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DESIGN AND COMPARISON OF CONTROLLER PERFORMANCE ON 

FOUR MECANUM WHEELED MOBILE ROBOT 

SUMMARY 

In this thesis the main aim is to design and compare controller performance on 

omnidirectional mobile robot based on mecanum wheels and it can be use for further 

researches for elemination system errors. On the purpose of to increase orientation 

capability the system is equipped with four mecanum wheels which have twelve rollers 

around it. In the scope of this thesis to control dc motor speeds according to user 

demans and to minimize heading errors in the band of accaptable area. 

Before start to develop controller for the large scale system experimental test rig has 

been equipped with system components which are mecanum wheels, dc motors, 

encoders and controller. 

Also before start design controller all system elements should have mathematical 

models to take best controller results. Such as Dc motor model, system forward and 

backward kinematics, which help to minimize heading errors in real nonlinear 

environment.  

For the developing linear quadratic regulator and model predictive controller transfer 

function of the system is needed. Especially for LQR controller owing to feedback 

constants. The dc motor model is implemented to the simulation enviroment to see 

system output according to user inputs. In order to validate designed model, different 

system scenarios are tested independetly. After validation of system outputs cross 

validation test is conducted to maximize dependability. 

Designed model simulated in Matlab/Simulink environment with real dc motor 

coefficients. To improve controller performance for LQR controller different Q 

matrixes and R constants are tested and simulated. In the end admissible feedback 

constants are chosen. For MPC system inputs and outputs are simulated with modelled 

system. The controller performance is adjusted according to time interval, control 

horizon, weights of inputs and prediction horizon constants.   

Based on simulated model the aim is to take smooth response from system without 

overshoot, minimal oscillation and minimize settling time. Simulated results will be 

compared to real system results in future. 
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ÇOK YÖNLÜ HAREKET EDEBİLEN MOBİL ROBOTTA DENETLEYİCİ 

TASARIMI VE PERFORMANS KIYASLAMASI 

ÖZET 

Bu tez çalışmasında çok yönlü hareket edebilen dört tekerlekli mobil robotun tasarımı 

ve farklı tipteki denetleyicilerin dizayn edilmesi ve bunların sonuçlarının kıyaslanması 

hedeflenmiştir. Denetim algoritması oluşturmaktaki amaç, gerçek sistem üzerinde 

oluşabilecek üretim hataları, motorların stabil olmaması ve diğer dış etkenler 

dolayısıyla meydana gelen hataları kabul edilebilir düzeye indirmektir. Çünkü 

herhangi bir kontrol algoritması kullanmadan sistemin istenilen stabilitede hareket 

etmesi ve farklı yüklerin motorlara binmesi durumunda hızların istenilen düzeyde 

tutulması zor bir durumdur.  

Gerek dıştan gelen etkiler, gerekse içten kaynaklanan birtakım sebeplerden dolayı 

sisteme uygulanacak denetleyiciler seçilmiş olup, bunların sonuçları kıyaslanmıştır. 

Fakat denetleyici tasarlamadan önce sistemin matematik modelinin bilinmesi 

gerekmektedir. Bunun için sistemin ilk önce ileri ve ters kinematik denklemleri matris 

şeklinde çıkarılmıştır. Matematiksel modeli oluştururken sistemin hesaplamaları 

kolaylaştırmak amacıyla bazı kabuller yapılmıştır. Bunlara örnek olarak sistemin rijit 

olduğu varsayılmış, zemin ile tekerler arasında oluşan yuvarlanma direncinin 

tekerlerin kaymadan ilerlemesi varsayılmış, tekerlerin zemin ile sürekli temasta 

olduğu ve diğer sistem bileşenleri modellenirken lineer denklemler kullanılmıştır. 

Model de tekerlerde üretim hatalarının olmadığı göz önüne alınmıştır. Her tekerin açısı 

45° olduğu ve sistem simetrik şekilde dizayn edildiği varsayılmıştır.  

Oluşturulan matematiksel model ile sistemin istenilen doğrultuda gitmesi için herbir 

tekerin birbirinden bağımsız olarak hangi hıza sahip olacağı bu model sayesinde 

hesaplanabilmektedir. İleri kinematik denklemleri sayesinde sistemin kartezyen 

kordinat üzerindeki hızları ve her bir motorun devir sayısı elde edilebilmektedir. 

Oluşturulmuş olan ters kinematik denklemleri sayesinde ise sistemin dışarıdan 

kaynaklanan bozucu etkenlere karşı sistemin istenilen doğrultuda hareket etmesini 

sağlamak için yeniden motor hızları hesaplanmasına imkan vermektedir.  

Matematiksel denklemleri elde edilen sistemin sonuçlarını almak için model 

simulasyon ortamına aktarılmıştır. Bu ortamda sistemin oluşturulan ters ve ileri 

kinematik denklemleri, dc motor modeli, denetleyici ve input output arasındaki 

sistemler arası dönüştürücü denklemler yer almaktadır. Oluşturulan model sayesinde 

simulasyonlar gerçekleştirilmiştir ve alınan sonuçlar neticesinde denetleyici için 

gerekli olan katsayılar belirlenmiştir. Kontrolcü performansını denetlemek amacıyla 

ise alınan bu veriler gerçek sistem üzerinde test edilmek amacıyla kullanılmıştır. 

Gerçek sistem ise dört adet dc motor, dört adet manyetik enkoder, iki adet dc motor 

sürücü kartı ve mikrodenetleyiciden oluşmaktadır. Sistemde kullanılmış olan dc motor 

350 wattlık güce sahip ve bu motorlar 12v luk seri bağlanmış iki adet kuru tip akülerle 

beslenmektedir. Sistemin istenilen tork değerlerine ulaşması için redüktör 

kullanılmıştır. Kullanılan iki adet dc motor sürücü kartı kanal başına 30 amper çıkış 

verebilmektedir ve her kart iki adet motoru sürebilmektedir. Ayrıca kartı kullanmak 

için üretici firma C++ ve python2.x kütüphanelerini de vermektedir. İstenilen datalar 
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bu kartlar üzerinden bilgisayara seri haberleşme ile aktarılabilmektedir. Kullanılan 

çokyönlü tekerler 12 adet dış dış tekere sahip olup bunların yanında tekerin hareketini 

kolaylaştırmak amacıyla da 24 adet küçük yarım tekerleklerde ilave edilmiştir. Amaç 

tekerlerin dönüşü esnasında süreklilik sağlamak.  

Montaj sonrası sistemin matematiksel modeli oluşturulması için gerekli ölçümler 

yapılmıştır. Bunlara örnek olarak dc motor modelinin belirlenmesi ve bu modelde 

kullanılacak olan parametrelerin saptanması gerekmektedir. Bunları belirlemek için 

sisteme giriş verilerek çıkışlar gözlenmiş ve Matlab/Simulink system identification 

toolbox sayesinde sistem belirlenmiş ve parametreler belirlenmiştir. Daha sonra elde 

edilen bu değerler ile sistem tekrardan doğrulanarak değelerin güvenilirliği 

ölçülmüştür. Daha sonra sistemin diğer bileşenlerine ait olan tekerleklerin birbirine 

olan uzaklıkları redüktör oranları, maksimum motor devirleri ve bunun gibi önemli 

diğer parametrelerin ölçümleri yapılarak matematiksel model oluşturulmuştur. Motor 

için elde edilen transfer fonksiyonları ve durum uzay modeli denetleyici tasarımında 

büyük rol oynamaktadır. 

Denetleyici olarak sisteme uygulanabilir denetleyicilerden lineer quadratic regulator 

ve model öngörülü kontrolcü kullanılmıştır. LQR denetleyici için sistemde durum geri 

besleme yapılmaktadır ve bu geri beslemeler için motorların transfer fonksiyonlarına 

ihtiyaç duyulmuştur. Bu tip denetleyicide optimal geri besleme katsayılarını bulmak 

için hali hazırda bulunan yöntemler kullanılmıştır ve ayrıca mükemmel sonuçlar için 

simülasyonlar gerçekleştirilmiştir. Geri besleme katsayıları belirlenirken Matlab’de 

bulunan fonksiyonlar yardımıyla bulunmuştur. Fakat Q matrisi ve R katsayısı 

denetleyiciyi tasarlayan kişi tarafından seçilmektedir. Bu katsayılar performansı 

etkileyen en önemli kriterlerdendir. 

Kullandığı yazılım ve donanım itibariyle MPC ileri düzey bir denetim yöntemi olarak 

sınıflanabilir. İleri denetim tekniği olması denetim sinyallerini oluştururken 

optimizasyon algoritması çalıştırarak ilgilenilen süreç çıkış sinyallerini tasarımcının 

arzu ettiği optimizasyon ölçütüne uygun olarak sağlayan yapıya sahip olmasındandır. 

MPC yönteminden daha önce analog kontrol yöntemleri ve nümerik optimizasyonlar 

kullanılarak kontrol sağlanmıştır. Bugünkü teknolojiye bakarak işlemci teknolojilerini 

göz önüne aldığımızda bu denetleyicinin başarılı olabilmesini mümkün kılmıştır.  

Lineer olmayan sistem modelleri için az sayıda MPC algoritması varlığına karşın, 

lineer sistem modelleri için geliştirilmiş olan hali hazırda çeşitli algoritmalar 

bulunmaktadır. Model öngörülü kontrolcü ideal çalışma için denetlenmek istenen 

sistemin kesin modeline gerek duyar; ancak sistem modelindeki belirsizlikler 

durumunda dahi uygun geri besleme konfigurasyonları kullanılarak MPC algoritması 

başarılı olarak çalıştırılabilir. 

