

JANUARY 2017

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

INVERSE DYNAMICS CONTROL OF A

HUMANOID ROBOT ARM

Department of Mechatronics Engineering

Mechatronics Engineering Programme

Oğuzhan CEBE

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

INVERSE DYNAMICS CONTROL OF A

HUMANOID ROBOT ARM

M.Sc. THESIS

JANUARY 2017

Thesis Advisor: Prof. Dr. Şeniz ERTUĞRUL

Oğuzhan CEBE

518151019

Department of Mechatronics Engineering

Mechatronics Engineering Programme

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNSANSI BİR ROBOT KOLUNUN

TERS DİNAMİK KONTROLÜ

YÜKSEK LİSANS TEZİ

Tez Danışmanı: Prof. Dr. Şeniz ERTUĞRUL

OCAK 2017

Oğuzhan CEBE

518151019

Mekatronik Mühendisliği Anabilim Dalı

Mekatronik Mühendisliği Programı

v

Oğuzhan CEBE, a M.Sc. student of ITU Graduate School of Science

Engineering and Technology student ID 518151019, successfully defended the

thesis entitled “INVERSE DYNAMICS CONTROL OF A HUMANOID

ROBOT ARM”, which he prepared after fulfilling the requirements specified in

the associated legislations, before the jury whose signatures are below.

Date of Submission : 31 November 2016

Date of Defense : 2 January 2017

Thesis Advisor : Prof. Dr. Şeniz ERTUĞRUL

 İstanbul Technical University

Jury Members : Doç. Dr. Zeki Yağız BAYRAKTAROĞLU

İstanbul Technical University

Yard. Doç. Dr. Janset DAŞDEMİR

Yıldız Technical University

vi

vii

To my family,

viii

ix

FOREWORD

I thank to my advisor Şeniz Ertuğrul for her support throughout my thesis. I am grateful

to Ömer Faruk Argın, Cihat Bora Yiğit, Gökçe Burak Tağlıoğlu and Ömür Baç for

their guidance and enduring my endless questions. Finally, I thank to my family for

always being there for me.

January 2017 Oğuzhan Cebe

 Mechanical Engineer

x

xi

TABLE OF CONTENTS

 Page

FOREWORD ... ix

TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

SUMMARY ... xix

ÖZET .. xxi

1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 1

1.2 Literature Review .. 2

1.3 ITECH Humanoid Robot Manipulator .. 2

1.3.1 Mechanical Properties .. 3

1.3.2 Software Properties .. 4

2. MODELLING OF ROBOT .. 5

2.1 Geometric Model of Robot .. 5

2.1.1 Forward geometric model of robot ... 5

2.1.2 Position and orientation of manipulator ... 9

2.2 Kinematic Model of Robot .. 11

2.2.1 Forward kinematic model of robot ... 11

2.2.2 Inverse kinematic model of robot ... 14

2.3 Dynamic Model of Robot .. 16

2.3.1 Euler-Lagrange dynamics ... 16

2.3.2 Newton-Euler dynamics ... 16

2.4 Modelling of ITECH Manipulator ... 18

2.4.1 Geometric and kinematic model ... 18

2.4.2 Dynamic model .. 20

3. ROS- ROBOT OPERATING SYSTEM .. 21

3.1 General Structure of ROS .. 21

3.1.1 Ros Nodes ... 21

xii

3.1.2 Ros Topics .. 21

3.1.3 Ros Messages ... 22

3.1.4 Ros Services ... 22

3.2 Gazebo ... 22

3.2.1 URDF universal robot description format .. 22

3.2.2 SDF simulation description format... 22

3.3 Itech Arm Gazebo-Ros Interface ... 23

3.3.1 Itech Arm description ... 23

3.3.2 Itech Arm control .. 24

3.3.3 Itech Arm gazebo .. 24

3.3.4 Itech Arm command ... 25

4. CONTROLLER DESIGN ... 27

4.1 Trajectory Generation .. 27

4.1.1 Interpolation functions .. 27

4.1.2 Task space trajectory generation .. 28

4.2 Motion Control ... 29

4.2.1 Static-Model based control ... 29

4.2.2 Inverse dynamics control .. 30

4.2.3 Computation of task space errors ... 31

4.2.4 Computation of Jacobian Derivative term .. 32

5. SIMULATION RESULTS .. 35

5.1 Performance Criteria of Controller in Simulations 35

5.2 Simulations without Payload Results ... 36

5.2.1 Discussion ... 44

5.3 Simulations with Unknown Payload Results ... 44

5.3.1 Discussion ... 50

5.4 Simulation for Pick and Place Task Results .. 50

5.4.1 Discussion ... 55

6. CONCLUSION ... 57

REFERENCES ... 59

APPENDICES .. 61

CURRICULUM VITAE .. 67

xiii

ABBREVIATIONS

A: Transformation matrix

R: Rotation matrix

p: Translation vector

ϕ: Orientation vector

X: Pose vector

J: Jacobian matrix

JP: Translational part of Jacobian matrix

JO: Rotational part of Jacobian matrix

�̇�: Linear velocity

ω: Angular velocity

�̈�: Linear acceleration

�̇�: Angular acceleration

B(q): Mass matrix

C(q, �̇�): Coriolis and Centrifugal terms

g(q): Gravitational terms

r(t): Trajectory timing function

D: Trajectory linear distance

𝒂: Resolved acceleration

y: Control input of task-space inverse dynamics controller

T: Orientation velocity to angular velocity transformation matrix

�̇��̇�: Jacobian derivative term

xiv

xv

LIST OF TABLES

Page

Table 1.1: Mechanical Properties of ITECH Humanoid Manipulator 3

Table 1.2: Actuation properties of ITECH Humanoid Manipulator 4
Table 2.1: Denavit-Hartenberg Parameters of ITECH Manipulator 19
Table 5.1: Errors of ITECH Arm, 250 Hz controller frequency 40

Table 5.2: Errors of ITECH manipulator,100 Hz controller frequency 42
Table 5.3: Errors of ITECH manipulator, 50 Hz controller frequency 43
Table 5.4: Errors of ITECH Arm, 250 Hz controller frequency, 2 kg payload 49
Table 5.5: Errors of ITECH Arm, 100 Hz controller frequency, 2 kg payload 49

Table 5.6: Errors of ITECH Arm, 50 Hz controller frequency, 2 and 1 kg payload 49
Table 5.7: Errors of ITECH Arm, 250 Hz controller frequency, pick and place 55

xvi

xvii

LIST OF FIGURES

Page

Figure 1.1: ITECH Humanoid Robot Manipulator ... 3

Figure 2.1: Denavit-Hartenberg kinematic parameters ... 7
Figure 2.2: ZXZ Euler Angles Representation ... 9
Figure 2.3: Link i of a manipulator ... 12

Figure 2.4: Force balance representation on Link i .. 17
Figure 2.5: Link coordinate systems of ITECH Manipulator 19
Figure 3.1: Gazebo Ros Interface ... 24
Figure 3.2: Itech Arm in Gazebo simulation environment 25

Figure 4.1: Inverse dynamics control in task space .. 31
Figure 5.1: End effector x-z position .. 36
Figure 5.2: End effector cartesian position ... 36
Figure 5.3: End effector orientation .. 37

Figure 5.4: End effector position error ... 37
Figure 5.5: End effector position absolute error ... 38

Figure 5.6: End effector orientation error ... 38
Figure 5.7: End effector cartesian velocities ... 39
Figure 5.8: Torques of the robot joints 1,2 and 3 .. 39

Figure 5.9: Torques of the robot joints 5,6,7 .. 40

Figure 5.10: End effector absolute position errors .. 42
Figure 5.11: End effector absolute position errors .. 43
Figure 5.12: End effector position in x-y, 2 kg Payload ... 44

Figure 5.13: End effector position, 2 kg Payload ... 45
Figure 5.14: End effector orientation, 2 kg Payload ... 45
Figure 5.15: End effector position error, 2 kg Payload ... 46

Figure 5.16: End effector absolute position error, 2 kg Payload 46
Figure 5.17: End effector orientation error, 2 kg Payload .. 47

Figure 5.18: End effector cartesian velocities, 2 kg Payload 47
Figure 5.19: Torques of robot joints 1,2 and 3, 2 kg Payload 48
Figure 5.20: Torques of robot joints 4,5 and 6, 2 kg Payload 48

Figure 5.21: Screenshot of pick and place in Gazebo ... 50

Figure 5.22: End effector position in x-y-z, pick and place 51

Figure 5.23: End effector position, pick and place ... 51
Figure 5.24: End effector orientation, pick and place ... 52

Figure 5.25: End effector position error, pick and place .. 52
Figure 5.26: End effector absolute cartesian error, pick and place 53
Figure 5.27: End effector orientation error, pick and place 53
Figure 5.28: End effector cartesian velocities, pick and place 54
Figure 5.29: Torques of robot joints 1,2 and 3, pick and place 54

Figure 5.30: Torques of robot joints 4,5 and 6, pick and place 55

xviii

xix

INVERSE DYNAMICS CONTROL OF A HUMANOID ROBOT ARM

SUMMARY

Nowadays, humanoid robot technology is studied extensively around the world. These

humanoid robots can reach the places that wheeled robots cannot and can perform

complicated tasks with their two arm manipulators.

Experimental studies are being conducted for humanoid robots. Interacting with

environment, cooperation with humans and executing human-like motions for various

tasks are the key objectives of these studies.

Control of the manipulators of humanoid robots require a dynamic model based control

for fast movement cases. As the manipulator is supposed to move in a cluttered

environment, task space control inverse dynamics control is a suitable control policy

for this scenario, where the motion of the end-effector can be predicted during the

execution of the desired trajectory.

The humanoid robots consist of a high number of actuators and sensors. To control the

robot, sensor processing, motion planning and actuator control need to be done

simultaneously. Thus, the software of these robots consist of multi-processes and

scheduling to handle this problem.

