ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

INVERSE DYNAMICS CONTROL OF A
HUMANOID ROBOT ARM

M.Sc. THESIS

Oguzhan CEBE

Department of Mechatronics Engineering

Mechatronics Engineering Programme

JANUARY 2017






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

INVERSE DYNAMICS CONTROL OF A
HUMANOID ROBOT ARM

M.Sc. THESIS

Oguzhan CEBE
518151019

Department of Mechatronics Engineering

Mechatronics Engineering Programme

Thesis Advisor: Prof. Dr. Seniz ERTUGRUL

JANUARY 2017






ISTANBUL TEKNIK UNIiVERSITESI * FEN BILIMLERI ENSTITUSU

INSANSI BiR ROBOT KOLUNUN
TERS DINAMIK KONTROLU

YUKSEK LiSANS TEZi

Oguzhan CEBE
518151019

Mekatronik Miihendisligi Anabilim Dah

Mekatronik Miihendisligi Program

Tez Damismani: Prof. Dr. Seniz ERTUGRUL

OCAK 2017






Oguzhan CEBE, a M.Sc. student of ITU Graduate School of Science
Engineering and Technology student 1D 518151019, successfully defended the
thesis entitled “INVERSE DYNAMICS CONTROL OF A HUMANOID
ROBOT ARM?”, which he prepared after fulfilling the requirements specified in
the associated legislations, before the jury whose signatures are below.

Thesis Advisor :  Prof. Dr. Seniz ERTUGRUL ...,
Istanbul Technical University

Jury Members : Dog. Dr. Zeki Yagiz BAYRAKTAROGLU ...........................
Istanbul Technical University

Yard. Doc. Dr. Janset DASDEMIR ..o,
Yildiz Technical University

Date of Submission : 31 November 2016
Date of Defense ;2 Januarv 2017



Vi



To my family,

vii



viii



FOREWORD

I thank to my advisor Seniz Ertugrul for her support throughout my thesis. I am grateful
to Omer Faruk Argin, Cihat Bora Yigit, Gékce Burak Taglioglu and Omiir Bag for
their guidance and enduring my endless questions. Finally, I thank to my family for
always being there for me.

January 2017 Oguzhan Cebe
Mechanical Engineer






TABLE OF CONTENTS

Page

FOREWORD ...ttt bbbttt bbbt IX
TABLE OF CONTENTS ..ottt e Xi
ABBREVIATIONS ... .ottt nne s Xiii
LIST OF TABLES ...ttt XV
LIST OF FIGURES ......oooiiee e XVii
SUMMARY .ottt ettt e et et e st e st e s teesaeseest e testentesrearearean XiX
OZET ...t bttt bttt ns XXi
1. INTRODUCTION. ...ttt sttt st 1
1.1 PUIPOSE OF TNESIS....ccuiiiiiiiieieieiee s 1

1.2 LIterature REVIEW ......cccviiiiiieieiiesie st 2

1.3 ITECH Humanoid Robot Manipulator ..............cccccevviieiieiecce e 2
1.3.1  Mechanical Properties .........cccoeriiiniiiiiiieeierese s 3

1.3.2  SOftware Properties .........cccvevveiieiieie e 4

2. MODELLING OF ROBOT ...ooiiiiiiieiisie ittt 5
2.1  Geometric Model 0f RODOL.........cccoiiiiieece e 5
2.1.1 Forward geometric model of robot.............cccoeviiiiiiii, 5

2.1.2  Position and orientation of manipulator .............cccccooevieiiiiciienen, 9

2.2 Kinematic Model 0f RODOL.........cccoiiiiiiieece e 11
2.2.1  Forward kinematic model of robot...........cccceveveiiiiiiiice 11

2.2.2  Inverse kinematic model of robot..........cccceveieieiiiiiiic 14

2.3 Dynamic Model 0f RODOL.........ccooiiiiiiiiiic e 16
2.3.1  Euler-Lagrange dynamiCS.........ccocueiiuieiieiiieeiie e sie e esee e 16

2.3.2  Newton-Euler dynamicCs.........cccccvveiiiiiii i 16

2.4 Modelling of ITECH Manipulator............ccooviiiiiieienene e 18
2.4.1  Geometric and kinematic model...........ccccooveiiiiiiinii, 18

2.4.2  DYNamiC MOUEl .......ccoeiiiiiiie e 20

3. ROS-ROBOT OPERATING SYSTEM....c.cooiiiieieiceece e, 21
3.1 General Structure 0f ROS ..o 21
311 ROS NOUES. ...ttt 21

Xi



TS0 = (o T o o] [ USSR 21

3.1.3  ROS IMESSAQES ...eviviiiiiiiiiiiiiie ettt ettt 22

314 ROS SEIVICES ..veeviiiiieiieeiesiee sttt tee st e sttt sne et esre e e 22

3.2 GAZEDO . 22
3.2.1  URDF universal robot description format.............cccccevvevveieinenenn, 22

3.2.2  SDF simulation description format.............ccccevereneieneninniesiciennn 22

3.3 Itech Arm Gazebo-R0oS INtErface ........ccocvveiiiiiniiieie e, 23
3.3.1  Itech Arm desCription .......c.ccvevieiiiiiee e 23

3.3.2  1tech Arm CONrOl......cooviiiiiiee e 24

3.3.3  1teCh Arm gazebho.........ccceiveiieiieiiece e 24

3.3.4  Itech Arm COMMANG .....ccviviiieieieiesie e 25

4., CONTROLLER DESIGN .....cooiiiiiii ettt 27
4.1  Trajectory GENEIatiON .........cccccveiieiiiiieie et 27
4.1.1  Interpolation FUNCHIONS.........ccccoviiiiiicc e 27

4.1.2  Task space trajectory generation ...........c.ccoceevveveerenenenenesesieeieennns 28

4.2 MOION CONIOL.....ceiiiiiiiiiiiiceceee e 29
4.2.1  Static-Model based CONtrol............ccooeviiiiiiininieese e 29

4.2.2  Inverse dynamics CONIOL........cccooiiiiiiiiiiieiee e 30

4.2.3  Computation of task SPaCe errors .........ccccevvveveieeieeie s, 31

4.2.4  Computation of Jacobian Derivative term.........c.cccccocevvievviieinenenn, 32

5. SIMULATION RESULTS ...t 35
5.1 Performance Criteria of Controller in Simulations..............ccccoevevinieneen. 35

5.2 Simulations without Payload ReSUILS.............ccccceevveiiiiiiciiiece e, 36
5.2.1  DISCUSSION....ccueiitieiteeriesteesieaseesreesteestesseesseeeesseesseesseanessseesseeseesseensenns 44

5.3  Simulations with Unknown Payload Results............cccccoeeevviiiciiciieennenn, 44
5.3.1  DISCUSSION.....ciuiiiiiiitiiiestieieesieie ettt sbe e sre e eneas 50

5.4  Simulation for Pick and Place Task Results ..........ccccoovvieivinviinineie 50
541 DISCUSSION.....cciiiiiiiiiisiesieeieeieie ettt st sbesbesreeneeneeneas 55

B.  CONCLUSION. ...ttt ettt 57
REFERENGES ... ..ottt 59
APPENDICES ..ottt sttt 61
CURRICULUM VITAE ...ttt 67

Xii



ABBREVIATIONS

A: Transformation matrix

R: Rotation matrix

p: Translation vector

¢: Orientation vector

X: Pose vector

J: Jacobian matrix

Jp: Translational part of Jacobian matrix

Jo: Rotational part of Jacobian matrix

p: Linear velocity

o: Angular velocity

p: Linear acceleration

@: Angular acceleration

B(q): Mass matrix

C(q, q): Coriolis and Centrifugal terms

g(q): Gravitational terms

r(t): Trajectory timing function

D: Trajectory linear distance

a: Resolved acceleration

y: Control input of task-space inverse dynamics controller
T: Orientation velocity to angular velocity transformation matrix

Jg: Jacobian derivative term

Xiii



Xiv



LIST OF TABLES

Table 1.1:
Table 1.2:
Table 2.1:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:

Page
Mechanical Properties of ITECH Humanoid Manipulator........................ 3
Actuation properties of ITECH Humanoid Manipulator.............c.c.c......... 4
Denavit-Hartenberg Parameters of ITECH Manipulator ......................... 19
Errors of ITECH Arm, 250 Hz controller frequency.........ccccevveveiiennn. 40
Errors of ITECH manipulator,100 Hz controller frequency.................... 42
Errors of ITECH manipulator, 50 Hz controller frequency..................... 43

Errors of ITECH Arm, 250 Hz controller frequency, 2 kg payload ........ 49
Errors of ITECH Arm, 100 Hz controller frequency, 2 kg payload ........ 49
Errors of ITECH Arm, 50 Hz controller frequency, 2 and 1 kg payload 49
Errors of ITECH Arm, 250 Hz controller frequency, pick and place...... 55