Başlangıçtan itibaren T saniyelik süre boyunca arzu edilen süreç çıkış yörüngesini 

daha önceden kullanıcı tarafından hazırlanabilir. Diğer denetleyici olarak model 

öngörülü kontrol seçilmiştir bu denetleyicide ki amaç büyük sistemlerin sisteme giriş 

verilmeden önce kumanda sinyalinin tespit edilmesi amacıyla kullanılmaktadır. 

Sistemi bir kapalı kutu olarak algılayıp bu sistem ile arka planda çalışan algoritma 

yardımıyla kullanıcı istekleri doğrultusunda sistem davranışı belirlenmiş olur. Sistem 

denetleyicisi adım cevabı veya darbe cevabı modeliyle belirlenebilir. Ayrıca 

Matlab/Simulinkte yer alan toolbox sayesinde denetleyici parametreleri ayarlanabilir. 

Bunlar kontrol ufku, saniyedeki hesaplama sayısı, tahmin edilen adım sayısı, sistem 

cevap süreleri gibi parametrelerdir.  

Bu denetleyiciler belirlenirken amaç motorun farklı senaryolar altında kullanıcı 

tarafından belirlenen doğrultudaki hızını sabit tutmasıdır. Fakat LQR denetleyicide 

geri besleme katsayıları sabit olduğundan belli her senaryo için adaptif olarak 
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çalışamamaktadır. Bunun yanında MPC denetleyicide ise sistemin o anki davranışına 

göre ileride gerçekleşecek olan davranışı tahmin ettiğinden anlık verilerden yeni bir 

kumanda sinyali hesaplanır. Temelde kullandığı kontrol ufku ve tahmin ufku iterasyon 

sayılarından dolayı o andaki sistemin durumunu ölçüp gelecekte olabilecek durum 

hakkında bir kumanda sinyali üretilmektedir. Tahmin ufkunun fazla olması bir kaç 

adım sonra karşılaşabilecek durum hakkında daha stabil bir kestirim 

yapılabilmektedir. Ayrıca kumanda sinyallerinde oluşturulan kısıtlamalar sayesinde 

simulasyonlardan istenilen kumanda çıkışları ve sistem cevapları alınmıştır. 
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1. INTRODUCTION 

Recently, several mobile robots and mobile platforms have been commonly 

developed. And it is expect that they will be used in a sort of applications, such as 

service robots in homes, flat surfaced factories and supermarkets. So forth the 

environments, there are lots of narrowpassages and the robots run across some 

obstacles. The mecanum wheeled mobile platform has the advantages over the 

conventional wheeled mobile robots one in terms of mobility particularly in closely 

spaced environments, for instance factories, offices, hospitals and similar areas. The 

specialized wheels and structure are needed for the mobile robot to have the omni-

directional maneuverability. Four wheels structure is using ‘Mecanum wheel’ are the 

examples of the omni-directional platforms. Especially, the omni-directional mobile 

platform with mecanum wheels are used in the forklift, the wheelchair and so other 

applications. [1] 

Besides, they have some advantages and disadvantages. When they are driven in 

narrow space, their movement is restricted. In those environments, more effective 

driving is required so that omnidirectional driving is needed. The omnidirectional 

driving is said to move any direction. For example ackermann steering mechanism 

should have more space to turn and with one direction to move. In omni-directional 

driving it can move to eight directions and in addition it can rotate clockwise and 

counterclockwise directions. And some applications ıt can be driven any desired angles 

with different control methods.  

There have been some studies to deal with development of mecanum wheeled platform 

designing and methods of controlling it. However, there has been a small number of 

research to deal with applications of these kind of projects. In this thesis, as an 

application of mecanum wheels are introduced. The aim of the project was developing 

controller wheelchair for the disabled who use it in daily life. 

In daily life this kind of mobile robots encounter with external disturbances, 

consequently to overcome like these kind of detrimental variables overall system 

should be identificated with some techniques. To control mecanum wheeled robot used 
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dc motors parameters must be known. Because dealing with motor velocites and torque 

is the main subject. 

1.1 Purpose of Thesis 

In this thesis, introduction section concerning practical applications for mobile robotic 

platform based on conventional wheel is presented. Mobile robot equipped with four 

Mecanum wheels have the omnidirectional property, which means, they have the 

ability to move instantaneously in any direction, from any configuration. Therefore, 

compared to conventional platforms, these vehicles possess multiple advantages in 

terms of their mobility in narrow spaces or crowded environments. They have the 

ability to easily perform certain tasks in congested environments foreseen with static 

obstacles, dynamic obstacles or narrow areas. [2] Usually, such environments are 

found in factory workshops, warehouses, hospitals, etc. Hence the resulting needs to 

create this kind of robotic platforms to satisfy the requirements of various fields, such 

as: industrial, military, naval, medical and last but not least, the educational field (as 

the basis for research). The characteristics of the Mecanum wheel, a short comparison 

between this type of wheel and a conventional wheel, as well as the constructive and 

design solutions are described. 

Conventional wheels are mechanically simple, have high load capacity and high 

tolerance to work surface irregularities. However, due to their non-holonomic nature, 

they are truly omni-directional. Designs have been proposed to achive near omni-

directional mobility using conventional wheels. The most common design are those 

using steering wheels. Vehicles based on this design have at least two active wheels, 

each of which has both driving and steering actuators. They can move in any direction 

from any configurations. However, this type of system is not truly omni-directional. 

Because it needs to stop and re-orient its to desired direction whenever it needs to 

travel in a trajectory with non continnuous curvatures. [3] 

In order to implement control strategies, localisation of system is needed to obtain 

which consist of real position and velocities. And these are based on robot kinematics. 

Also system limits should be known before. If the control strategy is designed without 

considering these limits, system could be fail. 

Control of robots related velocities and torques has established the existence to be most 

common problems. In order to accomplish, it is paid attention to motion control of 
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mecanum wheeled robot. Assumed control contains required limits for developed 

cartesian velocities. This study includes tracking control through weighted matrix.  To 

achieve desired movements and controller are used to ensure bounded velocities. 

1.2 Objectives 

The main aim is to develop appropriate control algorithm to omni directional mobile 

robot. The mecanum wheels are driven by dc motor. For controlling direction also is 

needed to control speeds of each motor. This project also contains to create whole 

mathematical system which are dc motor, forward kinematics and backward 

kinematics. 

Defining mathemetical model of mecanum wheels according to forward kinematics 

and to define weighted jacobian matrix for distibution motor speeds to each motor. To 

analyze and validate total system according to mathematical modeled system. To 

determine best controllers types which are model predictive control and linear 

quadratic control, also maximize control input efficiency. 

To analyze and validate the mecanum wheeled robot in terms of response robustness 

and error. 

1.3 A Brief History of Mecanum Wheels 

Omnidirectional wheels have been used in robotics, in industry, and in logistics for 

many years. The main source of omnidirectional wheels are companies which produce 

them for omnidirectional conveyor systems, for example, for handling packages. 

Omnidirectional wheels are popular for omnidirectional robots, especially in the 

Robocup. An omnidirectional robot can drive along a straight line from point A to 

point B, while rotating along the line in order to arrive with the correct orientation. 

Omnidrectional wheels have also been used for wheelchairs, for service vehicles in 

airports, and many other applications. [4] 

It is not widely known that the first omnidirectional wheel was patented in 1919 by J. 

Grabowiecki in the US. Figure 1.1 shows an image from the patent application. The 

assembly consists of a main wheel and transversal rollers, such as those used by most 

Robocup teams. As early as 1907, inventors were considering the design of vehicles 

capable of moving forward and sideways without steering the wheels. [4] 
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Figure 1.1: Drawing of probably the first omnidirectional wheel, as described in 

Grabowiecki’s US Patent of 1919 

One of the first modern omnidirectional wheels was developed by the Swedish 

inventor Bengt Ilon around 1973. Figure 1.2 shows the design of the Ilon wheel. The 

profile of the wheel is very nearly circular. 

The wheel is omnidirectional but transversal forces produce excessive friction in the 

axes of the small rollers. A clever alternative are “Killough rollers”, which are usually 

built using two truncated spheres. Such rollers were used by the Cornell Robocup team 

in 2000, and were still in use until 2004 in Robocup competitions. Although the rollers 

are named after Killough, the rollers had been actually patented in 1980 by Bradbury. 

 

 

Figure 1.2: Omnidirectional wheel view from side and front 

Much effort has been spent on improving the Swedish or Mecanum wheels, as they 

are sometimes called. The omniwheels can only roll smoothly if the profile of the 
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complete wheel assembly is perfectly round, without gaps. Therefore, some groups 

have used spheres as a basis for the robot. The spheres can be activated with rollers, 

as in a mechanical mouse, or a group of spheres can be moved by chains or transversal 

bars. The spheres provide smooth rolling but the necessary mechanics is rather bulky. 

Conventional wheels can be also used for omnidirectional robots, if the wheels are 

rotated by a second steering motor. [5] 
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2. MODELLING 

This is a top view looking down on the drive platform. Wheels in positions 1, 4 should 

make X-pattern with wheels 2, 3 (Figure 2.1). If not set up like shown, wheels will not 

operate correctly. Directions can be determined according to wheels rotations. Desired 

movements of this system and wheel rotations are listed in Table 2.1. 