ROS (Robot Operating System) is an open-source operating system that has software

libraries and tools for such robotic applications. It offers both simulator and hardware

interface, alongside state-of-art algorithms. A software that runs on ROS consists of

multiple processes called ‘nodes’. Each node handles a different task, runs at a

specified frequency and communicate with each other. This architecture eases the

programming and enables use of open-source libraries in separate nodes in a plug-and-

play way.

Gazebo is an open-source dynamic simulation environment that enables the simulation

of many type of robots such as full body humanoids with various sensors and

environment interaction. Gazebo has interface with several platforms, including ROS

and it offers several dynamic engines and number of transmissions, but not all of them

are supported by ROS at the moment.

ITECH Arm is a six degrees of freedom humanoid robot arm built in Mechanical

Engineering Automatic Control Laboratory of İstanbul Technical University. The

purpose of this thesis is creating a generic kinematics and dynamics library for the

Automatic Control Laboratory, writing the software packages using this library for the

ROS integration of the robot arm and finally implementing task space inverse

dynamics control of ITECH Arm in Gazebo simulation environment.

xx

This thesis consists of six chapters. In the first chapter, purpose of the thesis, literature

review and mechanical-software properties of ITECH Arm manipulator will be

mentioned.

In second chapter, kinematic and dynamic modelling of a robot manipulator is

presented. The geometric, kinematic and dynamic models of ITECH Arm manipulator

are derived.

In chapter three, Robot Operating System is introduced. The software architecture and

capabilities of ROS are mentioned. Integration steps of ITECH Arm to ROS

environment and interfacing ROS and Gazebo simulation environment are described.

In fourth chapter, trajectory generation for robot manipulators is mentioned. Several

robot control methods are discussed. Implementation of task space trajectory tracking

with inverse dynamics control algorithm on ITECH Arm is described.

In chapter five, simulation results of circular trajectory for with and without payload

cases using various gain sets and controller frequencies are presented. Also, as an

example task, a pick and place scenario results are appended. The simulation results

are discussed.

In sixth and the last chapter, all the work done in the thesis is summarized and

suggestions for future works are presented.

xxi

İNSANSI ROBOT KOLUNUN TERS DİNAMİK İLE KONTROLÜ

ÖZET

Günümüzde insansı robot teknolojisi dünyada yaygın olarak çalışılmaktadır. Bu

insansı robotlar tekerlekli robotların ulaşamayacağı yerlere ulaşabilmekte ve iki kolları

ile karmaşık görevleri yerine getirebilmektedir. Bu özellikleri, onları arama kurtarma

ve insanlarla birlikte çalışma gibi senaryolarda vazgeçilmez kılar.

İnsansı robotlar ile ilgili kapsamlı deneysel çalışmalar yapılmaktadır. Çevre ile

etkileşime girmek, insanlarla iş birliği ve insansı hareketler yapmak, bu çalışmaların

ana hedeflerindendir.

Uzuv kontrolü, robota hızlı harekete imkan sağlamak için dinamik model tabanlı bir

kontrol gerektirmektedir. Kol, engeller içeren bir çevrede çalışacağı için görev

uzayında ters dinamik kontrol, bu senaryo için uygun görülmüştür. Ters dinamik

kontrolünde, kontrol sinyali olarak robotun karar verilmiş ivmesi kullanılır. Bu ivme,

ters dinamik modeline beslenerek eklemler için gereken kuvvetler bulunur. Görev

uzayında yörünge takibinde hatalar, yine kartezyen koordinat sisteminde tanımlanır.

Bu sayede eyleyicideki toplam hata, eklem uzayındaki kontrole göre daha düşük olur.

Ayrıca bu yöntemde uç eyleyicinin yörünge boyunca hareketi tahmin edilebilmektedir,

böylece engeller içeren çevrede hareket planlaması kolaylaşır. Görev uzayında yapılan

bu kontrolde ters kinematik hesaplanması için sözde ters jakobiyen kullanılmıştır.

İnsansı robotlar bir çok eyleyici ve sensörden oluşur. Robotu kontrol etmek için aynı

anda sensor bilgilerini değerlendirmek, hareketi planlamak ve eyleyicileri denetlemek

gerekmektedir. Bu yüzden bu robotların yazılımlarında çoklu işlemler ve

zamanlayıcılar kullanılır.

ROS (Robot İşletim Sistemi), bahsedilen uygulamalarda kullanılabilecek kütüphane

ve araçları barındıran bir açık kaynaklı işletim sistemidir. Simulasyon ve donanım

arayüzünün yanında gelişmiş algoritmalar sunar. ROS üzerinde koşan bir yazılım, nod

adı verilen bir çok işlemden oluşur. Her bir nod, belirli frekanslarda farklı görevleri

yerine getirir ve diğer nodlarla iletişime geçer. Bu yapı programlamayı kolaylaştırır ve

açık kaynak kütüphaneleri nod olarak eklenmesini sağlayarak sisteme hızlı kuruylan

modüler bir yapı kazandırır. ROS, şimdiden bir çok endüstriyel ve enstitü robotunu

desteklemekte ve artık robotikte bir standart olarak görülmektedir. Yazılımında C++

ve Python kullanılabilmekte ve bu iki dilde yazılan kod parçaları, aynı anda birbiriyle

haberleşerek koşabilmektedir.

Gazebo, dört pervaneli helikopter, manipülatör, sürü robotiği ve tam-vücut insansı

robotlar gibi bir çok robotu, çeşitli sensörler ve çevresel etkileşimle birlikte simüle

edebilen bir açık kaynaklı dinamik simülasyon ortamıdır. Gazebo, ROS da dahil olmak

üzere çeşitli platformlarla arayüze sahiptir. İçinde çok sayıda eklenebilir obje

barındırır ve SDF formatında hazırlanan bütün objeler eklenebilir. Gerekli eklenti

xxii

programları kullanılarak, ROS’un desteklediği URDF formatını SDF’ye çevirerek

çalıştırabilir. Henüz ROS ortamında desteklenmese de birden fazla dinamik motoru ve

aktarım elemanı sunar.

ITECH Kolu, İstanbul Teknik Üniversitesi Makina Mühendisliği Otomatik Kontrol

Laboratuarı’nda üretilmiş altı serbestlik dereceli bir insansı robot koludur. Robot,

Maxon firmasına ait fırçasız doğru akım motorlarla tahrik edilmekte ve aktarım

elemanı olarak harmonik dişliler kullanılmaktadır. Bu tezin amacı, Otomatik Kontrol

laboratuarı için kapsamlı bir kinematik ve dinamik kütüphanesi yaratmak, bu

kütüphanenin ROS ile kullanılabilmesi için gerekli yazılım paketlerini yasmak ve

sonunda ITECH kolunun görev uzayında ters dinamik kontrolünü Gazebo simulasyon

ortamında uygulamaktır.

Bu tez altı bölümden oluşmaktadır. İlk bölümde tezin amacı, literatür taraması ve

ITECH Robot Kolu’nun koşacağı işletim sistemi, motor güç ve limitleri, aktarım

elemanları gibi mekanik-yazılımsal özelliklerinden bahsedilmiştir.

İkinci bölümde bir robot kolun geometrik, kinematik ve dinamik modellenmesi

anlatılmıştır. Seçilen mevcut kinematik ve dinamik çözümlerin, alternatiflerine göre

yapılan işlem sayısı bakımından üstünlüklerinden bahsedilmiştir. ITECH Robot

Kolu’nun geometrik, kinematik ve dinamik modeli türetilmiştir.

Üçüncü bölümde Robot İşletim Sistemi tanıtılmıştır. ROS’un yazılım mimarisinden

ve imkanlarından bahsedilmiştir. ROS’un ve Gazebo’nun neden tercih edildiği ve

ilerideki çalışmalarda, bu çalışmada hazırlanan yazılımların gerçek robotta nasıl

kullanılabileceği anlatılmıştur. ITECH Kolu’nun ROS ortamına entegrasyonu ve ROS

ile Gazebo dinamik simulasyon ortamının arayüzünün oluşturulma basamakları tarif

edilmiştir.

Dördüncü bölümde robot kollarında yörünge oluşturulmasından ve bu yörüngeye ait

zamanlama fonksiyonlarından bahsedilmiştir. Robot kollarının kontrol metodları

tartışılmıştır. Merkezi olmayan ve merkezi kontrol algoritmalarına değinilmiştir.

Görev uzayında yörünge takibi ve ITECH Kolu’nda ters dinamik kontrol

algoritmasının uygulanması anlatılmıştır.

Beşinci bölümde noktadan noktaya ve çember yörüngeye ait yüklü ve yüksüz

durumlarda, çeşitli kazanç ve kontrolcü frekanslarında simülasyon sonuçları

verilmiştir. Kontrolcünün performansını test etmek amacıyla bu simulasyonlar 1m/s

hızında yapılmıştır. Yüklü durumda robot yükten habersiz olduğu ve bu ek kütle

modele dahil edilmediği için sisteme bir bozucu olarak etki etmiştir.Ayrıca örnek bir

görev olarak al-yerleştir senaryosu sonuçları eklenmiştir. Simülasyon sonuçları

irdelenmiştir.

Altıncı ve son bölümde tez boyunca yapılan çalışmalar özetlenmiştir. İleride dinamik

algoritmaların geliştirilmesi için simulasyon ortamı seçimi ve gerçek robot üzerinde

yapılacak çalışmalarda kullanılabilecek haberleşme teknolojileri için tavsiyelerde

bulunulmuştur.

