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INVERSE DYNAMICS CONTROL OF A HUMANOID ROBOT ARM 

 

SUMMARY 

 

Nowadays, humanoid robot technology is studied extensively around the world. These 

humanoid robots can reach the places that wheeled robots cannot and can perform 

complicated tasks with their two arm manipulators. 

 

Experimental studies are being conducted for humanoid robots. Interacting with 

environment, cooperation with humans and executing human-like motions for various 

tasks are the key objectives of these studies. 

 

Control of the manipulators of humanoid robots require a dynamic model based control 

for fast movement cases. As the manipulator is supposed to move in a cluttered 

environment, task space control inverse dynamics control is a suitable control policy 

for this scenario, where the motion of the end-effector can be predicted during the 

execution of the desired trajectory. 

 

The humanoid robots consist of a high number of actuators and sensors. To control the 

robot, sensor processing, motion planning and actuator control need to be done 

simultaneously. Thus, the software of these robots consist of multi-processes and 

scheduling to handle this problem. 

 

ROS (Robot Operating System) is an open-source operating system that has software 

libraries and tools for such robotic applications. It offers both simulator and hardware 

interface, alongside state-of-art algorithms. A software that runs on ROS consists of 

multiple processes called ‘nodes’. Each node handles a different task, runs at a 

specified frequency and communicate with each other. This architecture eases the 

programming and enables use of open-source libraries in separate nodes in a plug-and-

play way. 

 

Gazebo is an open-source dynamic simulation environment that enables the simulation 

of many type of robots such as full body humanoids with various sensors and 

environment interaction. Gazebo has interface with several platforms, including ROS 

and it offers several dynamic engines and number of transmissions, but not all of them 

are supported by ROS at the moment. 

 

ITECH Arm is a six degrees of freedom humanoid robot arm built in Mechanical 

Engineering Automatic Control Laboratory of İstanbul Technical University. The 

purpose of this thesis is creating a generic kinematics and dynamics library for the 

Automatic Control Laboratory, writing the software packages using this library for the 

ROS integration of the robot arm and finally implementing task space inverse 

dynamics control of ITECH Arm in Gazebo simulation environment.  
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This thesis consists of six chapters. In the first chapter, purpose of the thesis, literature 

review and mechanical-software properties of ITECH Arm manipulator will be 

mentioned. 

In second chapter, kinematic and dynamic modelling of a robot manipulator is 

presented. The geometric, kinematic and dynamic models of ITECH Arm manipulator 

are derived. 

 

In chapter three, Robot Operating System is introduced. The software architecture and 

capabilities of ROS are mentioned. Integration steps of ITECH Arm to ROS 

environment and interfacing ROS and Gazebo simulation environment are described. 

 

In fourth chapter, trajectory generation for robot manipulators is mentioned. Several 

robot control methods are discussed. Implementation of task space trajectory tracking 

with inverse dynamics control algorithm on ITECH Arm is described. 

 

In chapter five, simulation results of circular trajectory for with and without payload 

cases using various gain sets and controller frequencies are presented. Also, as an 

example task, a pick and place scenario results are appended. The simulation results 

are discussed. 

 

In sixth and the last chapter, all the work done in the thesis is summarized and 

suggestions for future works are presented. 
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İNSANSI ROBOT KOLUNUN TERS DİNAMİK İLE KONTROLÜ 

 

ÖZET 

 

Günümüzde insansı robot teknolojisi dünyada yaygın olarak çalışılmaktadır. Bu 

insansı robotlar tekerlekli robotların ulaşamayacağı yerlere ulaşabilmekte ve iki kolları 

ile karmaşık görevleri yerine getirebilmektedir. Bu özellikleri, onları arama kurtarma 

ve insanlarla birlikte çalışma gibi senaryolarda vazgeçilmez kılar. 

 

İnsansı robotlar ile ilgili kapsamlı deneysel çalışmalar yapılmaktadır. Çevre ile 

etkileşime girmek, insanlarla iş birliği ve insansı hareketler yapmak, bu çalışmaların 

ana hedeflerindendir. 

 

Uzuv kontrolü, robota hızlı harekete imkan sağlamak için dinamik model tabanlı bir 

kontrol gerektirmektedir. Kol, engeller içeren bir çevrede çalışacağı için görev 

uzayında ters dinamik kontrol, bu senaryo için uygun görülmüştür. Ters dinamik 

kontrolünde, kontrol sinyali olarak robotun karar verilmiş ivmesi kullanılır. Bu ivme, 

ters dinamik modeline beslenerek eklemler için gereken kuvvetler bulunur. Görev 

uzayında yörünge takibinde hatalar, yine kartezyen koordinat sisteminde tanımlanır. 

Bu sayede eyleyicideki toplam hata, eklem uzayındaki kontrole göre daha düşük olur. 

Ayrıca bu yöntemde uç eyleyicinin yörünge boyunca hareketi tahmin edilebilmektedir, 

böylece engeller içeren çevrede hareket planlaması kolaylaşır. Görev uzayında yapılan 

bu kontrolde ters kinematik hesaplanması için sözde ters jakobiyen kullanılmıştır. 

 

İnsansı robotlar bir çok eyleyici ve sensörden oluşur. Robotu kontrol etmek için aynı 

anda sensor bilgilerini değerlendirmek, hareketi planlamak ve eyleyicileri denetlemek 

gerekmektedir. Bu yüzden bu robotların yazılımlarında çoklu işlemler ve 

zamanlayıcılar kullanılır. 

 

ROS (Robot İşletim Sistemi), bahsedilen uygulamalarda kullanılabilecek kütüphane 

ve araçları barındıran bir açık kaynaklı işletim sistemidir. Simulasyon ve donanım 

arayüzünün yanında gelişmiş algoritmalar sunar. ROS üzerinde koşan bir yazılım, nod 

adı verilen bir çok işlemden oluşur. Her bir nod, belirli frekanslarda farklı görevleri 

yerine getirir ve diğer nodlarla iletişime geçer. Bu yapı programlamayı kolaylaştırır ve 

açık kaynak kütüphaneleri nod olarak eklenmesini sağlayarak sisteme hızlı kuruylan 

modüler bir yapı kazandırır. ROS, şimdiden bir çok endüstriyel ve enstitü robotunu 

desteklemekte ve artık robotikte bir standart olarak görülmektedir. Yazılımında C++ 

ve Python kullanılabilmekte ve bu iki dilde yazılan kod parçaları, aynı anda birbiriyle 

haberleşerek koşabilmektedir. 

 

Gazebo, dört pervaneli helikopter, manipülatör, sürü robotiği ve tam-vücut insansı 

robotlar gibi bir çok robotu, çeşitli sensörler ve çevresel etkileşimle birlikte simüle 

edebilen bir açık kaynaklı dinamik simülasyon ortamıdır. Gazebo, ROS da dahil olmak 

üzere çeşitli platformlarla arayüze sahiptir. İçinde çok sayıda eklenebilir obje 

barındırır ve SDF formatında hazırlanan bütün objeler eklenebilir. Gerekli eklenti 
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programları kullanılarak, ROS’un desteklediği URDF formatını SDF’ye çevirerek 

çalıştırabilir. Henüz ROS ortamında desteklenmese de birden fazla dinamik motoru ve 

aktarım elemanı sunar. 

 

ITECH Kolu, İstanbul Teknik Üniversitesi Makina Mühendisliği Otomatik Kontrol 

Laboratuarı’nda üretilmiş altı serbestlik dereceli bir insansı robot koludur. Robot, 

Maxon firmasına ait fırçasız doğru akım motorlarla tahrik edilmekte ve aktarım 

elemanı olarak harmonik dişliler kullanılmaktadır. Bu tezin amacı, Otomatik Kontrol 

laboratuarı için kapsamlı bir kinematik ve dinamik kütüphanesi yaratmak, bu 

kütüphanenin ROS ile kullanılabilmesi için gerekli yazılım paketlerini yasmak ve 

sonunda ITECH kolunun görev uzayında ters dinamik kontrolünü Gazebo simulasyon 

ortamında uygulamaktır. 

 

Bu tez altı bölümden oluşmaktadır. İlk bölümde tezin amacı, literatür taraması ve 

ITECH Robot Kolu’nun koşacağı işletim sistemi, motor güç ve limitleri, aktarım 

elemanları gibi mekanik-yazılımsal özelliklerinden bahsedilmiştir. 

 

İkinci bölümde bir robot kolun geometrik, kinematik ve dinamik modellenmesi 

anlatılmıştır. Seçilen mevcut kinematik ve dinamik çözümlerin, alternatiflerine göre 

yapılan işlem sayısı bakımından üstünlüklerinden bahsedilmiştir. ITECH Robot 

Kolu’nun geometrik, kinematik ve dinamik modeli türetilmiştir. 

 

Üçüncü bölümde Robot İşletim Sistemi tanıtılmıştır. ROS’un yazılım mimarisinden 

ve imkanlarından bahsedilmiştir. ROS’un ve Gazebo’nun neden tercih edildiği ve 

ilerideki çalışmalarda, bu çalışmada hazırlanan yazılımların gerçek robotta nasıl 

kullanılabileceği anlatılmıştur. ITECH Kolu’nun ROS ortamına entegrasyonu ve ROS 

ile Gazebo dinamik simulasyon ortamının arayüzünün oluşturulma basamakları tarif 

edilmiştir. 