 

 

Figure 2.1: Mecanum drive wheels position and enumaration 

 

Direction of movement Wheel actuation 

Forward All wheels forward same speed 

Reverse All wheels reverse same speed 

Right shift Wheels 1,4 forward 2,3 backward 

Left shift Wheels 2,3 forward 1,4 backward 

 
Right forward Wheels 2,3 forward 1,4 stop 

Left forward Wheels 1,4 forward 2,3 stop 

 

 
Right backward Wheels 1,4 backward 2,3 stop 

 
Left backward Wheels 2,3 backward 1,4 stop 

CW Turn Wheels 1,3 forward 2,4 backward 

CCW Turn Wheels 2,4 forward 1,3 backward 

Table 2.1: List of directions according to wheels rotation 
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Using four of mecanum wheels provides omni-directional movement for a vehicle 

without needing a conventional steering system slipping is a common problem in the 

mecanum wheel as it has only one roller with a single point of ground contact at any 

one time. Due to the dynamics of the mecanum wheel, it can create force vectors in 

both the x and y-direction while only being driven in the y-direction. Positioning four 

mecanum wheels, one at each corner of the chassis (two mirrored pairs), allows net 

forces to be formed in the x, y and rotational direction. Mecanum wheels direction 

distrubution according to motor rotations are shown (Figure 2.2). 

 

Figure 2.2: Wheels forces according to system directions 

Before establishing the kinematic analysis of the moving mechanism, in order to 

facilitate modeling, we can make the following assumptions according to practical 

applications: 

- The platform conducts regular exercise on a flat surface with four rounded 

wheels simultaneously functioning; 

- The friction force between the Omni-directional wheels and the floor is large 

enough so there is no slipping wheels; 

The platform is rigid so the case of deformation does not to be taken into consideration. 

[6] 
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2.1 Modeling Dc Motor 

DC motor can be modeled by two sub parts, electrical and mechanical (Figure 2.3). 

Electrical parts consist of armature inductance, armature resistance and magnetic flux 

of stator. A second part is mechanical one. It consists of inertia of motor and load. The 

difference in motor speed is caused by the electromagnetic moment generated by 

current, load and friction of motor. [7] 

 

  

Figure 2.3: Dc motor mathematical model 

The advantage of dc motors are easy to control speed and position and adjustable wide 

range of scale. And it is widely used in industry because of this reasons. 

R : armature resistance 

L : armature inductance 

J : moment of inertia 

𝐾𝑡 : motor torque constant 

𝐾𝑒 : back emf constant 

B : viscous friction 

𝑇𝑚 : motor torque 

( )
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dt
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When taking Laplace transform, the relation between voltage and angular speed 

designed in Simulink (Figure 2.4). 
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Figure 2.4: Dc motor model in simulink 

2.2 Kinematic Analysis of Mecanum Wheels 

Omnidirectional movement with the mecanum wheels is realized by appropriately 

controlling the angular velocity of each wheel separately. Depending on each 

individual wheel rotation direction and velocity, the resulting combination of the 

wheels produces a total movement in the desired direction without changing the 

orientation of the wheels. 

To accomplish it kinematics plays an important role to define the position, orientation, 

velocity and acceleration of robots. When Mecanum wheels are actuated by supplying 

motion through motors, the angled rollers translate a portion of the force in the 

rotational direction of the wheel to a force normal to the wheel direction. Depending 

on each individual wheel direction and velocity, the resulting combination of all these 

forces produce a total force vector in any desired direction thus allowing the platform 

to move freely in the direction of the resulting force vector, without changing of the 

wheels themselves. [8] 

The driving force of each wheel can be decomposed into two force components. One 

component is in the roller direction, and the other is the force in direction of rotation 

Four-wheel structure on local co-ordinates. That subtracts the sub-wheel direction 

force from the driving force. The sub-wheel direction force is exhausted by rolling the 

subwheel. 

The addition of the net forces (Figure 2.5) of the four wheels determines the moving 

direction of the mobile platform. [9]  
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Figure 2.5: Force distrubution of system 
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Meanwhile, 𝑽𝒙, 𝑽𝒚, 𝑾𝒛 represent the x and y elements of the velocity and angular 

velocity of the vehicle, respectively. In addition, 𝑽𝒊𝒙, 𝑽𝒊𝒚 are expressed by using, 

𝑽𝒙, 𝑽𝒚, 𝑾𝒛 above. By comparison with equations and the following equations are 

obtained: 
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Combinnig equations ito below equation, which represents the inverse kinematics 

equation, yields: 

0
.

w
JV V

 

Where 𝑽𝒐(𝑽𝒙, 𝑽𝒚, 𝑾𝒛) is velocity vector in cartesian coordinates; 

𝑽𝒘 = (𝑽𝟏𝒘, 𝑽𝟐𝒘, 𝑽𝟑𝒘, 𝑽𝟒𝒘) is the wheel velocity vector corresponding to angular 

velocity, 
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is the transformation matrix, 

Oppositely, the vehicle velocity can be obtained from the Wheel velocity using pseudo 

inverse matrix as equation, 

* *

0 .V ( .J)wwV J I J  
 

The mobile robot is under velocity control. Given the Cartesian space velocity 

command, the velocity command to each motor is computed using the inverse Jacobian  

1
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w
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V l
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V l

     
         
     
      

     

Where 𝑽𝒙 is system speed in x direction, 𝑽𝒙 is system speed in y direction and W is 

system rotational speed according to center point. 

As a result, in the global reference coordinates (X, Y, Z), the velocity of the mobile 

platform is defined by each element is given follows; 

R represents mecanum wheel radius. 
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3. SYSTEM DESIGN 

In this section, mechanical and electrical design of the proposed system will be 

introduced. In the mechanical design sub-section, the following topics are covered: 

The designed and modelled wheel specifications, dimensional features of the chassis, 

introduction to actuators used in the mechanical system. In the electrical design sub-

section, the following topics are covered: micrcontroller, brushed dc motor, logic level 

shifter and motor drivers. System elements are assembled as below (Figure 3.1). 

 

 

Figure 3.1: Completed view of designed system 
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3.1 Mechanical Features of Mecanum Wheel 

With the help of improving mecanum wheel, it has higher weight capacity and smooth 

motion. And the higher weight capacity is achieved through the 8" Mecanum Support 

Spacer. Using this spacer in place of the 1600 Spacer increases the load capacity from 

about 80lbs/wheel to 500 lbs/wheel(nearly 226kg). This spacer is molded to support 

each individual tab on the aluminum side plates of the mecanum wheel. This reduces 

the risk that the side plates bend and the roller axles will become misaligned. 

By adding the outer rollers to the 8" mecanum wheels (Figure 3.2) we achieve a 

smoother rolling wheel. During the transition from one of the 12 inner rollers to the 

next, the outer roller hits the ground and decreases the amount of up and down motion.  

Specifications (for an individual wheel): 

- Diameter: 203 mm 

- Body Material: Aluminum 

- Load Capacity: 226 kg 

- Coefficient of Friction, Forward/Backwards: .7 

- Coefficient of Friction, Sideways: .6 

- Weight: 1,5 kg 

- Number of Rollers: 12 Inner Rollers, 24 Outer Rollers 

 

 

Figure 3.2: Mecanum wheel with 12 rollers 

 

http://www.andymark.com/product-p/am-2066.htm
http://www.andymark.com/product-p/am-2066.htm
http://www.andymark.com/product-p/am-0652.htm
http://www.andymark.com/product-p/am-2119.htm
http://www.andymark.com/product-p/am-0608.htm
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3.2 Dc Motor Driver 

The selected Dc motor specifications are 350w and 24v. Therefore a high current flow 

capacity dc motor driver was selected. Besides it was considered communication 

interfaces for to communicate with controller card.  Because of this needs dual dc 

motor driver was the possible option. 

The RoboClaw motor controllers (Figure 3.3) from Ion Motion Control can control a 

pair of brushed DC motors. The controller has USB serial, TTL serial, RC, or analog 

inputs for communication. Main pinout are shown as below (Figue 3.4).  Integrated 

dual quadrature decoders make it easy to create a closed-loop speed control system.  

 

 

Figure 3.3: Roboclaw 2x30A Motor driver 

Key features of motor driver (Table 3.1) as it below; 

 

Motor Channels 2 

Operating Voltage 6V ~ 34V 

Continuous output current 30A 

Peak output current 60A 

Communication interfaces USB Serial, TTL, RC, Analog 

Table 3.1: Main features of dual motor driver 
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Figure 3.4: Main pinout of Roboclaw 2x30A 

It has also dual feedback inputs for PID closed-loop control and speed control with 

quadrature encoders, up to 19,6 million encoder pulses per second also position control 

with analog encoders or potentiometers. 

Ion Motion provides a GUI (Figure 3.5) to control each motor respectively. Interface 

of control program over USB serial as shown below; 

 

Figure 3.5: Ion motion motor driver card interface 

It supported by C++ library and Python2x module. With the help of these libraries, 

another controller card can communicate properly.   
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3.3 Mini Computer 

Motor driver needs to be controlled by another controller. For this purpose a board is 

needed.  It can be used any specific board to do it. When we examine our system 

requirements, beaglebone black is the good choice.  The beaglebone black (Figure 

3.6) is credit card sized single board computer which has embedded linux operating 

system in onboard flash.  

