklilik sağlamak.

Montaj sonrası sistemin matematiksel modeli oluşturulması için gerekli ölçümler

yapılmıştır. Bunlara örnek olarak dc motor modelinin belirlenmesi ve bu modelde

kullanılacak olan parametrelerin saptanması gerekmektedir. Bunları belirlemek için

sisteme giriş verilerek çıkışlar gözlenmiş ve Matlab/Simulink system identification

toolbox sayesinde sistem belirlenmiş ve parametreler belirlenmiştir. Daha sonra elde

edilen bu değerler ile sistem tekrardan doğrulanarak değelerin güvenilirliği

ölçülmüştür. Daha sonra sistemin diğer bileşenlerine ait olan tekerleklerin birbirine

olan uzaklıkları redüktör oranları, maksimum motor devirleri ve bunun gibi önemli

diğer parametrelerin ölçümleri yapılarak matematiksel model oluşturulmuştur. Motor

için elde edilen transfer fonksiyonları ve durum uzay modeli denetleyici tasarımında

büyük rol oynamaktadır.

Denetleyici olarak sisteme uygulanabilir denetleyicilerden lineer quadratic regulator

ve model öngörülü kontrolcü kullanılmıştır. LQR denetleyici için sistemde durum geri

besleme yapılmaktadır ve bu geri beslemeler için motorların transfer fonksiyonlarına

ihtiyaç duyulmuştur. Bu tip denetleyicide optimal geri besleme katsayılarını bulmak

için hali hazırda bulunan yöntemler kullanılmıştır ve ayrıca mükemmel sonuçlar için

simülasyonlar gerçekleştirilmiştir. Geri besleme katsayıları belirlenirken Matlab’de

bulunan fonksiyonlar yardımıyla bulunmuştur. Fakat Q matrisi ve R katsayısı

denetleyiciyi tasarlayan kişi tarafından seçilmektedir. Bu katsayılar performansı

etkileyen en önemli kriterlerdendir.

Kullandığı yazılım ve donanım itibariyle MPC ileri düzey bir denetim yöntemi olarak

sınıflanabilir. İleri denetim tekniği olması denetim sinyallerini oluştururken

optimizasyon algoritması çalıştırarak ilgilenilen süreç çıkış sinyallerini tasarımcının

arzu ettiği optimizasyon ölçütüne uygun olarak sağlayan yapıya sahip olmasındandır.

MPC yönteminden daha önce analog kontrol yöntemleri ve nümerik optimizasyonlar

kullanılarak kontrol sağlanmıştır. Bugünkü teknolojiye bakarak işlemci teknolojilerini

göz önüne aldığımızda bu denetleyicinin başarılı olabilmesini mümkün kılmıştır.

Lineer olmayan sistem modelleri için az sayıda MPC algoritması varlığına karşın,

lineer sistem modelleri için geliştirilmiş olan hali hazırda çeşitli algoritmalar

bulunmaktadır. Model öngörülü kontrolcü ideal çalışma için denetlenmek istenen

sistemin kesin modeline gerek duyar; ancak sistem modelindeki belirsizlikler

durumunda dahi uygun geri besleme konfigurasyonları kullanılarak MPC algoritması

başarılı olarak çalıştırılabilir.

Başlangıçtan itibaren T saniyelik süre boyunca arzu edilen süreç çıkış yörüngesini

daha önceden kullanıcı tarafından hazırlanabilir. Diğer denetleyici olarak model

öngörülü kontrol seçilmiştir bu denetleyicide ki amaç büyük sistemlerin sisteme giriş

verilmeden önce kumanda sinyalinin tespit edilmesi amacıyla kullanılmaktadır.

Sistemi bir kapalı kutu olarak algılayıp bu sistem ile arka planda çalışan algoritma

yardımıyla kullanıcı istekleri doğrultusunda sistem davranışı belirlenmiş olur. Sistem

denetleyicisi adım cevabı veya darbe cevabı modeliyle belirlenebilir. Ayrıca

Matlab/Simulinkte yer alan toolbox sayesinde denetleyici parametreleri ayarlanabilir.

Bunlar kontrol ufku, saniyedeki hesaplama sayısı, tahmin edilen adım sayısı, sistem

cevap süreleri gibi parametrelerdir.

Bu denetleyiciler belirlenirken amaç motorun farklı senaryolar altında kullanıcı

tarafından belirlenen doğrultudaki hızını sabit tutmasıdır. Fakat LQR denetleyicide

geri besleme katsayıları sabit olduğundan belli her senaryo için adaptif olarak

xxiii

çalışamamaktadır. Bunun yanında MPC denetleyicide ise sistemin o anki davranışına

göre ileride gerçekleşecek olan davranışı tahmin ettiğinden anlık verilerden yeni bir

kumanda sinyali hesaplanır. Temelde kullandığı kontrol ufku ve tahmin ufku iterasyon

sayılarından dolayı o andaki sistemin durumunu ölçüp gelecekte olabilecek durum

hakkında bir kumanda sinyali üretilmektedir. Tahmin ufkunun fazla olması bir kaç

adım sonra karşılaşabilecek durum hakkında daha stabil bir kestirim

yapılabilmektedir. Ayrıca kumanda sinyallerinde oluşturulan kısıtlamalar sayesinde

simulasyonlardan istenilen kumanda çıkışları ve sistem cevapları alınmıştır.

xxiv

1

1. INTRODUCTION

Recently, several mobile robots and mobile platforms have been commonly

developed. And it is expect that they will be used in a sort of applications, such as

service robots in homes, flat surfaced factories and supermarkets. So forth the

environments, there are lots of narrowpassages and the robots run across some

obstacles. The mecanum wheeled mobile platform has the advantages over the

conventional wheeled mobile robots one in terms of mobility particularly in closely

spaced environments, for instance factories, offices, hospitals and similar areas. The

specialized wheels and structure are needed for the mobile robot to have the omni-

directional maneuverability. Four wheels structure is using ‘Mecanum wheel’ are the

examples of the omni-directional platforms. Especially, the omni-directional mobile

platform with mecanum wheels are used in the forklift, the wheelchair and so other

applications. [1]

Besides, they have some advantages and disadvantages. When they are driven in

narrow space, their movement is restricted. In those environments, more effective

driving is required so that omnidirectional driving is needed. The omnidirectional

driving is said to move any direction. For example ackermann steering mechanism

should have more space to turn and with one direction to move. In omni-directional

driving it can move to eight directions and in addition it can rotate clockwise and

counterclockwise directions. And some applications ıt can be driven any desired angles

with different control methods.

There have been some studies to deal with development of mecanum wheeled platform

designing and methods of controlling it. However, there has been a small number of

research to deal with applications of these kind of projects. In this thesis, as an

application of mecanum wheels are introduced. The aim of the project was developing

controller wheelchair for the disabled who use it in daily life.

In daily life this kind of mobile robots encounter with external disturbances,

consequently to overcome like these kind of detrimental variables overall system

should be identificated with some techniques. To control mecanum wheeled robot used

2

dc motors parameters must be known. Because dealing with motor velocites and torque

is the main subject.

1.1 Purpose of Thesis

In this thesis, introduction section concerning practical applications for mobile robotic

platform based on conventional wheel is presented. Mobile robot equipped with four

Mecanum wheels have the omnidirectional property, which means, they have the

ability to move instantaneously in any direction, from any configuration. Therefore,

compared to conventional platforms, these vehicles possess multiple advantages in

terms of their mobility in narrow spaces or crowded environments. They have the

ability to easily perform certain tasks in congested environments foreseen with static

obstacles, dynamic obstacles or narrow areas. [2] Usually, such environments are

found in factory workshops, warehouses, hospitals, etc. Hence the resulting needs to

create this kind of robotic platforms to satisfy the requirements of various fields, such

as: industrial, military, naval, medical and last but not least, the educational field (as

the basis for research). The characteristics of the Mecanum wheel, a short comparison

between this type of wheel and a conventional wheel, as well as the constructive and

design solutions are described.

Conventional wheels are mechanically simple, have high load capacity and high

tolerance to work surface irregularities. However, due to their non-holonomic nature,

they are truly omni-directional. Designs have been proposed to achive near omni-

directional mobility using conventional wheels. The most common design are those

using steering wheels. Vehicles based on this design have at least two active wheels,

each of which has both driving and steering actuators. They can move in any direction

from any configurations. However, this type of system is not truly omni-directional.

Because it needs to stop and re-orient its to desired direction whenever it needs to

travel in a trajectory with non continnuous curvatures. [3]

In order to implement control strategies, localisation of system is needed to obtain

which consist of real position and velocities. And these are based on robot kinematics.