Ekler bölümünde robotun geometrik ve kütle özelliklerinin yanı sıra, bu tez için

yazılan nesne tabanlı Python kütüphanesinin sınıfları ve bu sınıflara ait fonksiyonların

xxiii

kullanımı verilmiştir. Bu kütüphane, bütün tek zincir seri robot kollarına uygun olduğu

için ITECH Kolu’nda yapılacak serbestlik derecesi, eksen değişikliği gibi mekanik

değişimler, birkaç satır kod ile bu tezdeki kodu kullanarak yeni robot koluna

uygulanabilir. Ayrıca, tezde sözde ters jakobiyen yöntemi ile ters kinematik

kullanıldığı için, serbestlik derecesi altıdan farklı olan robot kolları da bu kütüphaneyle

yaratılacak kodla kontrol edilebilir. İnsan kolu gibi serbestlik derecesi altıdan büyük

robotlar için fazlalık çözünürlüğünün eklenmesi gerekmektedir.

xxiv

1

1. INTRODUCTION

Robotics is a multidisciplinary field of study based on electronic, control, mechanical

and computer engineering and it requires a good understanding of physics,

mathematics and control theory to study on problems of robotics.

Robots exist in many forms, such as unmanned vehicles, manipulators, humanoid

robots. In this thesis, the arm of a humanoid robot is studied, which is a six degrees of

freedom serial manipulator with non-spherical wrist.

Human arm is actually consists of seven degrees of freedom revolute joint with

spherical wrist, but many humanoid robots consist of six or less revolute joints which

are capable of executing many daily tasks, with the sacrifice of redundancy in task

space. The main concerns in humanoid robot arms is being capable of human-like

motions, while ensuring the safety required for working with humans.

Controlling a six degrees of serial manipulator generally requires model based

approaches, where a mathematical representation of robot kinematics and dynamics

are derived. The control algorithm is based on this kinematic and dynamic terms and

defined task.

1.1 Purpose of Thesis

Purpose of this thesis is generating a control algorithm for ITECH Manipulator. A side

task is making this algorithm generic by making it capable of controlling any n degrees

of freedom serial manipulators.

Execution of human-like tasks or assisting humans require working in clustered

environments, thus, it is needed to define the motion in task space to predict the robot

hand motion during whole trajectory. Considering the model of the robot, a proper

2

control algorithm has to be selected and applied to robot manipulator by taking hand

motion and robot structure into consideration.

1.2 Literature Review

Control and simulation of robot manipulators has been studied for a long time. The

simplest control algorithm is independent joint control, a decentralized control where

each joint are controlled with a PID, without using the dynamic and kinematic model.

In centralized control, PD Control with Gravity Compensation is the most basic form,

where the control law includes nonlinear coupling terms. In this method, a linear PD

feedback plus gravity compensation torques are used in the control law. In [1] a

Newton-Euler formulation based computation is proposed. In this work, the inertial,

coriolis and centrifugal forces and the resulting joint torques are computed efficiently

online.

The simulation of the robot manipulator is the first stage for controlling an actual robot.

There are a number of robot simulators that simulates the robot and its environment

by solving the related dynamic equations. MATLAB-Simulink is a well known

platform for simulating dynamical systems and designing controllers. Powerful

toolboxes for MATLAB exist,such as Drake, which is a layer built on top of the

MATLAB-Simulink engine that allows the user to define structured dynamical system

[2]. It provides a number of tools for analysis and controller design which take

advantage of the system structure. A commonly used simulator is Gazebo, a multi-

robot simulator for outdoor environments. It supports multiple physics engines (ODE,

Bullet, DART) and, thanks to its modular and plugin-based structure, can be extended

with new features [3]. Another simulator is V-Rep, which has a development

environment based on a distributed control architecture: each object/model can be

individually controlled via an embedded script, a plugin, a ROS node, a remote API

client [4].

1.3 ITECH Humanoid Robot Manipulator

ITECH is a humanoid robot manipulator designed and constructed in System

Dynamics and Control Laboratory of Istanbul Technical University Mechanical

3

Engineering faculty. It consists of six brushless DC Maxon motors, harmonic drives

and an aluminium-steel body. A view of ITECH Arm is given in (Figure 1.1).

Figure 1.1: ITECH Humanoid Robot Manipulator

1.3.1 Mechanical Properties

The mechanical properties of ITECH Arm manipulator are given in Table 1.1 [5].

Table 1.1: Mechanical Properties of ITECH Humanoid Manipulator

joint Motor Harmonic

Drive

Torque

(Nm)

Range(rad)

1 EC90 CPL-20 71.3 - π ..+ π

2 EC90 CPL-20 71.3 - 2π/3 ..+ 2π/3

3 EC60 CPL-17 34.8 - 2π/3 ..+ 2π/3

4 EC60 CPL-17 34.8 - π ..+ π

5 EC60 CPL-17 34.8 - 2π/3 ..+ 2π/3

6 EC60 CPL-17 34.8 - π ..+ π

4

The actuation properties of ITECH Arm manipulator are given in table Table 1.2 [5].

Table 1.2: Actuation properties of ITECH Humanoid Manipulator

Specifications EC90 EC60

Power 90 Watt 100 Watt

Voltage 24V 24V

Moment 444 mNm 283 mNm

Max Velocity 5000 rpm 6000 rpm

Mass 0.61 kg 0.48 kg

Encoder 1024
𝐴𝑡𝛽𝑚

𝑁
 1024

𝐴𝑡𝛽𝑚

𝑁

1.3.2 Software Properties

ROS, an open-source, meta-operating system for robots, is the platform planned to

control the humanoid robot. Thus, the controller design and simulations of the arm is

developed in ROS environment and by using a 3rd party dynamic simulation

environment, GAZEBO [6].

5

2. MODELLING OF ROBOT

Modelling of the robot generally consists of two parts; kinematic modelling and

dynamic modelling. In kinematic modelling, the relationship between the joint

positions, velocities, accelerations and link positions, velocities and accelerations are

considered. In dynamic modelling, the relationship between the joint forces and robot

motion is considered under internal and external forces.

2.1 Geometric Model of Robot

In geometric model, the robot link frames are computed with respect to the

corresponding joint positions. In forward geometric model, the goal is computing the

pose of the end effector from the joint positions of the robot, whereas in inverse

geometric model, the joint positions of the robot is computed with respect to the

corresponding end effector pose, which is not evaluated in this work due to the task

space control laws.

2.1.1 Forward geometric model of robot

The serial manipulators, the links of the robot is connected to its adjacent links with one joint,

which is the case in ITECH manipulator. In the notation used in this work, the base link is

considered as Link 0 and fixed with respect to the world frame. The first joint, which connects

Link 0 to Link 1 is Joint 1. Thus, the robot consists of n joints and n+1 links. In our case, 7 links

and 6 joints. The last link is referred as ‘end effector’.

In manipulators with single degree of freedom joints consist of prismatic and revolute

joints. The joint variable in prismatic joints is linear displacement, while it is angular

displacement in revolute joints.

qi =
di for prismatic joints

θi for prismatic joints
 (2.1)

6

2.1.1.1 Link parameters and link coordinate systems

In this section, we assign coordinate frames to each link. We are following the Denavit-

Hartenberg convention in this work. The joint and link vectors are given in (Figure

2.1) [7]. The frame assignment is described below [8]:

 The zi axis is aligned with the joint axis (i+1). The direction of rotation is arbitrary.

 The xi- axis is defined along the common normal between the joint axis i and joint

axis (i+1) and points from the joint axes i to the joint axis (i+1). In case the joint

axes are parallel, the xi- axis can be chosen arbitrarily, while being perpendicular to

the two joint axes.

 The yi-axis is assigned by the right-hand rule.

The assignment of coordinate frames according to Denavit-Hartenberg convention is

described below:

1. As mentioned above, the base link is numbered as link 0 and the links are numbered

from 0 to i+1 joints. The first joint is numbered as joint 1 and joint i connects link i to

link i+1.

2. The common normal are drawn between the adjacent joint axes.

3. The base coordinate system is assigned in such a way that z0-axis is aligned with

the first joint axis. The x0-axis is perpendicular to z0-axis.

4. The last coordinate system is assigned in such a way that its x-axis is perpendicular

to last joint axis.

5. The assignment of coordinate frames are described below:

 The zi-axis is aligned with the joint axis (i+1)

 The xi-axis is assigned along the common normal between the joint axis i and

joint axis (i+1). In case of parallel joint axes, the xi-axis is chosen arbitrarily

while being perpendicular to the two joint axes. For intersecting joint axes, xi-

axis can be assigned arbitrarily while being the cross product of vectors zi and

zi+1.

6. The link parameters and joint variables ai, αi, θi and di are determined.

7

Figure 2.1: Denavit-Hartenberg kinematic parameters

2.1.1.2 Denativ-Hartenberg Transformation Matrices

The coordinate frames assigned in the previous chapter are used to generate the

Denavit-Hartenberg transformation matrices. The parameters of denavit-hartenberg is

described below [8]:

1. The coordinate system (i+1) is translated along the zi-1 along di distance in order to

coincide origin of this coordinate system with zi-1 axis.

2. The translated coordinate system is rotated about the zi-1 for θi angle in order to

align the axis xi and xi-1.

3. The rotated coordinate system is translated along xi-axis for ai distance in order to

coincide the origin of coordinate system (i-1) with coordinate system i.

4. The translated coordinate system is rotated about the xi-axis for αi angle in order to

coincide the two coordinate systems.

The homogenous transformation matrices corresponding to the transformations and

rotations given above are:

8

A(z, d) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] (2.2)

A(z, θ) = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

] (2.3)

A(x, a) = [

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

] (2.4)

A(x, 𝛼) = [

1 0 0 0
0 𝑐𝛼𝑖 −𝑠𝛼𝑖 0
0 𝑠𝛼𝑖 𝑐𝛼𝑖 0
0 0 0 1

] (2.5)

The resulting transformation is calculated from the products of the given

homogenous transformation matrices.

𝐴𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

] (2.6)

Thus, the forward geometric model of the robot is

𝐴𝑛
0 = 𝐴1

0 𝐴2
1 … 𝐴𝑛

𝑛−1 (2.7)

The 𝐴𝑛
0 matrix represents the position and orientation of the manipulator.