 

Figure 3.6: Beaglebone Black Rev C 

Key features of beaglebone black (Table 3.2) as below; 

 

Processor Sitara AM3359AZCZ100 1GHz 

SDRAM Flash 512MB DDR3 

Onboard flash memory 4GB, embedded flash 

TTL level 3.3V 

Internet connection 10/100 Ethernet 

USB Interface 1 USB port 

Power input 5V DC 

Flash expantion port MicroSD port 

Video output Micro HDMI port 

Table 3.2: Main features of mini controller 
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And also it has i/o expansion headers which can be controlled by as if client needs.  

 - Each digital I/O pin has 8 different modes that can be selected, including GPIO, 

totaly 65 possible digital i/o ports and each port can produce interrupts. 

- Up to 8 digital pins can be configured with pulse with modulators to produce to 

control motors or create analog voltage without taking up any extra CPU cycles.  

- For the analog inputs there are 7 analog input with 1.8v level and 12 bit analog to 

digital converter  

- Serial communication is supported by 4 uart ports. Each of them has tx and rx port. 

- There are 2 I2C bus is utilized for reading EEPROMS on cape add-on boards, the 

second I2C bus is available for you to configure to use. 

- For shifting data fast, there are 2 SPI ports. 

3.4 Logic Level Shifter 

TTL levels between motor controller and our computer is slightly different, however 

the difference makes big data loss between communications. Beaglebone black 

communicate at 3.3V ttl level which means 3.3V is true value and less than 3.3V is 

False value for it. It should transfer and receive data inter motor controller. However 

roboclaw communicate with 5V TTL level. To overcome this problem, it was 

necessary to use bi-directional logic level shifter (Figure 3.7). With the help of this 

integrated circuit, motor driver cards and controller card are compatible with each 

other. 

 

Figure 3.7: Bidirectional logic level shifter 
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3.5 Brushed Dc Motor 

A Brush dc motor provides precision control of speed, driven by a direct current. Noted 

for a particularly high ratio of torque to inertia, the brush dc Motor has the potential to 

supply three to four times more torque than it is rated torque. If needed, it can even 

provide up to five times more, without stalling. The brush dc Motor consists of six 

different components: the axle, armature/rotor, commutator, stator, magnets, and 

brushes. The brush dc motor offers stable and continuous current, using rings to power 

a magnetic drive that operates of the motor armature. Perhaps one of the earliest used 

motors, the brush dc motor (Figure 3.8) is commonly used because of the ability to 

vary the speed-torque ratio in almost any way. There proposed system requires 4 

brushed dc motor. The mechanism should be carry own weight and user weight, are 

able to hold resistance torques. The dc motor specifications (Table 3.3) are; 

Operating voltage 24V 

Amper 14A 

RPM 4200 

Watt 350Watt 

Ratio 32:1 

Output shaft diameter 17 mm 

Output shaft speed 135 RPM 

Input shaft speed 4320 RPM 

Table 3.3: Features of Brushed DC motor 

 

 

Figure 3.8: 24v DC motor with gearbox 
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4. SYSTEM IDENTIFICATION  

The design of a control system requires a mathematical model of the dynamics of the 

process often a dynamical model can be difficult to obtain due to the complexity of the 

process, whose dynamics may be even (partially or completely) unknown. Even if we 

have a mathematical model, sometimes this is too complex to base a controller design 

on it (large state dimensions, nonlinearities, etc.) Model reduction is a way to go, but 

requires a (linear) model to start with. System identification is a procedure to build a 

mathematical model of the dynamics of a system from measured data. There are some 

approches to identify system (Figure 4.1) data from measured data. For instance, 

White-box identification is based on estimating parameters of a physical model from 

data, Grey-box identification is based on giving generic structure estimate parameters 

from data, Black-box model determining model structure and estimate parameters 

from data. There are some methods to take datas from system for example impulse 

response and step response can be use. [10] The process of identification shown as 

below, 

 

Figure 4.1: System identification process 

For mecanum wheelchair dc motor constant values should be determined cause there 

is no way to take these values from manufacturer. The linear model is created by 

system designer which is a mathematical approch to physical system.  After taking 

datas from system if we have knowledge about mathematical model system poles and 

zeros can be implemented. Then model identification algorithm can determine exact 

values according to measured data. Then the rest of system linear models are added. 

Most important thing about finding right model of system is measured data, poles and 

zeros. If there is no clue about system mathemcatical model in other words its hard to 
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define it cause of complexity, the approch is estimate and error. Despite our system 

elements is mathematicaly modeled before, model paramters are unknown. 

Simplified model and plant relation (Figure 4.2) as below; 

 

Figure 4.2: Plant and Model relationship 

All datas (Figure 4.3) from system are taken with Beaglebone black rev c and xls 

format used for possible to open in excel and Matlab as it figure. Pwm values, time, 

voltage, encoder and speed are taken from motors for identification.  

 

Figure 4.3: Data log example 
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To get best results from simulations, dc motor transfer function should be determined.  

Therefore Matlab system identification toolbox (Figure 4.4) is used. To increase 

confidence level motor have tested under different scenarios. As an input driven 

voltage, as an output shaft velocity are taken. Different scenarios are tested which are 

full duty cycle, half duty cycle and increasing duty cycle 10% in every 10 seconds. 

This process repeated for each motor.  

 

Figure 4.4: General view of system identification toolbox 

After taking measured datas from system, these values are simulated and system 

parameters are found. Step response of mathematical modelled system and identified 

transfer function are shown as below (Figure 4.5 – Figure 4.6 –Figure 4.7 – Figure 

4.8).  
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Figure 4.5: Step response of dc motor model and transfer function for motor 1 

 

 

Figure 4.6: Step response of dc motor model and transfer function for motor 2 
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Figure 4.7: Step response of dc motor model and transfer function for motor 3 

 

 

Figure 4.8: Step response of dc motor model and transfer function for motor 4 

After parameter estimation (Table 4.1), dc motor parameters are implemented to the 

mathematical model.  

 Bm Jp Kp Ra Ta 

M1 0,29475 0,20424 0,22149 0,3297 0,0028326 

M2 1,0861 0,17899 0,038898 0,26134 0,081072 

M3 0,25556 0,15695 0,20891 0,43873 0,0020515 

M4 0,3368 0,034265 0,25939 0,018088 1,0961 

Table 4.1: Estimated motor simulation parameters 
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With the identification toolbox different transfer functions are obtained. When all 

variables considered suitable identified functions (Table 4.2) are chosen. 

M1 111𝑠 + 6113

𝑠2 + 383.3𝑠 + 1948
 

M2 17.27𝑠 + 59.55

𝑠2 + 9.785𝑠 + 19.39
 

M3 26.04𝑠 + 482.6

𝑠2 + 39.29𝑠 + 157.2
 

M4 317.1𝑠 + 1287

𝑠2 + 847.9𝑠 + 4116
 

Table 4.2: Identified transfer function for each motor 

Identified transfer functions of each motors are compared to each other. In order to 

establish the confidence level the cross correlation tests for each identified motor 

transfer function are realized. According to residual level test results shown as follow 

figures (Figure 4.9 – Figure 4.10 –Figure 4.11 – Figure 4.12). The all obtained residue 

of the transfer functions are located in confidence level. 

 

Figure 4.9: Cross correlation results for motor 1 

 

 

Figure 4.10: Cross correlation results for motor 2 
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Figure 4.11: Cross correlation results for motor 3 

 

 

Figure 4.12: Cross correlation results for motor 4 
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5. CONTOL OF SYSTEM 

There are several algorithms for motor control. For instance PID, LQR and MPC can 

be used as a controller. Classical pid control that generates the control input using the 

error between desired velocity and instant velocity. To improve performance of 

algorithm the position error at the previous control time step when it produces the 

current control input. LQR is based on state feedback control and MPC is based on 

known plant model and has an algorithm inside which calculates control inputs 

according to referance value. 

5.1 Linear Quadratic Regulator 

Optimal control refers to a class of methods that can be used to synthesize a control 

policy which results in best possible behavior with respect to the prescribed criterion 

(i.e. control policy which leads to maximization of performance). The main objective 

of optimal control is to determine control signals that will cause a process (plant) to 

satisfy some physical constraints and at the same time extremize (maximize or 

minimize) a chosen performance criterion (performance index (PI) or cost function). 

The optimal control problem is to find a control which causes the dynamical system to 

reach a target or follow a state variable (or trajectory) and at the same time extremize 

a PI which may take several forms. [11] 

Linear quadratic regulator (LQR) is one of the optimal control techniques, which takes 

into account the states of the dynamical system and control input to make the optimal 

control decisions. This is simple as well as robust. After linearization of nonlinear 

system equations about the equilibrium position having initial conditions, the linear 

state-space equations is obtained as, 

X AX Bu   

The state feedback control  

u KX   

leads to 

(A BK)XX    
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where, K is derived from minimization of the cost function 

0

(X QX u Ru)dtT TJ



 
 

where Q is a positive-definite Hermitian or real symmetric matrix and R is a positive-

definite Hermitian or real symmetric matrix. The second term on the righthand side of 

equation accounts for the expenditure of the energy of the control signals. The matrices 

Q and R determine the relative importance of the error and the expenditure of this 

energy. In this problem, we assume that the control vector u(t) is unconstrained. 