 

Dördüncü bölümde robot kollarında yörünge oluşturulmasından ve bu yörüngeye ait 

zamanlama fonksiyonlarından bahsedilmiştir. Robot kollarının kontrol metodları 

tartışılmıştır. Merkezi olmayan ve merkezi kontrol algoritmalarına değinilmiştir. 

Görev uzayında yörünge takibi ve ITECH Kolu’nda ters dinamik kontrol 

algoritmasının uygulanması anlatılmıştır. 

 

Beşinci bölümde noktadan noktaya ve çember yörüngeye ait yüklü ve yüksüz 

durumlarda, çeşitli kazanç ve kontrolcü frekanslarında simülasyon sonuçları 

verilmiştir. Kontrolcünün performansını test etmek amacıyla bu simulasyonlar 1m/s 

hızında yapılmıştır. Yüklü durumda robot yükten habersiz olduğu ve bu ek kütle 

modele dahil edilmediği için sisteme bir bozucu olarak etki etmiştir.Ayrıca örnek bir 

görev olarak al-yerleştir senaryosu sonuçları eklenmiştir. Simülasyon sonuçları 

irdelenmiştir. 

 

Altıncı ve son bölümde tez boyunca yapılan çalışmalar özetlenmiştir. İleride dinamik 

algoritmaların geliştirilmesi için simulasyon ortamı seçimi ve gerçek robot üzerinde 

yapılacak çalışmalarda kullanılabilecek haberleşme teknolojileri için tavsiyelerde 

bulunulmuştur. 

 

Ekler bölümünde robotun geometrik ve kütle özelliklerinin yanı sıra, bu tez için 

yazılan nesne tabanlı Python kütüphanesinin sınıfları ve bu sınıflara ait fonksiyonların 



xxiii 

 

kullanımı verilmiştir. Bu kütüphane, bütün tek zincir seri robot kollarına uygun olduğu 

için ITECH Kolu’nda yapılacak serbestlik derecesi, eksen değişikliği gibi mekanik 

değişimler, birkaç satır kod ile bu tezdeki kodu kullanarak yeni robot koluna 

uygulanabilir. Ayrıca, tezde sözde ters jakobiyen yöntemi ile ters kinematik 

kullanıldığı için, serbestlik derecesi altıdan farklı olan robot kolları da bu kütüphaneyle 

yaratılacak kodla kontrol edilebilir. İnsan kolu gibi serbestlik derecesi altıdan büyük 

robotlar için fazlalık çözünürlüğünün eklenmesi gerekmektedir. 
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1. INTRODUCTION 

Robotics is a multidisciplinary field of study based on electronic, control, mechanical 

and computer engineering and it requires a good understanding of physics, 

mathematics and control theory to study on problems of robotics. 

 

Robots exist in many forms, such as unmanned vehicles, manipulators, humanoid 

robots. In this thesis, the arm of a humanoid robot is studied, which is a six degrees of 

freedom serial manipulator with non-spherical wrist. 

 

Human arm is actually consists of seven degrees of freedom revolute joint with 

spherical wrist, but many humanoid robots consist of six or less revolute joints which 

are capable of executing many daily tasks, with the sacrifice of redundancy in task 

space. The main concerns in humanoid robot arms is being capable of human-like 

motions, while ensuring the safety required for working with humans. 

 

Controlling a six degrees of serial manipulator generally requires model based 

approaches, where a mathematical representation of robot kinematics and dynamics 

are derived. The control algorithm is based on this kinematic and dynamic terms and 

defined task. 

1.1 Purpose of Thesis 

Purpose of this thesis is generating a control algorithm for ITECH Manipulator. A side 

task is making this algorithm generic by making it capable of controlling any n degrees 

of freedom serial manipulators. 

 

Execution of human-like tasks or assisting humans require working in clustered 

environments, thus, it is needed to define the motion in task space to predict the robot 

hand motion during whole trajectory. Considering the model of the robot, a proper 
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control algorithm has to be selected and applied to robot manipulator by taking hand 

motion and robot structure into consideration. 

 

1.2 Literature Review 

Control and simulation of robot manipulators has been studied for a long time. The 

simplest control algorithm is independent joint control, a decentralized control where 

each joint are controlled with a PID, without using the dynamic and kinematic model. 

In centralized control, PD Control with Gravity Compensation is the most basic form, 

where the control law includes nonlinear coupling terms. In this method, a linear PD 

feedback plus gravity compensation torques are used in the control law. In [1] a 

Newton-Euler formulation based computation is proposed. In this work, the inertial, 

coriolis and centrifugal forces and the resulting joint torques are computed efficiently 

online. 

 

The simulation of the robot manipulator is the first stage for controlling an actual robot. 

There are a number of robot simulators that simulates the robot and its environment 

by solving the related dynamic equations. MATLAB-Simulink is a well known 

platform for simulating dynamical systems and designing controllers. Powerful 

toolboxes for MATLAB exist,such as Drake, which is a layer built on top of the 

MATLAB-Simulink engine that allows the user to define structured dynamical system 

[2]. It provides a number of tools for analysis and controller design which take 

advantage of the system structure. A commonly used simulator is Gazebo, a multi-

robot simulator for outdoor environments. It supports multiple physics engines (ODE, 

Bullet, DART) and, thanks to its modular and plugin-based structure, can be extended 

with new features [3]. Another simulator is V-Rep, which has a development 

environment based on a distributed control architecture: each object/model can be 

individually controlled via an embedded script, a plugin, a ROS node, a remote API 

client [4].  

1.3 ITECH Humanoid Robot Manipulator 

ITECH is a humanoid robot manipulator designed and constructed in System 

Dynamics and Control Laboratory of Istanbul Technical University Mechanical 
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Engineering faculty. It consists of six brushless DC Maxon motors, harmonic drives 

and an aluminium-steel body. A view of ITECH Arm is given in (Figure 1.1). 

 

Figure 1.1: ITECH Humanoid Robot Manipulator 

1.3.1 Mechanical Properties 

The mechanical properties of ITECH Arm manipulator are given in Table 1.1 [5]. 

 

 

 

 

Table 1.1: Mechanical Properties of ITECH Humanoid Manipulator 

joint Motor Harmonic 

Drive 

Torque 

(Nm) 

Range(rad) 

1 EC90 CPL-20 71.3 - π ..+ π 

2 EC90 CPL-20 71.3 - 2π/3 ..+ 2π/3 

3 EC60 CPL-17 34.8 - 2π/3 ..+ 2π/3 

4 EC60 CPL-17 34.8 - π ..+ π 

5 EC60 CPL-17 34.8 - 2π/3 ..+ 2π/3 

6 EC60 CPL-17 34.8 - π ..+ π 
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The actuation properties of ITECH Arm manipulator are given in table Table 1.2 [5]. 

 

Table 1.2: Actuation properties of ITECH Humanoid Manipulator 

Specifications EC90 EC60 

Power 90 Watt 100 Watt 

Voltage 24V 24V 

Moment 444 mNm 283 mNm 

Max Velocity 5000 rpm 6000 rpm 

Mass 0.61 kg 0.48 kg 

Encoder 1024
𝐴𝑡𝛽𝑚

𝑁
 1024

𝐴𝑡𝛽𝑚

𝑁
 

 

 

1.3.2 Software Properties 

ROS, an open-source, meta-operating system for robots, is the platform planned to 

control the humanoid robot. Thus, the controller design and simulations of the arm is 

developed in ROS environment and by using a 3rd party dynamic simulation 

environment, GAZEBO [6]. 
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2. MODELLING OF ROBOT 

Modelling of the robot generally consists of two parts; kinematic modelling and 

dynamic modelling. In kinematic modelling, the relationship between the joint 

positions, velocities, accelerations and link positions, velocities and accelerations are 

considered. In dynamic modelling, the relationship between the joint forces and robot 

motion is considered under internal and external forces. 

2.1 Geometric Model of Robot 

In geometric model, the robot link frames are computed with respect to the 

corresponding joint positions. In forward geometric model, the goal is computing the 

pose of the end effector from the joint positions of the robot, whereas in inverse 

geometric model, the joint positions of the robot is computed with respect to the 

corresponding end effector pose, which is not evaluated in this work due to the task 

space control laws. 

2.1.1 Forward geometric model of robot 

The serial manipulators, the links of the robot is connected to its adjacent links with one joint, 

which is the case in ITECH manipulator. In the notation used in this work, the base link is 

considered as Link 0 and fixed with respect to the world frame. The first joint, which connects 

Link 0 to Link 1 is Joint 1. Thus, the robot consists of n joints and n+1 links. In our case, 7 links 

and 6 joints. The last link is referred as ‘end effector’. 

 

In manipulators with single degree of freedom joints consist of prismatic and revolute 

joints. The joint variable in prismatic joints is linear displacement, while it is angular 

displacement in revolute joints. 

 

qi =
di for prismatic joints

θi for prismatic joints
 (2.1) 
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2.1.1.1 Link parameters and link coordinate systems 

In this section, we assign coordinate frames to each link. We are following the Denavit-

Hartenberg convention in this work. The joint and link vectors are given in (Figure 

2.1) [7]. The frame assignment is described below [8]: 

 The zi axis is aligned with the joint axis (i+1). The direction of rotation is arbitrary. 