𝐴𝑛
0 = [

 𝑅(𝑞)𝑛

0 𝑝(𝑞)𝑛
0

0 0 0 1

] (2.8)

9

The rotation matrix 𝑅𝑖
𝑖−1 is

𝑅𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖

] (2.9)

The translation vector is 𝑝𝑖
𝑖−1 is

𝑝𝑖
𝑖−1 = [

𝑎𝑖𝑐𝜃𝑖
𝑎𝑖𝑠𝜃𝑖
𝑑𝑖

] (2.10)

2.1.2 Position and orientation of manipulator

Position analysis of the manipulator is straightforward as it is represented directly as

Cartesian coordinates in the robot transformation matrix 𝐴𝑛
0 .

[
𝑥
𝑦
𝑧
] = 𝑝(𝑞)𝑛

0

In order to get [3x1] orientation from the rotation matrix 𝑅(𝑞)𝑛
0 of the robot

transformation matrix 𝐴𝑛
0 , different representations exist.

2.1.2.1 Euler Angles

In Euler Angles representation, the rotation of a rigid body is expressed at three

successive rotations by angles ϕ, θ and ψ. There are 24 different sets of Euler Angles.

ZYZ representation is given in (Figure 2.2) [9]. For this representation,

Figure 2.2: ZXZ Euler Angles Representation

10

The rotation sequence is as follows:

1. Rotation by an angle ϕ in z axis

2. Rotation by an angle 𝜗 in y axis

3. Rotation by an angle ψ in z axis

The rotation matrices of rotations in each axis are

R(z, 𝜙) = [
𝑐𝜙 −𝑠𝜙 0
𝑠𝜙 𝑐𝜙 0
0 0 1

] (2.11)

R(y, 𝜗) = [
𝑐𝜗 0 𝑠𝜗
0 1 0
−𝑠𝜗 0 𝑐𝜗

] (2.12)

R(z, 𝜓) = [
𝑐𝜑 −𝑠𝜑 0
𝑠𝜑 𝑐𝜑 0
0 0 0

] (2.13)

 𝑅 = R(z, 𝜙)R(y, 𝜗)𝑅(𝑧, 𝜓)

= [

𝑐𝜙𝑐𝜗𝑠𝜓 − 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜗𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜗
𝑠𝜙𝑐𝜗𝑐𝜓 + 𝑐𝜙𝑠𝜓 −𝑠𝜙𝑐𝜗𝑐𝜓 + 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜗

−𝑠𝜗𝑐𝜓 𝑠𝜗𝑠𝜓 𝑐𝜗
]

(2.14)

𝜗 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑅33, √1 − 𝑅232)

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅13, 𝑅23)

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑅31, 𝑅32)

(2.15)

11

2.1.2.2 Angle Axis

In angle axis representation, the orientation is expressed as a rotation of a given angle

about a unit vector.

Given the unit vector r and angle ϑ, the rotation matrix is

R(ϑ, r) =

= [

𝑟𝑥
2(1 − 𝑐ϑ) + 𝑐ϑ 𝑟𝑥𝑟𝑦(1 − 𝑐ϑ) − 𝑟𝑧𝑠ϑ 𝑟𝑥𝑟𝑧(1 − 𝑐ϑ) + 𝑟𝑦𝑠ϑ

𝑟𝑥𝑟𝑦(1 − 𝑐ϑ) + 𝑟𝑧𝑠ϑ 𝑟𝑦
2(1 − 𝑐ϑ) + 𝑐ϑ 𝑟𝑦𝑟𝑧(1 − 𝑐ϑ) − 𝑟𝑥𝑠ϑ

𝑟𝑥𝑟𝑧(1 − 𝑐ϑ) − 𝑟𝑦𝑠ϑ 𝑟𝑦𝑟𝑧(1 − 𝑐ϑ) + 𝑟𝑥𝑠ϑ 𝑟𝑦
2(1 − 𝑐ϑ) + 𝑐ϑ

] (2.16)

2.2 Kinematic Model of Robot

Kinematic model of a robot is the mapping between the joint space velocities and task

space velocities. The matrix used in mapping the joint velocities to Cartesian velocities

is Jacobian matrix. For the inverse kinematics, several methods are discussed in the

following chapter.

2.2.1 Forward kinematic model of robot

In forward kinematics, the goal is to derive the relationship between the joint velocities

and end-effector linear and angular velocities. The linear and angular velocity of the

end-effector is given as �̇�𝑒 and �̇�𝑒 respectively. The joint velocities are �̇� [7].

�̇�𝑒 = 𝐽𝑃(𝑞)�̇� (2.17)

𝜔𝑒 = 𝐽𝑂(𝑞)�̇� (2.18)

In (2.17), matrix 𝐽𝑃 is the mapping of joint velocities �̇� to linear velocities of the end-

effector, �̇�𝑒 and is a (3 x n) matrix. In (2.18), matrix 𝐽𝑂 is the mapping of joint velocities

�̇� to angular velocities of the end-effector, �̇�𝑒 and (3 x n) matrix. In manipulator

control, the Jacobian and task space velocities are written in a compact form:

𝑣𝑒 = [
�̇�𝑒
𝜔𝑒
] = 𝐽(𝑞)�̇� (2.19)

12

The Jacobian is a (6 x n) matrix and in our case, it is a (6 x 6) matrix.

J = [
𝐽𝑃
𝐽𝑂
] (2.20)

The geometric properties of Link i are given in Figure 2.3 [7].

Figure 2.3: Link i of a manipulator

2.2.1.1 Geometric Jacobian

The angular and linear velocities of the links actuated by revolute joints are given

respectively [7]:

𝜔𝑖 = 𝜔𝑖−1,𝑖 𝑥 𝑟𝑖−1,𝑖 (2.21)

And

�̇�𝑖 = �̇�𝑖−1 + 𝜔𝑖 𝑥 𝑟𝑖−1,𝑖 (2.22)

Using the equations (2.21) and (2.22), the Jacobian is derived as

𝐽𝑃𝑖 = 𝑧𝑖−1 𝑥 (𝑝𝑒 − 𝑝𝑖−1) (2.23)

13

And

𝐽𝑂𝑖 = 𝑧𝑖−1 (2.24)

Thus, the Jacobian matrix of the manipulator is

J = [

𝐽𝑃1 𝐽𝑃𝑛
 …
𝐽𝑂1 𝐽𝑂𝑛

] (2.25)

The 𝑧𝑖−1 term is the third column of the rotation matrix 𝑅𝑖
𝑖−1 .

2.2.1.2 Analytic Jacobian

Alternatively Jacobian can be generated by using differentiation. Given the forward

geometry

k(q) = [
𝑝𝑒
𝜙] (2.26)

Where 𝜙 is the set of Euler angles.

�̇�𝑒 = [
�̇�𝑒
�̇�
] = [

𝐽𝑃(𝑞)
𝐽𝜙(𝑞)

] q̇ = 𝐽𝐴(𝑞)q̇ (2.27)

By differentiating the forward geometry with respect to the joint variables

𝐽𝐴(𝑞) =
𝜕k(q)

𝜕𝑞
 (2.28)

Note that this analytical Jacobian is a symbolic representation that includes

trigonometric functions and multiplications. As analytic Jacobian maps the joint

velocities to orientation velocity �̇� in terms Euler angle set given in (2.1.2.1), a

transformation is required between angular velocity ω and �̇�.

14

ω = T(𝜙)�̇� (2.29)

The transformation for XYZ Euler angles representation is

T = [
1 0 𝑠𝜗
0 𝑐𝜙 −𝑠𝜙𝑐𝜗
0 𝑠𝜙 𝑐𝜙𝑠𝜗

] (2.30)

The relationship between geometric and analytic Jacobian is

𝑇𝐴(𝜙) = [
𝐼 0
0 T(𝜙)

] (2.31)

J = 𝑇𝐴(𝜙)𝐽𝐴 (2.32)

2.2.2 Inverse kinematic model of robot

Inverse kinematics of a robot represents the relationship between the task space

velocities and joint space velocities. A few different methods exist to compute the

inverse kinematics of the manipulator.

2.2.2.1 Inverse Jacobian

In this method, the inverse of the Jacobian is computed directly and the relationship is

as follows

�̇� = 𝐽−1�̇�𝑒 (2.33)

As the robot approaches kinematic singularity, the determinant of the Jacobian

approaches to zero and when kinematic singularity is reached, the determinant

15

becomes zero as the Jacobian matrix loses a rank. Thus, this situation yields infinite

joint velocities. Several methods exist to handle this problem.

2.2.2.2 Pseudo inverse

This method uses the least-square approximation to solve the non-invertible Jacobian

matrix problem. This method enables the use of inverse Jacobian in redundant

manipulators. The velocities are calculated as

�̇� = 𝐽𝑇(𝐽𝐽𝑇)−1�̇�𝑒 (2.34)

The matrix (𝐽𝐽𝑇)−1 is guaranteed to be invertible, yet this method performs poorly in

the neighbourhood of singular configurations.

2.2.2.3 Damped least squares

In damped least-squares method, a damping coefficient λ is introduced to the pseudo-

inverse method.

�̇� = 𝐽𝑇(𝐽𝐽𝑇 + λ2𝐼)−1�̇�𝑒 (2.35)

Several methods exist to optimize the damping coefficient λ during the manipulation

[10].

2.2.2.4 Jacobian transpose

Given the task space error pe, joint variables q and gain K, the error term in the equation

�̇� = 𝐽𝑇𝐾𝑝𝑒 (2.36)

converges to zero.

16

2.3 Dynamic Model of Robot

The dynamic model of a robot is crucial in design and motion control of the robot as

the required joint torques must be calculated for the execution of motion.

The dynamic model of a robot manipulator is in the form of

B(q)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) = 𝜏 (2.37)

where B(q) is the Mass Matrix and represents the inertial forces, 𝐶(𝑞, �̇�) represents

the Coriolis and Centrifugal forces and 𝑔(𝑞) represents the gravitational forces.

2.3.1 Euler-Lagrange dynamics

The Lagrange dynamics uses the energy equations of the robot and is independent of

the coordinate frame.