Therefore, if the unknown elements of the matrix K are determined so as to minimize 

the performance index, then u(t)=–Kx(t) is optimal for any initial state x(0). The LQR 

gain vector K is given by, 

1 TK R B P  

where, P is a positive definite symmetric constant matrix obtained from the solution 

of matrix algebraic reccatti equation is, 

1 0T TA P PA PBR B P Q     

As shown below in basic block diagram of LQR controller (Figure 5.1) K feedback 

constant determined according to cost function which is related to Q an R constant 

matrices. 

 

Figure 5.1: Basic block diagram of LQR controller 

The main aim in LQR control design is to minimize the quadratic cost function of J.  

And then it turns out values of Q and R, the cost function has a unique minimum that 

can be obtained by solving the algebric ricatti equation as showed above. The 
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parameter can be Q and R can be used as design parameters to penalize the state 

variables and the control signals. The larger these values are, the more penalized 

signals. Basically, choosing a large value for R means trying to stabilize system with 

less energy. This usually called expensive control strategy. On the other hand choosing 

small value for R means, called cheap control strategy because control input is not  

penalized. Similarly large values of Q means trying to stabilize system with least 

possible changes in the states and large Q implies less concern about the changes in 

states. 

But there are some methods to identify Q and R. Q matrix basicaly selected according 

to states as mentioned above.  The diagonal of Q matrix as below and matrix should 

be symetric.  q is related to system states and is positioned diagonally in Q matrix.   

1

.

.

n

q

Q

q

 
 
 
 
 
   

And R matrix related to input. r represents inputs of system. 
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5.2 Model Predictive Control 

Model Predictive Control (MPC) is an optimal control theory based on numerical 

optimization. Future control inputs and future responses are predicted according to 

identificated or modelled system and optimized at regular intervals with respect to a 

cost function. From its origins as a computational technique for improving control 

performance in applications within the process and petrochemical industries, 

predictive control has become arguably the most widespread advanced control 

methodology currently in use in industry. [12] MPC has a sound theoretical basis and 

its stability, optimality, and robustness properties are well understood. Despite being 

very simple to design and implement, MPC algorithms can control large scale systems 

with many control variables, and, most importantly, MPC provides a systematic 

method of dealing with constraints on inputs and states. Such constraints are present 
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in all control engineering applications and represent limitations on actuators and plant 

states arising from physical, economic, or safety constraints. In MPC these constraints 

are accounted for explicitly by solving a constrained optimization problem in real-time 

to determine the optimal predicted inputs. Nonlinear plant dynamics can be similarly 

incorporated in the prediction model. 

5.3 History of Model Predictive Control 

Towards the end of the 1970 there was published mant articles over model predictive 

control methods related to the implementation of the industry. 

Richalet 1978 Model Algorithmic Control algorithm, and Cutler and Ramakt 1980 

In the dynamic matrix control algorithm came up with the first principles. In both 

algorithms there was used a dynamic process to foresee how to input effects system 

output for future output.  

In model algorithmic control is used impulse response coefficients, despite that in 

dynamic matrix control algorithm is used coefficients obtained from the step response. 

In these studies are tried to select predicted control signals to minimize error. 

In 1980 Garcia gathered MPC many different algorithms in the petrochemical sector 

under the study. Many of these applications were used multivariate systems. 

Clarke brought out from her works generalized predictive control algorithm in 1987. 

This algorithm is based on generalized minimum variance method. Also Richalet 

brought out the predictive functional contol after these articles in the future. [12] 

In 1994, work of Morari there are study on model predictive control algorithm in forms 

of state space. This study is pionered to use state space theories in this algorithm, in 

addition like nonlinear systems in many complex systems this control algorithm is 

played major role. 

Although there are some studies on robustness theorems on generalized predictive 

control algorithm, the absentess of generel stability results still was in there. In 1991 

Clarke and Scattolini developed bounded predictive control algorithm to overcome 

stability problem. [12] 

5.4 Advantages and Disadvantages of Model Predicitive Control 

Model predictive control does not comprise of single control method. At first it 

contains MAC(model algoritmic control), DMC(dynamic matrix control) and 
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GPC(generalized predictive control) and many control methods. Including first 

recommended methods, the main feature of these methods includes intermal model 

and control signal is calculated based on sliding horizin principle and predicted system 

responses. The difference between MPC control methods is internal models and cost 

functions to calculate control signal. [13] 

At the process control effect of model predictive control is great. At first like robot 

manipulators, cement industry, distialation column many applications have been 

developed by being predictive control. These systems successfully control gives a 

good idea about the capacity of MPC. 

When MPC compared other control methods, the main features are reported by 

Camacho and Bordons (1999) as follows; 

- It can be easily understandable and easy to adjust by people who have limited 

knowladge about control 

- It is used for complex systems, dynamicly simple systems, had long response time 

systems and unstable systems 

- It can be used in MIMO systems easily. 

- Its nature is configured to compansate for dead time delays. 

- It is useful when future reference values known. 

- It produces easily applicable a linear control law. 

- It has suitable format to develop and regulations. 

 

However MPC has some disadvantages, 

 

- Although easy to implement control algorithm and low calculation performance, the 

acquisition is more complex than conventional PID controller. 

- If the process does not change and there is no restriction, control law can be calculated 

independent from offline, however in adaptive case all calculations must be done every 

sampling time. If technologic developments in last ten years considered and central 

process unit capacity increased according to moore law process control can be done. 

- Other disadvantage of MPC is strictly dependent to mathematical model. If model is 

not precise MPC would not work properly. Some unmodelled system components 

cause to wrong MPC parameters. If overcome these problems theories can be applied 

on real system.  



36 

5.5 MPC Algorithms 

MPC has different control sub metodogy. Most used methods are DMC, MAC and 

GPC. Dynamic matrix control (DMC) uses finite step response and easy to apply. Also 

adaption by workers in industries quickly. It does not need any information about 

system order. Besides DMC does not fit for open loop unstable systems. It is especially 

used in petrochemistry industry. Second method MAC is similar to DMC however it  

use finite impulse response model to work. The number of adjustable parameter is less. 

Control horizon 𝑁𝑐 is selected equal to prediction horizon 𝑁𝑝. Prediction calculation 

starts at the first step. Generalized predictive control (GPC) was proposed by 

Clarke(1987). It is based on CARIMA (controlled auto regressive integrated moving 

average), however it was organized for state space model. Them most important 

advantage of this controller is to control unstable open loop systems. Also it has similar 

characterisctics with quadratic method. All basic MPC algorithms do not guarantee 

stability. [13] 

5.6 Receding Horizon Approach 

Only the first element of the optimal predicted input sequence u*(k) is input to the 

plant. 

(k) u*(k | k)u   

The process (Figure 5.2) of computing u*(k) by minimizing the predicted cost and 

implementing the first element of u* is then repeated at each sampling instant k = 0, 

1,.... For this reason the optimization defining u* is known as an online optimization. 

The prediction horizon remains the same length despite the repetition of the 

optimization at future time instants, and the approach is therefore known as a receding 

horizon strategy. Since the state predictions x and hence the optimal input sequence 

u* depend on the current state measurement x(k), this procedure introduces feedback 

into the MPC law, thus providing a degree of robustness to modelling errors. [14] 

 



37 

 
Figure 5.2: Discrete MPC receding horizion scheme 

5.7 Model Types Used in Model Predictive Control 

Prediction models are cornerstones of model predictive control. There are many model 

types when the MPC design. Some of them are clarified. Used prediction model should 

catch up process dynamics and calculate predicitons. Modeled wrong or deficient 

system models causes to unseccessful controlled system. Different strategies of MPC, 

interaction between system output and measurable inputs can be obtained by different 

models. In measurable inputs contain disturbances, consequently disturbance model 

should be considered. It is a great deal of advantage usage of noise model unmeasured 

inputs for capturing noise and modelling errors. Different algorithms use different 

process models. Because of this reason it should be considered. [12] 

5.7.1 Step response model 

It is used by DMC and similar algorithms. It is easy to obtain. After applying step input 

to the system the parameters obtain from depending on system response (Figure 5.3). 

The response obtained from a finite period of time, divided by step according to the 

sampling times. There is a widespread use in industry. The biggest advantage is that it 

does not require any prior knowledge of desired system model. The disadvantage of 

that is suitable for stable system however it can not be used in unstable systems. 

Besides, obtainin a large number of parameters of system is the model deficiency. [14] 
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Figure 5.3: MPC step response model scheme 

Consider a single input single output system, where u and y deviation variables. The 

response of step input over ∆t period 𝐡𝟏, 𝐡𝟐….,𝐡𝐭. ∆t can be selected settling time. 

Donate sampled values as 𝐲𝟏, 𝐲𝟐…𝐲𝐧 and 𝐮, 𝐮𝟐…𝐮𝐧 and predicted outputs . And 

incremental change in u will be donated as; 

1

N

k k i k i

i

y h u 




 

And u will be, 

1k k ku u u   
 

5.7.2 Impulse response model 

MAC and similar algorithms use this model. Advantages and disadvantages are similar 

to step response model, the only difference is to apply dirac function as an input 

(Figure 5.4). Input output relation as follow, 
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Figure 5.4: MPC step response model scheme 

1

0
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T

i
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After using this model prediction model equation is, 

1

0

ŷ(t+k/t)= ( ) (z )u(t k/ t)
T

i

i

hu t k i H 



   
 

5.7.3 Transfer function model 

GPC algoritihm uses this model. u(t) represents input, y(t) represents output. 