XV



XVi



LIST OF FIGURES

Page
Figure 1.1: ITECH Humanoid Robot Manipulator..............ccccooereiiiinininicce 3
Figure 2.1: Denavit-Hartenberg kinematic parameters............ccccoeevvevesiieneesesiiennnn 7
Figure 2.2: ZXZ Euler Angles Representation .............ccooveeeveiereneneneneseseeeeeens 9
Figure 2.3: Link i of @ Manipulator............cccooveiieii e 12
Figure 2.4: Force balance representation on LinK i .........ccooviiiiiiniiiiiiiiceen, 17
Figure 2.5: Link coordinate systems of ITECH Manipulator ..............cccccoevevvenenne. 19
Figure 3.1: Gazebo ROS INTEIrTACE ........cooveiiiiieieie s 24
Figure 3.2: Itech Arm in Gazebo simulation environment ............c.ccccoveveiieieennene. 25
Figure 4.1: Inverse dynamics control in task SPace ..........cccceovveviniienininiceees 31
Figure 5.1: End effector X-z POSITION .........cccecveiierieiie e 36
Figure 5.2: End effector cartesian POSITION ..........ccoceriririirieiieiesese s 36
Figure 5.3: End effector orientation............ccccceiveiiiiiieseece e 37
Figure 5.4: End effector POSITION EITOF ........ccooiiiiiiiiiiiieeeeee s 37
Figure 5.5: End effector position absolUte error ..........c.ceeveveevvevecieiee e 38
Figure 5.6: End effector orientation error............ccoviiiiriiieieieese s 38
Figure 5.7: End effector cartesian VElOCItIES..........ccccveveeviiiiir e 39
Figure 5.8: Torques of the robot joints 1,2 and 3..........ccocevviiiiiinineeees 39
Figure 5.9: Torques of the robot jJoints 5,6,7 .........cccovevveie i 40
Figure 5.10: End effector absolute poSItion errors...........ccuveveieieneieneseseeeeees 42
Figure 5.11: End effector absolute poSition errors...........ccccevevvevecieieese e 43
Figure 5.12: End effector position in x-y, 2 kg Payload...........cccccoooiininiiinicnnn, 44
Figure 5.13: End effector position, 2 kg Payload ............cccccevveveiicieesece e 45
Figure 5.14: End effector orientation, 2 kg Payload.............ccccooeveniiniiiiiicen, 45
Figure 5.15: End effector position error, 2 kg Payload.............c.cccevvvvveieiiicieennee 46
Figure 5.16: End effector absolute position error, 2 kg Payload ..............cccceovennee, 46
Figure 5.17: End effector orientation error, 2 kg Payload ...........c.cccccevveveiieieenenne. 47
Figure 5.18: End effector cartesian velocities, 2 kg Payload..............ccccoovvviinnnn, 47
Figure 5.19: Torques of robot joints 1,2 and 3, 2 kg Payload..............c.ccceevvervrennnne. 48
Figure 5.20: Torques of robot joints 4,5 and 6, 2 kg Payload..............c.ccocevivvinnnnnn, 48
Figure 5.21: Screenshot of pick and place in Gazebo...........cccooevvviiiiciecic e 50
Figure 5.22: End effector position in x-y-z, pick and place.............cccccooevvvninininnn, 51
Figure 5.23: End effector position, pick and place ..........ccccveveiiieiie i 51
Figure 5.24: End effector orientation, pick and place..........cccccooveiieiiiiiiiiiie e, 52
Figure 5.25: End effector position error, pick and place ..........cccocoooveiiniiiicnen, 52
Figure 5.26: End effector absolute cartesian error, pick and place.............cccccvenenn 53
Figure 5.27: End effector orientation error, pick and place.............ccocoovvvniiinnnnn, 53
Figure 5.28: End effector cartesian velocities, pick and place...........ccccocvevvviieennnnnn 54
Figure 5.29: Torques of robot joints 1,2 and 3, pick and place .............ccceevrvvnnnn. 54
Figure 5.30: Torques of robot joints 4,5 and 6, pick and place ...........cccccceevviiiennnnn 55

Xvii



Xviii



INVERSE DYNAMICS CONTROL OF A HUMANOID ROBOT ARM
SUMMARY

Nowadays, humanoid robot technology is studied extensively around the world. These
humanoid robots can reach the places that wheeled robots cannot and can perform
complicated tasks with their two arm manipulators.

Experimental studies are being conducted for humanoid robots. Interacting with
environment, cooperation with humans and executing human-like motions for various
tasks are the key objectives of these studies.

Control of the manipulators of humanoid robots require a dynamic model based control
for fast movement cases. As the manipulator is supposed to move in a cluttered
environment, task space control inverse dynamics control is a suitable control policy
for this scenario, where the motion of the end-effector can be predicted during the
execution of the desired trajectory.

The humanoid robots consist of a high number of actuators and sensors. To control the
robot, sensor processing, motion planning and actuator control need to be done
simultaneously. Thus, the software of these robots consist of multi-processes and
scheduling to handle this problem.

ROS (Robot Operating System) is an open-source operating system that has software
libraries and tools for such robotic applications. It offers both simulator and hardware
interface, alongside state-of-art algorithms. A software that runs on ROS consists of
multiple processes called ‘nodes’. Each node handles a different task, runs at a
specified frequency and communicate with each other. This architecture eases the
programming and enables use of open-source libraries in separate nodes in a plug-and-

play way.

Gazebo is an open-source dynamic simulation environment that enables the simulation
of many type of robots such as full body humanoids with various sensors and
environment interaction. Gazebo has interface with several platforms, including ROS
and it offers several dynamic engines and number of transmissions, but not all of them
are supported by ROS at the moment.

ITECH Arm is a six degrees of freedom humanoid robot arm built in Mechanical
Engineering Automatic Control Laboratory of Istanbul Technical University. The
purpose of this thesis is creating a generic kinematics and dynamics library for the
Automatic Control Laboratory, writing the software packages using this library for the
ROS integration of the robot arm and finally implementing task space inverse
dynamics control of ITECH Arm in Gazebo simulation environment.

XiX



This thesis consists of six chapters. In the first chapter, purpose of the thesis, literature
review and mechanical-software properties of ITECH Arm manipulator will be
mentioned.
In second chapter, kinematic and dynamic modelling of a robot manipulator is
presented. The geometric, kinematic and dynamic models of ITECH Arm manipulator
are derived.

In chapter three, Robot Operating System is introduced. The software architecture and
capabilities of ROS are mentioned. Integration steps of ITECH Arm to ROS
environment and interfacing ROS and Gazebo simulation environment are described.

In fourth chapter, trajectory generation for robot manipulators is mentioned. Several
robot control methods are discussed. Implementation of task space trajectory tracking
with inverse dynamics control algorithm on ITECH Arm is described.

In chapter five, simulation results of circular trajectory for with and without payload
cases using various gain sets and controller frequencies are presented. Also, as an
example task, a pick and place scenario results are appended. The simulation results
are discussed.

In sixth and the last chapter, all the work done in the thesis is summarized and
suggestions for future works are presented.

XX



INSANSI ROBOT KOLUNUN TERS DINAMIK iLE KONTROLU
OZET

Giliniimiizde insans1 robot teknolojisi diinyada yaygin olarak c¢alisilmaktadir. Bu
insansi robotlar tekerlekli robotlarin ulasamayacagi yerlere ulasabilmekte ve iki kollar
ile karmasik gorevleri yerine getirebilmektedir. Bu 6zellikleri, onlar1 arama kurtarma
ve insanlarla birlikte ¢aligma gibi senaryolarda vazgecilmez kilar.

Insans1 robotlar ile ilgili kapsamli deneysel ¢aligmalar yapilmaktadir. Cevre ile
etkilesime girmek, insanlarla is birligi ve insans1 hareketler yapmak, bu calismalarin
ana hedeflerindendir.

Uzuv kontrolii, robota hizli harekete imkan saglamak i¢in dinamik model tabanli bir
kontrol gerektirmektedir. Kol, engeller iceren bir g¢evrede calisacagi igin gorev
uzayinda ters dinamik kontrol, bu senaryo i¢in uygun goriilmiistir. Ters dinamik
kontroliinde, kontrol sinyali olarak robotun karar verilmis ivmesi kullanilir. Bu ivmme,
ters dinamik modeline beslenerek eklemler i¢in gereken kuvvetler bulunur. Gérev
uzayinda yoriinge takibinde hatalar, yine kartezyen koordinat sisteminde tanimlanir.
Bu sayede eyleyicideki toplam hata, eklem uzayindaki kontrole gore daha diisiik olur.
Ayrica bu yontemde ug eyleyicinin yoriinge boyunca hareketi tahmin edilebilmektedir,
bdylece engeller iceren ¢evrede hareket planlamasi kolaylasir. Gorev uzayinda yapilan
bu kontrolde ters kinematik hesaplanmasi i¢in sdzde ters jakobiyen kullanilmistir.

Insans1 robotlar bir ¢ok eyleyici ve sensdrden olusur. Robotu kontrol etmek igin ayni
anda sensor bilgilerini degerlendirmek, hareketi planlamak ve eyleyicileri denetlemek
gerekmektedir. Bu ylizden bu robotlarin yazilimlarinda ¢oklu islemler ve
zamanlayicilar kullanilir.

ROS (Robot Isletim Sistemi), bahsedilen uygulamalarda kullanilabilecek kiitiiphane
ve araglart barindiran bir agik kaynakli isletim sistemidir. Simulasyon ve donanim
arayiiziiniin yaninda gelismis algoritmalar sunar. ROS {izerinde kosan bir yazilim, nod
ad1 verilen bir ¢ok islemden olusur. Her bir nod, belirli frekanslarda farkli gorevleri
yerine getirir ve diger nodlarla iletisime gecer. Bu yap1 programlamay1 kolaylastirir ve
acik kaynak kiitiiphaneleri nod olarak eklenmesini saglayarak sisteme hizli kuruylan
modiiler bir yap1 kazandirir. ROS, simdiden bir ¢ok endiistriyel ve enstitii robotunu
desteklemekte ve artik robotikte bir standart olarak goriilmektedir. Yaziliminda C++
ve Python kullanilabilmekte ve bu iki dilde yazilan kod pargalari, ayn1 anda birbiriyle
haberleserek kosabilmektedir.

Gazebo, dort pervaneli helikopter, manipiilator, siirii robotigi ve tam-viicut insansi
robotlar gibi bir ¢cok robotu, ¢esitli sensorler ve cevresel etkilesimle birlikte simiile
edebilen bir agik kaynakli dinamik simiilasyon ortamidir. Gazebo, ROS da dahil olmak
lizere cesitli platformlarla arayiize sahiptir. I¢inde ¢ok sayida eklenebilir obje
barindirir ve SDF formatinda hazirlanan biitiin objeler eklenebilir. Gerekli eklenti

XXi



programlar1 kullanilarak, ROS’un destekledigi URDF formatin1 SDF’ye c¢evirerek
calistirabilir. Hentliz ROS ortaminda desteklenmese de birden fazla dinamik motoru ve
aktarim elemani sunar.

ITECH Kolu, Istanbul Teknik Universitesi Makina Miihendisligi Otomatik Kontrol
Laboratuari’nda iiretilmis alti serbestlik dereceli bir insansi robot koludur. Robot,
Maxon firmasina ait fir¢asiz dogru akim motorlarla tahrik edilmekte ve aktarim
elemani olarak harmonik disliler kullanilmaktadir. Bu tezin amaci, Otomatik Kontrol
laboratuar1 i¢in kapsamli bir kinematik ve dinamik kiitiiphanesi yaratmak, bu
kiitliphanenin ROS ile kullanilabilmesi icin gerekli yazilim paketlerini yasmak ve
sonunda ITECH kolunun gérev uzayinda ters dinamik kontroliinii Gazebo simulasyon
ortaminda uygulamaktir.

Bu tez alt1 boliimden olusmaktadir. Ik boliimde tezin amaci, literatiir taramasi ve
ITECH Robot Kolu’nun kosacag: isletim sistemi, motor giic ve limitleri, aktarim
elemanlar1 gibi mekanik-yazilimsal 6zelliklerinden bahsedilmistir.

Ikinci béliimde bir robot kolun geometrik, kinematik ve dinamik modellenmesi
anlatilmistir. Segilen mevcut kinematik ve dinamik ¢oziimlerin, alternatiflerine gore
yapilan islem sayist bakimindan distiinliiklerinden bahsedilmistir. ITECH Robot
Kolu’nun geometrik, kinematik ve dinamik modeli tiiretilmistir.