 The xi- axis is defined along the common normal between the joint axis i and joint 

axis (i+1) and points from the joint axes i to the joint axis (i+1). In case the joint 

axes are parallel, the xi- axis can be chosen arbitrarily, while being perpendicular to 

the two joint axes. 

 The yi-axis is assigned by the right-hand rule. 

The assignment of coordinate frames according to Denavit-Hartenberg convention is 

described below: 

1. As mentioned above, the base link is numbered as link 0 and the links are numbered 

from 0 to i+1 joints. The first joint is numbered as joint 1 and joint i connects link i to 

link i+1. 

2. The common normal are drawn between the adjacent joint axes. 

3. The base coordinate system is assigned in such a way that z0-axis is aligned with 

the first joint axis. The x0-axis is perpendicular to z0-axis. 

4. The last coordinate system is assigned in such a way that its x-axis is perpendicular 

to last joint axis. 

5. The assignment of coordinate frames are described below: 

 The zi-axis is aligned with the joint axis (i+1) 

 The xi-axis is assigned along the common normal between the joint axis i and 

joint axis (i+1). In case of parallel joint axes, the xi-axis is chosen arbitrarily 

while being perpendicular to the two joint axes. For intersecting joint axes, xi-

axis can be assigned arbitrarily while being the cross product of vectors zi and 

zi+1. 

 

6. The link parameters and joint variables ai, αi, θi and di are determined. 
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Figure 2.1: Denavit-Hartenberg kinematic parameters  

 

2.1.1.2 Denativ-Hartenberg Transformation Matrices 

The coordinate frames assigned in the previous chapter are used to generate the 

Denavit-Hartenberg transformation matrices. The parameters of denavit-hartenberg is 

described below [8]: 

1. The coordinate system (i+1) is translated along the zi-1 along di distance in order to 

coincide origin of this coordinate system with zi-1 axis. 

2. The translated coordinate system is rotated about the zi-1 for θi angle in order to 

align the axis xi and xi-1. 

3. The rotated coordinate system is translated along xi-axis for ai distance in order to 

coincide the origin of coordinate system (i-1) with coordinate system i. 

4. The translated coordinate system is rotated about the xi-axis for αi angle in order to 

coincide the two coordinate systems. 

The homogenous transformation matrices corresponding to the transformations and 

rotations given above are: 
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A(z, d) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] (2.2) 

 

A(z, θ) = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

] (2.3) 

 

A(x, a) = [

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

] (2.4) 

 

A(x, 𝛼) = [

1 0 0 0
0 𝑐𝛼𝑖 −𝑠𝛼𝑖 0
0 𝑠𝛼𝑖 𝑐𝛼𝑖 0
0 0 0 1

] (2.5) 

 

The resulting transformation is calculated from the products of the given 

homogenous transformation matrices. 

 

𝐴𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

] (2.6) 

 

Thus, the forward geometric model of the robot is 

 
𝐴𝑛
0 = 𝐴1

0 𝐴2
1 … 𝐴𝑛

𝑛−1  (2.7) 

The 𝐴𝑛
0  matrix represents the position and orientation of the manipulator. 

 

𝐴𝑛
0 = [

    
 𝑅(𝑞)𝑛

0  𝑝(𝑞)𝑛
0

    
0 0 0 1

] (2.8) 

 



9 

 

The rotation matrix 𝑅𝑖
𝑖−1  is 

 

𝑅𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖

] (2.9) 

 

The translation vector is 𝑝𝑖
𝑖−1  is 

 

𝑝𝑖
𝑖−1 = [

𝑎𝑖𝑐𝜃𝑖
𝑎𝑖𝑠𝜃𝑖
𝑑𝑖

] (2.10) 

2.1.2 Position and orientation of manipulator 

Position analysis of the manipulator is straightforward as it is represented directly as 

Cartesian coordinates in the robot transformation matrix 𝐴𝑛
0 . 

[
𝑥
𝑦
𝑧
] = 𝑝(𝑞)𝑛

0  

In order to get [3x1] orientation from the rotation matrix 𝑅(𝑞)𝑛
0  of the robot 

transformation matrix 𝐴𝑛
0 , different representations exist. 

2.1.2.1 Euler Angles 

In Euler Angles representation, the rotation of a rigid body is expressed at three 

successive rotations by angles ϕ, θ and ψ. There are 24 different sets of Euler Angles. 

ZYZ representation is given in (Figure 2.2) [9]. For this representation,   

 

 

Figure 2.2: ZXZ Euler Angles Representation 
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The rotation sequence is as follows: 

1. Rotation by an angle ϕ  in z axis 

2. Rotation by an angle 𝜗 in y axis 

3. Rotation by an angle ψ in z axis 

 

The rotation matrices of rotations in each axis are 

 

 

R(z, 𝜙) = [
𝑐𝜙 −𝑠𝜙 0
𝑠𝜙 𝑐𝜙 0
0 0 1

] (2.11) 

 

 

R(y, 𝜗) = [
𝑐𝜗 0 𝑠𝜗
0 1 0
−𝑠𝜗 0 𝑐𝜗

] (2.12) 

 

 

 

R(z, 𝜓) = [
𝑐𝜑 −𝑠𝜑 0
𝑠𝜑 𝑐𝜑 0
0 0 0

] (2.13) 

 

 𝑅 = R(z, 𝜙)R(y, 𝜗)𝑅(𝑧, 𝜓)

= [

𝑐𝜙𝑐𝜗𝑠𝜓 − 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜗𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜗
𝑠𝜙𝑐𝜗𝑐𝜓 + 𝑐𝜙𝑠𝜓 −𝑠𝜙𝑐𝜗𝑐𝜓 + 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜗

−𝑠𝜗𝑐𝜓 𝑠𝜗𝑠𝜓 𝑐𝜗
] 

 

(2.14) 

 

 

𝜗 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑅33, √1 − 𝑅232) 

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅13, 𝑅23) 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑅31, 𝑅32) 

(2.15) 
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2.1.2.2 Angle Axis 

In angle axis representation, the orientation is expressed as a rotation of a given angle 

about a unit vector. 

Given the unit vector r and angle ϑ, the rotation matrix is 

R(ϑ, r) = 

 

= [

𝑟𝑥
2(1 − 𝑐ϑ) + 𝑐ϑ 𝑟𝑥𝑟𝑦(1 − 𝑐ϑ) − 𝑟𝑧𝑠ϑ 𝑟𝑥𝑟𝑧(1 − 𝑐ϑ) + 𝑟𝑦𝑠ϑ

𝑟𝑥𝑟𝑦(1 − 𝑐ϑ) + 𝑟𝑧𝑠ϑ 𝑟𝑦
2(1 − 𝑐ϑ) + 𝑐ϑ 𝑟𝑦𝑟𝑧(1 − 𝑐ϑ) − 𝑟𝑥𝑠ϑ

𝑟𝑥𝑟𝑧(1 − 𝑐ϑ) − 𝑟𝑦𝑠ϑ 𝑟𝑦𝑟𝑧(1 − 𝑐ϑ) + 𝑟𝑥𝑠ϑ 𝑟𝑦
2(1 − 𝑐ϑ) + 𝑐ϑ

] (2.16) 

 

2.2 Kinematic Model of Robot 

Kinematic model of a robot is the mapping between the joint space velocities and task 

space velocities. The matrix used in mapping the joint velocities to Cartesian velocities 

is Jacobian matrix. For the inverse kinematics, several methods are discussed in the 

following chapter. 

2.2.1 Forward kinematic model of robot 

In forward kinematics, the goal is to derive the relationship between the joint velocities 

and end-effector linear and angular velocities. The linear and angular velocity of the 

end-effector is given as 𝑝̇𝑒 and 𝜔̇𝑒 respectively. The joint velocities are 𝑞̇ [7]. 

 
𝑝̇𝑒 = 𝐽𝑃(𝑞)𝑞̇ (2.17) 

 
𝜔𝑒 = 𝐽𝑂(𝑞)𝑞̇ (2.18) 

In (2.17), matrix 𝐽𝑃 is the mapping of joint velocities 𝑞̇ to linear velocities of the end-

effector, 𝑝̇𝑒 and is a (3 x n) matrix. In (2.18), matrix 𝐽𝑂 is the mapping of joint velocities 

𝑞̇ to angular velocities of the end-effector, 𝜔̇𝑒 and (3 x n) matrix. In manipulator 

control, the Jacobian and task space velocities are written in a compact form: 

 

𝑣𝑒 = [
𝑝̇𝑒
𝜔𝑒
] = 𝐽(𝑞)𝑞̇ (2.19) 
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The Jacobian is a (6 x n) matrix and in our case, it is a (6 x 6) matrix. 

 

J = [
𝐽𝑃
𝐽𝑂
] (2.20) 

The geometric properties of Link i are given in Figure 2.3 [7]. 

 

Figure 2.3: Link i of a manipulator 

 

2.2.1.1 Geometric Jacobian 

The angular and linear velocities of the links actuated by revolute joints are given 

respectively [7]: 

 
𝜔𝑖 = 𝜔𝑖−1,𝑖 𝑥 𝑟𝑖−1,𝑖 (2.21) 

And 

 
𝑝̇𝑖 = 𝑝̇𝑖−1 + 𝜔𝑖 𝑥 𝑟𝑖−1,𝑖 (2.22) 

Using the equations (2.21) and (2.22), the Jacobian is derived as 

 

 
𝐽𝑃𝑖 = 𝑧𝑖−1 𝑥 (𝑝𝑒 − 𝑝𝑖−1) (2.23) 
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And 

 

 
𝐽𝑂𝑖 = 𝑧𝑖−1  (2.24) 

Thus, the Jacobian matrix of the manipulator is 

 

J = [

𝐽𝑃1  𝐽𝑃𝑛
 …  
𝐽𝑂1  𝐽𝑂𝑛

] (2.25) 

The 𝑧𝑖−1 term is the third column of the rotation matrix 𝑅𝑖
𝑖−1 . 