1 1 2

1 2(z ) 1 ... na

naA a z a z a z       
 

1 1 2

1 2(z ) 1 ... nb

nbB b z b z b z       
 

1 1A(z ) y(t) ( ) u(t 1)B z    

And prediction equation as follow, 

1

1

(z )
ˆ(t k/ t) (t k/ t)

A(z )

B
y u




  

 

5.7.4 State space based model predictive control 

If the system model linearized and given in discrete time, 

( 1) Ax(k) Bu(k)

y(k) ( )

( ) ( )

y

z

x k

C x k

z k C x k
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In these equations x is an n-dimentional state vector, u  is l-dimentional input vector, 

y is a measurable my dimentional output vector and z is a mz-dimentional can be 

controllable output vector. y and z vectors in the long run overlap, thus they can be 

accepted as same vector. On the other hand they can be measurable.  According to 

this y=z  and for 𝐶𝑦, 𝐶𝑧 matrices mutual m dimentianla matrix will be use. For this 

reason m matrix will be used for common matrix.  

The use of standard formats, such as state space model given above reason that is 

because has a direct connection with the theory of linear systems and control. 

k is given as a moment of needs to be done as follows, 

- Measure of y(k) 

- Calculation of  desired system input u(k) 

- Applying u(k) to the system 

As seen above, there is a delay between each implementation of measuring y(k) and 

applying u(k)  

5.8 Base Parameters of MPC 

In this section the most important parameters of designing MPC and selection 

criterias of these parameters will be discussed. These parameters directly effects of 

system outputs and effects on robustness and controller performance dramaticaly. 

5.8.1 Prediction horizon 

It is defined as 𝑵𝒑. When receding horizon calculation is made, it will determine how 

long each horizon. Multiplied by the sampling time of the prediction horizon should 

be long enough to go through at least steady state of the closed loop system. Typical 

values are changes however between 20-30. However it may be longer or shorter 

depending on the model structure. MPC’s processing load increase a very large 

selections. In case of long selections the sytem will reach the softer and slowly to the 

reference value. If the short selection of this values controller will work more 

aggressively  and may be cause instability in some cases. If is there any time delay in 

system, it is not significant to select prediction horizon value as 1, because the output 

values will not change over delayed time. 
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5.8.2 Control horizon 

When calculating how many controller signal can be change over the period of 

sampled time and defined by 𝑁𝑐. As described 𝑁𝑝 and 𝑁𝑝 input signal isconsidered 

constant. When the control horizion is increased controller behave more aggressively 

and calculation load increases, system react more quickly and more sensitive to the 

disturbances, thus its durability decreases. Relatively small selections are 

recommended. Generally at the beginning of design, can be selected quarter of 

prediction horizon. It recommends the product of the control sampling time and 

control horizon, it should include of 60% of steady state response. Control horizon 

should be obtained with some experiments on system. At each sampling control 

signal changes. However it can be changed by blocking at every sample time and it 

can be kept constant at specific ranges. 

5.8.3 Weight matrix  

One of the most important points to be considered in MPC design is the choice of the 

weight matrix. The most common form a weight change of input values punished by 

a matrix. Like in LQR controller, in which case the change is desired to be smaller, 

than it values is taken largest. If the change is less important than its weight is 

selected smaller. By changing values of these matrices, depending on system output 

and performance of system these values can be selected.  

5.8.4 Reference trajectory 

Another advantage of MPC, in case of previously known reference value of system, 

the controller operates in a more efficient manner by making calculations 

accordingly. Especially in robotic, servo systems and bacth reference change 

previously known often. Even when the reference value is constant and the reference 

change known before it provides an improvement in controller response. 

5.8.5 Cost function 

Designed controller to obtain controller law tries to make smaller the cost function. 

Different MPC algorithms uses different functions. MPC type controller in the state 

space model structure, the output reference deviation, the change of input signal and 
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input signal deviation creates a cost function by multiplying pre determined weight 

matrix. The optimization problem is solved by determining the smallest cost fuction 

along with prediction horizon. The cost function to be considered for this as follows, 
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6. SIMULATION RESULTS AND COMPARISON 

6.1 Simulation of Linear Quadratic Regulator 

Acoording to LQR control full system block diagram is created with reverse kinematic, 

forward kinematic, dc motor models, state feedback constants.  And full system block 

diagram (Figure 6.1) as shown below; 

 

Figure 6.1: Simulation block diagram of full system with state feedback 

 



44 

Dc motor state space matrix is created according to identificated transfer functions and 

implemented in motor models. 

After defining dc motor model (Figure 6.2) lqr state feedback matrix should be defined 

as user needs, and dc motor simulink model as below, 

 

Figure 6.2: LQR control of dc motor 

The state feedback matrix K is defined by Q and R matrixes. These two matrixes 

defined by user. After defining of Q and R matrix, K feedback matrix should be 

calculated by matlab. There is a lqr() function lqr(A,B,Q,R) and with the help of this 

function K matrix can be obtain.  

R value is selected 1.5 and user defined input signal performed to the system. After 

simulation output responses (Figure 6.3) as below,  

 

Figure 6.3: LQR control increased R (1.5) value 
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Increased R value effects target value. As seen from the simulation outputs system has 

overshooted in terms of user inputs. Decreasing R value enhances system output 

response.  

Then different Q matrixes are tested. Large values of Q means trying to stabilize 

system with least possible changes in the states and large Q implies less concern about 

the changes in states. By taking into these considerations large valued Q simulation 

result (Figure 6.4)  as below,  

 

Figure 6.4: LQR control increased Q matrix value 

As seen from the simulation results Q matrix penalizes system input and as a result 

system output (Figure 6.5) does not go to preferred value. Because of this reason Q 

and R values should be selected minimun values in terms of cheap cost function.  
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Figure 6.5: LQR control optimum Q and R values 

According to simulation results (Figure 6.6) lqr response of each motor are shown as 

below. These input and outputs are selected optimum values of lqr. 

 

Figure 6.6: LQR motor inputs and outputs respect to optimum Q and R values 
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After selected optimum Q and R values system response time, overshoot and other 

criterias are enhanced. According to these values K state feedback matrixes for each 

motor are listed, 

 1 26.8 4467.9K 
 

 2 12.1247 43.2373K 
 

 3 14.7702 350.3575K 
 

 4 57.5722 196.5196K 
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6.2 Simulation of Model Predictive Control  

MPC controller basically runs on all plant. All system block diagram (Figure 6.7) 

consist of mpc controller, motor model, reverse kinematics, forward kinematics and 

reference input signal. 

 

 

Figure 6.7: Simulation block diagram of MPC controlled system 
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Before start to define mpc controller, in simulink mpc controller toolbox (Figure 6.8)  

needs to a linerized plant model. At the first approach system was designed and 

identified with another identification toolboxes. And then plant model and MPC 

controller is implemented in simulink. With the help of this toolbox number of inputs 

and outputs defined before run simulation.   

 

Figure 6.8: MPC controller structure in Simulink 

After defining three inputs and three outputs system signals which are manipulated 

variables and measured outputs were defined. After defining these variables the other 

system constraints defined according to system limits and response time etc. In 

addition input and output specifications (Figure 6.9) were defined.  
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Figure 6.9: MPC controller tuning interface 

Sample time, predicition horizon, control horizon are selected as controller 

performance. Prediction horizon determines the number of future samples to be 

predicted by plant model. Besides control horizon is used for how many control action 

to be calculated in the future. If control horozion increase control calculation increases 

too thus control effort increase.   

In the constraints section (Figure 6.10), system inputs and outputs limits can be 

penelized by user. Also input rate limits (Table 6.1) can be selected as pre-defined 

priority constraints. 

Factor constant Priority 

0.2 Low priority: Large tracking error acceptable 

0.5 Below-average priority 

1 Average priority – the default. 

5 Above average priority 

20 High priority: Small tracking error desired 

Table 6.1: Weighting factor constant relationship 
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Figure 6.10: MPC weights inputs and outputs 

After defining all parameters of mpc controller simulation can be run as user inputs.  

Prediciton horizion = a 

Control horizon = b 

Sample time = c 

Weights input = d 

All the simulation results are perfomed according to MPC variables. Such as prediction 

horizon, control horizon, sample time and weight input. As a result system outputs 

graphs as below in terms of velocity of x direction, velocity of y direction and velocity 

of z direction respectively. 

As seen from simulation results (Figure 6.11) control horizon, prediction horizion, 

sample time and weight inputs are selected in the system limits. Response of all 3 

direction catches reference value and response time quite low.  
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Figure 6.11: MPC control simulation results a=10, b=2, c=0.01, d=0.1 

According to response (Figure 6.12), system sample time was changed to reduce 

accuracy of system. As shown response time was rised perceptibly. Other variables are 

remained constant.  

 

Figure 6.12: MPC control simulation results a=10, b=2, c=0.1, d=0.1 
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In simulation results (Figure 6.13) control horizon and prediction horizon were 

reduced due to see how effects these variables on system behavior. As is seen in 

figure responses can catch desired values, however response time was increased and 

behavior of system became more unassertive.  