Also system limits should be known before. If the control strategy is designed without

considering these limits, system could be fail.

Control of robots related velocities and torques has established the existence to be most

common problems. In order to accomplish, it is paid attention to motion control of

3

mecanum wheeled robot. Assumed control contains required limits for developed

cartesian velocities. This study includes tracking control through weighted matrix. To

achieve desired movements and controller are used to ensure bounded velocities.

1.2 Objectives

The main aim is to develop appropriate control algorithm to omni directional mobile

robot. The mecanum wheels are driven by dc motor. For controlling direction also is

needed to control speeds of each motor. This project also contains to create whole

mathematical system which are dc motor, forward kinematics and backward

kinematics.

Defining mathemetical model of mecanum wheels according to forward kinematics

and to define weighted jacobian matrix for distibution motor speeds to each motor. To

analyze and validate total system according to mathematical modeled system. To

determine best controllers types which are model predictive control and linear

quadratic control, also maximize control input efficiency.

To analyze and validate the mecanum wheeled robot in terms of response robustness

and error.

1.3 A Brief History of Mecanum Wheels

Omnidirectional wheels have been used in robotics, in industry, and in logistics for

many years. The main source of omnidirectional wheels are companies which produce

them for omnidirectional conveyor systems, for example, for handling packages.

Omnidirectional wheels are popular for omnidirectional robots, especially in the

Robocup. An omnidirectional robot can drive along a straight line from point A to

point B, while rotating along the line in order to arrive with the correct orientation.

Omnidrectional wheels have also been used for wheelchairs, for service vehicles in

airports, and many other applications. [4]

It is not widely known that the first omnidirectional wheel was patented in 1919 by J.

Grabowiecki in the US. Figure 1.1 shows an image from the patent application. The

assembly consists of a main wheel and transversal rollers, such as those used by most

Robocup teams. As early as 1907, inventors were considering the design of vehicles

capable of moving forward and sideways without steering the wheels. [4]

4

Figure 1.1: Drawing of probably the first omnidirectional wheel, as described in

Grabowiecki’s US Patent of 1919

One of the first modern omnidirectional wheels was developed by the Swedish

inventor Bengt Ilon around 1973. Figure 1.2 shows the design of the Ilon wheel. The

profile of the wheel is very nearly circular.

The wheel is omnidirectional but transversal forces produce excessive friction in the

axes of the small rollers. A clever alternative are “Killough rollers”, which are usually

built using two truncated spheres. Such rollers were used by the Cornell Robocup team

in 2000, and were still in use until 2004 in Robocup competitions. Although the rollers

are named after Killough, the rollers had been actually patented in 1980 by Bradbury.

Figure 1.2: Omnidirectional wheel view from side and front

Much effort has been spent on improving the Swedish or Mecanum wheels, as they

are sometimes called. The omniwheels can only roll smoothly if the profile of the

5

complete wheel assembly is perfectly round, without gaps. Therefore, some groups

have used spheres as a basis for the robot. The spheres can be activated with rollers,

as in a mechanical mouse, or a group of spheres can be moved by chains or transversal

bars. The spheres provide smooth rolling but the necessary mechanics is rather bulky.

Conventional wheels can be also used for omnidirectional robots, if the wheels are

rotated by a second steering motor. [5]

6

7

2. MODELLING

This is a top view looking down on the drive platform. Wheels in positions 1, 4 should

make X-pattern with wheels 2, 3 (Figure 2.1). If not set up like shown, wheels will not

operate correctly. Directions can be determined according to wheels rotations. Desired

movements of this system and wheel rotations are listed in Table 2.1.

Figure 2.1: Mecanum drive wheels position and enumaration

Direction of movement Wheel actuation

Forward All wheels forward same speed

Reverse All wheels reverse same speed

Right shift Wheels 1,4 forward 2,3 backward

Left shift Wheels 2,3 forward 1,4 backward

Right forward Wheels 2,3 forward 1,4 stop

Left forward Wheels 1,4 forward 2,3 stop

Right backward Wheels 1,4 backward 2,3 stop

Left backward Wheels 2,3 backward 1,4 stop

CW Turn Wheels 1,3 forward 2,4 backward

CCW Turn Wheels 2,4 forward 1,3 backward

Table 2.1: List of directions according to wheels rotation

8

Using four of mecanum wheels provides omni-directional movement for a vehicle

without needing a conventional steering system slipping is a common problem in the

mecanum wheel as it has only one roller with a single point of ground contact at any

one time. Due to the dynamics of the mecanum wheel, it can create force vectors in

both the x and y-direction while only being driven in the y-direction. Positioning four

mecanum wheels, one at each corner of the chassis (two mirrored pairs), allows net

forces to be formed in the x, y and rotational direction. Mecanum wheels direction

distrubution according to motor rotations are shown (Figure 2.2).

Figure 2.2: Wheels forces according to system directions

Before establishing the kinematic analysis of the moving mechanism, in order to

facilitate modeling, we can make the following assumptions according to practical

applications:

- The platform conducts regular exercise on a flat surface with four rounded

wheels simultaneously functioning;

- The friction force between the Omni-directional wheels and the floor is large

enough so there is no slipping wheels;

The platform is rigid so the case of deformation does not to be taken into consideration.

[6]

9

2.1 Modeling Dc Motor

DC motor can be modeled by two sub parts, electrical and mechanical (Figure 2.3).

Electrical parts consist of armature inductance, armature resistance and magnetic flux

of stator. A second part is mechanical one. It consists of inertia of motor and load. The

difference in motor speed is caused by the electromagnetic moment generated by

current, load and friction of motor. [7]

Figure 2.3: Dc motor mathematical model

The advantage of dc motors are easy to control speed and position and adjustable wide

range of scale. And it is widely used in industry because of this reasons.

R : armature resistance

L : armature inductance

J : moment of inertia

𝐾𝑡 : motor torque constant

𝐾𝑒 : back emf constant

B : viscous friction

𝑇𝑚 : motor torque

()
() (t) Jm

dw t
T t Bw

dt

()
() () (t)a

a a b

di t
L Ri t v t v

dt

()b ev K w t

()m t aT K i t

When taking Laplace transform, the relation between voltage and angular speed

designed in Simulink (Figure 2.4).

()

() (Js B)(Ls R)

t e

a t e

K Ks

V s K K

10

Figure 2.4: Dc motor model in simulink

2.2 Kinematic Analysis of Mecanum Wheels

Omnidirectional movement with the mecanum wheels is realized by appropriately

controlling the angular velocity of each wheel separately. Depending on each

individual wheel rotation direction and velocity, the resulting combination of the

wheels produces a total movement in the desired direction without changing the

orientation of the wheels.

To accomplish it kinematics plays an important role to define the position, orientation,

velocity and acceleration of robots. When Mecanum wheels are actuated by supplying

motion through motors, the angled rollers translate a portion of the force in the

rotational direction of the wheel to a force normal to the wheel direction. Depending

on each individual wheel direction and velocity, the resulting combination of all these

forces produce a total force vector in any desired direction thus allowing the platform

to move freely in the direction of the resulting force vector, without changing of the

wheels themselves. [8]

The driving force of each wheel can be decomposed into two force components. One

component is in the roller direction, and the other is the force in direction of rotation

Four-wheel structure on local co-ordinates. That subtracts the sub-wheel direction

force from the driving force. The sub-wheel direction force is exhausted by rolling the

subwheel.

The addition of the net forces (Figure 2.5) of the four wheels determines the moving

direction of the mobile platform. [9]

11

Figure 2.5: Force distrubution of system

1 1

1 1 1
,

2 2

r r

x w r

V V
V V V

2 2

2 2 2
,

2 2

r r

x w r

V V
V V V

3 3

3 3 3
,

2 2

r r

x w r

V V
V V V

4 4

4 4 4
,

2 2

r r

x w r

V V
V V V

1 1
. , .x z y zx y

l LV V

2 2
. , .x z y zx y

l LV V

3 3
. , .x z y zx y

l LV V

4 4
. , .x z y zx y

l LV V

Meanwhile, 𝑽𝒙, 𝑽𝒚, 𝑾𝒛 represent the x and y elements of the velocity and angular

velocity of the vehicle, respectively. In addition, 𝑽𝒊𝒙, 𝑽𝒊𝒚 are expressed by using,

𝑽𝒙, 𝑽𝒚, 𝑾𝒛 above. By comparison with equations and the following equations are

obtained:

12

1
()x y zw
L l wV

2
()x y zw
L l wV

3
()x y zw
L l wV

4
()x y zw
L l wV

Combinnig equations ito below equation, which represents the inverse kinematics

equation, yields:

0
.

w
JV V

Where 𝑽𝒐(𝑽𝒙, 𝑽𝒚, 𝑾𝒛) is velocity vector in cartesian coordinates;

𝑽𝒘 = (𝑽𝟏𝒘, 𝑽𝟐𝒘, 𝑽𝟑𝒘, 𝑽𝟒𝒘) is the wheel velocity vector corresponding to angular

velocity,

1 1 (L l)

1 1 ()

1 1 ()

1 1 ()

L l
J

L l

L l

is the transformation matrix,

Oppositely, the vehicle velocity can be obtained from the Wheel velocity using pseudo

inverse matrix as equation,

* *

0 .V (.J)wwV J I J

The mobile robot is under velocity control. Given the Cartesian space velocity

command, the velocity command to each motor is computed using the inverse Jacobian

1

2

3

4

1 1 (L)

1 1 (L)
.