2.2.1.2 Analytic Jacobian 

Alternatively Jacobian can be generated by using differentiation. Given the forward 

geometry 

 

k(q) = [
𝑝𝑒
𝜙] (2.26) 

 

 

Where 𝜙 is the set of Euler angles.  

 

𝑥̇𝑒 = [
𝑝̇𝑒
𝜙̇
] = [

𝐽𝑃(𝑞)
𝐽𝜙(𝑞)

] q̇ = 𝐽𝐴(𝑞)q̇ (2.27) 

By differentiating the forward geometry with respect to the joint variables 

 

𝐽𝐴(𝑞) =
𝜕k(q)

𝜕𝑞
 (2.28) 

 

 

Note that this analytical Jacobian is a symbolic representation that includes 

trigonometric functions and multiplications. As analytic Jacobian maps the joint 

velocities to orientation velocity 𝜙̇ in terms Euler angle set given in (2.1.2.1), a 

transformation is required between angular velocity ω and 𝜙̇.  
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ω = T(𝜙)𝜙̇ (2.29) 

 

The transformation for XYZ Euler angles representation is 

 

T = [
1 0 𝑠𝜗
0 𝑐𝜙 −𝑠𝜙𝑐𝜗
0 𝑠𝜙 𝑐𝜙𝑠𝜗

] (2.30) 

 

 

The relationship between geometric and analytic Jacobian is 

 

𝑇𝐴(𝜙) = [
𝐼 0
0 T(𝜙)

] (2.31) 

 

 
J = 𝑇𝐴(𝜙)𝐽𝐴 (2.32) 

 

2.2.2 Inverse kinematic model of robot 

Inverse kinematics of a robot represents the relationship between the task space 

velocities and joint space velocities. A few different methods exist to compute the 

inverse kinematics of the manipulator. 

2.2.2.1 Inverse Jacobian 

In this method, the inverse of the Jacobian is computed directly and the relationship is 

as follows 

 

 
𝜃̇ = 𝐽−1𝑝̇𝑒 (2.33) 

 

As the robot approaches kinematic singularity, the determinant of the Jacobian 

approaches to zero and when kinematic singularity is reached, the determinant 
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becomes zero as the Jacobian matrix loses a rank. Thus, this situation yields infinite 

joint velocities. Several methods exist to handle this problem. 

2.2.2.2 Pseudo inverse 

This method uses the least-square approximation to solve the non-invertible Jacobian 

matrix problem. This method enables the use of inverse Jacobian in redundant 

manipulators. The velocities are calculated as 

 

 
𝜃̇ = 𝐽𝑇(𝐽𝐽𝑇)−1𝑝̇𝑒 (2.34) 

 

The matrix (𝐽𝐽𝑇)−1 is guaranteed to be invertible, yet this method performs poorly in 

the neighbourhood of singular configurations. 

2.2.2.3 Damped least squares 

In damped least-squares method, a damping coefficient λ is introduced to the pseudo-

inverse method. 

 
𝜃̇ = 𝐽𝑇(𝐽𝐽𝑇 + λ2𝐼)−1𝑝̇𝑒 (2.35) 

 

Several methods exist to optimize the damping coefficient λ during the manipulation 

[10]. 

2.2.2.4 Jacobian transpose 

Given the task space error pe, joint variables q and gain K, the error term in the equation 

 
𝑞̇ = 𝐽𝑇𝐾𝑝𝑒 (2.36) 

converges to zero. 
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2.3 Dynamic Model of Robot 

The dynamic model of a robot is crucial in design and motion control of the robot as 

the required joint torques must be calculated for the execution of motion. 

The dynamic model of a robot manipulator is in the form of 

 
B(q)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝜏 (2.37) 

 

where B(q) is the Mass Matrix and represents the inertial forces, 𝐶(𝑞, 𝑞̇) represents 

the Coriolis and Centrifugal forces and 𝑔(𝑞) represents the gravitational forces. 

2.3.1 Euler-Lagrange dynamics 

The Lagrange dynamics uses the energy equations of the robot and is independent of 

the coordinate frame. 

Lagrangian of the manipulator is  

 
L = K − P (2.38) 

where K is the kinetic and P is the potential energy. 

The Lagrange equations are derived as 

 
d

dt

𝜕𝐿

𝜕𝑞̇𝑖
−
𝜕𝐿

𝜕𝑞𝑖
= 𝜏𝑖 (2.39) 

 

2.3.2 Newton-Euler dynamics 

The Newton-Euler dynamics is a recursive algorithm that is based on the balance of 

forces in each link of the manipulator. The vectors used in this algorithm are given in 

(Figure 2.4). In forward recursion, link velocities and accelerations are computed and 

in backward recursion, joint torques are computed [7]. 
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Figure 2.4: Force balance representation on Link i 

The recursive Newton-Euler algorithm is as follows 

 

Forward recursion: 

 
𝜔𝑖
𝑖 = 𝑅𝑖−1

𝑖 (𝜔𝑖−1
𝑖−1 + 𝜃̇𝑖𝑧) (2.40) 

 

 

 
𝜔̇𝑖
𝑖 = 𝑅𝑖−1

𝑖 (𝜔̇𝑖−1
𝑖−1 + 𝜃̈𝑖𝑧 + 𝜃̇𝑖𝜔𝑖−1

𝑖−1 x 𝑧) (2.41) 

 

 
𝑝̈𝑖
𝑖 = 𝑅𝑖−1

𝑖 𝑝̈𝑖−1
𝑖−1 + 𝜔̇𝑖

𝑖 x 𝑟𝑖−1,𝑖
𝑖 + 𝜔𝑖

𝑖 x (𝜔𝑖
𝑖 x 𝑟𝑖−1,𝑖

𝑖 )  (2.42) 

 

 
𝑝̈𝐶𝑖
𝑖 = 𝑝̈𝑖

𝑖 + 𝜔̇𝑖
𝑖 x 𝑟𝑖,𝐶𝑖

𝑖 + 𝜔𝑖
𝑖 𝑥 (𝜔𝑖

𝑖 x 𝑟𝑖,𝐶𝑖
𝑖 ) (2.43) 

Backward recursion: 

 

 
𝑓𝑖
𝑖 = 𝑅𝑖+1

𝑖 𝑓𝑖+1
𝑖+1 +𝑚𝑖𝑝̈𝐶𝑖

𝑖  (2.44) 

 

 
µ𝑖
𝑖 = −𝑓𝑖

𝑖  x (𝑟𝑖−1,𝑖
𝑖 + 𝑟𝑖,𝐶𝑖

𝑖 ) + 𝑅𝑖+1
𝑖 µ𝑖+1

𝑖+1 + (𝑅𝑖+1
𝑖 𝑓𝑖+1

𝑖+1 )x 𝑟𝑖,𝐶𝑖
𝑖 + 𝐼𝑖

𝑖𝜔̇𝑖
𝑖 (2.45) 
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+𝜔𝑖
𝑖 x (𝐼𝑖

𝑖𝜔̇𝑖
𝑖) 

 

 

τ𝑖 = µ𝑖
𝑖𝑇𝑅𝑖−1

𝑖 𝑧 (2.46) 

 

 

z = [
0
0
1
]  constant vector (2.47) 

 

 

𝑅𝑖−1
𝑖 = 𝑅𝑖

𝑖−1𝑇 (2.48) 

 

2.4 Modelling of ITECH Manipulator 

In order to generate the model of ITECH Manipulator, a generic object-oriented 

Python library is created. This created library takes the coordinate systems and inertial 

properties as input and generates the model of the robot and provides the necessary 

geometric, kinematic and dynamic functions. The code is capable of generating the 

kinematic and dynamic model of an n degree of freedom single chain manipulator. 

This code is then uploaded in a GitHub library as an open-source project. 

2.4.1 Geometric and kinematic model 

The coordinate frames and Denavit-Hartenberg parameters of ITECH Manipulator are 

assigned using the method described in (2.1.1.1). The coordinate frames are given in 

Figure 2.5 and the Denavit-Hartenberg parameters θi, αi, di and ai of ITECH 

Manipulator are given in Table 2.1. 
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Figure 2.5: Link coordinate systems of ITECH Manipulator 

 

 

Table 2.1: Denavit-Hartenberg Parameters of ITECH Manipulator 

joint ai(m) di(m) αi(rad) θi(rad) 

1 0 0.16496 -π/2 θ1 

2 0 0 π/2 θ2 + π/2 

3 0 0.219 -π/2 θ3 

4 0 0 π/2 θ4 

5 0 0.213 -π/2 θ5 

6 0.21718 0 0 θ6 - π/2 

 

The transformation matrices 𝐴1
0 , 𝐴2

1 , … , 𝐴6
5  and the robot transformation matrix 𝐴6

0  is 

generated using the formulations (2.6) and (2.7). 
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The Jacobian of the ITECH Manipulator is generated using the formulations given in 

(2.2.1). It should be noted that, the terms of Jacobian matrix consist of a large number 

of coupled elements. Thus, generating a numerical Jacobian using the equations (2.23) 

and (2.24) online is computationally much more efficient than generating a symbolic 

Jacobian. In this work, numerical Jacobian is used and computed online. 