Ucgiincii boliimde Robot Isletim Sistemi tanitilmistir. ROS’un yazilim mimarisinden
ve imkanlarindan bahsedilmistir. ROS’un ve Gazebo’nun neden tercih edildigi ve
ilerideki calismalarda, bu calismada hazirlanan yazilimlarin ger¢ek robotta nasil
kullanilabilecegi anlatilmigtur. ITECH Kolu’nun ROS ortamina entegrasyonu ve ROS
ile Gazebo dinamik simulasyon ortaminin arayiiziiniin olusturulma basamaklari tarif
edilmistir.

Dérdiincii boliimde robot kollarinda yoriinge olusturulmasindan ve bu yoriingeye ait
zamanlama fonksiyonlarindan bahsedilmistir. Robot kollarinin kontrol metodlari
tartisilmistir. Merkezi olmayan ve merkezi kontrol algoritmalarina deginilmistir.
Gorev uzayinda yoriinge takibi ve ITECH Kolu’'nda ters dinamik kontrol
algoritmasinin uygulanmasi anlatilmistir.

Besinci bolimde noktadan noktaya ve g¢ember yoriingeye ait yikli ve yiiksiiz
durumlarda, cesitli kazang ve kontrolcii frekanslarinda simiilasyon sonuglar
verilmistir. Kontrolciinlin performansini test etmek amaciyla bu simulasyonlar 1m/s
hizinda yapilmistir. Yiiklii durumda robot yiikten habersiz oldugu ve bu ek kiitle
modele dahil edilmedigi i¢in sisteme bir bozucu olarak etki etmistir. Ayrica drnek bir
gorev olarak al-yerlestir senaryosu sonuclari eklenmistir. Simiilasyon sonuglari
irdelenmistir.

Altinct ve son bdliimde tez boyunca yapilan ¢alismalar zetlenmistir. Ileride dinamik
algoritmalarin gelistirilmesi i¢in simulasyon ortami se¢cimi ve gercek robot iizerinde
yapilacak c¢alismalarda kullanilabilecek haberlesme teknolojileri igin tavsiyelerde
bulunulmustur.

Ekler boliimiinde robotun geometrik ve kiitle 6zelliklerinin yani sira, bu tez icin
yazilan nesne tabanli Python kiitliphanesinin siniflar1 ve bu siniflara ait fonksiyonlarin

xXxii



kullanimi verilmistir. Bu kiitiiphane, biitiin tek zincir seri robot kollarina uygun oldugu
icin ITECH Kolu’nda yapilacak serbestlik derecesi, eksen degisikligi gibi mekanik
degisimler, birka¢ satir kod ile bu tezdeki kodu kullanarak yeni robot koluna
uygulanabilir. Ayrica, tezde sozde ters jakobiyen yontemi ile ters kinematik
kullanildig1 i¢in, serbestlik derecesi altidan farkli olan robot kollar1 da bu kiitiiphaneyle
yaratilacak kodla kontrol edilebilir. insan kolu gibi serbestlik derecesi altidan biiyiik
robotlar i¢in fazlalik ¢6ziiniirliigiiniin eklenmesi gerekmektedir.

XXiii



XXiV



1. INTRODUCTION

Robotics is a multidisciplinary field of study based on electronic, control, mechanical
and computer engineering and it requires a good understanding of physics,

mathematics and control theory to study on problems of robotics.

Robots exist in many forms, such as unmanned vehicles, manipulators, humanoid
robots. In this thesis, the arm of a humanoid robot is studied, which is a six degrees of

freedom serial manipulator with non-spherical wrist.

Human arm is actually consists of seven degrees of freedom revolute joint with
spherical wrist, but many humanoid robots consist of six or less revolute joints which
are capable of executing many daily tasks, with the sacrifice of redundancy in task
space. The main concerns in humanoid robot arms is being capable of human-like

motions, while ensuring the safety required for working with humans.

Controlling a six degrees of serial manipulator generally requires model based
approaches, where a mathematical representation of robot kinematics and dynamics
are derived. The control algorithm is based on this kinematic and dynamic terms and
defined task.

1.1 Purpose of Thesis

Purpose of this thesis is generating a control algorithm for ITECH Manipulator. A side
task is making this algorithm generic by making it capable of controlling any n degrees

of freedom serial manipulators.

Execution of human-like tasks or assisting humans require working in clustered
environments, thus, it is needed to define the motion in task space to predict the robot
hand motion during whole trajectory. Considering the model of the robot, a proper



control algorithm has to be selected and applied to robot manipulator by taking hand

motion and robot structure into consideration.

1.2 Literature Review

Control and simulation of robot manipulators has been studied for a long time. The
simplest control algorithm is independent joint control, a decentralized control where
each joint are controlled with a PID, without using the dynamic and kinematic model.
In centralized control, PD Control with Gravity Compensation is the most basic form,
where the control law includes nonlinear coupling terms. In this method, a linear PD
feedback plus gravity compensation torques are used in the control law. In [1] a
Newton-Euler formulation based computation is proposed. In this work, the inertial,
coriolis and centrifugal forces and the resulting joint torques are computed efficiently

online.

The simulation of the robot manipulator is the first stage for controlling an actual robot.
There are a number of robot simulators that simulates the robot and its environment
by solving the related dynamic equations. MATLAB-Simulink is a well known
platform for simulating dynamical systems and designing controllers. Powerful
toolboxes for MATLAB exist,such as Drake, which is a layer built on top of the
MATLAB-Simulink engine that allows the user to define structured dynamical system
[2]. 1t provides a number of tools for analysis and controller design which take
advantage of the system structure. A commonly used simulator is Gazebo, a multi-
robot simulator for outdoor environments. It supports multiple physics engines (ODE,
Bullet, DART) and, thanks to its modular and plugin-based structure, can be extended
with new features [3]. Another simulator is V-Rep, which has a development
environment based on a distributed control architecture: each object/model can be
individually controlled via an embedded script, a plugin, a ROS node, a remote API
client [4].

1.3 ITECH Humanoid Robot Manipulator

ITECH is a humanoid robot manipulator designed and constructed in System
Dynamics and Control Laboratory of Istanbul Technical University Mechanical

2



Engineering faculty. It consists of six brushless DC Maxon motors, harmonic drives
and an aluminium-steel body. A view of ITECH Arm is given in (Figure 1.1).

Figure 1.1: ITECH Humanoid Robot Manipulator

1.3.1 Mechanical Properties

The mechanical properties of ITECH Arm manipulator are given in Table 1.1 [5].

Table 1.1: Mechanical Properties of ITECH Humanoid Manipulator

joint Motor Harmonic  Torque Range(rad)
Drive (Nm)
1 EC90 CPL-20 71.3 -m.tTW
2 EC90 CPL-20 71.3 - 2n/3 ..+ 27/3
3 EC60 CPL-17 34.8 - 2n/3 ..+ 27/3
4 EC60 CPL-17 34.8 -m.tTW
5 EC60 CPL-17 34.8 -2n/3 .+ 27/3
6 EC60 CPL-17 34.8 -m.tTW




The actuation properties of ITECH Arm manipulator are given in table Table 1.2 [5].

Table 1.2: Actuation properties of ITECH Humanoid Manipulator

Specifications EC90 EC60
Power 90 Watt 100 Watt
Voltage 24V 24V
Moment 444 mNm 283 mNm
Max Velocity 5000 rpm 6000 rpm
Mass 0.61 kg 0.48 kg
Encoder 10244E 10244E

1.3.2 Software Properties

ROS, an open-source, meta-operating system for robots, is the platform planned to
control the humanoid robot. Thus, the controller design and simulations of the arm is
developed in ROS environment and by using a 3™ party dynamic simulation
environment, GAZEBO [6].



2. MODELLING OF ROBOT

Modelling of the robot generally consists of two parts; kinematic modelling and
dynamic modelling. In kinematic modelling, the relationship between the joint
positions, velocities, accelerations and link positions, velocities and accelerations are
considered. In dynamic modelling, the relationship between the joint forces and robot

motion is considered under internal and external forces.

2.1 Geometric Model of Robot

In geometric model, the robot link frames are computed with respect to the
corresponding joint positions. In forward geometric model, the goal is computing the
pose of the end effector from the joint positions of the robot, whereas in inverse
geometric model, the joint positions of the robot is computed with respect to the
corresponding end effector pose, which is not evaluated in this work due to the task

space control laws.

2.1.1 Forward geometric model of robot

The serial manipulators, the links of the robot is connected to its adjacent links with one joint,
which is the case in ITECH manipulator. In the notation used in this work, the base link is
considered as Link 0 and fixed with respect to the world frame. The first joint, which connects
Link 0 to Link 1 is Joint 1. Thus, the robot consists of n joints and n+1 links. In our case, 7 links

and 6 joints. The last link is referred as ‘end effector’.

In manipulators with single degree of freedom joints consist of prismatic and revolute
joints. The joint variable in prismatic joints is linear displacement, while it is angular
displacement in revolute joints.

d; for prismatic joints
= (2.1)

% = 0; for prismatic joints



2.1.1.1 Link parameters and link coordinate systems

In this section, we assign coordinate frames to each link. We are following the Denavit-
Hartenberg convention in this work. The joint and link vectors are given in (Figure

2.1) [7]. The frame assignment is described below [8]:

e The zj axis is aligned with the joint axis (i+1). The direction of rotation is arbitrary.

e The xi- axis is defined along the common normal between the joint axis i and joint
axis (i+1) and points from the joint axes i to the joint axis (i+1). In case the joint
axes are parallel, the x;- axis can be chosen arbitrarily, while being perpendicular to
the two joint axes.

e The yi-axis is assigned by the right-hand rule.

The assignment of coordinate frames according to Denavit-Hartenberg convention is

described below:

1. As mentioned above, the base link is numbered as link 0 and the links are numbered
from 0O to i+1 joints. The first joint is numbered as joint 1 and joint i connects link i to
link i+1.
2. The common normal are drawn between the adjacent joint axes.
3. The base coordinate system is assigned in such a way that zo-axis is aligned with
the first joint axis. The Xxo-axis is perpendicular to zo-axis.
4. The last coordinate system is assigned in such a way that its x-axis is perpendicular
to last joint axis.
5. The assignment of coordinate frames are described below:
e The zj-axis is aligned with the joint axis (i+1)
e The xj-axis is assigned along the common normal between the joint axis i and
joint axis (i+1). In case of parallel joint axes, the xj-axis is chosen arbitrarily
while being perpendicular to the two joint axes. For intersecting joint axes, Xi-
axis can be assigned arbitrarily while being the cross product of vectors zi and

Zi+1.

6. The link parameters and joint variables ai, ai, 6; and di are determined.



JOINT -1 JOINT 2 JOINT 2+1

Figure 2.1: Denavit-Hartenberg kinematic parameters

2.1.1.2 Denativ-Hartenberg Transformation Matrices

The coordinate frames assigned in the previous chapter are used to generate the

Denavit-Hartenberg transformation matrices. The parameters of denavit-hartenberg is

described below [8]:

1. The coordinate system (i+1) is translated along the zi.1 along di distance in order to
coincide origin of this coordinate system with zi.1 axis.