1 1 (L)

1 1 (L)

w

x

w

y

w

w

V l
V

V l
V

V l
W

V l

Where 𝑽𝒙 is system speed in x direction, 𝑽𝒙 is system speed in y direction and W is

system rotational speed according to center point.

As a result, in the global reference coordinates (X, Y, Z), the velocity of the mobile

platform is defined by each element is given follows;

R represents mecanum wheel radius.

13

.
31 2 44

.
31 2 44

.
31 2 44(L)

w
x

w
y

w
z

R
V

R
V

R
W

l

14

15

3. SYSTEM DESIGN

In this section, mechanical and electrical design of the proposed system will be

introduced. In the mechanical design sub-section, the following topics are covered:

The designed and modelled wheel specifications, dimensional features of the chassis,

introduction to actuators used in the mechanical system. In the electrical design sub-

section, the following topics are covered: micrcontroller, brushed dc motor, logic level

shifter and motor drivers. System elements are assembled as below (Figure 3.1).

Figure 3.1: Completed view of designed system

16

3.1 Mechanical Features of Mecanum Wheel

With the help of improving mecanum wheel, it has higher weight capacity and smooth

motion. And the higher weight capacity is achieved through the 8" Mecanum Support

Spacer. Using this spacer in place of the 1600 Spacer increases the load capacity from

about 80lbs/wheel to 500 lbs/wheel(nearly 226kg). This spacer is molded to support

each individual tab on the aluminum side plates of the mecanum wheel. This reduces

the risk that the side plates bend and the roller axles will become misaligned.

By adding the outer rollers to the 8" mecanum wheels (Figure 3.2) we achieve a

smoother rolling wheel. During the transition from one of the 12 inner rollers to the

next, the outer roller hits the ground and decreases the amount of up and down motion.

Specifications (for an individual wheel):

- Diameter: 203 mm

- Body Material: Aluminum

- Load Capacity: 226 kg

- Coefficient of Friction, Forward/Backwards: .7

- Coefficient of Friction, Sideways: .6

- Weight: 1,5 kg

- Number of Rollers: 12 Inner Rollers, 24 Outer Rollers

Figure 3.2: Mecanum wheel with 12 rollers

http://www.andymark.com/product-p/am-2066.htm
http://www.andymark.com/product-p/am-2066.htm
http://www.andymark.com/product-p/am-0652.htm
http://www.andymark.com/product-p/am-2119.htm
http://www.andymark.com/product-p/am-0608.htm

17

3.2 Dc Motor Driver

The selected Dc motor specifications are 350w and 24v. Therefore a high current flow

capacity dc motor driver was selected. Besides it was considered communication

interfaces for to communicate with controller card. Because of this needs dual dc

motor driver was the possible option.

The RoboClaw motor controllers (Figure 3.3) from Ion Motion Control can control a

pair of brushed DC motors. The controller has USB serial, TTL serial, RC, or analog

inputs for communication. Main pinout are shown as below (Figue 3.4). Integrated

dual quadrature decoders make it easy to create a closed-loop speed control system.

Figure 3.3: Roboclaw 2x30A Motor driver

Key features of motor driver (Table 3.1) as it below;

Motor Channels 2

Operating Voltage 6V ~ 34V

Continuous output current 30A

Peak output current 60A

Communication interfaces USB Serial, TTL, RC, Analog

Table 3.1: Main features of dual motor driver

18

Figure 3.4: Main pinout of Roboclaw 2x30A

It has also dual feedback inputs for PID closed-loop control and speed control with

quadrature encoders, up to 19,6 million encoder pulses per second also position control

with analog encoders or potentiometers.

Ion Motion provides a GUI (Figure 3.5) to control each motor respectively. Interface

of control program over USB serial as shown below;

Figure 3.5: Ion motion motor driver card interface

It supported by C++ library and Python2x module. With the help of these libraries,

another controller card can communicate properly.

19

3.3 Mini Computer

Motor driver needs to be controlled by another controller. For this purpose a board is

needed. It can be used any specific board to do it. When we examine our system

requirements, beaglebone black is the good choice. The beaglebone black (Figure

3.6) is credit card sized single board computer which has embedded linux operating

system in onboard flash.

Figure 3.6: Beaglebone Black Rev C

Key features of beaglebone black (Table 3.2) as below;

Processor Sitara AM3359AZCZ100 1GHz

SDRAM Flash 512MB DDR3

Onboard flash memory 4GB, embedded flash

TTL level 3.3V

Internet connection 10/100 Ethernet

USB Interface 1 USB port

Power input 5V DC

Flash expantion port MicroSD port

Video output Micro HDMI port

Table 3.2: Main features of mini controller

20

And also it has i/o expansion headers which can be controlled by as if client needs.

 - Each digital I/O pin has 8 different modes that can be selected, including GPIO,

totaly 65 possible digital i/o ports and each port can produce interrupts.

- Up to 8 digital pins can be configured with pulse with modulators to produce to

control motors or create analog voltage without taking up any extra CPU cycles.

- For the analog inputs there are 7 analog input with 1.8v level and 12 bit analog to

digital converter

- Serial communication is supported by 4 uart ports. Each of them has tx and rx port.

- There are 2 I2C bus is utilized for reading EEPROMS on cape add-on boards, the

second I2C bus is available for you to configure to use.

- For shifting data fast, there are 2 SPI ports.

3.4 Logic Level Shifter

TTL levels between motor controller and our computer is slightly different, however

the difference makes big data loss between communications. Beaglebone black

communicate at 3.3V ttl level which means 3.3V is true value and less than 3.3V is

False value for it. It should transfer and receive data inter motor controller. However

roboclaw communicate with 5V TTL level. To overcome this problem, it was

necessary to use bi-directional logic level shifter (Figure 3.7). With the help of this

integrated circuit, motor driver cards and controller card are compatible with each

other.

Figure 3.7: Bidirectional logic level shifter

21

3.5 Brushed Dc Motor

A Brush dc motor provides precision control of speed, driven by a direct current. Noted

for a particularly high ratio of torque to inertia, the brush dc Motor has the potential to

supply three to four times more torque than it is rated torque. If needed, it can even

provide up to five times more, without stalling. The brush dc Motor consists of six

different components: the axle, armature/rotor, commutator, stator, magnets, and

brushes. The brush dc motor offers stable and continuous current, using rings to power

a magnetic drive that operates of the motor armature. Perhaps one of the earliest used

motors, the brush dc motor (Figure 3.8) is commonly used because of the ability to

vary the speed-torque ratio in almost any way. There proposed system requires 4

brushed dc motor. The mechanism should be carry own weight and user weight, are

able to hold resistance torques. The dc motor specifications (Table 3.3) are;

Operating voltage 24V

Amper 14A

RPM 4200

Watt 350Watt

Ratio 32:1

Output shaft diameter 17 mm

Output shaft speed 135 RPM

Input shaft speed 4320 RPM

Table 3.3: Features of Brushed DC motor

Figure 3.8: 24v DC motor with gearbox

22

23

4. SYSTEM IDENTIFICATION

The design of a control system requires a mathematical model of the dynamics of the

process often a dynamical model can be difficult to obtain due to the complexity of the

process, whose dynamics may be even (partially or completely) unknown. Even if we

have a mathematical model, sometimes this is too complex to base a controller design

on it (large state dimensions, nonlinearities, etc.) Model reduction is a way to go, but

requires a (linear) model to start with. System identification is a procedure to build a

mathematical model of the dynamics of a system from measured data. There are some

approches to identify system (Figure 4.1) data from measured data. For instance,

White-box identification is based on estimating parameters of a physical model from

data, Grey-box identification is based on giving generic structure estimate parameters

from data, Black-box model determining model structure and estimate parameters

from data. There are some methods to take datas from system for example impulse

response and step response can be use. [10] The process of identification shown as

below,

Figure 4.1: System identification process

For mecanum wheelchair dc motor constant values should be determined cause there

is no way to take these values from manufacturer. The linear model is created by

system designer which is a mathematical approch to physical system. After taking

datas from system if we have knowledge about mathematical model system poles and

zeros can be implemented. Then model identification algorithm can determine exact

values according to measured data. Then the rest of system linear models are added.