2.4.2 Dynamic model 

The dynamic model of ITECH Manipulator is generated using the Recursive Newton-

Euler Algorithm described in 2.3.2. In order to include the gravitational forces, the 

base linear acceleration term 𝑝̈0
0 is defined as 

 

𝑝̈0
0 = [

−𝑔
0
0
] (2.49) 

where g is the acceleration of gravity. Other initial terms 𝜔0
0, 𝜔̇0

0 are taken as zero 

vectors. The end-point force and moment terms 𝑓𝑛
𝑛, µ𝑛

𝑛 can be selected as external 

forces. In this work, they are also taken as zero vectors. 

 

The inertial properties and link centre of gravity vectors are gathered from the 

SolidWorks model of the robot and given in the Appendix.
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3. ROS- ROBOT OPERATING SYSTEM 

3.1 General Structure of ROS 

ROS is an open-source, meta-operating system for robots. It provides the services you 

would expect from an operating system, including hardware abstraction, low-level 

device control, implementation of commonly-used functionality, message-passing 

between processes, and package management. It also provides tools and libraries for 

obtaining, building, writing, and running code across multiple computers [11]. 

 

3.1.1 Ros Nodes 

Nodes are the process that perform computation. Each ROS node is written using ROS 

client libraries such as roscpp and rospy. Using client library APIs, we can implement 

different types of communication methods in ROS nodes. In a robot, there will be 

many nodes to perform different kinds of tasks. Using the ROS communication 

methods, it can communicate with each other and exchange data. Ros node network 

allows to build simple processes rather than a large process with all functionality [12].  

3.1.2 Ros Topics 

Each message in ROS is transported using named buses called topics. When a node 

sends a message through a topic, then we can say the node is publishing a topic. When 

a node receives a message through a topic, then we can say that the node is subscribing 

to a topic. The publishing node and subscribing node are not aware of each other's 

existence. The production of information and consumption of it are decoupled. Each 

topic has a unique name, and any node can access this topic and send data through it 

as long as they have the right message type. 
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3.1.3 Ros Messages 

Nodes communicate with each other using messages. Messages are simply a data 

structure containing the typed field, which can hold a set of data and that can be sent 

to another node. ROS supports standard primitive types (Boolean, Integer, Float etc.) 

and user defined messages can be generated by using these standards. 

3.1.4 Ros Services 

The ROS services are a type request/response communication between ROS nodes. 

One node will send a request and wait until it gets a response from the other. The 

request/response communication is also using the ROS message description. 

3.2 Gazebo 

Gazebo is a 3D dynamic simulation environment that can simulate multiple robots 

simultaneously. Various types of sensors, including camera and LIDAR (Laser 

Scanning Range Finder) can be simulated in Gazebo. Current version of Gazebo uses 

Open Dynamics Engine (ODE) in its ROS compatible version, but its further versions, 

which are planned to be interfaced with ROS allow the use of Featherstone-based 

engines optimized for joint chains [13].  

3.2.1 URDF universal robot description format 

URDF is a package that contains XML specifications of a robot, sensors and actuators. 

Robot is defined as a child-parent relationship. Each joint has a parent and a child link 

and together they form the chain. ROS uses URDF as its robot description format. 

Major drawbacks of URDF is that it only supports open chain manipulators and does 

not include elastic joints.  

3.2.2 SDF simulation description format 

Similar to URDF, SDF is also an XML format used by Gazebo Simulator. URDF of a 

robot is converted to SDF by Gazebo for simulation. Though not used by ROS, it 

supports multiple robots, elastic joints, closed chain manipulators and can store the 

states of the robot. 
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3.3 Itech Arm Gazebo-Ros Interface 

The procedure of controlling Itech Arm with ROS in Gazebo Simulator is described 

in the following section. The work done can be directly applied to control the actual 

Itech Arm manipulator. 

3.3.1 Itech Arm description  

To generate a Gazebo-Ros interface, initially a robot description package needs to be 

created. This package consists of the URDF xml file and the robot meshes in STL 

format. This is a similar procedure to SimMechanics, where an xml file and STL mesh 

files are generated via SolidWorks export option.  

 

While URDF can be created by hand, using basic shapes known to this XML format, 

a more practical approach is using SolidWorks URDF exporter. 

 

The joint coordinate frames and rotation axes are specified in SolidWorks assembly 

according to the axes assigned in section (2.4.1) to export the Itech Arm robot to URDF 

format. However, in URDF, each joint coordinate frame represents its child link, while 

in D-H representation, the joint coordinate frames represent its parent link. Thus, for 

the controller algorithm, the link mass properties should be taken from the SolidWorks 

robot model using D-H coordinate frames. 

 

After exporting the assembly to URDF, the XML file needs to be modified by adding 

joint transmissions as Effort Joint Interface, provided by ros-control. These 

transmissions form an interface between the ROS controllers and the robot or the 

Gazebo simulator. The ROS controllers for Itech Arm are further explained in section 

(3.3.2). To communicate with Gazebo simulator, gazebo_ros_control plugin needs to 

be added to the URDF file. 
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3.3.2 Itech Arm control 

This control package includes a YAML format file that holds the controller types of 

the joint actuators and a launch file that spawns these controllers using the Controller 

Manager of ros-control package. These controllers publish torque commands to the 

robot via Joint Command Interface and the robot publishes its joint position, velocity 

and torque states to Joint State Interface. Effort controllers are used in Itech Arm, thus, 

torque commands are published to the Joint Command Interface. The input/output 

relationship between the URDF, robot controller, simulator and the actual robot is 

given in figure (Figure 3.1) [14]. 

 

 

Figure 3.1: Gazebo Ros Interface 

 

3.3.3 Itech Arm gazebo 

This package holds the world and launch files of the robot. Gazebo simulator 

environment is described in the world file, such as objects, light sources and camera 

pose. The launch file starts Gazebo, loads the URDF of the robot to the simulator, 

launches the robot control and starts nodes that contains the control algorithms, such 
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as inverse dynamics controller and robot trajectory. In Itech Arm, a seperate package 

is created to hold the algorithm nodes as Itech Arm command. The visual of the robot 

inside the Gazebo simulation environment is given in (Figure 3.2). 

 

 

Figure 3.2: Itech Arm in Gazebo simulation environment 

3.3.4 Itech Arm command 

Itech Arm command is a package created to hold the kinematics and dynamics library, 

the trajectory generator and the control algorithm node. The Itech Arm control 

algorithm node subscribes to Joint State Publisher topic. The joint position and 

velocity states of the robot taken from the Joint State Publisher are used in the inverse 

dynamics control algorithm. The outputs of the inverse dynamics control algorithm are 

joint torques and these torque data are published to the 

joint_effort_controller/command topics. This way, the loop between the dynamic 

simulation and robot control algorithm is closed.  
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4. CONTROLLER DESIGN 

4.1 Trajectory Generation 

In order to have the robot execute a task, a trajectory has to be generated for this 

specific task, defining the initial and final points and the motion to be followed 

between these two points. 

Let 𝑞𝑖 and 𝑞𝑓 be the initial and final positions of a joint. The trajectory between these 

two points is defined by the following equations 

 
q(t) = 𝑞𝑖 + 𝑟(𝑡)𝐷 (4.1) 

 

 
q̇(t) = 𝑟̇(𝑡)𝐷 (4.2) 

In these equations, 𝐷 = 𝑞𝑓 − 𝑞𝑖  and 𝑟(𝑡) is the interpolation function. 

4.1.1 Interpolation functions 

Interpolation functions are used in trajectory generation in order to generate time-

dependent configurations between the initial and final points. This ensures the 

continuation of position in the most basic form and can be further improved for 

velocity and acceleration. 

 

4.1.1.1 Linear Interpolation 

Linear Interpolation is the most basic form of interpolation functions. The time 

dependent function is: 

 

q(t) = 𝑞𝑖 +
𝑡

𝑡𝑓
𝐷 (4.3) 
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4.1.1.2 Cubic spline interpolation 

In cubic spline interpolation, the interpolation function is a 3rd degree function, thus 

ensures the continuity of both velocity and position. Using the position and velocity 

boundary conditions, the interpolation function is generated as: 

 

r(t) = 3(
𝑡

𝑡𝑓
)

2

− 2(
𝑡

𝑡𝑓
)

3

 (4.4) 

In order to minimize the travel time either acceleration or velocity reaches its limit. 

Thus the final time for minimum traveling time is defined as: 

 

 

𝑡𝑓 =

{
 
 

 
 

3|𝐷|

2𝑣𝑙𝑖𝑚𝑖𝑡
 if velocity limit 𝑣𝑙𝑖𝑚𝑖𝑡 is reached

(
6|𝐷|

𝑎𝑙𝑖𝑚𝑖𝑡
)

1/2

if acceleration limit 𝑎𝑙𝑖𝑚𝑖𝑡 is reached

 (4.5) 

 

In order to determine whether velocity or acceleration limit is reached, simply the one 

yielding the maximum 𝑡𝑓 is saturated. 