2. The translated coordinate system is rotated about the zi.1 for 6i angle in order to
align the axis x; and Xi-1.

3. The rotated coordinate system is translated along xi-axis for a; distance in order to
coincide the origin of coordinate system (i-1) with coordinate system i.

4. The translated coordinate system is rotated about the xj-axis for a;j angle in order to
coincide the two coordinate systems.

The homogenous transformation matrices corresponding to the transformations and

rotations given above are:



1 0 0 O
1010 o0
A(z, d) = 00 1 d (2.2)
0 0 0 1
Cei —Sgi 0 0
6; c6; 0 O
Az 0) = |°Yi L 2.3
@O=1"" o 1 o (2.3)
0 0 0 1
1 0 0 a
_]10 1 0 O
A(x,a) = 00 1 0 (2.4)
0 0 0 1
1 0 0 0
|0 ca; —sa; O
Ax a) = 0 sa ca; O (2.5)
0 0O 0 1
The resulting transformation is calculated from the products of the given
homogenous transformation matrices.
c0; —ca;s0; sa;s0; a;co;
i— 0; cajc; —sa;cO; a;so;
14 1-A= Su; =Y =Y oY 2.
' 0 sa; ca; d; (26)
0 0 0 1
Thus, the forward geometric model of the robot is
04 =943A.."}A (2.7)

The 94 matrix represents the position and orientation of the manipulator.

0p = SR(q) 20(q) 28)

0 0 0 1



The rotation matrix ‘1R is

_ c; —ca;s6; sa;so;
IR =[s6; ca;cé; —Saicei] (2.9)
0 sa; ca;
The translation vector is “~p is
al-CHl-
l_%p = [aisei] (210)
d;

2.1.2 Position and orientation of manipulator

Position analysis of the manipulator is straightforward as it is represented directly as
Cartesian coordinates in the robot transformation matrix 24.

X
M = ap0(q)

Z
In order to get [3x1] orientation from the rotation matrix JR(q) of the robot

transformation matrix 2A, different representations exist.

2.1.2.1 Euler Angles

In Euler Angles representation, the rotation of a rigid body is expressed at three
successive rotations by angles ¢, 6 and y. There are 24 different sets of Euler Angles.

ZYZ representation is given in (Figure 2.2) [9]. For this representation,

(8]

=
o)

20; Za

’___ i

Figure 2.2: ZXZ Euler Angles Representation



The rotation sequence is as follows:

1. Rotation by an angle ¢ in z axis

2. Rotation by an angle 9 in y axis

3. Rotation by an angle y in z axis

The rotation matrices of ro

|

tations in each axis are

cp —s¢p O
R(z, ¢) = [sqb cp O]
0 0 1
cd 0 sv
R(y,9) = [ 0 1 0]
—s9 0 co
cpg —sp 0
Rzy)=|s¢ cp 0
0 0 0

R = R(z, )R(y, )R (z,¥)

cpcisy) —spsyY  cpsIsyY — spcy
spcicyy + cpsyp  —spccy) + cpsyp
—s9cy sYsy

9 = arctan?2 (R33,\/1 — R232)

Y = arctan2(R,3, Ry3)
qb = arCtaYlZ(—R31, R32)

10

cpst
s¢ps?d
cv

|

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



2.1.2.2 Angle Axis

In angle axis representation, the orientation is expressed as a rotation of a given angle
about a unit vector.
Given the unit vector r and angle 9, the rotation matrix is

R®,r) =

(1 =c9)+cd  1nr(1—cd) -1, nrr(l-cd) +rsd
=1 —cd)+nsd r(1—-cd)+cd nr(l-cd) —rsd| (2.16)
nr(1=c9) —1s9 nr(1—cd)+nsd rf(l—cd)+cd

2.2 Kinematic Model of Robot

Kinematic model of a robot is the mapping between the joint space velocities and task
space velocities. The matrix used in mapping the joint velocities to Cartesian velocities
is Jacobian matrix. For the inverse kinematics, several methods are discussed in the

following chapter.

2.2.1 Forward kinematic model of robot

In forward kinematics, the goal is to derive the relationship between the joint velocities
and end-effector linear and angular velocities. The linear and angular velocity of the

end-effector is given as p, and w, respectively. The joint velocities are g [7].

Pe =Jp(9)q (2.17)

we = Jo(q)q (2.18)

In (2.17), matrix Jp is the mapping of joint velocities ¢ to linear velocities of the end-
effector, p, and is a (3 x n) matrix. In (2.18), matrix J,, is the mapping of joint velocities
g to angular velocities of the end-effector, w, and (3 x n) matrix. In manipulator

control, the Jacobian and task space velocities are written in a compact form:
_ [Pe] = ' 2.19
Ve = |, | =/ (@4 (2.19)

11



The Jacobian is a (6 x n) matrix and in our case, it is a (6 x 6) matrix.

= BZ] (2.20)

The geometric properties of Link i are given in Figure 2.3 [7].

Yo

Figure 2.3: Link i of a manipulator

2.2.1.1 Geometric Jacobian

The angular and linear velocities of the links actuated by revolute joints are given

respectively [7]:
W; = Wi_1,; X i1 (2.21)
And
Di = Di-1+ w; X1y (2.22)

Using the equations (2.21) and (2.22), the Jacobian is derived as

Jp; = zi—1 X (Pe — Pi-1) (2.23)

12



And

Jo, = zi—1 (2.24)
Thus, the Jacobian matrix of the manipulator is
Ip, Ip,
| = [, ] (2.25)
0, fon

The z;_, term is the third column of the rotation matrix’~R.

2.2.1.2 Analytic Jacobian

Alternatively Jacobian can be generated by using differentiation. Given the forward

geometry

k@ =[] (2.26)

Where ¢ is the set of Euler angles.

%, = [ﬁe] _[Jr(@

b1~ Ugp(q)

f |a=Ja@a 227)

By differentiating the forward geometry with respect to the joint variables

dk(q)

Ja(q@) = g (2.28)

Note that this analytical Jacobian is a symbolic representation that includes
trigonometric functions and multiplications. As analytic Jacobian maps the joint
velocities to orientation velocity ¢ in terms Euler angle set given in (2.1.2.1), a

transformation is required between angular velocity ® and ¢.

13



w =T(p)p (2.29)

The transformation for XYZ Euler angles representation is

1 0 sY
T= [O cop —sqbcﬁ] (2.30)
0 s¢p cps?Y

The relationship between geometric and analytic Jacobian is

Tu(¢) = [(I, T(Od,)] (2.31)
] = TA(¢)]A (2-32)

2.2.2 Inverse kinematic model of robot

Inverse kinematics of a robot represents the relationship between the task space
velocities and joint space velocities. A few different methods exist to compute the

inverse kinematics of the manipulator.

2.2.2.1 Inverse Jacobian

In this method, the inverse of the Jacobian is computed directly and the relationship is

as follows
6 =Jp, (2.33)

As the robot approaches kinematic singularity, the determinant of the Jacobian
approaches to zero and when kinematic singularity is reached, the determinant

14



becomes zero as the Jacobian matrix loses a rank. Thus, this situation yields infinite
joint velocities. Several methods exist to handle this problem.

2.2.2.2 Pseudo inverse

This method uses the least-square approximation to solve the non-invertible Jacobian
matrix problem. This method enables the use of inverse Jacobian in redundant
manipulators. The velocities are calculated as

0 =J"UI")"Pe (2.34)

The matrix (JJT)~1 is guaranteed to be invertible, yet this method performs poorly in

the neighbourhood of singular configurations.

2.2.2.3 Damped least squares

In damped least-squares method, a damping coefficient A is introduced to the pseudo-

inverse method.

0 =JTUJ" +2D7p, (2.35)
Several methods exist to optimize the damping coefficient A during the manipulation
[10].

2.2.2.4 Jacobian transpose

Given the task space error pe, joint variables q and gain K, the error term in the equation

q =J]"Kp, (2.36)

converges to zero.

15



2.3 Dynamic Model of Robot

The dynamic model of a robot is crucial in design and motion control of the robot as
the required joint torques must be calculated for the execution of motion.

The dynamic model of a robot manipulator is in the form of

B(q)gd+C(q,)q+g(q@ =1 (2.37)

where B(q) is the Mass Matrix and represents the inertial forces, C(q, q) represents

the Coriolis and Centrifugal forces and g(q) represents the gravitational forces.

2.3.1 Euler-Lagrange dynamics

The Lagrange dynamics uses the energy equations of the robot and is independent of
the coordinate frame.

Lagrangian of the manipulator is
L=K-P (2.38)

where K is the kinetic and P is the potential energy.
The Lagrange equations are derived as

— =1 (2.39)

2.3.2 Newton-Euler dynamics

The Newton-Euler dynamics is a recursive algorithm that is based on the balance of
forces in each link of the manipulator. The vectors used in this algorithm are given in
(Figure 2.4). In forward recursion, link velocities and accelerations are computed and
in backward recursion, joint torques are computed [7].

16



Figure 2.4: Force balance representation on Link i

The recursive Newton-Euler algorithm is as follows

Forward recursion:

w! =R (wlZ} + 6;2) (2.40)
@t =R (02} + 6,z + 6wt x 2) (2.41)
pr=R_ pIrl+wixr! 1l+a) X (wixr! 11) (2.42)
ﬁéi=i)l+wxrc+wx((u xrc) (2.43)

Backward recursion:
fii = Rii+1ﬁl-|:|-11 + mlpC (2.44)

= _fl X( —1,i + rlC ) + Rl+1lliii + (R +1fll+1 )X i,Ci + I (‘) (2-45)

17



+ol x (ILah)

T =ul R,z (2.46)
0
zZ = |0]| constant vector (2.47)
1
i i-1T
Ri  =R! (2.48)

2.4 Modelling of ITECH Manipulator

In order to generate the model of ITECH Manipulator, a generic object-oriented
Python library is created. This created library takes the coordinate systems and inertial
properties as input and generates the model of the robot and provides the necessary
geometric, kinematic and dynamic functions. The code is capable of generating the
kinematic and dynamic model of an n degree of freedom single chain manipulator.

This code is then uploaded in a GitHub library as an open-source project.

2.4.1 Geometric and kinematic model

The coordinate frames and Denavit-Hartenberg parameters of ITECH Manipulator are
assigned using the method described in (2.1.1.1). The coordinate frames are given in
Figure 2.5 and the Denavit-Hartenberg parameters 0i, oi, di and a; of ITECH

Manipulator are given in Table 2.1.

18



Figure 2.5: Link coordinate systems of ITECH Manipulator

Table 2.1: Denavit-Hartenberg Parameters of ITECH Manipulator

joint ai(m) di(m) ai(rad) 0i(rad)
1 0 0.16496 -11/2 01
2 0 0 /2 02+ /2
3 0 0.219 -1/2 03
4 0 0 /2 04
5 0 0.213 -1t/2 05
6 0.21718 0 0 06 - /2

The transformation matrices 94, 14, ..., 24 and the robot transformation matrix 24 is

generated using the formulations (2.6) and (2.7).