Most important thing about finding right model of system is measured data, poles and

zeros. If there is no clue about system mathemcatical model in other words its hard to

24

define it cause of complexity, the approch is estimate and error. Despite our system

elements is mathematicaly modeled before, model paramters are unknown.

Simplified model and plant relation (Figure 4.2) as below;

Figure 4.2: Plant and Model relationship

All datas (Figure 4.3) from system are taken with Beaglebone black rev c and xls

format used for possible to open in excel and Matlab as it figure. Pwm values, time,

voltage, encoder and speed are taken from motors for identification.

Figure 4.3: Data log example

25

To get best results from simulations, dc motor transfer function should be determined.

Therefore Matlab system identification toolbox (Figure 4.4) is used. To increase

confidence level motor have tested under different scenarios. As an input driven

voltage, as an output shaft velocity are taken. Different scenarios are tested which are

full duty cycle, half duty cycle and increasing duty cycle 10% in every 10 seconds.

This process repeated for each motor.

Figure 4.4: General view of system identification toolbox

After taking measured datas from system, these values are simulated and system

parameters are found. Step response of mathematical modelled system and identified

transfer function are shown as below (Figure 4.5 – Figure 4.6 –Figure 4.7 – Figure

4.8).

26

Figure 4.5: Step response of dc motor model and transfer function for motor 1

Figure 4.6: Step response of dc motor model and transfer function for motor 2

27

Figure 4.7: Step response of dc motor model and transfer function for motor 3

Figure 4.8: Step response of dc motor model and transfer function for motor 4

After parameter estimation (Table 4.1), dc motor parameters are implemented to the

mathematical model.

 Bm Jp Kp Ra Ta

M1 0,29475 0,20424 0,22149 0,3297 0,0028326

M2 1,0861 0,17899 0,038898 0,26134 0,081072

M3 0,25556 0,15695 0,20891 0,43873 0,0020515

M4 0,3368 0,034265 0,25939 0,018088 1,0961

Table 4.1: Estimated motor simulation parameters

28

With the identification toolbox different transfer functions are obtained. When all

variables considered suitable identified functions (Table 4.2) are chosen.

M1 111𝑠 + 6113

𝑠2 + 383.3𝑠 + 1948

M2 17.27𝑠 + 59.55

𝑠2 + 9.785𝑠 + 19.39

M3 26.04𝑠 + 482.6

𝑠2 + 39.29𝑠 + 157.2

M4 317.1𝑠 + 1287

𝑠2 + 847.9𝑠 + 4116

Table 4.2: Identified transfer function for each motor

Identified transfer functions of each motors are compared to each other. In order to

establish the confidence level the cross correlation tests for each identified motor

transfer function are realized. According to residual level test results shown as follow

figures (Figure 4.9 – Figure 4.10 –Figure 4.11 – Figure 4.12). The all obtained residue

of the transfer functions are located in confidence level.

Figure 4.9: Cross correlation results for motor 1

Figure 4.10: Cross correlation results for motor 2

29

Figure 4.11: Cross correlation results for motor 3

Figure 4.12: Cross correlation results for motor 4

30

31

5. CONTOL OF SYSTEM

There are several algorithms for motor control. For instance PID, LQR and MPC can

be used as a controller. Classical pid control that generates the control input using the

error between desired velocity and instant velocity. To improve performance of

algorithm the position error at the previous control time step when it produces the

current control input. LQR is based on state feedback control and MPC is based on

known plant model and has an algorithm inside which calculates control inputs

according to referance value.

5.1 Linear Quadratic Regulator

Optimal control refers to a class of methods that can be used to synthesize a control

policy which results in best possible behavior with respect to the prescribed criterion

(i.e. control policy which leads to maximization of performance). The main objective

of optimal control is to determine control signals that will cause a process (plant) to

satisfy some physical constraints and at the same time extremize (maximize or

minimize) a chosen performance criterion (performance index (PI) or cost function).

The optimal control problem is to find a control which causes the dynamical system to

reach a target or follow a state variable (or trajectory) and at the same time extremize

a PI which may take several forms. [11]

Linear quadratic regulator (LQR) is one of the optimal control techniques, which takes

into account the states of the dynamical system and control input to make the optimal

control decisions. This is simple as well as robust. After linearization of nonlinear

system equations about the equilibrium position having initial conditions, the linear

state-space equations is obtained as,

X AX Bu

The state feedback control

u KX

leads to

(A BK)XX

32

where, K is derived from minimization of the cost function

0

(X QX u Ru)dtT TJ

where Q is a positive-definite Hermitian or real symmetric matrix and R is a positive-

definite Hermitian or real symmetric matrix. The second term on the righthand side of

equation accounts for the expenditure of the energy of the control signals. The matrices

Q and R determine the relative importance of the error and the expenditure of this

energy. In this problem, we assume that the control vector u(t) is unconstrained.

Therefore, if the unknown elements of the matrix K are determined so as to minimize

the performance index, then u(t)=–Kx(t) is optimal for any initial state x(0). The LQR

gain vector K is given by,

1 TK R B P

where, P is a positive definite symmetric constant matrix obtained from the solution

of matrix algebraic reccatti equation is,

1 0T TA P PA PBR B P Q

As shown below in basic block diagram of LQR controller (Figure 5.1) K feedback

constant determined according to cost function which is related to Q an R constant

matrices.

Figure 5.1: Basic block diagram of LQR controller

The main aim in LQR control design is to minimize the quadratic cost function of J.

And then it turns out values of Q and R, the cost function has a unique minimum that

can be obtained by solving the algebric ricatti equation as showed above. The

33

parameter can be Q and R can be used as design parameters to penalize the state

variables and the control signals. The larger these values are, the more penalized

signals. Basically, choosing a large value for R means trying to stabilize system with

less energy. This usually called expensive control strategy. On the other hand choosing

small value for R means, called cheap control strategy because control input is not

penalized. Similarly large values of Q means trying to stabilize system with least

possible changes in the states and large Q implies less concern about the changes in

states.

But there are some methods to identify Q and R. Q matrix basicaly selected according

to states as mentioned above. The diagonal of Q matrix as below and matrix should

be symetric. q is related to system states and is positioned diagonally in Q matrix.

1

.

.

n

q

Q

q

And R matrix related to input. r represents inputs of system.

1

.

.

n

r

R

r

5.2 Model Predictive Control

Model Predictive Control (MPC) is an optimal control theory based on numerical

optimization. Future control inputs and future responses are predicted according to

identificated or modelled system and optimized at regular intervals with respect to a

cost function. From its origins as a computational technique for improving control

performance in applications within the process and petrochemical industries,

predictive control has become arguably the most widespread advanced control

methodology currently in use in industry. [12] MPC has a sound theoretical basis and

its stability, optimality, and robustness properties are well understood. Despite being

very simple to design and implement, MPC algorithms can control large scale systems

with many control variables, and, most importantly, MPC provides a systematic

method of dealing with constraints on inputs and states. Such constraints are present

34

in all control engineering applications and represent limitations on actuators and plant

states arising from physical, economic, or safety constraints. In MPC these constraints

are accounted for explicitly by solving a constrained optimization problem in real-time

to determine the optimal predicted inputs. Nonlinear plant dynamics can be similarly

incorporated in the prediction model.

5.3 History of Model Predictive Control

Towards the end of the 1970 there was published mant articles over model predictive

control methods related to the implementation of the industry.

Richalet 1978 Model Algorithmic Control algorithm, and Cutler and Ramakt 1980

In the dynamic matrix control algorithm came up with the first principles. In both

algorithms there was used a dynamic process to foresee how to input effects system

output for future output.

In model algorithmic control is used impulse response coefficients, despite that in

dynamic matrix control algorithm is used coefficients obtained from the step response.

In these studies are tried to select predicted control signals to minimize error.

In 1980 Garcia gathered MPC many different algorithms in the petrochemical sector

under the study. Many of these applications were used multivariate systems.

Clarke brought out from her works generalized predictive control algorithm in 1987.

This algorithm is based on generalized minimum variance method. Also Richalet

brought out the predictive functional contol after these articles in the future. [12]

In 1994, work of Morari there are study on model predictive control algorithm in forms

of state space. This study is pionered to use state space theories in this algorithm, in

addition like nonlinear systems in many complex systems this control algorithm is

played major role.