Lagrangian of the manipulator is

L = K − P (2.38)

where K is the kinetic and P is the potential energy.

The Lagrange equations are derived as

d

dt

𝜕𝐿

𝜕�̇�𝑖
−
𝜕𝐿

𝜕𝑞𝑖
= 𝜏𝑖 (2.39)

2.3.2 Newton-Euler dynamics

The Newton-Euler dynamics is a recursive algorithm that is based on the balance of

forces in each link of the manipulator. The vectors used in this algorithm are given in

(Figure 2.4). In forward recursion, link velocities and accelerations are computed and

in backward recursion, joint torques are computed [7].

17

Figure 2.4: Force balance representation on Link i

The recursive Newton-Euler algorithm is as follows

Forward recursion:

𝜔𝑖
𝑖 = 𝑅𝑖−1

𝑖 (𝜔𝑖−1
𝑖−1 + �̇�𝑖𝑧) (2.40)

�̇�𝑖
𝑖 = 𝑅𝑖−1

𝑖 (�̇�𝑖−1
𝑖−1 + �̈�𝑖𝑧 + �̇�𝑖𝜔𝑖−1

𝑖−1 x 𝑧) (2.41)

�̈�𝑖
𝑖 = 𝑅𝑖−1

𝑖 �̈�𝑖−1
𝑖−1 + �̇�𝑖

𝑖 x 𝑟𝑖−1,𝑖
𝑖 + 𝜔𝑖

𝑖 x (𝜔𝑖
𝑖 x 𝑟𝑖−1,𝑖

𝑖) (2.42)

�̈�𝐶𝑖
𝑖 = �̈�𝑖

𝑖 + �̇�𝑖
𝑖 x 𝑟𝑖,𝐶𝑖

𝑖 + 𝜔𝑖
𝑖 𝑥 (𝜔𝑖

𝑖 x 𝑟𝑖,𝐶𝑖
𝑖) (2.43)

Backward recursion:

𝑓𝑖
𝑖 = 𝑅𝑖+1

𝑖 𝑓𝑖+1
𝑖+1 +𝑚𝑖�̈�𝐶𝑖

𝑖 (2.44)

µ𝑖
𝑖 = −𝑓𝑖

𝑖 x (𝑟𝑖−1,𝑖
𝑖 + 𝑟𝑖,𝐶𝑖

𝑖) + 𝑅𝑖+1
𝑖 µ𝑖+1

𝑖+1 + (𝑅𝑖+1
𝑖 𝑓𝑖+1

𝑖+1)x 𝑟𝑖,𝐶𝑖
𝑖 + 𝐼𝑖

𝑖�̇�𝑖
𝑖 (2.45)

18

+𝜔𝑖
𝑖 x (𝐼𝑖

𝑖�̇�𝑖
𝑖)

τ𝑖 = µ𝑖
𝑖𝑇𝑅𝑖−1

𝑖 𝑧 (2.46)

z = [
0
0
1
] constant vector (2.47)

𝑅𝑖−1
𝑖 = 𝑅𝑖

𝑖−1𝑇 (2.48)

2.4 Modelling of ITECH Manipulator

In order to generate the model of ITECH Manipulator, a generic object-oriented

Python library is created. This created library takes the coordinate systems and inertial

properties as input and generates the model of the robot and provides the necessary

geometric, kinematic and dynamic functions. The code is capable of generating the

kinematic and dynamic model of an n degree of freedom single chain manipulator.

This code is then uploaded in a GitHub library as an open-source project.

2.4.1 Geometric and kinematic model

The coordinate frames and Denavit-Hartenberg parameters of ITECH Manipulator are

assigned using the method described in (2.1.1.1). The coordinate frames are given in

Figure 2.5 and the Denavit-Hartenberg parameters θi, αi, di and ai of ITECH

Manipulator are given in Table 2.1.

19

Figure 2.5: Link coordinate systems of ITECH Manipulator

Table 2.1: Denavit-Hartenberg Parameters of ITECH Manipulator

joint ai(m) di(m) αi(rad) θi(rad)

1 0 0.16496 -π/2 θ1

2 0 0 π/2 θ2 + π/2

3 0 0.219 -π/2 θ3

4 0 0 π/2 θ4

5 0 0.213 -π/2 θ5

6 0.21718 0 0 θ6 - π/2

The transformation matrices 𝐴1
0 , 𝐴2

1 , … , 𝐴6
5 and the robot transformation matrix 𝐴6

0 is

generated using the formulations (2.6) and (2.7).

20

The Jacobian of the ITECH Manipulator is generated using the formulations given in

(2.2.1). It should be noted that, the terms of Jacobian matrix consist of a large number

of coupled elements. Thus, generating a numerical Jacobian using the equations (2.23)

and (2.24) online is computationally much more efficient than generating a symbolic

Jacobian. In this work, numerical Jacobian is used and computed online.

2.4.2 Dynamic model

The dynamic model of ITECH Manipulator is generated using the Recursive Newton-

Euler Algorithm described in 2.3.2. In order to include the gravitational forces, the

base linear acceleration term �̈�0
0 is defined as

�̈�0
0 = [

−𝑔
0
0
] (2.49)

where g is the acceleration of gravity. Other initial terms 𝜔0
0, �̇�0

0 are taken as zero

vectors. The end-point force and moment terms 𝑓𝑛
𝑛, µ𝑛

𝑛 can be selected as external

forces. In this work, they are also taken as zero vectors.

The inertial properties and link centre of gravity vectors are gathered from the

SolidWorks model of the robot and given in the Appendix.

21

3. ROS- ROBOT OPERATING SYSTEM

3.1 General Structure of ROS

ROS is an open-source, meta-operating system for robots. It provides the services you

would expect from an operating system, including hardware abstraction, low-level

device control, implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers [11].

3.1.1 Ros Nodes

Nodes are the process that perform computation. Each ROS node is written using ROS

client libraries such as roscpp and rospy. Using client library APIs, we can implement

different types of communication methods in ROS nodes. In a robot, there will be

many nodes to perform different kinds of tasks. Using the ROS communication

methods, it can communicate with each other and exchange data. Ros node network

allows to build simple processes rather than a large process with all functionality [12].

3.1.2 Ros Topics

Each message in ROS is transported using named buses called topics. When a node

sends a message through a topic, then we can say the node is publishing a topic. When

a node receives a message through a topic, then we can say that the node is subscribing

to a topic. The publishing node and subscribing node are not aware of each other's

existence. The production of information and consumption of it are decoupled. Each

topic has a unique name, and any node can access this topic and send data through it

as long as they have the right message type.

22

3.1.3 Ros Messages

Nodes communicate with each other using messages. Messages are simply a data

structure containing the typed field, which can hold a set of data and that can be sent

to another node. ROS supports standard primitive types (Boolean, Integer, Float etc.)

and user defined messages can be generated by using these standards.

3.1.4 Ros Services

The ROS services are a type request/response communication between ROS nodes.

One node will send a request and wait until it gets a response from the other. The

request/response communication is also using the ROS message description.

3.2 Gazebo

Gazebo is a 3D dynamic simulation environment that can simulate multiple robots

simultaneously. Various types of sensors, including camera and LIDAR (Laser

Scanning Range Finder) can be simulated in Gazebo. Current version of Gazebo uses

Open Dynamics Engine (ODE) in its ROS compatible version, but its further versions,

which are planned to be interfaced with ROS allow the use of Featherstone-based

engines optimized for joint chains [13].

3.2.1 URDF universal robot description format

URDF is a package that contains XML specifications of a robot, sensors and actuators.

Robot is defined as a child-parent relationship. Each joint has a parent and a child link

and together they form the chain. ROS uses URDF as its robot description format.

Major drawbacks of URDF is that it only supports open chain manipulators and does

not include elastic joints.

3.2.2 SDF simulation description format

Similar to URDF, SDF is also an XML format used by Gazebo Simulator. URDF of a

robot is converted to SDF by Gazebo for simulation. Though not used by ROS, it

supports multiple robots, elastic joints, closed chain manipulators and can store the

states of the robot.

23

3.3 Itech Arm Gazebo-Ros Interface

The procedure of controlling Itech Arm with ROS in Gazebo Simulator is described

in the following section. The work done can be directly applied to control the actual

Itech Arm manipulator.

3.3.1 Itech Arm description

To generate a Gazebo-Ros interface, initially a robot description package needs to be

created. This package consists of the URDF xml file and the robot meshes in STL

format. This is a similar procedure to SimMechanics, where an xml file and STL mesh

files are generated via SolidWorks export option.

While URDF can be created by hand, using basic shapes known to this XML format,

a more practical approach is using SolidWorks URDF exporter.

The joint coordinate frames and rotation axes are specified in SolidWorks assembly

according to the axes assigned in section (2.4.1) to export the Itech Arm robot to URDF

format. However, in URDF, each joint coordinate frame represents its child link, while

in D-H representation, the joint coordinate frames represent its parent link. Thus, for

the controller algorithm, the link mass properties should be taken from the SolidWorks

robot model using D-H coordinate frames.

After exporting the assembly to URDF, the XML file needs to be modified by adding

joint transmissions as Effort Joint Interface, provided by ros-control. These

transmissions form an interface between the ROS controllers and the robot or the

Gazebo simulator. The ROS controllers for Itech Arm are further explained in section

(3.3.2). To communicate with Gazebo simulator, gazebo_ros_control plugin needs to

be added to the URDF file.

24

3.3.2 Itech Arm control

This control package includes a YAML format file that holds the controller types of

the joint actuators and a launch file that spawns these controllers using the Controller

Manager of ros-control package. These controllers publish torque commands to the

robot via Joint Command Interface and the robot publishes its joint position, velocity

and torque states to Joint State Interface. Effort controllers are used in Itech Arm, thus,

torque commands are published to the Joint Command Interface. The input/output

relationship between the URDF, robot controller, simulator and the actual robot is

given in figure (Figure 3.1) [14].