 

4.1.2 Task space trajectory generation 

In task space trajectory generation, the initial and pose of the end effector is determined 

first and the poses between the initial and final pose are computed in order to 

synchronize the rotational and translational motions of the end effector. 

Let the initial and final pose be 

 
𝑋𝑖 = [

𝑝𝑖
𝜙𝑖
]  and 𝑋𝑓 = [

𝑝𝑓
𝜙𝑓
]  

 

(4.6) 
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Cartesian position of end effector is 𝑝𝑒 and orientation of end effector is 𝜙𝑒, the euler 

angles (φ,ϑ,ψ). 

 

The position and orientation of trajectory and their time derivatives are 

 
𝑝𝑒(𝑡) = 𝑝𝑖 + 𝑟(𝑡)(𝑝𝑓 − 𝑝𝑖) 

𝑝̇𝑒(𝑡) = 𝑟̇(𝑡)(𝑝𝑓 − 𝑝𝑖) 

𝑝̈𝑒(𝑡) = 𝑟̈(𝑡)(𝑝𝑓 − 𝑝𝑖) 

 

(4.7) 

 

 
𝜙𝑒(𝑡) = 𝜙𝑖 + 𝑟(𝑡)(𝜙𝑓 − 𝜙𝑖) 

𝜙̇𝑒(𝑡) = 𝑟̇(𝑡)(𝜙𝑓 − 𝜙𝑖) 

𝜙̈𝑒(𝑡) = 𝑟̈(𝑡)(𝜙𝑓 − 𝜙𝑖) 

 

(4.8) 

 

4.2 Motion Control 

Motion control of a robot manipulator consists of calculating the joint control signals 

in order to execute the desired motion. The joint level controller may vary, such as 

position, velocity and torque closed-loop. As robot manipulators that have degrees of 

freedom equal or higher than 6 have highly coupled nonlinear terms, using the position 

and/or velocity closed loops in joint level tend to fail. Thus, in this work, torque closed 

loop control in joint level control is assumed. 

4.2.1 Static-Model based control 

The static model based control suggests the use of desired task space position error 

vector as an external vector, which is obtained from the following equation: 

 
τ = 𝐽𝑇(𝑞)𝐹𝑒𝑥𝑡 (4.9) 
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Which yields the control law: 

 
τ = 𝐽𝑇(𝑞)𝐾𝑃𝑒 − 𝐾𝐷𝑞̇ + 𝑔(𝑞) (4.10) 

 

This controller does not include the robot dynamics, thus, it is a relatively simple 

controller structure and has a naturally compliant behaviour. 

 

4.2.2 Inverse dynamics control 

As mentioned in the equation (2.37), the dynamic of the robot manipulator is in the 

form of  

 

B(q)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝜏 

 

Rewriting the equation (2.37) as 

 
u = B(q)𝑦 + 𝑁(𝑞, 𝑞̇) (4.11) 

 

Where u is the control vector.  

 
𝑁(𝑞, 𝑞̇) = 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) (4.12) 

 

 
𝑞̈ = 𝑦 (4.13) 

 

In the task space scheme, taking the derivative of 

𝑥̇𝑒 = 𝐽(𝑞)𝑞̇ 

yields 

 
𝑥̈𝑒 = 𝐽(𝑞)𝑞̈ + 𝐽(̇𝑞, 𝑞̇)𝑞̇ (4.14) 

The inverse dynamics control law generated for the robot manipulator is 
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y =  𝐽−1(𝑞)(𝑥̈𝑑 + 𝐾𝐷 𝑥̇̃ + 𝐾𝑃𝑥̃ − 𝐽(̇𝑞, 𝑞̇)𝑞̇) (4.15) 

 

Where 𝑥̇̃ and 𝑥̃ are task space pose errors. 

The diagram of Inverse Dynamics Control in Task Space is given in (Figure 4.1) 

 

Figure 4.1: Inverse dynamics control in task space 

4.2.3 Computation of task space errors 

As the control law of inverse dynamics requires the computation of  

 
y = 𝐽−1(𝑎 − 𝐽𝑞̇̇) (4.16) 

 

Where 𝑎 is the resolved acceleration, 𝑣̇𝑒 

 

𝑎 = [
𝑎𝑝
𝑎𝑂
] (4.17) 

 

 
𝑎𝑝 = 𝑝̈𝑑 + 𝐾𝐷𝑃𝑝̇ + 𝐾𝑃𝑃𝑝 (4.18) 

The linear position and velocity errors are 
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𝑝 = 𝑝𝑑 − 𝑝𝑔 (4.19) 

 

 
𝑝̇ = 𝑝̇𝑑 − 𝑝̇𝑔 (4.20) 

 

The desired terms in equations (4.16) and (4.17) are computed from forward 

geometry and kinematics respectively. 

 

Calculation of 𝑎𝑂 term of resolved acceleration is more complicated. Remembering 

the equation (2.19) 

                  𝑣𝑒 = [
𝑝̇𝑒
𝜔𝑒
] = 𝐽(𝑞)𝑞̇ 

 

 
𝜔𝑒 = 𝑇(𝜙𝑒)𝜙̇𝑒 (4.21) 

 

 
𝜔̇𝑒 = 𝑇(𝜙𝑒)𝜙̈𝑒 + 𝑇̇(𝜙𝑒 , 𝜙̇𝑒)𝜙̇𝑒 (4.22) 

 

The resolved angular acceleration based on Euler angles error can be represented as: 

 

 

𝑎𝑂 = 𝑇(𝜙𝑒) (𝜙̈𝑑 + 𝐾𝐷𝑂 𝜙̇̃ + 𝐾𝑃𝑂𝜙̃) + 𝑇̇(𝜙𝑒 , 𝜙̇𝑒)𝜙̇𝑒 (4.23) 

 

4.2.4 Computation of Jacobian Derivative term 

 

 
𝑋̈ = 𝐽(𝑞)𝑞̈ + 𝐽(̇𝑞, 𝑞̇)𝑞̇ (4.24) 
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𝐽(̇𝑞, 𝑞̇)𝑞̇ = [
𝑝̈(𝑞̈ = 0)
𝜔̇(𝑞̈ = 0)

] (4.25) 

 

From Newton Euler recursive algorithm, in equations (2.42) and (2.41), 𝑝̈𝑛
𝑛  and 𝜔̇𝑛

𝑛 

calculated respectively. 

 
𝑝̈ = 𝑅0

𝑛 𝑝̈𝑛
𝑛 (4.26) 

 

 
𝜔̇ = 𝑅0

𝑛 𝜔̇𝑛
𝑛 (4.27) 

 

Using the equation (4.25), by setting the joint accelerations zero, the 𝐽(̇𝑞, 𝑞̇)𝑞̇ term is 

calculated recursively [15]. 
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5. SIMULATION RESULTS 

The simulation studies are conducted in Gazebo. The robot is started at an initial pose. 

It is then commanded to go to a specified pose and draw a circle of 10 cm radius. In 

order to generate significant Coriolis and Centrifugal terms and test the inverse 

dynamics algorithm, 0.86 m/s velocity and 3.99 m/s2 acceleration are reached during 

the motion trajectory. The simulations are done for different gains, controller 

frequencies and loads. The position and orientation results are both belong to end 

effector and with respect to the task space coordinate system. 

 

5.1 Performance Criteria of Controller in Simulations 

As performance index, integration of the absolute values and maximum errors of the 

errors in Cartesian and orientation space are used. The integration method is rectangle 

numerical integration. 

 

 

Integral Absolute Error =∑absolute error(t) ∗ (sampling time)

tf

t0

 (5.1) 

 

 

Absolute Cartesian Error(t) = √𝑥𝑒𝑟𝑟𝑜𝑟(𝑡)2 + 𝑦𝑒𝑟𝑟𝑜𝑟(𝑡)2+𝑧𝑒𝑟𝑟𝑜𝑟(𝑡)2 (5.2) 

 

Absolute Orientation Error(t) = |𝜙𝑒𝑟𝑟𝑜𝑟(𝑡)| + |𝜗𝑒𝑟𝑟𝑜𝑟(𝑡)| + |𝜓𝑒𝑟𝑟𝑜𝑟(𝑡)| (5.3) 
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5.2 Simulations without Payload Results 

Dynamical simulations are conducted with zero payload using various gain 

configurations and controller frequencies. The simulation results for KP=1000.0, 

KD=50.0, 250 Hz are given in from Figure 5.1 to Figure 5.9 and in table from Table 

5.1 to Table 5.3. 