Although there are some studies on robustness theorems on generalized predictive

control algorithm, the absentess of generel stability results still was in there. In 1991

Clarke and Scattolini developed bounded predictive control algorithm to overcome

stability problem. [12]

5.4 Advantages and Disadvantages of Model Predicitive Control

Model predictive control does not comprise of single control method. At first it

contains MAC(model algoritmic control), DMC(dynamic matrix control) and

35

GPC(generalized predictive control) and many control methods. Including first

recommended methods, the main feature of these methods includes intermal model

and control signal is calculated based on sliding horizin principle and predicted system

responses. The difference between MPC control methods is internal models and cost

functions to calculate control signal. [13]

At the process control effect of model predictive control is great. At first like robot

manipulators, cement industry, distialation column many applications have been

developed by being predictive control. These systems successfully control gives a

good idea about the capacity of MPC.

When MPC compared other control methods, the main features are reported by

Camacho and Bordons (1999) as follows;

- It can be easily understandable and easy to adjust by people who have limited

knowladge about control

- It is used for complex systems, dynamicly simple systems, had long response time

systems and unstable systems

- It can be used in MIMO systems easily.

- Its nature is configured to compansate for dead time delays.

- It is useful when future reference values known.

- It produces easily applicable a linear control law.

- It has suitable format to develop and regulations.

However MPC has some disadvantages,

- Although easy to implement control algorithm and low calculation performance, the

acquisition is more complex than conventional PID controller.

- If the process does not change and there is no restriction, control law can be calculated

independent from offline, however in adaptive case all calculations must be done every

sampling time. If technologic developments in last ten years considered and central

process unit capacity increased according to moore law process control can be done.

- Other disadvantage of MPC is strictly dependent to mathematical model. If model is

not precise MPC would not work properly. Some unmodelled system components

cause to wrong MPC parameters. If overcome these problems theories can be applied

on real system.

36

5.5 MPC Algorithms

MPC has different control sub metodogy. Most used methods are DMC, MAC and

GPC. Dynamic matrix control (DMC) uses finite step response and easy to apply. Also

adaption by workers in industries quickly. It does not need any information about

system order. Besides DMC does not fit for open loop unstable systems. It is especially

used in petrochemistry industry. Second method MAC is similar to DMC however it

use finite impulse response model to work. The number of adjustable parameter is less.

Control horizon 𝑁𝑐 is selected equal to prediction horizon 𝑁𝑝. Prediction calculation

starts at the first step. Generalized predictive control (GPC) was proposed by

Clarke(1987). It is based on CARIMA (controlled auto regressive integrated moving

average), however it was organized for state space model. Them most important

advantage of this controller is to control unstable open loop systems. Also it has similar

characterisctics with quadratic method. All basic MPC algorithms do not guarantee

stability. [13]

5.6 Receding Horizon Approach

Only the first element of the optimal predicted input sequence u*(k) is input to the

plant.

(k) u*(k | k)u

The process (Figure 5.2) of computing u*(k) by minimizing the predicted cost and

implementing the first element of u* is then repeated at each sampling instant k = 0,

1,.... For this reason the optimization defining u* is known as an online optimization.

The prediction horizon remains the same length despite the repetition of the

optimization at future time instants, and the approach is therefore known as a receding

horizon strategy. Since the state predictions x and hence the optimal input sequence

u* depend on the current state measurement x(k), this procedure introduces feedback

into the MPC law, thus providing a degree of robustness to modelling errors. [14]

37

Figure 5.2: Discrete MPC receding horizion scheme

5.7 Model Types Used in Model Predictive Control

Prediction models are cornerstones of model predictive control. There are many model

types when the MPC design. Some of them are clarified. Used prediction model should

catch up process dynamics and calculate predicitons. Modeled wrong or deficient

system models causes to unseccessful controlled system. Different strategies of MPC,

interaction between system output and measurable inputs can be obtained by different

models. In measurable inputs contain disturbances, consequently disturbance model

should be considered. It is a great deal of advantage usage of noise model unmeasured

inputs for capturing noise and modelling errors. Different algorithms use different

process models. Because of this reason it should be considered. [12]

5.7.1 Step response model

It is used by DMC and similar algorithms. It is easy to obtain. After applying step input

to the system the parameters obtain from depending on system response (Figure 5.3).

The response obtained from a finite period of time, divided by step according to the

sampling times. There is a widespread use in industry. The biggest advantage is that it

does not require any prior knowledge of desired system model. The disadvantage of

that is suitable for stable system however it can not be used in unstable systems.

Besides, obtainin a large number of parameters of system is the model deficiency. [14]

38

Figure 5.3: MPC step response model scheme

Consider a single input single output system, where u and y deviation variables. The

response of step input over ∆t period 𝐡𝟏, 𝐡𝟐….,𝐡𝐭. ∆t can be selected settling time.

Donate sampled values as 𝐲𝟏, 𝐲𝟐…𝐲𝐧 and 𝐮, 𝐮𝟐…𝐮𝐧 and predicted outputs . And

incremental change in u will be donated as;

1

N

k k i k i

i

y h u

And u will be,

1k k ku u u

5.7.2 Impulse response model

MAC and similar algorithms use this model. Advantages and disadvantages are similar

to step response model, the only difference is to apply dirac function as an input

(Figure 5.4). Input output relation as follow,

39

Figure 5.4: MPC step response model scheme

1

0

y(t)= () (z)u(t)
T

i

i

hu t i H

After using this model prediction model equation is,

1

0

ŷ(t+k/t)= () (z)u(t k/ t)
T

i

i

hu t k i H

5.7.3 Transfer function model

GPC algoritihm uses this model. u(t) represents input, y(t) represents output.

1 1 2

1 2(z) 1 ... na

naA a z a z a z

1 1 2

1 2(z) 1 ... nb

nbB b z b z b z

1 1A(z) y(t) () u(t 1)B z

And prediction equation as follow,

1

1

(z)
ˆ(t k/ t) (t k/ t)

A(z)

B
y u

5.7.4 State space based model predictive control

If the system model linearized and given in discrete time,

(1) Ax(k) Bu(k)

y(k) ()

() ()

y

z

x k

C x k

z k C x k

40

In these equations x is an n-dimentional state vector, u is l-dimentional input vector,

y is a measurable my dimentional output vector and z is a mz-dimentional can be

controllable output vector. y and z vectors in the long run overlap, thus they can be

accepted as same vector. On the other hand they can be measurable. According to

this y=z and for 𝐶𝑦, 𝐶𝑧 matrices mutual m dimentianla matrix will be use. For this

reason m matrix will be used for common matrix.

The use of standard formats, such as state space model given above reason that is

because has a direct connection with the theory of linear systems and control.

k is given as a moment of needs to be done as follows,

- Measure of y(k)

- Calculation of desired system input u(k)

- Applying u(k) to the system

As seen above, there is a delay between each implementation of measuring y(k) and

applying u(k)

5.8 Base Parameters of MPC

In this section the most important parameters of designing MPC and selection

criterias of these parameters will be discussed. These parameters directly effects of

system outputs and effects on robustness and controller performance dramaticaly.

5.8.1 Prediction horizon

It is defined as 𝑵𝒑. When receding horizon calculation is made, it will determine how

long each horizon. Multiplied by the sampling time of the prediction horizon should

be long enough to go through at least steady state of the closed loop system. Typical

values are changes however between 20-30. However it may be longer or shorter

depending on the model structure. MPC’s processing load increase a very large

selections. In case of long selections the sytem will reach the softer and slowly to the

reference value. If the short selection of this values controller will work more

aggressively and may be cause instability in some cases. If is there any time delay in

system, it is not significant to select prediction horizon value as 1, because the output

values will not change over delayed time.

41

5.8.2 Control horizon

When calculating how many controller signal can be change over the period of

sampled time and defined by 𝑁𝑐. As described 𝑁𝑝 and 𝑁𝑝 input signal isconsidered

constant. When the control horizion is increased controller behave more aggressively

and calculation load increases, system react more quickly and more sensitive to the

disturbances, thus its durability decreases. Relatively small selections are

recommended. Generally at the beginning of design, can be selected quarter of

prediction horizon. It recommends the product of the control sampling time and

control horizon, it should include of 60% of steady state response. Control horizon

should be obtained with some experiments on system. At each sampling control

signal changes. However it can be changed by blocking at every sample time and it

can be kept constant at specific ranges.