Figure 3.1: Gazebo Ros Interface

3.3.3 Itech Arm gazebo

This package holds the world and launch files of the robot. Gazebo simulator

environment is described in the world file, such as objects, light sources and camera

pose. The launch file starts Gazebo, loads the URDF of the robot to the simulator,

launches the robot control and starts nodes that contains the control algorithms, such

25

as inverse dynamics controller and robot trajectory. In Itech Arm, a seperate package

is created to hold the algorithm nodes as Itech Arm command. The visual of the robot

inside the Gazebo simulation environment is given in (Figure 3.2).

Figure 3.2: Itech Arm in Gazebo simulation environment

3.3.4 Itech Arm command

Itech Arm command is a package created to hold the kinematics and dynamics library,

the trajectory generator and the control algorithm node. The Itech Arm control

algorithm node subscribes to Joint State Publisher topic. The joint position and

velocity states of the robot taken from the Joint State Publisher are used in the inverse

dynamics control algorithm. The outputs of the inverse dynamics control algorithm are

joint torques and these torque data are published to the

joint_effort_controller/command topics. This way, the loop between the dynamic

simulation and robot control algorithm is closed.

26

27

4. CONTROLLER DESIGN

4.1 Trajectory Generation

In order to have the robot execute a task, a trajectory has to be generated for this

specific task, defining the initial and final points and the motion to be followed

between these two points.

Let 𝑞𝑖 and 𝑞𝑓 be the initial and final positions of a joint. The trajectory between these

two points is defined by the following equations

q(t) = 𝑞𝑖 + 𝑟(𝑡)𝐷 (4.1)

q̇(t) = �̇�(𝑡)𝐷 (4.2)

In these equations, 𝐷 = 𝑞𝑓 − 𝑞𝑖 and 𝑟(𝑡) is the interpolation function.

4.1.1 Interpolation functions

Interpolation functions are used in trajectory generation in order to generate time-

dependent configurations between the initial and final points. This ensures the

continuation of position in the most basic form and can be further improved for

velocity and acceleration.

4.1.1.1 Linear Interpolation

Linear Interpolation is the most basic form of interpolation functions. The time

dependent function is:

q(t) = 𝑞𝑖 +
𝑡

𝑡𝑓
𝐷 (4.3)

28

4.1.1.2 Cubic spline interpolation

In cubic spline interpolation, the interpolation function is a 3rd degree function, thus

ensures the continuity of both velocity and position. Using the position and velocity

boundary conditions, the interpolation function is generated as:

r(t) = 3(
𝑡

𝑡𝑓
)

2

− 2(
𝑡

𝑡𝑓
)

3

 (4.4)

In order to minimize the travel time either acceleration or velocity reaches its limit.

Thus the final time for minimum traveling time is defined as:

𝑡𝑓 =

{

3|𝐷|

2𝑣𝑙𝑖𝑚𝑖𝑡
 if velocity limit 𝑣𝑙𝑖𝑚𝑖𝑡 is reached

(
6|𝐷|

𝑎𝑙𝑖𝑚𝑖𝑡
)

1/2

if acceleration limit 𝑎𝑙𝑖𝑚𝑖𝑡 is reached

 (4.5)

In order to determine whether velocity or acceleration limit is reached, simply the one

yielding the maximum 𝑡𝑓 is saturated.

4.1.2 Task space trajectory generation

In task space trajectory generation, the initial and pose of the end effector is determined

first and the poses between the initial and final pose are computed in order to

synchronize the rotational and translational motions of the end effector.

Let the initial and final pose be

𝑋𝑖 = [

𝑝𝑖
𝜙𝑖
] and 𝑋𝑓 = [

𝑝𝑓
𝜙𝑓
]

(4.6)

29

Cartesian position of end effector is 𝑝𝑒 and orientation of end effector is 𝜙𝑒, the euler

angles (φ,ϑ,ψ).

The position and orientation of trajectory and their time derivatives are

𝑝𝑒(𝑡) = 𝑝𝑖 + 𝑟(𝑡)(𝑝𝑓 − 𝑝𝑖)

�̇�𝑒(𝑡) = �̇�(𝑡)(𝑝𝑓 − 𝑝𝑖)

�̈�𝑒(𝑡) = �̈�(𝑡)(𝑝𝑓 − 𝑝𝑖)

(4.7)

𝜙𝑒(𝑡) = 𝜙𝑖 + 𝑟(𝑡)(𝜙𝑓 − 𝜙𝑖)

�̇�𝑒(𝑡) = �̇�(𝑡)(𝜙𝑓 − 𝜙𝑖)

�̈�𝑒(𝑡) = �̈�(𝑡)(𝜙𝑓 − 𝜙𝑖)

(4.8)

4.2 Motion Control

Motion control of a robot manipulator consists of calculating the joint control signals

in order to execute the desired motion. The joint level controller may vary, such as

position, velocity and torque closed-loop. As robot manipulators that have degrees of

freedom equal or higher than 6 have highly coupled nonlinear terms, using the position

and/or velocity closed loops in joint level tend to fail. Thus, in this work, torque closed

loop control in joint level control is assumed.

4.2.1 Static-Model based control

The static model based control suggests the use of desired task space position error

vector as an external vector, which is obtained from the following equation:

τ = 𝐽𝑇(𝑞)𝐹𝑒𝑥𝑡 (4.9)

30

Which yields the control law:

τ = 𝐽𝑇(𝑞)𝐾𝑃𝑒 − 𝐾𝐷�̇� + 𝑔(𝑞) (4.10)

This controller does not include the robot dynamics, thus, it is a relatively simple

controller structure and has a naturally compliant behaviour.

4.2.2 Inverse dynamics control

As mentioned in the equation (2.37), the dynamic of the robot manipulator is in the

form of

B(q)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) = 𝜏

Rewriting the equation (2.37) as

u = B(q)𝑦 + 𝑁(𝑞, �̇�) (4.11)

Where u is the control vector.

𝑁(𝑞, �̇�) = 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) (4.12)

�̈� = 𝑦 (4.13)

In the task space scheme, taking the derivative of

�̇�𝑒 = 𝐽(𝑞)�̇�

yields

�̈�𝑒 = 𝐽(𝑞)�̈� + 𝐽(̇𝑞, �̇�)�̇� (4.14)

The inverse dynamics control law generated for the robot manipulator is

31

y = 𝐽−1(𝑞)(�̈�𝑑 + 𝐾𝐷 �̇̃� + 𝐾𝑃�̃� − 𝐽(̇𝑞, �̇�)�̇�) (4.15)

Where �̇̃� and �̃� are task space pose errors.

The diagram of Inverse Dynamics Control in Task Space is given in (Figure 4.1)

Figure 4.1: Inverse dynamics control in task space

4.2.3 Computation of task space errors

As the control law of inverse dynamics requires the computation of

y = 𝐽−1(𝑎 − 𝐽�̇̇�) (4.16)

Where 𝑎 is the resolved acceleration, �̇�𝑒

𝑎 = [
𝑎𝑝
𝑎𝑂
] (4.17)

𝑎𝑝 = �̈�𝑑 + 𝐾𝐷𝑃�̇� + 𝐾𝑃𝑃𝑝 (4.18)

The linear position and velocity errors are

32

𝑝 = 𝑝𝑑 − 𝑝𝑔 (4.19)

�̇� = �̇�𝑑 − �̇�𝑔 (4.20)

The desired terms in equations (4.16) and (4.17) are computed from forward

geometry and kinematics respectively.

Calculation of 𝑎𝑂 term of resolved acceleration is more complicated. Remembering

the equation (2.19)

 𝑣𝑒 = [
�̇�𝑒
𝜔𝑒
] = 𝐽(𝑞)�̇�

𝜔𝑒 = 𝑇(𝜙𝑒)�̇�𝑒 (4.21)

�̇�𝑒 = 𝑇(𝜙𝑒)�̈�𝑒 + �̇�(𝜙𝑒 , �̇�𝑒)�̇�𝑒 (4.22)

The resolved angular acceleration based on Euler angles error can be represented as:

𝑎𝑂 = 𝑇(𝜙𝑒) (�̈�𝑑 + 𝐾𝐷𝑂 �̇̃� + 𝐾𝑃𝑂�̃�) + �̇�(𝜙𝑒 , �̇�𝑒)�̇�𝑒 (4.23)

4.2.4 Computation of Jacobian Derivative term

�̈� = 𝐽(𝑞)�̈� + 𝐽(̇𝑞, �̇�)�̇� (4.24)

33

𝐽(̇𝑞, �̇�)�̇� = [
�̈�(�̈� = 0)
�̇�(�̈� = 0)

] (4.25)

From Newton Euler recursive algorithm, in equations (2.42) and (2.41), �̈�𝑛
𝑛 and �̇�𝑛

𝑛

calculated respectively.

�̈� = 𝑅0

𝑛 �̈�𝑛
𝑛 (4.26)

�̇� = 𝑅0

𝑛 �̇�𝑛
𝑛 (4.27)

Using the equation (4.25), by setting the joint accelerations zero, the 𝐽(̇𝑞, �̇�)�̇� term is

calculated recursively [15].

34

35

5. SIMULATION RESULTS

The simulation studies are conducted in Gazebo. The robot is started at an initial pose.

It is then commanded to go to a specified pose and draw a circle of 10 cm radius. In

order to generate significant Coriolis and Centrifugal terms and test the inverse

dynamics algorithm, 0.86 m/s velocity and 3.99 m/s2 acceleration are reached during

the motion trajectory. The simulations are done for different gains, controller

frequencies and loads. The position and orientation results are both belong to end

effector and with respect to the task space coordinate system.

5.1 Performance Criteria of Controller in Simulations

As performance index, integration of the absolute values and maximum errors of the

errors in Cartesian and orientation space are used. The integration method is rectangle

numerical integration.