19



The Jacobian of the ITECH Manipulator is generated using the formulations given in
(2.2.1). It should be noted that, the terms of Jacobian matrix consist of a large number
of coupled elements. Thus, generating a numerical Jacobian using the equations (2.23)
and (2.24) online is computationally much more efficient than generating a symbolic

Jacobian. In this work, numerical Jacobian is used and computed online.

2.4.2 Dynamic model

The dynamic model of ITECH Manipulator is generated using the Recursive Newton-
Euler Algorithm described in 2.3.2. In order to include the gravitational forces, the

base linear acceleration term 3 is defined as
-9
it -[0) 0
where g is the acceleration of gravity. Other initial terms w9, @] are taken as zero
vectors. The end-point force and moment terms £}, ur can be selected as external

forces. In this work, they are also taken as zero vectors.

The inertial properties and link centre of gravity vectors are gathered from the
SolidWorks model of the robot and given in the Appendix.

20



3. ROS- ROBOT OPERATING SYSTEM

3.1 General Structure of ROS

ROS is an open-source, meta-operating system for robots. It provides the services you
would expect from an operating system, including hardware abstraction, low-level
device control, implementation of commonly-used functionality, message-passing
between processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers [11].

3.1.1 Ros Nodes

Nodes are the process that perform computation. Each ROS node is written using ROS
client libraries such as roscpp and rospy. Using client library APIs, we can implement
different types of communication methods in ROS nodes. In a robot, there will be
many nodes to perform different kinds of tasks. Using the ROS communication
methods, it can communicate with each other and exchange data. Ros node network

allows to build simple processes rather than a large process with all functionality [12].

3.1.2 Ros Topics

Each message in ROS is transported using named buses called topics. When a node
sends a message through a topic, then we can say the node is publishing a topic. When
a node receives a message through a topic, then we can say that the node is subscribing
to a topic. The publishing node and subscribing node are not aware of each other's
existence. The production of information and consumption of it are decoupled. Each
topic has a unique name, and any node can access this topic and send data through it

as long as they have the right message type.

21



3.1.3 Ros Messages

Nodes communicate with each other using messages. Messages are simply a data
structure containing the typed field, which can hold a set of data and that can be sent
to another node. ROS supports standard primitive types (Boolean, Integer, Float etc.)

and user defined messages can be generated by using these standards.

3.1.4 Ros Services

The ROS services are a type request/response communication between ROS nodes.
One node will send a request and wait until it gets a response from the other. The

request/response communication is also using the ROS message description.

3.2 Gazebo

Gazebo is a 3D dynamic simulation environment that can simulate multiple robots
simultaneously. Various types of sensors, including camera and LIDAR (Laser
Scanning Range Finder) can be simulated in Gazebo. Current version of Gazebo uses
Open Dynamics Engine (ODE) in its ROS compatible version, but its further versions,
which are planned to be interfaced with ROS allow the use of Featherstone-based

engines optimized for joint chains [13].

3.2.1 URDF universal robot description format

URDEF is a package that contains XML specifications of a robot, sensors and actuators.
Robot is defined as a child-parent relationship. Each joint has a parent and a child link
and together they form the chain. ROS uses URDF as its robot description format.
Major drawbacks of URDF is that it only supports open chain manipulators and does

not include elastic joints.

3.2.2 SDF simulation description format

Similar to URDF, SDF is also an XML format used by Gazebo Simulator. URDF of a
robot is converted to SDF by Gazebo for simulation. Though not used by ROS, it
supports multiple robots, elastic joints, closed chain manipulators and can store the

states of the robot.

22



3.3 Itech Arm Gazebo-Ros Interface

The procedure of controlling Itech Arm with ROS in Gazebo Simulator is described
in the following section. The work done can be directly applied to control the actual

Itech Arm manipulator.

3.3.1 Itech Arm description

To generate a Gazebo-Ros interface, initially a robot description package needs to be
created. This package consists of the URDF xml file and the robot meshes in STL
format. This is a similar procedure to SimMechanics, where an xml file and STL mesh
files are generated via SolidWorks export option.

While URDF can be created by hand, using basic shapes known to this XML format,
a more practical approach is using SolidWorks URDF exporter.

The joint coordinate frames and rotation axes are specified in SolidWorks assembly
according to the axes assigned in section (2.4.1) to export the Itech Arm robot to URDF
format. However, in URDF, each joint coordinate frame represents its child link, while
in D-H representation, the joint coordinate frames represent its parent link. Thus, for
the controller algorithm, the link mass properties should be taken from the SolidWorks

robot model using D-H coordinate frames.

After exporting the assembly to URDF, the XML file needs to be modified by adding
joint transmissions as Effort Joint Interface, provided by ros-control. These
transmissions form an interface between the ROS controllers and the robot or the
Gazebo simulator. The ROS controllers for Itech Arm are further explained in section
(3.3.2). To communicate with Gazebo simulator, gazebo_ros_control plugin needs to
be added to the URDF file.

23



3.3.2 Itech Arm control

This control package includes a YAML format file that holds the controller types of
the joint actuators and a launch file that spawns these controllers using the Controller
Manager of ros-control package. These controllers publish torque commands to the
robot via Joint Command Interface and the robot publishes its joint position, velocity
and torque states to Joint State Interface. Effort controllers are used in Itech Arm, thus,
torque commands are published to the Joint Command Interface. The input/output
relationship between the URDF, robot controller, simulator and the actual robot is

given in figure (Figure 3.1) [14].

@ GAZEBO + EEE ROS + ros_control

Simulation Gazebo Hardware EEY
Simulator Input/Output

| Encoders ‘ Actuators |
Sensors on the real robat Servos, el
readSim() writeSim()
hardware_interface::RobotHWSim
Provides Position, Velocity, and Effort Interfaces Embedded Controllers
Gazebo Plugin between Gazebo and ros_control Joint Stat &.g. PID loop to follow effort

setpoint

LR, N B
Loads RobotHW/ .
nterfaces via pluginib S— pros— readHW( writeHW() Joint Efforts
(radians) (Nm) rdware_interface::RobotHW (Nm)
. v Provides ition, Velocity, and Effort faces

Forward State 1 Joint Limits i n ros_control hardwar
Transmissions §  Enforce limits (optional) | F
Account for special _J Forward State : Joint Limits: H
Transmissions i Enforce imits (optional) |

{  Effort Transmissions | Account for special
| Accountforspecid |
] mechanisms |

Joint State Interface Joint Command Interfaces
Hardware Resource Interface Layer e.g. JointStateInterface e.g. Effort]ointinterface
Joint States Joint Efforts
(radians) (Nm)

Controller Manager
list_controllers - Loads, unloads andpealls updates to controllexg

load_
B — Controller:
unioad_contraliery joint_state_publisher PID Loops
switch commHev. Publishes Jjoint_states topic
for robot_publisher Controller:

e.g. joint_trajectory_controller e

Send a frajectory from Movelt! etc
Dave Coleman
Updated Jul 30, 2013

Figure 3.1: Gazebo Ros Interface

3.3.3 Itech Arm gazebo

This package holds the world and launch files of the robot. Gazebo simulator
environment is described in the world file, such as objects, light sources and camera
pose. The launch file starts Gazebo, loads the URDF of the robot to the simulator,

launches the robot control and starts nodes that contains the control algorithms, such

24



as inverse dynamics controller and robot trajectory. In Itech Arm, a seperate package
Is created to hold the algorithm nodes as Itech Arm command. The visual of the robot

inside the Gazebo simulation environment is given in (Figure 3.2).

“$+O 008 %%Z @

» Dl steps: 1, Real Time Factor: Real Time: Iterations:

Figure 3.2: Itech Arm in Gazebo simulation environment

3.3.4 ltech Arm command

Itech Arm command is a package created to hold the kinematics and dynamics library,
the trajectory generator and the control algorithm node. The Itech Arm control
algorithm node subscribes to Joint State Publisher topic. The joint position and
velocity states of the robot taken from the Joint State Publisher are used in the inverse
dynamics control algorithm. The outputs of the inverse dynamics control algorithm are
joint  torques and these torque data are published to the
joint_effort_controller/command topics. This way, the loop between the dynamic

simulation and robot control algorithm is closed.

25



26



4. CONTROLLER DESIGN

4.1 Trajectory Generation

In order to have the robot execute a task, a trajectory has to be generated for this
specific task, defining the initial and final points and the motion to be followed
between these two points.

Let g; and q be the initial and final positions of a joint. The trajectory between these

two points is defined by the following equations

q®) =q; +r(®)D (4.1)

q(t) = 7(t)D (4.2)

In these equations, D = q; — q; and r(¢) is the interpolation function.

4.1.1 Interpolation functions

Interpolation functions are used in trajectory generation in order to generate time-
dependent configurations between the initial and final points. This ensures the
continuation of position in the most basic form and can be further improved for

velocity and acceleration.

4.1.1.1 Linear Interpolation

Linear Interpolation is the most basic form of interpolation functions. The time

dependent function is:

«o=%+%D 4.3)

27



4.1.1.2 Cubic spline interpolation

In cubic spline interpolation, the interpolation function is a 3" degree function, thus
ensures the continuity of both velocity and position. Using the position and velocity
boundary conditions, the interpolation function is generated as:

£\2 £\
w=3(¢) ~2(7) @)

In order to minimize the travel time either acceleration or velocity reaches its limit.

Thus the final time for minimum traveling time is defined as:

I( 3|D]|
B 4 2Vyimit
tf =

if velocity limit v;;,,;¢ is reached
(4.5)

6/D| 1/2
L( > if acceleration limit a;;,,;; is reached
Aimit

In order to determine whether velocity or acceleration limit is reached, simply the one

yielding the maximum ¢ is saturated.

4.1.2 Task space trajectory generation

In task space trajectory generation, the initial and pose of the end effector is determined
first and the poses between the initial and final pose are computed in order to
synchronize the rotational and translational motions of the end effector.

Let the initial and final pose be

X; = [d)ll] and Xy = Z;]
(4.6)

28



Cartesian position of end effector is p, and orientation of end effector is ¢,, the euler

angles (¢,3,y).

The position and orientation of trajectory and their time derivatives are

pe(t) =p; + T(t)(Pf - Pi)
pe(t) = 7(O) (pr — p:)

pe (8) = #(0) (pr — p1) (47)
P (6) = ¢y + () (P — P:)
Pe(t) = 7(6) (P — ¢1)
(4.8)

P (t) = #(0)(pf — ¢1)

4.2 Motion Control

Motion control of a robot manipulator consists of calculating the joint control signals
in order to execute the desired motion. The joint level controller may vary, such as
position, velocity and torque closed-loop. As robot manipulators that have degrees of
freedom equal or higher than 6 have highly coupled nonlinear terms, using the position
and/or velocity closed loops in joint level tend to fail. Thus, in this work, torque closed

loop control in joint level control is assumed.