5.8.3 Weight matrix

One of the most important points to be considered in MPC design is the choice of the

weight matrix. The most common form a weight change of input values punished by

a matrix. Like in LQR controller, in which case the change is desired to be smaller,

than it values is taken largest. If the change is less important than its weight is

selected smaller. By changing values of these matrices, depending on system output

and performance of system these values can be selected.

5.8.4 Reference trajectory

Another advantage of MPC, in case of previously known reference value of system,

the controller operates in a more efficient manner by making calculations

accordingly. Especially in robotic, servo systems and bacth reference change

previously known often. Even when the reference value is constant and the reference

change known before it provides an improvement in controller response.

5.8.5 Cost function

Designed controller to obtain controller law tries to make smaller the cost function.

Different MPC algorithms uses different functions. MPC type controller in the state

space model structure, the output reference deviation, the change of input signal and

42

input signal deviation creates a cost function by multiplying pre determined weight

matrix. The optimization problem is solved by determining the smallest cost fuction

along with prediction horizon. The cost function to be considered for this as follows,

2

1

2 2

1 2 3

N 1

ˆ(N ,N ,N) ()[y(t j | t) w(t j)] ()[(t j t)]
uNN

J J

J j j

2

1

1

1

2 2

. j

0 1

2

. j

1

| w (y (k i 1 | k) r (k i 1)) |

| w u (k i | k) |

| w (u (k i | k) u (k i) |

p

ny
y

i j j

j

N nu
u

mpc i j

i j

nu
u

i j Tj

j

J

43

6. SIMULATION RESULTS AND COMPARISON

6.1 Simulation of Linear Quadratic Regulator

Acoording to LQR control full system block diagram is created with reverse kinematic,

forward kinematic, dc motor models, state feedback constants. And full system block

diagram (Figure 6.1) as shown below;

Figure 6.1: Simulation block diagram of full system with state feedback

44

Dc motor state space matrix is created according to identificated transfer functions and

implemented in motor models.

After defining dc motor model (Figure 6.2) lqr state feedback matrix should be defined

as user needs, and dc motor simulink model as below,

Figure 6.2: LQR control of dc motor

The state feedback matrix K is defined by Q and R matrixes. These two matrixes

defined by user. After defining of Q and R matrix, K feedback matrix should be

calculated by matlab. There is a lqr() function lqr(A,B,Q,R) and with the help of this

function K matrix can be obtain.

R value is selected 1.5 and user defined input signal performed to the system. After

simulation output responses (Figure 6.3) as below,

Figure 6.3: LQR control increased R (1.5) value

45

Increased R value effects target value. As seen from the simulation outputs system has

overshooted in terms of user inputs. Decreasing R value enhances system output

response.

Then different Q matrixes are tested. Large values of Q means trying to stabilize

system with least possible changes in the states and large Q implies less concern about

the changes in states. By taking into these considerations large valued Q simulation

result (Figure 6.4) as below,

Figure 6.4: LQR control increased Q matrix value

As seen from the simulation results Q matrix penalizes system input and as a result

system output (Figure 6.5) does not go to preferred value. Because of this reason Q

and R values should be selected minimun values in terms of cheap cost function.

46

Figure 6.5: LQR control optimum Q and R values

According to simulation results (Figure 6.6) lqr response of each motor are shown as

below. These input and outputs are selected optimum values of lqr.

Figure 6.6: LQR motor inputs and outputs respect to optimum Q and R values

47

After selected optimum Q and R values system response time, overshoot and other

criterias are enhanced. According to these values K state feedback matrixes for each

motor are listed,

 1 26.8 4467.9K

 2 12.1247 43.2373K

 3 14.7702 350.3575K

 4 57.5722 196.5196K

48

6.2 Simulation of Model Predictive Control

MPC controller basically runs on all plant. All system block diagram (Figure 6.7)

consist of mpc controller, motor model, reverse kinematics, forward kinematics and

reference input signal.

Figure 6.7: Simulation block diagram of MPC controlled system

49

Before start to define mpc controller, in simulink mpc controller toolbox (Figure 6.8)

needs to a linerized plant model. At the first approach system was designed and

identified with another identification toolboxes. And then plant model and MPC

controller is implemented in simulink. With the help of this toolbox number of inputs

and outputs defined before run simulation.

Figure 6.8: MPC controller structure in Simulink

After defining three inputs and three outputs system signals which are manipulated

variables and measured outputs were defined. After defining these variables the other

system constraints defined according to system limits and response time etc. In

addition input and output specifications (Figure 6.9) were defined.

50

Figure 6.9: MPC controller tuning interface

Sample time, predicition horizon, control horizon are selected as controller

performance. Prediction horizon determines the number of future samples to be

predicted by plant model. Besides control horizon is used for how many control action

to be calculated in the future. If control horozion increase control calculation increases

too thus control effort increase.

In the constraints section (Figure 6.10), system inputs and outputs limits can be

penelized by user. Also input rate limits (Table 6.1) can be selected as pre-defined

priority constraints.

Factor constant Priority

0.2 Low priority: Large tracking error acceptable

0.5 Below-average priority

1 Average priority – the default.

5 Above average priority

20 High priority: Small tracking error desired

Table 6.1: Weighting factor constant relationship

51

Figure 6.10: MPC weights inputs and outputs

After defining all parameters of mpc controller simulation can be run as user inputs.

Prediciton horizion = a

Control horizon = b

Sample time = c

Weights input = d

All the simulation results are perfomed according to MPC variables. Such as prediction

horizon, control horizon, sample time and weight input. As a result system outputs

graphs as below in terms of velocity of x direction, velocity of y direction and velocity

of z direction respectively.

As seen from simulation results (Figure 6.11) control horizon, prediction horizion,

sample time and weight inputs are selected in the system limits. Response of all 3

direction catches reference value and response time quite low.

52

Figure 6.11: MPC control simulation results a=10, b=2, c=0.01, d=0.1

According to response (Figure 6.12), system sample time was changed to reduce

accuracy of system. As shown response time was rised perceptibly. Other variables are

remained constant.

Figure 6.12: MPC control simulation results a=10, b=2, c=0.1, d=0.1

53

In simulation results (Figure 6.13) control horizon and prediction horizon were

reduced due to see how effects these variables on system behavior. As is seen in

figure responses can catch desired values, however response time was increased and

behavior of system became more unassertive.

Figure 6.13: MPC control simulation results a=6, b=1, c=0.1, d=0.1

In Figure 6.14 control horizon are increased in comparison with Figure 6.13. When

we compare of these two figures it can be seen clearly increasing control horizon

decreases response time and bring out to system behave more aggressive.

Figure 6.14: MPC control simulation results a=6, b=5, c=0.1, d=0.1

54

As one can see from Figure 6.15 input weights are increased. It effects system

behave more unassertive and put down reaction time.

Figure 6.15: MPC control simulation results a=6, b=5, c=0.1, d=1

As one can see from Figure 6.16 input weights are more increased in comparison

with Figure 6.15. It effects system behave more unassertive and can not catch desired

reference value.

Figure 6.16: MPC control simulation results a=6, b=5, c=0.1, d=2

55

Defining all optimum parameters for MPC controller control inputs and outputs

regulate by mpc controller as user input. Controller signals in three direction are

shown (Figure 6.17). if MPC controller knows the path before, it creates a controller

signal. In other words MPC send own regulated signals before waiting system

reference input come.

Figure 6.17: MPC control signal comparing with user input

6.3 Comparison of MPC and LQR

Simulation in different MPC values showed that how can be effected. Also in LQR

different Q and R matrixes are proved these values should be selected precisely.

After taking into consideration for optimum values both LQR and MPC controller,

which are compared. All results are implemented in one figure as below (Figure

6.18). Control horizon is selected as 5, prediction horizon is selected as 2, sample

time is selected as 0.05 and input weight is selected as 1. For the LQR controller, Q

matrix and R matrix are selected at low values. As below MPC controller give best

response then designed LQR controller (Table 6.2).

56

Figure 6.18: LQR and MPC comparison a = 5, b = 2, c=0.05, d =1

 Vx Vy Vz

MPC Control Effort 6.3964e+03 3.2351e+03 711.2136

LQR Control Effort 2.0417e+04 2.0348e+04 117.7671

MPC Error 1.10773 1.14637 1.86373

LQR Error 2.28915 2.65215 6.27938

MPC Response Time 0.2835 0.1725 0.4143

LQR Response Time 0.2835 0.4298 0.4784

Table 6.2: Comparison of control effort, response time, error for MPC and LQR

57

7. CONCLUSION AND RECOMMENDATIONS

In this study mecanum wheed mobile robot designed and for the speed control of

system LQR and MPC are used. These two types of controller performance are

compared. For two of them system limits are applied to take best results. In this

situation LQR system response changes according to Q and R matrix. And for this type

of controller state feedback is needed to observe actual speed from system. Because

LQR based on state feedback controller. The other type of controller which is MPC

needs system input and output. With the help of MPC toolbox system, behaviour can

be adjusted according to user demand. The most important about this are sample time,

weight ratios, control horizon and prediction horizon and they should be select in

system limits. If the system limits well known these variables can be selected at

optimum values. Besides generally MPC response time and overshoot are less then

LQR.