Integral Absolute Error =∑absolute error(t) ∗ (sampling time)

tf

t0

 (5.1)

Absolute Cartesian Error(t) = √𝑥𝑒𝑟𝑟𝑜𝑟(𝑡)2 + 𝑦𝑒𝑟𝑟𝑜𝑟(𝑡)2+𝑧𝑒𝑟𝑟𝑜𝑟(𝑡)2 (5.2)

Absolute Orientation Error(t) = |𝜙𝑒𝑟𝑟𝑜𝑟(𝑡)| + |𝜗𝑒𝑟𝑟𝑜𝑟(𝑡)| + |𝜓𝑒𝑟𝑟𝑜𝑟(𝑡)| (5.3)

36

5.2 Simulations without Payload Results

Dynamical simulations are conducted with zero payload using various gain

configurations and controller frequencies. The simulation results for KP=1000.0,

KD=50.0, 250 Hz are given in from Figure 5.1 to Figure 5.9 and in table from Table

5.1 to Table 5.3.

Figure 5.1: End effector x-z position

Figure 5.2: End effector cartesian position

37

Figure 5.3: End effector orientation

Figure 5.4: End effector position error

38

Figure 5.5: End effector position absolute error

Figure 5.6: End effector orientation error

39

Figure 5.7: End effector cartesian velocities

Figure 5.8: Torques of the robot joints 1,2 and 3

40

Figure 5.9: Torques of the robot joints 5,6,7

Table 5.1: Errors of ITECH Arm, 250 Hz controller frequency

Position and Velocity

Gains at 250 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=600.0, KD=50.0 4.9997 1.8122 0.5623 0.2417

KP=800.0, KD=50.0 4.9228 0.9208 0.4842 0.1965

KP=900.0, KD=50.0 4.8944 0.8263 0.4691 0.1836

KP=900.0, KD=25.0 4.9808 1.2594 0.5235 0.2218

KP=900.0, KD=75.0 4.9105 0.9421 0.4627 0.1531

KP=1000.0, KD=50.0 4.9935 1.0856 0.4372 0.1571

KP=1200.0, KD=50.0 4.9086 1.2423 0.4358 0.1313

KP=1500.0, KD=50.0 4.9514 1.3380 0.4218 0.1164

KP=2000.0, KD=50.0 5.0827 0.6766 0.5144 0.1179

41

a)

b)

c)

d)

e)

f)

g)

h)

42

i)

Figure 5.10: End effector absolute position errors

a) KP=600.0, KD=50.0, b) KP=800.0, KD=50.0, c) KP=900.0, KD=50.0, d)

KP=900.0, KD=25.0, e) KP=900.0, KD=75.0, f) KP=1000.0, KD=50.0, g)

KP=1200.0, KD=50.0, h) KP=2000.0, KD=50.0 at 250 Hz

Table 5.2: Errors of ITECH manipulator,100 Hz controller frequency

Position and Velocity

Gains at 100 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=600.0, KD=50.0 5.0953 2.2604 0.7249 0.3602

KP=700.0, KD=50.0 5.1176 2.0833 0.6346 0.3341

KP=800.0, KD=25.0 5.8569 2.1440 0.9423 0.3538

KP=800.0, KD=50.0 5.1462 2.0063 0.5932 0.2690

KP=800.0, KD=75.0 6.3147 2.1931 1.0645 0.2455

KP=900.0, KD=50.0 5.1673 1.9925 0.5970 0.2563

KP=2000.0, KD=50.0 Unstable - - -

a)

b)

43

c)

d)

e)

f)

Figure 5.11: End effector absolute position errors

 a) KP=600.0, KD=50.0, b) KP=700.0, KD=50.0, c) KP=800.0, KD=25.0, d)

KP=800.0, KD=50.0, e) KP=800.0, KD=75.0, f) KP=900.0, KD=50.0 at 100 Hz

Table 5.3: Errors of ITECH manipulator, 50 Hz controller frequency

Position and Velocity

Gains at 50 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=100.0, KD=10.0 16.6974 15.4748 6.3882 2.9924

KP=200.0, KD=10.0 15.7356 12.5877 6.1531 2.9984

KP=200.0, KD=25.0 5.5180 4.6929 2.1253 1.2157

KP=200.0, KD=50.0 Unstable - - -

KP=300.0, KD=10.0 Unstable - - -

44

5.2.1 Discussion

From the tables and figures, it is clearly seen that, higher controller frequencies yield

better results. Although the maximum errors change for the same gain set in different

simulation trials due to the non-real time operating system, it can still give idea on the

performance of the controller. However, the error integral is a more reliable

performance criteria than the maximum error. In 250 Hz, gain sets KP=900.0,

KD=75.0 and KP=1200.0, KD=50.0 give the best results. For position feedback,

setting the KP and KD 900.0 and 50.0 and for orientation feedback, 1200.0 and 75.0

would be the best choice for the controller. Using the same method, best choices of

gain sets for the controller in different frequencies can be generated.

5.3 Simulations with Unknown Payload Results

Dynamic simulations with unknown payload carried by the end effector of the robot

are conducted. The simulation results for KP=1200, KD=50 and 250 Hz controller

frequency are given in from (Figure 5.12) to (Figure 5.20) and from Table 5.4 to Table

5.6.

Figure 5.12: End effector position in x-y, 2 kg Payload

45

Figure 5.13: End effector position, 2 kg Payload

Figure 5.14: End effector orientation, 2 kg Payload

46

Figure 5.15: End effector position error, 2 kg Payload

Figure 5.16: End effector absolute position error, 2 kg Payload

47

Figure 5.17: End effector orientation error, 2 kg Payload

Figure 5.18: End effector cartesian velocities, 2 kg Payload

48

Figure 5.19: Torques of robot joints 1,2 and 3, 2 kg Payload

Figure 5.20: Torques of robot joints 4,5 and 6, 2 kg Payload

49

Table 5.4: Errors of ITECH Arm, 250 Hz controller frequency, 2 kg payload

Position and Velocity

Gains at 250 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=900.0, KD=50.0

with 2000 gr Payload
321.5292 66.5428 96.5249 16.0400

KP=1200.0, KD=50.0

with 2000 gr Payload
248.7201 53.0033 74.7592 13.2540

Table 5.5: Errors of ITECH Arm, 100 Hz controller frequency, 2 kg payload

Position and Velocity

Gains at 100 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=900.0, KD=50.0

with 2000 gr Payload
398.5052 81.01961 119.5790 19.1733

Table 5.6: Errors of ITECH Arm, 50 Hz controller frequency, 2 and 1 kg payload

Position and Velocity

Gains at 50 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=200.0, KD=25.0

with 2000 gr Payload
Unstable - -

-

KP=200.0, KD=25.0

with 1000 gr Payload
618.6905 122.8586 184.3349 28.7477

50

5.3.1 Discussion

When the ‘with and without payload’ cases are compared, the payload reduces the performance

of the manipulator. In 250 Hz and 100 Hz, the manipulator could handle the load while in 50

Hz, the system become unstable. From the Table 5.4, it can be seen that higher proportional

gain yield significantly better results with the existence of unknown payload as greater effort is

produced for the same amount of error and it helped to overcome the weight of the payload. As

in the previous case, higher controller frequencies yield better result. It should be noted that,

with 1:140 harmonic drive transmission and frictions, the effect of payload would be

significantly different than the simulation. The payload simulation is an effort to test the

controller with existence of disturbance. In (Figure 5.19) and (Figure 5.20), the joint torques

are within the limits given in Table 1.1, thus we can conclude that in such a motion, 2 kg payload

can be handled by the ITECH Arm.

5.4 Simulation for Pick and Place Task Results

In this task, ITECH Arm starts at an initial condition, proceeds to object and carries

the object to target location. Finally, the robot arm goes to the initial condition,

completing the task. The simulation is done with KP=1000.0, KD=50.0 and 250 Hz

controller frequency.

Figure 5.21: Screenshot of pick and place in Gazebo

51

Figure 5.22: End effector position in x-y-z, pick and place

Figure 5.23: End effector position, pick and place

52

Figure 5.24: End effector orientation, pick and place

Figure 5.25: End effector position error, pick and place

53

Figure 5.26: End effector absolute cartesian error, pick and place

Figure 5.27: End effector orientation error, pick and place

54

Figure 5.28: End effector cartesian velocities, pick and place

Figure 5.29: Torques of robot joints 1,2 and 3, pick and place

55

Figure 5.30: Torques of robot joints 4,5 and 6, pick and place

Table 5.7: Errors of ITECH Arm, 250 Hz controller frequency, pick and place

Position and Velocity

Gains at 250 Hz

Controller Frequency

Integral

Absolute

Cartesian

Error

Maximum

Absolute

Cartesian

Error

Integral

Absolute

Orientation

Error

Maximum

Orientation

Error

KP=1000.0, KD=50.0 7.156 0.240 1.691 0.072

5.4.1 Discussion

In the pick and place task, the maximum velocity and acceleration of the manipulator

are decreased to improve the accuracy. The maximum errors are significantly lower

than the previous scenarios. Considering the operation time, integral error is also lower

for unit time period. Due to the controller frequency, there are differences between the

velocity in the controller loop and the actual velocity in time t. This causes differences

between the forces acting on joint such as Coriolis and centrifugal forces. When the

accelerations are lower, this difference decreases, improving the performance in terms

of the selected criteria.

56

57

6. CONCLUSION

The purpose of this thesis was to integrate the ITECH 6-DOF Humanoid Manipulator

to ROS and Gazebo environment, write a generic object oriented kinematics &

dynamics library and implement task space inverse dynamics control algorithm in

dynamic simulation environment. The control algorithm code that is written in python

and used in Gazebo simulator can be directly implemented to the real robot that runs

ROS.

In kinematics, numerical geometric Jacobian and numerical transformation and

rotation matrices are used. In dynamics, Newton-Euler formulation is preferred due to

its computational efficiency compared to Euler-Lagrange formulation [15].