 

Figure 6.13: MPC control simulation results a=6, b=1, c=0.1, d=0.1 

In Figure 6.14 control horizon are increased in comparison with Figure 6.13. When 

we compare of these two figures it can be seen clearly increasing control horizon 

decreases response time and bring out to system behave more aggressive. 

 

Figure 6.14: MPC control simulation results a=6, b=5, c=0.1, d=0.1 
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As one can see from Figure 6.15 input weights are increased. It effects system 

behave more unassertive and put down reaction time.  

 

Figure 6.15: MPC control simulation results a=6, b=5, c=0.1, d=1 

As one can see from Figure 6.16 input weights are more increased in comparison 

with Figure 6.15. It effects system behave more unassertive and can not catch desired 

reference value.  

 

Figure 6.16: MPC control simulation results a=6, b=5, c=0.1, d=2 
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Defining all optimum parameters for MPC controller control inputs and outputs 

regulate by mpc controller as user input. Controller signals in three direction are 

shown (Figure 6.17). if MPC controller knows the path before, it creates a controller 

signal. In other words MPC send own regulated signals before waiting system 

reference input come. 

Figure 6.17: MPC control signal comparing with user input 

6.3 Comparison of MPC and LQR 

Simulation in different MPC values showed that how can be effected. Also in LQR 

different Q and R matrixes are proved these values should be selected precisely. 

After taking into consideration for optimum values both LQR and MPC controller, 

which are compared. All results are implemented in one figure as below (Figure 

6.18). Control horizon is selected as 5, prediction horizon is selected as 2, sample 

time is selected as 0.05 and input weight is selected as 1. For the LQR controller, Q 

matrix and R matrix are selected at low values. As below MPC controller give best 

response then designed LQR controller (Table 6.2).   
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Figure 6.18: LQR and MPC comparison a = 5, b = 2, c=0.05, d =1 

 

 Vx Vy Vz 

MPC Control Effort 6.3964e+03 3.2351e+03 711.2136 

LQR Control Effort 2.0417e+04 2.0348e+04 117.7671 

MPC Error  1.10773 1.14637 1.86373 

LQR Error 2.28915 2.65215 6.27938 

MPC Response Time 0.2835 0.1725 0.4143 

LQR Response Time 0.2835 0.4298 0.4784 

Table 6.2: Comparison of control effort, response time, error for MPC and LQR 
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7. CONCLUSION AND RECOMMENDATIONS  

In this study mecanum wheed mobile robot designed and for the speed control of 

system LQR and MPC are used. These two types of controller performance are 

compared. For two of them system limits are applied to take best results. In this 

situation LQR system response changes according to Q and R matrix. And for this type 

of controller state feedback is needed to observe actual speed from system. Because 

LQR based on state feedback controller. The other type of controller which is MPC 

needs system input and output.  With the help of MPC toolbox system, behaviour can 

be adjusted according to user demand. The most important about this are sample time, 

weight ratios, control horizon and prediction horizon and they should be select in 

system limits. If the system limits well known these variables can be selected at 

optimum values. Besides generally MPC response time and overshoot are less then 

LQR.  

As seen from LQR simulation graphs Q and R values are very sensetive on system 

response. Especially system output matrix which is Q,  states should be chosen at small 

values. Increasing state values in Q matrix heads system towards unstable bands. 

Increasing control amplitute R matrix, it provides more free to act of the control signal. 

In other words, the larger these values are, the more penalized signals. Basically, 

choosing a large value for R means trying to stabilize system with less energy. This 

usually called expensive control strategy. On the other hand choosing small value for 

R means, called cheap control strategy because control input is not penalized. Similarly 

large values of Q means trying to stabilize system with least possible changes in the 

states and large Q implies less concern about the changes in states. 

As seen from MPC simulation graphs, they show that how these variables effects 

system output. For instance decreasing prediction horizon results in more aggressive 

control action, because of system tries to reach trajectory point quickly. In addition 

increasing control horizon makes the system more aggressive and increases 

computational effort. Increasing the values of weights tend to make the MPC controller 

more effective by reducing the magnitude of input moves. And typically increasing 

sample time results to system consume more energy. For getting best results from 
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simulation input and output values are bounded via help of toolbox. Every selection of 

these values should be considered taken into account processor capabilities.  

As it seen from table which is in previous chapter shows that the difference between 

MPC and LQR performance on whole system. In three reference system, it is clearly 

seen control effort of MPC is less than LQR. Beside this response time of MPC is less 

than LQR. The main aim is to reduce error in system and in comparison figure 

illustrates error in the MPC is less than LQR. These three comparison criterias show 

MPC is better than LQR.   

Also it is important to consider MPC algorithms in toolboxes. Some sort of mpc 

methods in toolboxes such as DMC, MAC, GPC etc. Their effects can be seen by 

implementing these algorithms to the mpc solver. DMC uses step response model for 

open loop BIBO stable process. It is robust however performance is poor for like 

disturbances and multivariable systems. MAC is easy to implement and better for 

multivariable systems. It uses impulse response model. It limits it is use for slow 

referance trajectory. GPC provides offset free response. It has wide application area 

compared wih other approches. It tracks both varying and constant future set points. 

GPC is most easy and suitable and have good scope to improve its performance and 

increase to use of it.  

Model predictive contol is the most widely used controller in industy applications, 

besides due to robustness of theoritical bases are used in academic researches. The 

popularity comes from the behaviour of the system can be optimized by less variables.  

The dominant reseach is actually use of model predictive control, which copes with 

multi input multi output systems. As it shown in figures previous chaptes, MPC gave 

best controller output in terms of response time and control effort. Model predictive 

control requires quite less time than calibrating and implementing other control 

strategies. Moreover its accuracy better than others. 
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APPENDIX 

APPENDIX A : Matlab m file codes 

APPENDIX B : Python2x codes 
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APPENDIX A 

 

MATLAB Reverse Function 

 

function [w1,w2,w3,w4] = reverse_kinematic(Rvx,Rvy,Rvw) 

Direct=[Rvx;Rvy;Rvw]; 

%syms W1 W2 W3 W4; 

  

 W1=1;       % 

 W2=1;       % 

 W3=1;       % define the main diagonal elements of weigted matrix W 

 W4=1;       % 

  

a=0.30;        % half distance left-right side by side (meter) 

b=0.225;      % half distance between the center of M2&M4 (meter) 

R=0.1016;   % Radius of mecanum wheel (meter) 

  

J=[-R/4 R/4 R/4 -R/4;R/4 R/4 R/4 R/4;R/(4*(a+b)) -R/(4*(a+b)) R/(4*(a+b)) -

R/(4*(a+b))]; % Jacobian Matrix 

  

Wd=[W1,W2,W3,W4];  % Diagonal elements of weighted matrix W 

W=diag(Wd);                 % Weighted matrix W 

  

J_pseudo=inv(W)*J.'*inv(J*inv(W)*J.'); 

wa=J_pseudo*Direct; 

  

w1=wa(1); 

w2=wa(2); 

w3=wa(3); 

w4=wa(4); 

 

Matlab LQR state feedback matrix 

 

TF1_num = [0 111 6113]; 

TF1_den = [1 383.3 1948]; 

[A1 B1 C1 D1] = tf2ss(TF1_num,TF1_den); 

Q1 = C1'*C1; 

R1 = 1; 

[K1] = lqr(A1,B1,Q1,R1); 

 

TF2_num = [0 17.27 59.55]; 

TF2_den = [1 9.785 19.39]; 

[A2 B2 C2 D2] = tf2ss(TF2_num,TF2_den); 

Q2 = C2'*C2; 

R2 = 1; 

[K2] = lqr(A2,B2,Q2,R2); 

 

TF3_num = [0 26.04 482.6]; 

TF3_den = [1 39.29 157.2]; 

[A3 B3 C3 D3] = tf2ss(TF3_num,TF3_den); 
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Q3 = C3'*C3; 

R3 = 1; 

[K3] = lqr(A3,B3,Q3,R3); 

 

TF4_num = [0 317.1 1287]; 

TF4_den = [1 847.9 4116]; 

[A4 B4 C4 D4] = tf2ss(TF4_num,TF4_den); 

Q4 = C4'*C4; 

R4 = 1; 

[K4] = lqr(A4,B4,Q4,R4); 

 

Matlab set system parameters values 

 

a=0.30; 

b=0.225; 

R=0.1016; 

A=[25 25 25 25]; 

w1=A(1);w2=A(2); 

w3=A(3);w4=A(4); 

 

Ad=[5 0 0]; 

Rvw=Ad(3); 

Rvx=Ad(1); 

Rvy=Ad(2); 
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APPENDIX B 

 

# -*- coding: cp1254 -*- 

#--------------------PIN TABLE FOR UART--------------------# 

# UART      RX       TX       CTS      RTS       DEVICE         # 

#----------------------------------------------------------                 #  

# UART1    P9_26    P9_24    P9_20    P9_19    /dev/ttyO1  # 

# UART2    P9_22    P9_21                                 /dev/ttyO2 # 

# UART3             P9_42    P8_36    P8_34          /dev/ttyO3 #   

# UART4    P9_11    P9_13    P8_35    P8_33    /dev/ttyO4  # 

# UART5    P8_38    P8_37    P8_31    P8_32    /dev/ttyO5  # 

#----------------------------------------------------------# 

#**********************************************************# 

#---12bits(0~4095) 0-18V Use P9_32 VDD_ADC P9_34 GNDA_ADC--# 

#--------------------------ADC-PINS-----------------------------------------------# 

#------AIN0---AIN1---AIN2---AIN3---AIN4---AIN5---AIN6---------------#  

#------P9_39--P9_40--P9_37--P9_38--P9_33--P9_36--P9_35---------------# 

#---------------------------------------------------------------------------------------# 