As seen from LQR simulation graphs Q and R values are very sensetive on system

response. Especially system output matrix which is Q, states should be chosen at small

values. Increasing state values in Q matrix heads system towards unstable bands.

Increasing control amplitute R matrix, it provides more free to act of the control signal.

In other words, the larger these values are, the more penalized signals. Basically,

choosing a large value for R means trying to stabilize system with less energy. This

usually called expensive control strategy. On the other hand choosing small value for

R means, called cheap control strategy because control input is not penalized. Similarly

large values of Q means trying to stabilize system with least possible changes in the

states and large Q implies less concern about the changes in states.

As seen from MPC simulation graphs, they show that how these variables effects

system output. For instance decreasing prediction horizon results in more aggressive

control action, because of system tries to reach trajectory point quickly. In addition

increasing control horizon makes the system more aggressive and increases

computational effort. Increasing the values of weights tend to make the MPC controller

more effective by reducing the magnitude of input moves. And typically increasing

sample time results to system consume more energy. For getting best results from

58

simulation input and output values are bounded via help of toolbox. Every selection of

these values should be considered taken into account processor capabilities.

As it seen from table which is in previous chapter shows that the difference between

MPC and LQR performance on whole system. In three reference system, it is clearly

seen control effort of MPC is less than LQR. Beside this response time of MPC is less

than LQR. The main aim is to reduce error in system and in comparison figure

illustrates error in the MPC is less than LQR. These three comparison criterias show

MPC is better than LQR.

Also it is important to consider MPC algorithms in toolboxes. Some sort of mpc

methods in toolboxes such as DMC, MAC, GPC etc. Their effects can be seen by

implementing these algorithms to the mpc solver. DMC uses step response model for

open loop BIBO stable process. It is robust however performance is poor for like

disturbances and multivariable systems. MAC is easy to implement and better for

multivariable systems. It uses impulse response model. It limits it is use for slow

referance trajectory. GPC provides offset free response. It has wide application area

compared wih other approches. It tracks both varying and constant future set points.

GPC is most easy and suitable and have good scope to improve its performance and

increase to use of it.

Model predictive contol is the most widely used controller in industy applications,

besides due to robustness of theoritical bases are used in academic researches. The

popularity comes from the behaviour of the system can be optimized by less variables.

The dominant reseach is actually use of model predictive control, which copes with

multi input multi output systems. As it shown in figures previous chaptes, MPC gave

best controller output in terms of response time and control effort. Model predictive

control requires quite less time than calibrating and implementing other control

strategies. Moreover its accuracy better than others.

59

REFERENCES

[1] Siegwart,F. and Nourbakhsh,I.R. (2004). Introduction to Autonomous Mobile

Robots

[2] Adascalitei,F., Doroftei,I. (2011). Practical Applications for Mobile Robots based

on Mecanum Wheels a Systematic Survey, MECAHITECH’11, vol. 3

[3] Yu,H., Dubowsky,S., Skwersky,A. (2004). Omni-Directional Mobility Using

Active Split Offset Castors, Journal of Mechanical design vol 126 issue 5,

doi:10.1115/1.1767181

[4] Rojas,R. A short history of omnidirectional wheels

[5]Chang,P., Hebert,M. (2000) Omni-directional Structure From Motion,

Conference of Omnidirectional Vision, DOI: 10.1109/OMNVIS.2000.853819

[6] Soni,S., Mistry,T, Hanath,J., (2014). Experimental Analysis of Mecanum wheel

and Omni wheel, International Journal of Innovative Science engineering and

Technology, vol 1 Issue 3

[7] Zaccarian,L., DC motors: dynamic model control techniques

[8]Wakchaure,K.N., Bhaskar,S.V., Thakur,A.G., Modak,G.S., Kinematics modelling

of mecanum Wheeled mobile platform

[9] Muir,P.F. and NeumanCharles P. (1987). Kinematic Modelling for Feedback

Control of an Omnidirectional Wheeled Mobile Robot, CH2413-3/87/0000/1772

[10] Raol,J.R., Girija,G., Singh,J., (2004). Modelling and Parameter Estimation of

Dynamic Systems

[11] Prasad,L.B., Tyagi,B., Gupta,H.O., (2014). Optimal Control of Nonlinear

Inverted Pendulum System Using PID Controller and LQR: Performance Analysis

Without and With Disturbance Input, International Journal of Automation and

Computing, DOI: 10.1007/s11633-014-0818-1

[12] Qin,S.J., Badgwell,T.A., (2002). A survey of industrial model predictive control

technology

[13] Holkar,K.S., Waghmare,L.M., (2010). An Overview of Model Predictive

Control, International Journal of Control and Automation Vol 3 No 4

[14] Murray,M.R., (2010). Optimization-Based Control

60

61

APPENDIX

APPENDIX A : Matlab m file codes

APPENDIX B : Python2x codes

62

APPENDIX A

MATLAB Reverse Function

function [w1,w2,w3,w4] = reverse_kinematic(Rvx,Rvy,Rvw)

Direct=[Rvx;Rvy;Rvw];

%syms W1 W2 W3 W4;

 W1=1; %

 W2=1; %

 W3=1; % define the main diagonal elements of weigted matrix W

 W4=1; %

a=0.30; % half distance left-right side by side (meter)

b=0.225; % half distance between the center of M2&M4 (meter)

R=0.1016; % Radius of mecanum wheel (meter)

J=[-R/4 R/4 R/4 -R/4;R/4 R/4 R/4 R/4;R/(4*(a+b)) -R/(4*(a+b)) R/(4*(a+b)) -

R/(4*(a+b))]; % Jacobian Matrix

Wd=[W1,W2,W3,W4]; % Diagonal elements of weighted matrix W

W=diag(Wd); % Weighted matrix W

J_pseudo=inv(W)*J.'*inv(J*inv(W)*J.');

wa=J_pseudo*Direct;

w1=wa(1);

w2=wa(2);

w3=wa(3);

w4=wa(4);

Matlab LQR state feedback matrix

TF1_num = [0 111 6113];

TF1_den = [1 383.3 1948];

[A1 B1 C1 D1] = tf2ss(TF1_num,TF1_den);

Q1 = C1'*C1;

R1 = 1;

[K1] = lqr(A1,B1,Q1,R1);

TF2_num = [0 17.27 59.55];

TF2_den = [1 9.785 19.39];

[A2 B2 C2 D2] = tf2ss(TF2_num,TF2_den);

Q2 = C2'*C2;

R2 = 1;

[K2] = lqr(A2,B2,Q2,R2);

TF3_num = [0 26.04 482.6];

TF3_den = [1 39.29 157.2];

[A3 B3 C3 D3] = tf2ss(TF3_num,TF3_den);

63

Q3 = C3'*C3;

R3 = 1;

[K3] = lqr(A3,B3,Q3,R3);

TF4_num = [0 317.1 1287];

TF4_den = [1 847.9 4116];

[A4 B4 C4 D4] = tf2ss(TF4_num,TF4_den);

Q4 = C4'*C4;

R4 = 1;

[K4] = lqr(A4,B4,Q4,R4);

Matlab set system parameters values

a=0.30;

b=0.225;

R=0.1016;

A=[25 25 25 25];

w1=A(1);w2=A(2);

w3=A(3);w4=A(4);

Ad=[5 0 0];

Rvw=Ad(3);

Rvx=Ad(1);

Rvy=Ad(2);

64

APPENDIX B

-*- coding: cp1254 -*-

#--------------------PIN TABLE FOR UART--------------------#

UART RX TX CTS RTS DEVICE #

#-- #

UART1 P9_26 P9_24 P9_20 P9_19 /dev/ttyO1 #

UART2 P9_22 P9_21 /dev/ttyO2 #

UART3 P9_42 P8_36 P8_34 /dev/ttyO3 #

UART4 P9_11 P9_13 P8_35 P8_33 /dev/ttyO4 #

UART5 P8_38 P8_37 P8_31 P8_32 /dev/ttyO5 #

#--#

#**#

#---12bits(0~4095) 0-18V Use P9_32 VDD_ADC P9_34 GNDA_ADC--#

#--------------------------ADC-PINS---#

#------AIN0---AIN1---AIN2---AIN3---AIN4---AIN5---AIN6---------------#

#------P9_39--P9_40--P9_37--P9_38--P9_33--P9_36--P9_35---------------#

#---#

#Library functions

import roboclaw

import random

import serial

import struct

import time

import math

import sys

import Adafruit_BBIO.GPIO as GPIO

import Adafruit_BBIO.PWM as PWM

import Adafruit_BBIO.ADC as ADC

import Adafruit_BBIO.UART as UART

addressF = 0x80

addressB = 0x81

UART_1 = "/dev/ttyO1"