Dynamic simulations are conducted in Gazebo with gazebo-ros control interface. In

different controller frequencies, various pose and velocity gains are tested in an effort

to find a suitable gain set with respect to pose error. As the controller and simulator

are both run in a non-real time operating system and communicating over a node

network, there were small differences in the results of the same gain sets and controller

frequencies. Matlab SimMechanics software platform, which offers various

transmission properties such as friction and elastic joints that does not exist in Gazebo

yet, can be a better alternative in developing controller algorithms. SimMechanics.

This platform also delivers more precise results. One can also generate his own

simulation environment using Rigid Body Dynamics algorithms [16] and define

custom friction models.

In simulations, it is observed that the controller frequency dramatically effects the

control performance. Higher controller frequencies were stable for wider range of gain

sets and more robust to disturbances such as payloads carried by end effector of the

robot and yielded better performance in terms of integral absolute pose error. It is

concluded that a fast communication plays a critical role in maintaining high controller

58

frequencies in a real robotic system. While CAN Bus communication has been used in

industrial manipulators for a long time [17], EtherCAT network communication

provides data rates higher than 100 Mbits/s [18] and is currently used in robot

platforms such as KUKA youBot [19] and Justin Robot [20]. This communication

network technology can be implemented on ITECH robot.

With integration of a force/torque sensor on the wrist of the robot, mass of the payload

can be estimated and the inverse dynamics control law can be updated for this

additional mass. As ITECH is planned to be a humanoid manipulator, control

architectures such as impedance control can be implemented for better human-robot

interaction.

59

REFERENCES

[1] J. S. Luh , M. W. Walker and R. P. C. Paul, “On-Line Computational Scheme

for,” Journal of Dynamic Systems, Measurement, and Control , 1980.

[2] R. Tedrake, «Underactuated Robotics,» 2016. [Çevrimiçi]. Available:

http://underactuated.csail.mit.edu/underactuated.html?chapter=26. [Erişildi: 15

11 2016].

[3] S. Ivaldi, J. Peters, V. Padois ve F. Nori, «Tools for simulating humanoid robot

dynamics: a survey,» IEEE-RAS International Conference on Humanoid

Robots , 2014.

[4] «Features: Coppelia Robotics,» Coppelia Robotics, [Çevrimiçi]. Available:

http://www.coppeliarobotics.com/features.html. [Erişildi: 20 11 2016].

[5] O. Kaya, «INSANSI ROBOT KOLUNUN OPT˙IMIZASYONU VE

DINAMIK ANALIZI,» Istanbul Technical University, Institute of Science,

2015.

[6] D. Thomas, «ROS Documentation,» Open Source Robotics Foundation, 2014.

[Çevrimiçi]. Available: http://wiki.ros.org/ROS/Introduction. [Erişildi: 2016].

[7] B. Siciliano, L. Sciavicco, L. Villani ve G. Oriolo, Robotics: Modeling,

Planning and Control, Springer, 2009.

[8] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel

Manipulators, Wiley, 1999.

[9] M. W. Spong, S. Hutchinson ve M. Vidyasagar, Robot Modeling and Control,

John Wiley & Sons, 2006.

[10] S. Chiaverini, B. Sicilliano ve O. Egeland, «Review of the damped least-

squares inverse kinematics with experiments on an industrial robot

manipulator,» IEEE Transactions on Control Systems Technology , cilt 2, no. 2,

Jun 1994.

[11] «ROS Documentation,» Willow Garage, [Çevrimiçi]. Available:

http://wiki.ros.org/ROS/Introduction. [Erişildi: 22 11 2016].

[12] J. M. O’Kane, A Gentle Introduction to ROS, Jason Matthew O’Kane, 2016.

[13] Gazebosim, «New Feature Highlight: Multiple Physics Engines,» Open Source

Robotics Foundation, 2014. [Çevrimiçi]. Available:

http://gazebosim.org/blog/feature_physics. [Erişildi: 25 9 2016].

[14] D. Coleman, «Tutorials:Ros Control,» Gazebosim, 2013. [Çevrimiçi].

Available: http://gazebosim.org/tutorials/?tut=ros_control.

[15] W. Khalil ve E. Dombre, Modeling, Identification and Control of Robots,

Elsevier, 2004.

[16] R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 2014.

60

[17] KUKA, «KUKA Robotics,» KUKA Robotics, 2000. [Çevrimiçi]. Available:

http://www.kuka-

robotics.com/en/pressevents/productnews/print/NP_000508_Truetzschler.htm.

[Erişildi: 5 10 2016].

[18] EtherCAT, «Ethercat,» EtherCAT, [Çevrimiçi]. Available: EtherCAT.

[Erişildi: 6 10 2016].

[19] KUKA, «KUKA Healthcare,» KUKA Robotics, [Çevrimiçi]. Available:

http://www.kuka-healthcare.com/NR/rdonlyres/4833867A-D24F-410A-9AE4-

300FBF671DFD/0/youBot_datenblatt_web_0514.pdf. [Erişildi: 5 10 2016].

[20] PC-Control, «ethercat,» DLR, 2010. [Çevrimiçi]. Available:

https://www.ethercat.org/download/documents/pcc_0210_dlr_e.pdf. [Erişildi: 8

10 2016].

61

APPENDICES

APPENDIX A: Geometric properties of Itech Arm

APPENDIX B: Mass properties of Itech Arm

APPENDIX C: Itech Arm Software Library classes and functions

62

APPENDIX A

The length of links (m):

Base: 0.16496

Arm: 0.219

Forearm: 0.213

Hand: 0.21718

In this thesis, Robotiq 2-Finger Adaptive Gripper is used as hand. The properties

would change once an end effector is determined and mounted. The transformation

matrices of the robot are generated inside the kinematics algorithm of ITECH Arm,

using D-H parameters.

63

APPENDIX B

Masses of the links (kg):

Mass 1: 1.7621

Mass 2: 1.3727

Mass 3: 1.2878

Mass 4: 1.2701

Mass 5: 1.2878

Mass 6: 0.5465

Link centre of mass vectors for the corresponding link coordinate frames (mm):

𝐶𝑜𝑀 = [𝐶𝑜𝑀𝑥 𝐶𝑜𝑀𝑦 𝐶𝑜𝑀𝑧]

𝐶𝑜𝑀1 = [0.00 12.20 0.30]
𝐶𝑜𝑀2 = [0.37 −2.26 84.80]
𝐶𝑜𝑀3 = [−0.40 8.97 −2.26]
𝐶𝑜𝑀4 = [0.35 3.40 83.38]
𝐶𝑜𝑀5 = [0.40 8.97 2.26]
𝐶𝑜𝑀6 = [−154.06 0.0 −7.36]

Link inertia matrices for the corresponding link coordinate frames (gr.mm2)

 𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

]

𝐼1 = [
3525915 444 34
444 2019491 4861
34 −48461 3776165

]

𝐼2 = [
3924797 4315 −1241
4315 3371160 274684
−1241 274684 1643140

]

𝐼3 = [
1964360 4451 14951
4451 1316183 8007
14951 8007 1695363

]

𝐼4 = [
3305476 −9407 −3142
−9407 2824665 −361337
−3142 −361337 1478336

]

64

𝐼5 = [
1964360 −4451 14951
−4451 1316183 −8007
14951 −8007 1695363

]

𝐼5 = [
810649 68 274614
68 2392078 22

274614 22 2015807
]

65

APPENDIX C

Itech Arm kinematic functions library

Functions:

get_rotation (rotation vector, angle):

Arguments: A unit vector and an angle

Returns: A 3x3 rotation matrix with the unit vector rotated by the angle

transformation_to_pose (Transformation):

Arguments: 4x4 transformation matrix

Returns: 6x1 pose of the robot

Itech Arm kinematics and dynamics library

Classes:

Link (self, DH, r_centre_of_mass, mass, inertia):

Link class arguments: Denavit-Hartenberg parameters, vector of centre of mass, link

mass, inertia matrix

Link class functions:

rotation (self):

Returns: 3x3 rotation matrix of the link for corresponding angle attribute of

link object

inverse_rotation(self):

Returns: 3x3 inverse rotation matrix of the link for corresponding angle and

D-H attributes of the link object

A(self):

Returns: 4x4 transformation matrix of the link for corresponding angle and D-

H attributes of the link object

z_axis(self):

Returns: 3x1 z vector of the link for corresponding D-H attribute of the link

object

66

Robot(self, links):

Robot class arguments: Link objects generated from Link class

 Robot class functions:

 get_forward_geometry(self):

 Returns: 4x4 transformation matrix of the robot

 get_pose_vector(self):

 Returns: 6x1 pose vector of the robot

 get_orientation_T(self):

Returns: 3x3 orientation velocity to task space angular velocity

transformation matrix

get_orientation_T(self):

Returns: 3x3 derivative of orientation velocity to task space angular velocity

transformation matrix

get_jacobian(self):

Returns: The 6xn Jacobian matrix of the robot

get_torques(self):

Returns: The array of torques of the robot from the corresponding joint

positions, velocities and accelerations attributes

get_controller_torques(self, control signal):

Arguments: control signal for the inverse dynamics controller

Returns: The array of torques of the robot from the corresponding joint

positions, velocities attributes and the control signal

get_jacobian_derivative(self):

Returns: The numerical Jacobian derivative of the robot

67

CURRICULUM VITAE

Name-Surname :Oğuzhan Cebe

Date and Place of Birth :24.07.1992, İZMİR TURKEY

E-Mail : oguzhancebe@gmail.com

EDUCATION:

 B.Sc. : 2014, İzmir Institute of Technology, Faculty of Engineering,

Mechanical Engineering

EXPERIENCES

 2015-2016, Robotics and Control Engineer at BAÇ Engineering, Machinery and

Automation

PUBLICATIONS

 Aykut Beke, Mustafa Saraoğlu, Gürtaç Kadem, Oğuzhan Cebe, Ramazan Gökay, Volkan
Sezer “Vehicle Platoon Control: Consensus Based Approach” Turkey Automatic Control
National Committee, 2016

oguzhancebe@gmail.com