4.2.1 Static-Model based control

The static model based control suggests the use of desired task space position error

vector as an external vector, which is obtained from the following equation:

= ]T(q)Fext (4.9)

29



Which yields the control law:

©=J"(@)Kpé — Kpq + g(q) (4.10)

This controller does not include the robot dynamics, thus, it is a relatively simple

controller structure and has a naturally compliant behaviour.

4.2.2 Inverse dynamics control

As mentioned in the equation (2.37), the dynamic of the robot manipulator is in the

form of

B(@)g+C(q,q)q+g(q@ =T

Rewriting the equation (2.37) as

u=B(q)y +N(q,9) (4.11)

Where u is the control vector.
N(q,q) = C(q,9)q + g(q) (4.12)
g=y (4.13)

In the task space scheme, taking the derivative of

xe =J(q)q
yields

ke =J(@Qd +J(9,d)q (4.14)

The inverse dynamics control law generated for the robot manipulator is

30



y = ] @) (g + KpX + KpX — J(q,9)q) (4.15)

Where ¥ and ¥ are task space pose errors.
The diagram of Inverse Dynamics Control in Task Space is given in (Figure 4.1)

Ty
4 £
4’@—. Kp
+ #: \ \ q
- + 4 Yy u >
J'(g) P B(g) »@—» MANIPULATOR
+ + | q=
~ +
X, o3 i
J»(%@ > K,
+ A
v n(q,q)
‘ ACKRDRY
&y
J4(9)
Tl k(:)

Figure 4.1: Inverse dynamics control in task space

4.2.3 Computation of task space errors

As the control law of inverse dynamics requires the computation of

y=J"a-J§ (4.16)
Where a is the resolved acceleration, v,
a
o= [2] @
(4.18)

ap = p.d + KDpﬁ + Kppﬁ

The linear position and velocity errors are

31



D =Pa — Py (4.19)

P =Pa — Py (4.20)

The desired terms in equations (4.16) and (4.17) are computed from forward

geometry and kinematics respectively.

Calculation of a, term of resolved acceleration is more complicated. Remembering

the equation (2.19)

v = 0] = s

We = T((ibe)(i’e (4.21)

We = T(qbe)(ﬁe + T(¢er (i)e)(i)e (4-22)

The resolved angular acceleration based on Euler angles error can be represented as:

ao = T(@e) (Pa + Kpo® + Kpo®) + (e, be)be (4.23)

4.2.4 Computation of Jacobian Derivative term

X=]@i+Jadq (4.24)

32



ja,d)q = Z((Z _ (()))) (4.25)

From Newton Euler recursive algorithm, in equations (2.42) and (2.41), p;; and wy

calculated respectively.

P = oRpn (4.26)

@ = TR&! (4.27)

Using the equation (4.25), by setting the joint accelerations zero, the j(g, ¢)q term is

calculated recursively [15].

33



34



5.SIMULATION RESULTS

The simulation studies are conducted in Gazebo. The robot is started at an initial pose.
It is then commanded to go to a specified pose and draw a circle of 10 cm radius. In
order to generate significant Coriolis and Centrifugal terms and test the inverse
dynamics algorithm, 0.86 m/s velocity and 3.99 m/s? acceleration are reached during
the motion trajectory. The simulations are done for different gains, controller
frequencies and loads. The position and orientation results are both belong to end

effector and with respect to the task space coordinate system.

5.1 Performance Criteria of Controller in Simulations

As performance index, integration of the absolute values and maximum errors of the
errors in Cartesian and orientation space are used. The integration method is rectangle

numerical integration.

tf

Integral Absolute Error = Z absolute error(t) * (sampling time)  (5.1)

to

Absolute Cartesian Error(t) = v/Xerror ()2 + Yerror ()% +Zerror ()% (5.2)

Absolute Orientation Error(t) = |derror (| + [error (O] + [Werror ()| (5.3)

35



5.2 Simulations without Payload Results

Dynamical simulations are conducted with zero payload using various gain
configurations and controller frequencies. The simulation results for KP=1000.0,
KD=50.0, 250 Hz are given in from Figure 5.1 to Figure 5.9 and in table from Table
5.1to Table 5.3.

Task space end effector position x-z

J — desired
—  generated
0.70} :
0.65 oo i
0.60F -
E
~ :
055L....\....
0.50
045 i

005 010 015 020 025 030 035 040 045 050
x(m)

Figure 5.1: End effector x-z position

End-effector position
X

"T— desired
Tl = generated

PNNWwe ML
uouounouwo

cartesian position(m)
ococooooo

coccooeo

ARV~

ounouowmowm
:

time(sec)

Figure 5.2: End effector cartesian position

36



euler angles orientation(deg)

error (mm)

End-effector orientation
alfa

=30} L AR e D 1

time(sec)

Figure 5.3: End effector orientation

Position errors of End-effector
X error

coe
B o

y error

11
© o000
B ON

o
=N

|
© cocoooooo

D bWwNoRORNW

Z error
T T T T T

i
3
time(sec)

BT
(%)

1
0 1 2

Figure 5.4: End effector position error

37



absolute error (mm)

error (deg)

0.9

0.8

0.7

0.6}

End-effector absolute Cartesian error

3 4 5
time(sec)

Figure 5.5: End effector position absolute error

End-effector orientation errors

alfa error
T

] 1 | I L

beta error

1 I 1 |

gamma error
I

time (sec)

Figure 5.6: End effector orientation error

38



cartesian velocities(m/s)

joint torques (Nm)

|
000000000 Of

Pl A h =
NouUouUouUoU NWRAUIOINOWOVO HORNWAUIOINW

WWNNHFHOOO

NhWNRORNW

End-effector Cartesian velocities

T T

f — desired
:1— generated

time(sec)

Figure 5.7: End effector cartesian velocities

Torques of joint 1,2 and 3

joint 1 torque

1 1 i

joint 2 torque

joint 3 torque

Figure 5.8: Torques

time(sec)

of the robot joints 1,2 and 3

39



Torques of joint 4,5 and 6
joint 4 torque

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
15

1.0

joint 5 torque

joint torques (Nm)

joint 6 torque

time(sec)

Figure 5.9: Torques of the robot joints 5,6,7

Table 5.1: Errors of ITECH Arm, 250 Hz controller frequency

Position and Velocity Integral  Maximum Integral Maximum
Gains at 250 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian  Cartesian  Orientation Error
Error Error Error
KP=600.0, KD=50.0 4.9997 1.8122 0.5623 0.2417
KP=800.0, KD=50.0 4.9228 0.9208 0.4842 0.1965
KP=900.0, KD=50.0 4.8944 0.8263 0.4691 0.1836
KP=900.0, KD=25.0 4.9808 1.2594 0.5235 0.2218
KP=900.0, KD=75.0 4.9105 0.9421 0.4627 0.1531
KP=1000.0, KD=50.0 4.9935 1.0856 0.4372 0.1571
KP=1200.0, KD=50.0 4.9086 1.2423 0.4358 0.1313
KP=1500.0, KD=50.0 4.9514 1.3380 0.4218 0.1164
KP=2000.0, KD=50.0 5.0827 0.6766 0.5144 0.1179

40



absolute error (mm)

absolute arror (mm}

absolute error (mm)

absolute error (mm)

absolute cartesian error

2.
”w
15 ‘”
Lo} {
"
Il
| “
05
N | A
\ [ ¥
| AV
0.0l o A \ — A/J \ W
0 3 5
time(seconds)
a)
08 absolute cartesian ern.ar
0.8
o7
0.6 K
05 ,\
04 ‘ #
’ il R ‘|
0.3 ’ b 'f
L R
02f e 1 H s
rw u\ AR ALY
01 | ! iy ]
1 i "
0.0 LA i L ,/WJ"' ' U‘ﬂ‘\- .
1 2 4 5
timelseconds)
c)
10 . allzsulute talrteswan error
08 H J*
06 : J
|
i J n‘
i I
04 ! |
(I
0.2 B e
| i
RN
LA AN .
L ] . 4 B
time{seconds)
e)
14 absolute cartesian error
12 J
1.0 |
08 (
0.6 1‘”
L] | 1 I ‘
I |
o | | I Ull‘"‘-l‘i
i WH“‘ 4
0.2 | N |
] il ,A‘M || Ty ’\’
ol an and | At Mg e
0 1 2 3 4 5

time(seconds)

9)

absolute error (mm)

absolute errer (mm)

absolute error (mm)

absolute error (mm}

absolute cartesian error

14
]i
h |
I‘ i
R | .
| [ l M‘ ‘
02 ‘ N W \'\
" M /|
00 — .“‘.‘1 5 _ﬂ‘: : ) 5 S
time(seconds)
b)
14 . absolute carl‘tesian err?r
o IO
1
10 R S
: ﬂ
0.8 ; ’ rl
L
ST |
o4 S i b
‘ l. MfLH ‘fl II ‘Il [l
02 i ‘H‘, W “w‘f“m
i | “ W fm
ok i IL', l'\,q.‘-\v_(\fﬂ\,\u; | | ! i le\ \
timelseconds)
d)
12 absolute cartesian error
10 r
i I ‘
o K (l “ ‘.jl
| |
il 1 H { |
02 /l ‘ lM H ,‘ﬁw {
| ! M
ooﬂ‘ Llet ‘1 L 5 '“"'El 4 SMM \
time(seconds)
14 absolute cartesian error
12
1.0 ‘
us’
0.6
\
0.4 M )
‘. EYERL
0.2 ,“ ﬂl N \M"l‘uu LM
I T DAY o . LA T
o 1 2 3 4 5

time{seconds)

h)




absolute cartesian error

0.7
06 )
05 ﬂ

0.4

E I
3 o03f “
4

02 |

0.1

error (mm)

Y
o ot
0 1

Figure 5.10: End effector absolute position errors

a) KP=600.0, KD=50.0, b) KP=800.0, KD=50.0, ¢) KP=900.0, KD=50.0, d)
KP=900.0, KD=25.0, &) KP=900.0, KD=75.0, f) KP=1000.0, KD=50.0, g)