UART_2 = "/dev/ttyO2"

_trystimeout = 2

#UART.setup("UART4")

#UART.setup("UART2")

#desired speed, angle, z rotation

#VD = ThetaD = VZTheta = ThetaD45 = 0

#speeds of each motor ttyO1

WheelSpeeds = [0, 0, 0, 0, 0]

65

#bluetooth data container

#responseBt = " "

#Command Enums

def Open(comport, rate):

 global port

 port = serial.Serial(comport, baudrate=rate, timeout=0.01,

interCharTimeout=0.01)

 return

def displayspeed():

 enc1 = ReadEncM1(addressF)

 #enc2 = ReadEncM2(addressF)

 speed1 = ReadSpeedM1(addressF)

 #speed2 = ReadSpeedM2(addressF)

 print "Encoder1:"

 print enc1

 if(enc1[0]==1):

 print enc1[1]

 print format(enc1[2],'02x')

 else:

 print "failed"

 print "Encoder2:"

 if(enc2[0]==1):

 print enc2[1]

 print format(enc2[2],'02x')

 else:

 print "failed "

 print "Speed1:"

 if(speed1[0]):

 print speed1[1]

 else:

 print "failed"

 print "Speed2:"

 if(speed2[0]):

 print speed2[1]

 else:

 print "failed "

 #file.write("Speed1 = ")

 #file.write(speed1[1])

 #file.write("\n")

 #file.write("Speed2 = ")

 #file.write(speed2[1])

66

#mapping function

def normalize(x, in_min, in_max, out_min, out_max):

 if x == 0:

 return num_const.STOPVALUE

 return int(math.floor((x - in_min) * (out_max - out_min) / (in_max - in_min) +

out_min))

#mecanumdrive(VD, ThetaD, VZTheta)

#VD = 0~10 ThetaD = 0~10 VZTheta 0~10

def drive_func(headingR, magnitudeR, headingL, magnitudeL):

 if (0 <= headingL <= 18):

 magnitudeL = magnitudeL

 elif (18 < headingL <= 35):

 magnitudeL = -magnitudeL

 WheelSpeeds[1] = (-math.sin(math.radians(headingR * 10)) +

math.cos(math.radians(headingR * 10))) * magnitudeR - magnitudeL

 WheelSpeeds[2] = (math.sin(math.radians(headingR * 10)) +

math.cos(math.radians(headingR * 10))) * magnitudeR + magnitudeL

 WheelSpeeds[3] = (math.sin(math.radians(headingR * 10)) +

math.cos(math.radians(headingR * 10))) * magnitudeR - magnitudeL

 WheelSpeeds[4] = (-math.sin(math.radians(headingR * 10)) +

math.cos(math.radians(headingR * 10))) * magnitudeR + magnitudeL

 print WheelSpeeds[1]," ", WheelSpeeds[2]," ", WheelSpeeds[3]," ",

int(WheelSpeeds[4])," "," \n "

 for limit in range(1,5):

 if WheelSpeeds[limit] > (magnitudeR + magnitudeL)* 1.0:

 WheelSpeeds[limit] = (magnitudeR + magnitudeL)

 elif WheelSpeeds[limit] < -(magnitudeR + magnitudeL) * 1.0:

 WheelSpeeds[limit] = -(magnitudeR + magnitudeL)

 elif WheelSpeeds[limit] < 0:

 WheelSpeeds[limit] = int(WheelSpeeds[limit] - 0.01)

 elif WheelSpeeds[limit] > 0:

 WheelSpeeds[limit] = int(WheelSpeeds[limit] + 0.01)

 else:

 WheelSpeeds[limit] = int(WheelSpeeds[limit])

 if magnitudeR == 0 or magnitudeL == 0:

 limiter = 10

 else:

 limiter = 20

 WheelSpeeds[1] = normalize(WheelSpeeds[1], -limiter, limiter, 0, 127)

 WheelSpeeds[2] = normalize(WheelSpeeds[2], -limiter, limiter, 0, 127)

 WheelSpeeds[3] = normalize(WheelSpeeds[3], -limiter, limiter, 0, 127)

 WheelSpeeds[4] = normalize(WheelSpeeds[4], -limiter, limiter, 0, 127)

67

 ForwardBackwardM1(addressF, WheelSpeeds[1])

 ForwardBackwardM2(addressF, WheelSpeeds[2])

 ForwardBackwardM1(addressB, WheelSpeeds[3])

 ForwardBackwardM2(addressB, WheelSpeeds[4])

 if int(WheelSpeeds[1]) > 0:

 a1 = "ileri"

 elif int(WheelSpeeds[1]) < 0:

 a1 = "geri"

 elif int(WheelSpeeds[1]) == 0:

 a1 = "---"

 if int(WheelSpeeds[2]) > 0:

 a2 = "ileri"

 elif int(WheelSpeeds[2]) < 0:

 a2 = "geri"

 elif int(WheelSpeeds[2]) == 0:

 a2 = "---"

 if int(WheelSpeeds[3]) > 0:

 a3 = "ileri"

 elif int(WheelSpeeds[3]) < 0:

 a3 = "geri"

 elif int(WheelSpeeds[3]) == 0:

 a3 = "---"

 if int(WheelSpeeds[4]) > 0:

 a4 = "ileri"

 elif int(WheelSpeeds[4]) < 0:

 a4 = "geri"

 elif int(WheelSpeeds[4]) == 0:

 a4 = "---"

 # print "sol ön = ", a2, " sağ ön = ", a1, "\n"

 print WheelSpeeds[2], " ", WheelSpeeds[1], "\n"

 #print "sol arka = ", a4, " sağ arka = ", a3, "\n"

 print WheelSpeeds[4], " ", WheelSpeeds[3], "\n"

 print "--\n"

#UART setups

UART.setup("UART4") #BBB TX -> P9_13, BBB RX -> P9_11

BtJoystick = serial.Serial(port = "/dev/ttyO4", baudrate = 9600)

BtJoystick.close()

BtJoystick.open()

#--

UART.setup("UART1") #BBB TX -> P9_24, BBB RX -> P9_26

Open("/dev/ttyO1", 9600)

while True:

68

 #global ThetaD, VD, VZTheta, ThetaD45

 responseBT = ""

 responseBTList = [0, 0, 0, 0, 0]

 #data format: [radiusL : angleL = rotation : radiusR = VD : angleR = direction]

 #data range : [radiusL = (0~10), angleL = (0~35), radiusR = (0~10), angleR =

(0~35)]

 if BtJoystick. isOpen():

 responseBT = BtJoystick.read(4)

 for character in range(0,4):

 responseBTList[character + 1] = ord(responseBT[character])

 ThetaD = headingR = (35 - responseBTList[4]) % 35

 VD = magnitudeR = responseBTList[3]

 headingL = (35 - responseBTList[2]) % 35

 magnitudeL = responseBTList[1]

 if port.isOpen():

 print "port open"

 drive_func(headingR, magnitudeR, headingL, magnitudeL)

 print displayspeed()

 print "heading L = ", headingL, "magnitude L = ", magnitudeL, "heading R =

", headingR, "magnitude R = ", magnitudeR, "\n"

69

CURRICULUM VITAE

Name Surname : Doğukan Taha TAYFUR

Place and Date of Birth : Çankaya / 1989

E-Mail : dttayfur@hotmail.com

EDUCATION :

High School : Kuleli Military High School, 2007

B.Sc. : Sakarya University, Mechanical Engineering, 2012

PROFESSIONAL EXPERIENCE AND REWARDS:

11.2014 - R&D Engineer Mechatronic, Mercedes-Benz Türk A.Ş., Istanbul

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

 Baykar A.Ö., Tayfur D.D., Kural A. Minimizing heading error of
omnidirectional wheelchair based on mecanum wheels by applying control

algorithm International Conference on Engineering and Natural Science, ISBN:
978-605-83575-1-8, May 24-28 , 2016 Sarajevo, Bosnia and Herzegovina

mailto:dttayfur@hotmail.com