 

 

Figure 5.1: End effector x-z position  

 

 

Figure 5.2: End effector cartesian position  
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Figure 5.3: End effector orientation  

 

 

Figure 5.4: End effector position error  
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Figure 5.5: End effector position absolute error  

 

 

Figure 5.6: End effector orientation error  
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Figure 5.7: End effector cartesian velocities  

 

 

Figure 5.8: Torques of the robot joints 1,2 and 3  
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Figure 5.9: Torques of the robot joints 5,6,7  

 

Table 5.1: Errors of ITECH Arm, 250 Hz controller frequency 

Position and Velocity 

Gains at 250 Hz 

Controller Frequency 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=600.0, KD=50.0 4.9997 1.8122 0.5623 0.2417 

KP=800.0, KD=50.0 4.9228 0.9208 0.4842 0.1965 

KP=900.0, KD=50.0 4.8944 0.8263 0.4691 0.1836 

KP=900.0, KD=25.0 4.9808 1.2594 0.5235 0.2218 

KP=900.0, KD=75.0 4.9105 0.9421 0.4627 0.1531 

KP=1000.0, KD=50.0 4.9935 1.0856 0.4372 0.1571 

KP=1200.0, KD=50.0 4.9086 1.2423 0.4358 0.1313 

KP=1500.0, KD=50.0 4.9514 1.3380 0.4218 0.1164 

KP=2000.0, KD=50.0 5.0827 0.6766 0.5144 0.1179 
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a) 

 

b) 

  

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 
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i) 

 

 

Figure 5.10: End effector absolute position errors 

a) KP=600.0, KD=50.0, b) KP=800.0, KD=50.0, c) KP=900.0, KD=50.0, d) 

KP=900.0, KD=25.0, e) KP=900.0, KD=75.0, f) KP=1000.0, KD=50.0, g) 

KP=1200.0, KD=50.0, h) KP=2000.0, KD=50.0 at 250 Hz 

Table 5.2: Errors of ITECH manipulator,100 Hz controller frequency 

Position and Velocity 

Gains at 100 Hz 

Controller Frequency 

Integral 

Absolute 

Cartesian 

Error  

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error  

Maximum 

Orientation 

Error 

KP=600.0, KD=50.0 5.0953 2.2604 0.7249 0.3602 

KP=700.0, KD=50.0 5.1176 2.0833 0.6346 0.3341 

KP=800.0, KD=25.0 5.8569 2.1440 0.9423 0.3538 

KP=800.0, KD=50.0 5.1462 2.0063 0.5932 0.2690 

KP=800.0, KD=75.0 6.3147 2.1931 1.0645 0.2455 

KP=900.0, KD=50.0 5.1673 1.9925 0.5970 0.2563 

KP=2000.0, KD=50.0 Unstable - - - 

 

 

a) 

 

b) 
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c) 

 

d) 

 

e) 

 

f) 

Figure 5.11: End effector absolute position errors 

 a) KP=600.0, KD=50.0, b) KP=700.0, KD=50.0, c) KP=800.0, KD=25.0, d) 

KP=800.0, KD=50.0, e) KP=800.0, KD=75.0, f) KP=900.0, KD=50.0 at 100 Hz 

 

Table 5.3: Errors of ITECH manipulator, 50 Hz controller frequency  

Position and Velocity 

Gains at 50 Hz 

Controller Frequency 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=100.0, KD=10.0 16.6974 15.4748 6.3882 2.9924 

KP=200.0, KD=10.0 15.7356 12.5877 6.1531 2.9984 

KP=200.0, KD=25.0 5.5180 4.6929 2.1253 1.2157 

KP=200.0, KD=50.0 Unstable - - - 

KP=300.0, KD=10.0 Unstable - - - 
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5.2.1 Discussion 

From the tables and figures, it is clearly seen that, higher controller frequencies yield 

better results. Although the maximum errors change for the same gain set in different 

simulation trials due to the non-real time operating system, it can still give idea on the 

performance of the controller. However, the error integral is a more reliable 

performance criteria than the maximum error. In 250 Hz, gain sets KP=900.0, 

KD=75.0 and KP=1200.0, KD=50.0 give the best results. For position feedback, 

setting the KP and KD 900.0 and 50.0 and for orientation feedback, 1200.0 and 75.0 

would be the best choice for the controller. Using the same method, best choices of 

gain sets for the controller in different frequencies can be generated. 

 

5.3 Simulations with Unknown Payload Results 

Dynamic simulations with unknown payload carried by the end effector of the robot 

are conducted. The simulation results for KP=1200, KD=50 and 250 Hz controller 

frequency are given in from (Figure 5.12) to (Figure 5.20) and from Table 5.4 to Table 

5.6. 

 

 

Figure 5.12: End effector position in x-y, 2 kg Payload 
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Figure 5.13: End effector position, 2 kg Payload 

 

 

Figure 5.14: End effector orientation, 2 kg Payload 
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Figure 5.15: End effector position error, 2 kg Payload 

 

 

Figure 5.16: End effector absolute position error, 2 kg Payload 
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Figure 5.17: End effector orientation error, 2 kg Payload 

 

 

Figure 5.18: End effector cartesian velocities, 2 kg Payload 
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Figure 5.19: Torques of robot joints 1,2 and 3, 2 kg Payload 

 

 

Figure 5.20: Torques of robot joints 4,5 and 6, 2 kg Payload 
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Table 5.4: Errors of ITECH Arm, 250 Hz controller frequency, 2 kg payload 

Position and Velocity 

Gains at 250 Hz 

Controller Frequency 

 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=900.0, KD=50.0 

with 2000 gr Payload 
321.5292 66.5428 96.5249 16.0400 

KP=1200.0, KD=50.0 

with 2000 gr Payload 
248.7201 53.0033 74.7592 13.2540 

 

Table 5.5: Errors of ITECH Arm, 100 Hz controller frequency, 2 kg payload 

Position and Velocity 

Gains at 100 Hz 

Controller Frequency 

 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=900.0, KD=50.0 

with 2000 gr Payload 
398.5052 81.01961 119.5790 19.1733 

 

Table 5.6: Errors of ITECH Arm, 50 Hz controller frequency, 2 and 1 kg payload 

Position and Velocity 

Gains at 50 Hz 

Controller Frequency 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=200.0, KD=25.0 

with 2000 gr Payload 
Unstable - - 

- 

KP=200.0, KD=25.0 

with 1000 gr Payload 
618.6905 122.8586 184.3349 28.7477 
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5.3.1 Discussion 

When the ‘with and without payload’ cases are compared, the payload reduces the performance 

of the manipulator. In 250 Hz and 100 Hz, the manipulator could handle the load while in 50 

Hz, the system become unstable. From the Table 5.4, it can be seen that higher proportional 

gain yield significantly better results with the existence of unknown payload as greater effort is 

produced for the same amount of error and it helped to overcome the weight of the payload. As 

in the previous case, higher controller frequencies yield better result. It should be noted that, 

with 1:140 harmonic drive transmission and frictions, the effect of payload would be 

significantly different than the simulation. The payload simulation is an effort to test the 

controller with existence of disturbance. In (Figure 5.19) and (Figure 5.20), the joint torques 

are within the limits given in Table 1.1, thus we can conclude that in such a motion, 2 kg payload 

can be handled by the ITECH Arm. 

5.4 Simulation for Pick and Place Task Results 

In this task, ITECH Arm starts at an initial condition, proceeds to object and carries 

the object to target location. Finally, the robot arm goes to the initial condition, 

completing the task. The simulation is done with KP=1000.0, KD=50.0 and 250 Hz 

controller frequency. 

 

 
Figure 5.21: Screenshot of pick and place in Gazebo 
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Figure 5.22: End effector position in x-y-z, pick and place 

 

 
Figure 5.23: End effector position, pick and place 
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Figure 5.24: End effector orientation, pick and place 

 

 
Figure 5.25: End effector position error, pick and place 
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Figure 5.26: End effector absolute cartesian error, pick and place 

 

 

Figure 5.27: End effector orientation error, pick and place 
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Figure 5.28: End effector cartesian velocities, pick and place 

 

 
Figure 5.29: Torques of robot joints 1,2 and 3, pick and place 
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Figure 5.30: Torques of robot joints 4,5 and 6, pick and place 

 

Table 5.7: Errors of ITECH Arm, 250 Hz controller frequency, pick and place 

Position and Velocity 

Gains at 250 Hz 

Controller Frequency 

 

Integral 

Absolute 

Cartesian 

Error 

Maximum 

Absolute 

Cartesian 

Error 

Integral 

Absolute 

Orientation 

Error 

Maximum 

Orientation 

Error 

KP=1000.0, KD=50.0  7.156 0.240 1.691 0.072 

 

5.4.1 Discussion 

In the pick and place task, the maximum velocity and acceleration of the manipulator 

are decreased to improve the accuracy. The maximum errors are significantly lower 

than the previous scenarios. Considering the operation time, integral error is also lower 

for unit time period. Due to the controller frequency, there are differences between the 

velocity in the controller loop and the actual velocity in time t. This causes differences 

between the forces acting on joint such as Coriolis and centrifugal forces. When the 

accelerations are lower, this difference decreases, improving the performance in terms 

of the selected criteria. 
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6. CONCLUSION 

The purpose of this thesis was to integrate the ITECH 6-DOF Humanoid Manipulator 

to ROS and Gazebo environment, write a generic object oriented kinematics & 

dynamics library and implement task space inverse dynamics control algorithm in 

dynamic simulation environment. The control algorithm code that is written in python 

and used in Gazebo simulator can be directly implemented to the real robot that runs 

ROS. 

 

In kinematics, numerical geometric Jacobian and numerical transformation and 

rotation matrices are used. In dynamics, Newton-Euler formulation is preferred due to 

its computational efficiency compared to Euler-Lagrange formulation [15].  

 

Dynamic simulations are conducted in Gazebo with gazebo-ros control interface. In 

different controller frequencies, various pose and velocity gains are tested in an effort 

to find a suitable gain set with respect to pose error. As the controller and simulator 

are both run in a non-real time operating system and communicating over a node 

network, there were small differences in the results of the same gain sets and controller 

frequencies. Matlab SimMechanics software platform, which offers various 

transmission properties such as friction and elastic joints that does not exist in Gazebo 

yet, can be a better alternative in developing controller algorithms. SimMechanics. 