 

#Library functions 

import roboclaw 

import random 

import serial 

import struct 

import time 

import math 

import sys 

 

import Adafruit_BBIO.GPIO as GPIO 

import Adafruit_BBIO.PWM as PWM 

import Adafruit_BBIO.ADC as ADC 

import Adafruit_BBIO.UART as UART 

 

addressF = 0x80 

addressB = 0x81 

 

UART_1 = "/dev/ttyO1" 

UART_2 = "/dev/ttyO2" 

 

_trystimeout = 2 

 

#UART.setup("UART4") 

#UART.setup("UART2") 

 

#desired speed, angle, z rotation 

#VD = ThetaD = VZTheta = ThetaD45 = 0 

 

#speeds of each motor ttyO1 

WheelSpeeds = [0, 0, 0, 0, 0] 
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#bluetooth data container 

#responseBt = "    " 

 

#Command Enums 

 

def Open(comport, rate): 

 global port 

 port = serial.Serial(comport, baudrate=rate, timeout=0.01, 

interCharTimeout=0.01) 

 return 

 

def displayspeed(): 

 enc1 = ReadEncM1(addressF) 

 #enc2 = ReadEncM2(addressF) 

 speed1 = ReadSpeedM1(addressF) 

 #speed2 = ReadSpeedM2(addressF) 

 

 print "Encoder1:" 

 print enc1 

 if(enc1[0]==1): 

  print enc1[1] 

  print format(enc1[2],'02x') 

 else: 

  print "failed" 

 print "Encoder2:" 

 if(enc2[0]==1): 

  print enc2[1] 

  print format(enc2[2],'02x') 

 else: 

  print "failed " 

   

 print "Speed1:" 

  

 if(speed1[0]): 

  print speed1[1] 

 else: 

  print "failed" 

 print "Speed2:" 

  

 if(speed2[0]): 

  print speed2[1] 

 else: 

  print "failed " 

   

 #file.write("Speed1 = ") 

 #file.write(speed1[1]) 

 #file.write("\n") 

        #file.write("Speed2 = ") 

 #file.write(speed2[1]) 
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#mapping function 

 

def normalize(x, in_min, in_max, out_min, out_max): 

    if x == 0: 

        return num_const.STOPVALUE 

    return int(math.floor((x - in_min) * (out_max - out_min) / (in_max - in_min) + 

out_min)) 

 

 

#mecanumdrive(VD, ThetaD, VZTheta) 

#VD = 0~10 ThetaD = 0~10 VZTheta 0~10 

 

def drive_func(headingR, magnitudeR, headingL, magnitudeL): 

 if (0 <= headingL <= 18): 

            magnitudeL = magnitudeL 

        elif (18 < headingL <= 35): 

     magnitudeL = -magnitudeL 

 

        WheelSpeeds[1] = (-math.sin(math.radians(headingR * 10)) + 

math.cos(math.radians(headingR * 10))) * magnitudeR - magnitudeL 

 WheelSpeeds[2] = (math.sin(math.radians(headingR * 10)) + 

math.cos(math.radians(headingR * 10))) * magnitudeR + magnitudeL 

        WheelSpeeds[3] = (math.sin(math.radians(headingR * 10)) + 

math.cos(math.radians(headingR * 10))) * magnitudeR - magnitudeL 

        WheelSpeeds[4] = (-math.sin(math.radians(headingR * 10)) + 

math.cos(math.radians(headingR * 10))) * magnitudeR + magnitudeL 

 print WheelSpeeds[1],"   ", WheelSpeeds[2],"   ", WheelSpeeds[3],"   ", 

int(WheelSpeeds[4]),"    ","  \n " 

        for limit in range(1,5): 

     if WheelSpeeds[limit] > (magnitudeR + magnitudeL)* 1.0: 

         WheelSpeeds[limit] = (magnitudeR + magnitudeL) 

     elif WheelSpeeds[limit] < -(magnitudeR + magnitudeL) * 1.0: 

         WheelSpeeds[limit] = -(magnitudeR + magnitudeL) 

     elif WheelSpeeds[limit] < 0: 

  WheelSpeeds[limit] = int(WheelSpeeds[limit] - 0.01) 

     elif WheelSpeeds[limit] > 0: 

  WheelSpeeds[limit] = int(WheelSpeeds[limit] + 0.01) 

     else: 

  WheelSpeeds[limit] = int(WheelSpeeds[limit]) 

 

 if magnitudeR == 0 or magnitudeL == 0: 

     limiter = 10 

 else: 

     limiter = 20 

 WheelSpeeds[1] = normalize(WheelSpeeds[1], -limiter, limiter, 0, 127) 

        WheelSpeeds[2] = normalize(WheelSpeeds[2], -limiter, limiter, 0, 127) 

        WheelSpeeds[3] = normalize(WheelSpeeds[3], -limiter, limiter, 0, 127) 

        WheelSpeeds[4] = normalize(WheelSpeeds[4], -limiter, limiter, 0, 127) 
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        ForwardBackwardM1(addressF, WheelSpeeds[1]) 

        ForwardBackwardM2(addressF, WheelSpeeds[2]) 

        ForwardBackwardM1(addressB, WheelSpeeds[3]) 

        ForwardBackwardM2(addressB, WheelSpeeds[4]) 

 

 

        if int(WheelSpeeds[1]) > 0: 

            a1 = "ileri" 

        elif int(WheelSpeeds[1]) < 0: 

            a1 = "geri" 

        elif int(WheelSpeeds[1]) == 0: 

     a1 = "---" 

        if int(WheelSpeeds[2]) > 0: 

            a2 = "ileri" 

        elif int(WheelSpeeds[2]) < 0: 

            a2 = "geri" 

        elif int(WheelSpeeds[2]) == 0: 

     a2 = "---" 

 if int(WheelSpeeds[3]) > 0: 

            a3 = "ileri" 

        elif int(WheelSpeeds[3]) < 0: 

            a3 = "geri" 

        elif int(WheelSpeeds[3]) == 0: 

     a3 = "---" 

 if int(WheelSpeeds[4]) > 0: 

            a4 = "ileri" 

        elif int(WheelSpeeds[4]) < 0: 

            a4 = "geri" 

        elif int(WheelSpeeds[4]) == 0: 

     a4 = "---" 

 

      # print "sol ön = ", a2, "   sağ ön = ", a1, "\n" 

        print WheelSpeeds[2], "     ", WheelSpeeds[1], "\n" 

       #print "sol arka = ", a4, "   sağ arka = ", a3, "\n" 

        print WheelSpeeds[4], "     ", WheelSpeeds[3], "\n" 

 

        print "------------------------------------------------------------------------------\n" 

         

 

#UART setups 

UART.setup("UART4") #BBB TX -> P9_13,  BBB RX -> P9_11 

BtJoystick = serial.Serial(port = "/dev/ttyO4", baudrate = 9600) 

BtJoystick.close() 

BtJoystick.open() 

#-------------------------------------------------------------- 

UART.setup("UART1") #BBB TX -> P9_24,  BBB RX -> P9_26 

Open("/dev/ttyO1", 9600) 

 

         

while True: 
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        #global ThetaD, VD, VZTheta, ThetaD45 

        responseBT = "" 

        responseBTList = [0, 0, 0, 0, 0] 

 

        #data format: [radiusL : angleL = rotation : radiusR = VD : angleR = direction] 

        #data range : [radiusL = (0~10), angleL = (0~35), radiusR = (0~10), angleR = 

(0~35)] 

        if BtJoystick. isOpen(): 

                responseBT = BtJoystick.read(4) 

                for character in range(0,4): 

                        responseBTList[character + 1] =  ord(responseBT[character]) 

 

        ThetaD = headingR = (35 - responseBTList[4]) % 35 

        VD = magnitudeR = responseBTList[3] 

        headingL = (35 - responseBTList[2]) % 35 

        magnitudeL = responseBTList[1] 

 

         

        if port.isOpen(): 

            print "port open" 

            drive_func(headingR, magnitudeR, headingL, magnitudeL) 

            print displayspeed() 

            print "heading L = ", headingL, "magnitude L = ", magnitudeL, "heading R = 

", headingR, "magnitude R = ", magnitudeR, "\n"  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

CURRICULUM VITAE 

Name Surname : Doğukan Taha TAYFUR   

Place and Date of Birth : Çankaya / 1989  

E-Mail : dttayfur@hotmail.com 

EDUCATION :   

High School    : Kuleli Military High School, 2007 

B.Sc.               : Sakarya University, Mechanical Engineering, 2012 

PROFESSIONAL EXPERIENCE AND REWARDS:  

11.2014 -            R&D Engineer Mechatronic, Mercedes-Benz Türk A.Ş., Istanbul 

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS: 

 Baykar A.Ö., Tayfur D.D., Kural A. Minimizing heading error of 
omnidirectional wheelchair based on mecanum wheels by applying control 

algorithm International Conference on Engineering and Natural Science, ISBN: 
978-605-83575-1-8, May 24-28 , 2016 Sarajevo, Bosnia and Herzegovina 

 

mailto:dttayfur@hotmail.com