KP=1200.0, KD=50.0, h) KP=2000.0, KD=50.0 at 250 Hz

Table 5.2: Errors of ITECH manipulator,100 Hz controller frequency

42

Position and Velocity Integral Maximum Integral Maximum
Gains at 100 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian  Cartesian ~ Orientation Error
Error Error Error
KP=600.0, KD=50.0 5.0953 2.2604 0.7249 0.3602
KP=700.0, KD=50.0 5.1176 2.0833 0.6346 0.3341
KP=800.0, KD=25.0 5.8569 2.1440 0.9423 0.3538
KP=800.0, KD=50.0 5.1462 2.0063 0.5932 0.2690
KP=800.0, KD=75.0 6.3147 2.1931 1.0645 0.2455
KP=900.0, KD=50.0 5.1673 1.9925 0.5970 0.2563
KP=2000.0, KD=50.0 Unstable - - -
Jdoob q4
ﬂll T f. «\
P 3 I A
oo P I
Mo\ T e
a) b)



error (mm)

errar {(mm}

lute

absolute cartesian error

25

20 ‘

05

0.0

2.5

2.0 m

S ‘.
" f\[ \‘.'z\ . AA."{‘"“

0.0 Lerens,
a

25 absolute cartesian errar
2.0k Y
i H
| H
= H \‘ H
3 i H
£ 15 ,\
g : }
] H
H H
3
s 10 b \
® g |
oY, \
H |
il [0
0.5 H il o Bl
H |
i r‘ \
Pt ” Ve
0.0 A 41 qu 5 ; ;\. W
timet: ds)
20 absolute cartesian error
I
|
|
I
15 |
‘ ]
z |
£ I
: \
& 10
o
3 ' N
H i Eif
2 [
ol W
05k ‘ ‘ l\ | ............ r uvi ]
| ‘ | "
f | | |
| J | *
| al L”
et | Wepromg Ao ,,,f‘f &
L I 4 5
timet ds)

Figure 5.11: End effector absolute position errors

a) KP=600.0, KD=50.0, b) KP=700.0, KD=50.0, ¢) KP=800.0, KD=25.0, d)
KP=800.0, KD=50.0, &) KP=800.0, KD=75.0, f) KP=900.0, KD=50.0 at 100 Hz

Table 5.3: Errors of ITECH manipulator, 50 Hz controller frequency

Position and Velocity Integral Maximum Integral Maximum
Gains at 50 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian ~ Cartesian ~ Orientation Error
Error Error Error
KP=100.0, KD=10.0 16.6974 15.4748 6.3882 2.9924
KP=200.0, KD=10.0 15.7356 12.5877 6.1531 2.9984
KP=200.0, KD=25.0 5.5180 4.6929 2.1253 1.2157
KP=200.0, KD=50.0 Unstable - - -
KP=300.0, KD=10.0 Unstable - - -

43



5.2.1 Discussion

From the tables and figures, it is clearly seen that, higher controller frequencies yield
better results. Although the maximum errors change for the same gain set in different
simulation trials due to the non-real time operating system, it can still give idea on the
performance of the controller. However, the error integral is a more reliable
performance criteria than the maximum error. In 250 Hz, gain sets KP=900.0,
KD=75.0 and KP=1200.0, KD=50.0 give the best results. For position feedback,
setting the KP and KD 900.0 and 50.0 and for orientation feedback, 1200.0 and 75.0
would be the best choice for the controller. Using the same method, best choices of
gain sets for the controller in different frequencies can be generated.

5.3 Simulations with Unknown Payload Results

Dynamic simulations with unknown payload carried by the end effector of the robot
are conducted. The simulation results for KP=1200, KD=50 and 250 Hz controller
frequency are given in from (Figure 5.12) to (Figure 5.20) and from Table 5.4 to Table
5.6.

Task space end effector position x-z

! "T— desired
08k i R SO SRS UURUUU USROS ;| — generated
0.7}

E o6
N
05
0.4
1 L L I
0.0 0.1 0.2 0.3 0.4 0.5 0.6

x(m)

Figure 5.12: End effector position in x-y, 2 kg Payload

44



cartesian position(m)

euler angles orientation(deg)

End-effector position

_____ ’_ ' ' ! "[— desired
\ : generated

c o
B Wn
F
/
p)

cooo
o =N W

cooocoooo
HFNNWWRARU
tounounouno

cooooooo
AU~
ounounouwnowum

time(sec)

Figure 5.13: End effector position, 2 kg Payload

End-effector orientation
alfa

time(sec)

Figure 5.14: End effector orientation, 2 kg Payload

45



error (mm)

absolute error (mm)

UL
N
U1

60

20

10

Position errors of End-effector

X error
T

T T

y error
T

=
N

3 4 5
time(sec)

Figure 5.15: End effector position error, 2 kg Payload

End-effector absolute Cartesian error

time(sec)

Figure 5.16: End effector absolute position error, 2 kg Payload

46



error (deg)

cartesian velocities(m/s)

End-effector orientation errors

alfa error
0.0 T T T T T

_3.0 ; ; ; ;
beta error

—0.5 ] 1 I I ]

14 : . gammla error !
12 :
10
8 ;
6 :
4 :
2 1 1 I 1 |
0 1 2 3 4 5
time (sec)
Figure 5.17: End effector orientation error, 2 kg Payload
End-effector Cartesian velocities
0.8 X
0.61 J . J ! ' — desired
04 ) ‘| = generated
0.2
0.0
_02 -
-0.4
-0.6
-0.8

o O«
s}

0.6
0.3
0.2}
0.1
0.0
0.1
0.2
0.3
0.4+
0.5

time(sec)

Figure 5.18: End effector cartesian velocities, 2 kg Payload

47



joint torques (Nm)

joint torques (Nm)

Torques of joint 1,2 and 3

14 ‘ | joint 1 torque : :

joint 2 torque

joint 3 torque

0 1 2 3 4 5
time(sec)

Figure 5.19: Torques of robot joints 1,2 and 3, 2 kg Payload

Torques of joint 4,5 and 6
12 T ;

joint 4 torque

T T

NRORNWARUNON WAUIOI~0W
T

Sooo000000

time(sec)

Figure 5.20: Torques of robot joints 4,5 and 6, 2 kg Payload

48



Table 5.4: Errors of ITECH Arm, 250 Hz controller frequency, 2 kg payload

Position and Velocity Integral Maximum Integral Maximum

Gains at 250 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian  Cartesian ~ Orientation Error

Error Error Error

KP=900.0, KD=50.0

] 321.5292 66.5428 96.5249 16.0400
with 2000 gr Payload
KP=1200.0, KD=50.0

248.7201 53.0033 74.7592 13.2540

with 2000 gr Payload

Table 5.5: Errors of ITECH Arm, 100 Hz controller frequency, 2 kg payload

Position and Velocity Integral Maximum Integral Maximum
Gains at 100 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian ~ Cartesian  Orientation Error
Error Error Error

KP=900.0, KD=50.0
with 2000 gr Payload

398.5052  81.01961 119.5790 19.1733

Table 5.6: Errors of ITECH Arm, 50 Hz controller frequency, 2 and 1 kg payload

Position and Velocity Integral Maximum Integral Maximum
Gains at 50 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian ~ Cartesian ~ Orientation Error
Error Error Error

KP=200.0, KD=25.0 -
) Unstable - -

with 2000 gr Payload

KP=200.0, KD=25.0

with 1000 gr Payload

618.6905  122.8586 184.3349 28.7477

49



5.3.1 Discussion

When the ‘with and without payload’ cases are compared, the payload reduces the performance
of the manipulator. In 250 Hz and 100 Hz, the manipulator could handle the load while in 50
Hz, the system become unstable. From the Table 5.4, it can be seen that higher proportional
gain yield significantly better results with the existence of unknown payload as greater effort is
produced for the same amount of error and it helped to overcome the weight of the payload. As
in the previous case, higher controller frequencies yield better result. It should be noted that,
with 1:140 harmonic drive transmission and frictions, the effect of payload would be
significantly different than the simulation. The payload simulation is an effort to test the
controller with existence of disturbance. In (Figure 5.19) and (Figure 5.20), the joint torques
are within the limits given in Table 1.1, thus we can conclude that in such a motion, 2 kg payload
can be handled by the ITECH Arm.

5.4 Simulation for Pick and Place Task Results

In this task, ITECH Arm starts at an initial condition, proceeds to object and carries
the object to target location. Finally, the robot arm goes to the initial condition,
completing the task. The simulation is done with KP=1000.0, KD=50.0 and 250 Hz
controller frequency.

» Dl Steps: 1, Real Time Factor:

Figure 5.21: Screenshot of pick and place in Gazebo

50



cartesian position(m)

Task space end effector position 3D -

— desired

generated

place

pick

mitial position,
final position

Figure 5.22: End effector position in x-y-z, pick and place

End-effector position
X

’ ! — desired

generated

'I'

....i...............i.............. e

2 4 6 8 10 12
time(sec)

14

Figure 5.23: End effector position, pick and place

o1



euler angles orientation(deg)

error (mm)

End-effector orientation
alfa

— desired
—  generated

time(sec)
Figure 5.24: End effector orientation, pick and place

Position errors of End-effector

X error
T T T T

Yy error

Z error
1 1 I 1 |
6 8 10 12 14
time(sec)

Figure 5.25: End effector position error, pick and place

52



absolute error (mm)

error {deg)

0.25

End-effector absolute Cartesian error

0.20

0.15

0.10

0.05

] L L Il
2 4 6 8 10 12 14
time(sec)

0.00

Figure 5.26: End effector absolute cartesian error, pick and place

End-effector orientation errors

alfa error
0.06 T T T T T

0.02
0.00
-0.02
-0.04
0.04
0.02
0.00
—0.02
-0.04
—0.06

0.08 : , : ,
0.04
0.02
0.00

-0.06

i i i i i
0 2 4 6 8 10 12 14
time (sec)

Figure 5.27: End effector orientation error, pick and place

53



w
£
£
0
L]
s
o
o
[il]
=
=
o
]
[
=
1]
¥

joint torques (Nm)

End-effector Cartesian velocities
X

J J J ' | — desired

0.25
0.15 ; ; ; ; —  generated
0.10 : : : : : 1
0.05

0 2 4 6 8 10 12 14
time(sec)

|
o
ul

Figure 5.28: End effector cartesian velocities, pick and place

Torques of joint 1,2 and 3
joint 1 torque
1 1

o N RO @

|
N

UV oOu WNRORENWRUOO

ok

0 2 4 6 8 10 12 14
time(sec)

Figure 5.29: Torques of robot joints 1,2 and 3, pick and place

54



Torques of joint 4,5 and 6
joint 4 torque
T

PFENNWWEBG
ouvounoumnouno

Il L | L

joint 5 torque
T

o o
= =t
o w

t torques (Nm)

0.00 _
-0.05 i

join

joint 6 torque

[e]lele)
PN W
Do

NPEOOON &
T T

COO0O00000!
NN

6 8
time(sec)

Figure 5.30: Torques of robot joints 4,5 and 6, pick and place

Table 5.7: Errors of ITECH Arm, 250 Hz controller frequency, pick and place

Position and Velocity Integral Maximum Integral Maximum
Gains at 250 Hz Absolute  Absolute Absolute Orientation
Controller Frequency Cartesian ~ Cartesian ~ Orientation Error
Error Error Error
KP=1000.0, KD=50.0 7.156 0.240 1.691 0.072

5.4.1 Discussion

In the pick and place task, the maximum velocity and acceleration of the manipulator

are decreased to improve the accuracy. The maximum errors are significantly lower

than the previous scenarios. Considering the operation time, integral error is also lower

for unit time period. Due to the controller frequency, there are differences between the

velocity in the controller loop and the actual velocity in time t. This causes differences

between the forces acting on joint such as Coriolis and centrifugal forces. When the

accelerations are lower, this difference decreases, improving the performance in terms

of the selected criteria.