This platform also delivers more precise results. One can also generate his own 

simulation environment using Rigid Body Dynamics algorithms [16] and define 

custom friction models. 

 

In simulations, it is observed that the controller frequency dramatically effects the 

control performance. Higher controller frequencies were stable for wider range of gain 

sets and more robust to disturbances such as payloads carried by end effector of the 

robot and yielded better performance in terms of integral absolute pose error. It is 

concluded that a fast communication plays a critical role in maintaining high controller 
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frequencies in a real robotic system. While CAN Bus communication has been used in 

industrial manipulators for a long time [17], EtherCAT network communication 

provides data rates higher than 100 Mbits/s [18] and is currently used in robot 

platforms such as KUKA youBot [19] and Justin Robot [20]. This communication 

network technology can be implemented on ITECH robot. 

 

With integration of a force/torque sensor on the wrist of the robot, mass of the payload 

can be estimated and the inverse dynamics control law can be updated for this 

additional mass. As ITECH is planned to be a humanoid manipulator, control 

architectures such as impedance control can be implemented for better human-robot 

interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

REFERENCES 

 

[1]  J. S. Luh , M. W. Walker and R. P. C. Paul, “On-Line Computational Scheme 

for,” Journal of Dynamic Systems, Measurement, and Control , 1980.  

[2]  R. Tedrake, «Underactuated Robotics,» 2016. [Çevrimiçi]. Available: 

http://underactuated.csail.mit.edu/underactuated.html?chapter=26. [Erişildi: 15 

11 2016]. 

[3]  S. Ivaldi, J. Peters, V. Padois ve F. Nori, «Tools for simulating humanoid robot 

dynamics: a survey,» IEEE-RAS International Conference on Humanoid 

Robots , 2014.  

[4]  «Features: Coppelia Robotics,» Coppelia Robotics, [Çevrimiçi]. Available: 

http://www.coppeliarobotics.com/features.html. [Erişildi: 20 11 2016]. 

[5]  O. Kaya, «INSANSI ROBOT KOLUNUN OPT˙IMIZASYONU VE 

DINAMIK ANALIZI,» Istanbul Technical University, Institute of Science, 

2015. 

[6]  D. Thomas, «ROS Documentation,» Open Source Robotics Foundation, 2014. 

[Çevrimiçi]. Available: http://wiki.ros.org/ROS/Introduction. [Erişildi: 2016]. 

[7]  B. Siciliano, L. Sciavicco, L. Villani ve G. Oriolo, Robotics: Modeling, 

Planning and Control, Springer, 2009.  

[8]  L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel 

Manipulators, Wiley, 1999.  

[9]  M. W. Spong, S. Hutchinson ve M. Vidyasagar, Robot Modeling and Control, 

John Wiley & Sons, 2006.  

[10]  S. Chiaverini, B. Sicilliano ve O. Egeland, «Review of the damped least-

squares inverse kinematics with experiments on an industrial robot 

manipulator,» IEEE Transactions on Control Systems Technology , cilt 2, no. 2, 

Jun 1994.  

[11]  «ROS Documentation,» Willow Garage, [Çevrimiçi]. Available: 

http://wiki.ros.org/ROS/Introduction. [Erişildi: 22 11 2016]. 

[12]  J. M. O’Kane, A Gentle Introduction to ROS, Jason Matthew O’Kane, 2016.  

[13]  Gazebosim, «New Feature Highlight: Multiple Physics Engines,» Open Source 

Robotics Foundation, 2014. [Çevrimiçi]. Available: 

http://gazebosim.org/blog/feature_physics. [Erişildi: 25 9 2016]. 

[14]  D. Coleman, «Tutorials:Ros Control,» Gazebosim, 2013. [Çevrimiçi]. 

Available: http://gazebosim.org/tutorials/?tut=ros_control. 

[15]  W. Khalil ve E. Dombre, Modeling, Identification and Control of Robots, 

Elsevier, 2004.  

[16]  R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 2014.  



60 

 

[17]  KUKA, «KUKA Robotics,» KUKA Robotics, 2000. [Çevrimiçi]. Available: 

http://www.kuka-

robotics.com/en/pressevents/productnews/print/NP_000508_Truetzschler.htm. 

[Erişildi: 5 10 2016]. 

[18]  EtherCAT, «Ethercat,» EtherCAT, [Çevrimiçi]. Available: EtherCAT. 

[Erişildi: 6 10 2016]. 

[19]  KUKA, «KUKA Healthcare,» KUKA Robotics, [Çevrimiçi]. Available: 

http://www.kuka-healthcare.com/NR/rdonlyres/4833867A-D24F-410A-9AE4-

300FBF671DFD/0/youBot_datenblatt_web_0514.pdf. [Erişildi: 5 10 2016]. 

[20]  PC-Control, «ethercat,» DLR, 2010. [Çevrimiçi]. Available: 

https://www.ethercat.org/download/documents/pcc_0210_dlr_e.pdf. [Erişildi: 8 

10 2016]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

APPENDICES 

APPENDIX A: Geometric properties of Itech Arm 

APPENDIX B: Mass properties of Itech Arm 

APPENDIX C: Itech Arm Software Library classes and functions 
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APPENDIX A 

 

The length of links (m): 

Base: 0.16496 

Arm: 0.219 

Forearm: 0.213 

Hand: 0.21718 

In this thesis, Robotiq 2-Finger Adaptive Gripper is used as hand. The properties 

would change once an end effector is determined and mounted. The transformation 

matrices of the robot are generated inside the kinematics algorithm of ITECH Arm, 

using D-H parameters. 
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APPENDIX B 

 

Masses of the links (kg): 

 

Mass 1: 1.7621 

Mass 2: 1.3727 

Mass 3: 1.2878 

Mass 4: 1.2701 

Mass 5: 1.2878 

Mass 6: 0.5465 

 

Link centre of mass vectors for the corresponding link coordinate frames (mm): 

 

𝐶𝑜𝑀 = [𝐶𝑜𝑀𝑥 𝐶𝑜𝑀𝑦 𝐶𝑜𝑀𝑧] 
 

𝐶𝑜𝑀1 = [0.00 12.20 0.30] 
𝐶𝑜𝑀2 = [0.37 −2.26 84.80] 
𝐶𝑜𝑀3 = [−0.40 8.97 −2.26] 
𝐶𝑜𝑀4 = [0.35 3.40 83.38] 
𝐶𝑜𝑀5 = [0.40 8.97 2.26] 
𝐶𝑜𝑀6 = [−154.06 0.0 −7.36] 
 

 

Link inertia matrices for the corresponding link coordinate frames (gr.mm2) 

 

 𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] 

 

 

𝐼1 = [
3525915 444 34
444 2019491 4861
34 −48461 3776165

] 

 

𝐼2 = [
3924797 4315 −1241
4315 3371160 274684
−1241 274684 1643140

] 

 

𝐼3 = [
1964360 4451 14951
4451 1316183 8007
14951 8007 1695363

] 

 

𝐼4 = [
3305476 −9407 −3142
−9407 2824665 −361337
−3142 −361337 1478336

] 
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𝐼5 = [
1964360 −4451 14951
−4451 1316183 −8007
14951 −8007 1695363

] 

 

𝐼5 = [
810649 68 274614
68 2392078 22

274614 22 2015807
] 
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APPENDIX C 

Itech Arm kinematic functions library 

Functions: 

get_rotation (rotation vector, angle): 

Arguments: A unit vector and an angle 

Returns: A 3x3 rotation matrix with the unit vector rotated by the angle 

transformation_to_pose (Transformation):  

Arguments: 4x4 transformation matrix 

Returns: 6x1 pose of the robot 

 

Itech Arm kinematics and dynamics library 

Classes: 

Link (self, DH, r_centre_of_mass, mass, inertia): 

Link class arguments: Denavit-Hartenberg parameters, vector of centre of mass, link 

mass, inertia matrix 

Link class functions: 

rotation (self): 

Returns: 3x3 rotation matrix of the link for corresponding angle attribute of 

link object 

inverse_rotation(self): 

Returns: 3x3 inverse rotation matrix of the link for corresponding angle and 

D-H attributes of the link object 

A(self): 

Returns: 4x4 transformation matrix of the link for corresponding angle and D-

H attributes of the link object 

z_axis(self): 

Returns: 3x1 z vector of the link for corresponding D-H attribute of the link 

object 
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Robot(self, links): 

Robot class arguments: Link objects generated from Link class 

 Robot class functions: 

 get_forward_geometry(self): 

 Returns: 4x4 transformation matrix of the robot 

 get_pose_vector(self): 

 Returns: 6x1 pose vector of the robot 

 get_orientation_T(self): 

Returns: 3x3 orientation velocity to task space angular velocity 

transformation matrix 

get_orientation_T(self): 

Returns: 3x3 derivative of orientation velocity to task space angular velocity 

transformation matrix 

get_jacobian(self): 

Returns: The 6xn Jacobian matrix of the robot 

get_torques(self): 

Returns: The array of torques of the robot from the corresponding joint 

positions, velocities and accelerations attributes 

get_controller_torques(self, control signal): 

Arguments: control signal for the inverse dynamics controller 

Returns: The array of torques of the robot from the corresponding joint 

positions, velocities attributes and the control signal 

get_jacobian_derivative(self): 

Returns: The numerical Jacobian derivative of the robot 
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