55



56



6. CONCLUSION

The purpose of this thesis was to integrate the ITECH 6-DOF Humanoid Manipulator
to ROS and Gazebo environment, write a generic object oriented kinematics &
dynamics library and implement task space inverse dynamics control algorithm in
dynamic simulation environment. The control algorithm code that is written in python
and used in Gazebo simulator can be directly implemented to the real robot that runs
ROS.

In kinematics, numerical geometric Jacobian and numerical transformation and
rotation matrices are used. In dynamics, Newton-Euler formulation is preferred due to

its computational efficiency compared to Euler-Lagrange formulation [15].

Dynamic simulations are conducted in Gazebo with gazebo-ros control interface. In
different controller frequencies, various pose and velocity gains are tested in an effort
to find a suitable gain set with respect to pose error. As the controller and simulator
are both run in a non-real time operating system and communicating over a node
network, there were small differences in the results of the same gain sets and controller
frequencies. Matlab SimMechanics software platform, which offers various
transmission properties such as friction and elastic joints that does not exist in Gazebo
yet, can be a better alternative in developing controller algorithms. SimMechanics.
This platform also delivers more precise results. One can also generate his own
simulation environment using Rigid Body Dynamics algorithms [16] and define

custom friction models.

In simulations, it is observed that the controller frequency dramatically effects the
control performance. Higher controller frequencies were stable for wider range of gain
sets and more robust to disturbances such as payloads carried by end effector of the
robot and yielded better performance in terms of integral absolute pose error. It is

concluded that a fast communication plays a critical role in maintaining high controller

57



frequencies in a real robotic system. While CAN Bus communication has been used in
industrial manipulators for a long time [17], EtherCAT network communication
provides data rates higher than 100 Mbits/s [18] and is currently used in robot
platforms such as KUKA youBot [19] and Justin Robot [20]. This communication
network technology can be implemented on ITECH robot.

With integration of a force/torque sensor on the wrist of the robot, mass of the payload
can be estimated and the inverse dynamics control law can be updated for this
additional mass. As ITECH is planned to be a humanoid manipulator, control
architectures such as impedance control can be implemented for better human-robot
interaction.

58



REFERENCES

[1] J.S.Luh, M. W. Walker and R. P. C. Paul, “On-Line Computational Scheme
for,” Journal of Dynamic Systems, Measurement, and Control , 1980.

[2] R. Tedrake, «Underactuated Robotics,» 2016. [Cevrimigi]. Available:
http://underactuated.csail.mit.edu/underactuated.html?chapter=26. [Erisildi: 15
11 2016].

[3] S.Ivaldi,J. Peters, V. Padois ve F. Nori, «Tools for simulating humanoid robot

dynamics: a survey,» IEEE-RAS International Conference on Humanoid
Robots , 2014.

[4] «Features: Coppelia Robotics,» Coppelia Robotics, [Cevrimigi]. Available:
http://www.coppeliarobotics.com/features.html. [Erisildi: 20 11 2016].

[5] O.Kaya, «INSANSI ROBOT KOLUNUN OPT'IMIZASYONU VE
DINAMIK ANALIZIL,» Istanbul Technical University, Institute of Science,
2015.

[6] D. Thomas, «ROS Documentation,» Open Source Robotics Foundation, 2014.
[Cevrimigi]. Available: http://wiki.ros.org/ROS/Introduction. [Erisildi: 2016].

[7] B. Siciliano, L. Sciavicco, L. Villani ve G. Oriolo, Robotics: Modeling,
Planning and Control, Springer, 2009.

[8] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel
Manipulators, Wiley, 1999.

[9] M. W. Spong, S. Hutchinson ve M. Vidyasagar, Robot Modeling and Control,
John Wiley & Sons, 2006.

[10] S. Chiaverini, B. Sicilliano ve O. Egeland, «Review of the damped least-
squares inverse kinematics with experiments on an industrial robot
manipulator,» IEEE Transactions on Control Systems Technology , cilt 2, no. 2,
Jun 1994.

[11] «ROS Documentation,» Willow Garage, [Cevrimigi]. Available:
http://wiki.ros.org/ROS/Introduction. [Erisildi: 22 11 2016].

[12] J. M. O’Kane, A Gentle Introduction to ROS, Jason Matthew O’Kane, 2016.

[13] Gazebosim, «New Feature Highlight: Multiple Physics Engines,» Open Source
Robotics Foundation, 2014. [Cevrimigi]. Available:
http://gazebosim.org/blog/feature physics. [Erisildi: 25 9 2016].

[14] D. Coleman, «Tutorials:Ros Control,» Gazebosim, 2013. [Cevrimigi].
Available: http://gazebosim.org/tutorials/?tut=ros_control.

[15] W. Khalil ve E. Dombre, Modeling, Identification and Control of Robots,
Elsevier, 2004.

[16] R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 2014.

59



[17] KUKA, «kKUKA Robotics,» KUKA Robotics, 2000. [Cevrimigi]. Available:
http://www.kuka-
robotics.com/en/pressevents/productnews/print/NP_000508 _Truetzschler.htm.
[Erisildi: 5 10 2016].

[18] EtherCAT, «Ethercat,» EtherCAT, [Cevrimigi]. Available: EtherCAT.
[Erisildi: 6 10 2016].

[19] KUKA, «kKUKA Healthcare,» KUKA Robotics, [Cevrimigi]. Available:
http://www.kuka-healthcare.com/NR/rdonlyres/4833867A-D24F-410A-9AE4-
300FBF671DFD/0/youBot_datenblatt web 0514.pdf. [Erisildi: 5 10 2016].

[20] PC-Control, «ethercat,» DLR, 2010. [Cevrimigi]. Available:
https://www.ethercat.org/download/documents/pcc_0210 dlr_e.pdf. [Erisildi: 8
10 2016].

60



APPENDICES

APPENDIX A: Geometric properties of Itech Arm
APPENDIX B: Mass properties of Itech Arm
APPENDIX C: Itech Arm Software Library classes and functions

61



APPENDIX A

The length of links (m):

Base: 0.16496

Arm: 0.219

Forearm: 0.213

Hand: 0.21718

In this thesis, Robotig 2-Finger Adaptive Gripper is used as hand. The properties
would change once an end effector is determined and mounted. The transformation
matrices of the robot are generated inside the kinematics algorithm of ITECH Arm,

using D-H parameters.

62



APPENDIX B

Masses of the links (kg):

Mass 1: 1.7621
Mass 2: 1.3727
Mass 3: 1.2878
Mass 4. 1.2701
Mass 5: 1.2878
Mass 6: 0.5465

Link centre of mass vectors for the corresponding link coordinate frames (mm):

CoM = [CoM, CoM, CoM,]

CoM; =[0.00 12.20 0.30]
CoM, =[0.37 —-2.26 84.80]
CoM; = [-0.40 897 —2.26]
CoM, =[0.35 3.40 83.38]
CoMs = [0.40 8.97 2.26]

[

CoMg = [-154.06 0.0 —7.36]

Link inertia matrices for the corresponding link coordinate frames (gr.mm?)

Lyx Ixy Ly,

3525915 444 34
I = 444 2019491 4861
34 —48461 3776165
3924797 4315 —1241

I, =] 4315 3371160 274684
| —1241 274684 1643140

1964360 4451 14951 ]
I3 =] 4451 1316183 8007
| 14951 8007 16953631

3305476  —9407 —3142
I, = —9407 2824665 —361337
| —3142 —361337 1478336

63



(1964360
—4451
| 14951

810649
68

1274614

—4451
1316183
—8007

68
2392078
22

14951
—8007

1695363

274614
22
2015807

|

|

64



APPENDIX C
Itech Arm kinematic functions library

Functions:

get_rotation (rotation vector, angle):

Arguments: A unit vector and an angle

Returns: A 3x3 rotation matrix with the unit vector rotated by the angle
transformation_to_pose (Transformation):

Arguments: 4x4 transformation matrix

Returns: 6x1 pose of the robot

Itech Arm kinematics and dynamics library

Classes:
Link (self, DH, r_centre_of mass, mass, inertia):
Link class arguments: Denavit-Hartenberg parameters, vector of centre of mass, link
mass, inertia matrix
Link class functions:
rotation (self):
Returns: 3x3 rotation matrix of the link for corresponding angle attribute of
link object
inverse_rotation(self):
Returns: 3x3 inverse rotation matrix of the link for corresponding angle and
D-H attributes of the link object
A(self):
Returns: 4x4 transformation matrix of the link for corresponding angle and D-
H attributes of the link object
z_axis(self):
Returns: 3x1 z vector of the link for corresponding D-H attribute of the link

object

65



Robot(self, links):

Robot class arguments: Link objects generated from Link class
Robot class functions:
get_forward_geometry(self):
Returns: 4x4 transformation matrix of the robot
get_pose_vector(self):
Returns: 6x1 pose vector of the robot
get_orientation_T (self):
Returns: 3x3 orientation velocity to task space angular velocity
transformation matrix
get_orientation_T(self):
Returns: 3x3 derivative of orientation velocity to task space angular velocity
transformation matrix
get_jacobian(self):
Returns: The 6xn Jacobian matrix of the robot
get_torques(self):
Returns: The array of torques of the robot from the corresponding joint
positions, velocities and accelerations attributes
get_controller_torques(self, control signal):
Arguments: control signal for the inverse dynamics controller
Returns: The array of torques of the robot from the corresponding joint
positions, velocities attributes and the control signal
get_jacobian_derivative(self):

Returns: The numerical Jacobian derivative of the robot

66



CURRICULUM VITAE

Name-Surname :Oguzhan Cebe

Date and Place of Birth ~ :24.07.1992, iZMIR TURKEY

E-Mail : oguzhancebe@gmail.com

EDUCATION:

« B.Sc. : 2014, Izmir Institute of Technology, Faculty of Engineering,

Mechanical Engineering

EXPERIENCES
e 2015-2016, Robotics and Control Engineer at BAC Engineering, Machinery and
Automation

PUBLICATIONS

e Aykut Beke, Mustafa Saraoglu, Glrtag Kadem, Oguzhan Cebe, Ramazan Gokay, Volkan
Sezer “Vehicle Platoon Control: Consensus Based Approach” Turkey Automatic Control
National Committee, 2016

67


oguzhancebe@gmail.com

