
Abstract—Standard distribution middleware has recently
emerged as a potential solution to interconnect distributed
systems in the avionics domain, as it would bring important
benefits throughout the software development process. A
remaining challenge, however, is reducing the complexity
associated with current distribution standards which leads to
prohibitive certification costs. To overcome this complexity, this
work explores the use of the DDS distribution standard on top
of a software platform based on the ARINC-653 specification.
Furthermore, it discusses how both technologies can be
integrated in order to apply them in mission and safety-critical
scenarios.
Keywords—distributed systems; middleware; ARINC-653;
hypervisor; DDS; real-time systems.

I. INTRODUCTION

Today’s airborne systems typically rely on the integrated
modular avionics (IMA) architecture to simplify the
development of onboard software. One important aspect of
this architecture is the ARINC-653 specification [1], where
the partitioning concept can provide applications with strong
temporal and space isolation, thus easing their verification,
validation and certification [2].

In this kind of systems, partitions are interconnected using
ARINC-653 communication services and through special
purpose networks such as AFDX [3]. However, partitioned
systems are shifting to rely on standard distribution
middleware for communications, as it can bring important
features to avionic systems (e.g., interoperability, location
transparency or the abstraction of network services). One
major effort in this direction is the Technical Standard for
Future Airborne Capability Environment (FACE) [4], which
aims to standardize approaches based on open standard
solutions for airborne systems. Among others, FACE
includes the Data Distribution Service for Real-Time
Systems (DDS) [5] as a suitable candidate to provide
distribution capabilities within avionic systems.

The DDS standard is starting to be applied to emerging
real-time applications such as those related to cloud

environments [6] or cyber-physical systems [7].
Nevertheless, the use of DDS in safety-critical systems is
still an open challenge that is being addressed through the
extension of DDS with a safety-critical profile [8][9] suitable
for partitioned systems.

An early experience dealing with the integration of DDS
into partitioned systems was introduced in [10], where the
use of DDS in partitioned applications with low levels of
criticality is discussed. However, safety-critical applications
should rely on the ARINC-653 facilities for inter-partition
communications. Therefore, this paper provides a step
forward towards the integration of both technologies by
exploring the use of DDS on top of the ARINC-653
communication services. To this end, it not only identifies a
set of integration issues when using both standards, but it
also proposes solutions for them. Furthermore, the work
includes the development of a partitioned distributed real-
time platform as a proof of concept, and a preliminary
evaluation about the proposed integration.

To the best of our knowledge, few research papers have
dealt with the use of DDS in safety-critical environments.
The work in [11] proposes an architecture which relies on
DDS for communications in the automotive domain.
Furthermore, [12] presents an architecture for fractionated
spacecraft in which a middleware layer provides high-level
abstractions for client/server and publisher/subscriber
communications based on CORBA [13] and DDS [5],
respectively. The approach of this paper differs from the
existing literature on DDS for safety-critical systems by
integrating a new communication service into DDS for inter-
partition communications instead of relying on the
traditional UDP/IP transport. Similarly to our work, the use
of other transports in DDS is addressed in [14] and [15]
which explore the integration of the CAN bus and the
FlexRay communications system, respectively.

The execution of DDS in a virtual environment was
previously dealt in [16] and [17]. Unlike our approach, these
works rely on general-purpose virtualization technology.
More generally, comprehensive surveys on challenges for
real-time virtualization can be found in [18] and [19]. While
the former deals with real-time embedded systems, the latter

This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HIPARTES).

Data-centric distribution technology in
ARINC-653 systems

Héctor Pérez and J. Javier Gutiérrez
Software Engineering and Real-Time Group

Universidad de Cantabria
Santander, SPAIN

{perezh, gutierjj}@unican.es

REACTION 2014 34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/159401339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

focuses on real-time virtualization for cloud computing
systems.

This document is structured as follows. Section II
introduces a brief review of the DDS and ARINC-653
specifications. Section III analyzes the differences between
these standards from the communication perspective and
proposes a system design to integrate both technologies.
Section IV presents the development of the proposed
partitioned distributed real-time platform and evaluates the
feasibility of the approach. Finally, Section V summarizes
the main contributions and the lines of future work.

II. BACKGROUND

A Overview of DDS
The Data Distribution Service for Real-Time Systems [5]

is a standard based on the publisher-subscriber paradigm
which provides anonymous, decoupled and asynchronous
communications. This standard also addresses the needs of
real-time systems [20], as it provides applications with a
wide set of configurable QoS parameters to control non-
functional properties such as data timeliness [21].

The DDS distribution model is based on a fully
distributed Global Data Space where data may flow from
one or many publishers to one or many subscribers. The data
to exchange are defined by means of Topics, which are
written (produced) and read (consumed) by DataWriters
(DW) and DataReaders (DR), respectively.

When a new application joins the distributed system,
middleware will automatically detect its presence through a
special service called Discovery. This service implements the
process by which DDS entities can find out information
(e.g., Topic name or QoS parameters) about the presence and
characteristics of any other entity within the distributed
system. Henceforth, this kind of information will be referred
to as discovery data.

To guarantee the interoperability among different
implementations, DDS relies on the DDS Interoperability
Wire Protocol (DDSI) [22]. DDSI describes how data should
be disseminated among nodes by defining a set of exchange
information protocols and message formats. Although DDSI
is particularly oriented to using the UDP/IP protocol, it does
not preclude the use of other transport protocols.

B Overview of communications in ARINC-653
The ARINC-653 specification describes the baseline

operating environment for avionics software used within
large and complex IMA [1]. It consists of three main parts
covering the mandatory and optional services, together with
the conformity tests. Additionally, Part 4 [23] was
introduced in 2012 and defines a strict subset of services for
minimal onboard systems.

The key feature at the foundation of ARINC-653 is
partitioning, which ensures time and space isolation between
different partitions. As a result of this isolation, a set of
applications with different levels of criticality can be
executed in the same hardware platform, and they can also
be certified together even if they have been developed by
different companies.

The communication among partitions is performed by
exchanging messages through the use of channels. A channel
is composed of one single sending port and one or many
receiving ports. A port can be configured to be either the
source or the destination of messages, but not both.
Furthermore, communication ports support two modes of
transfer: (1) sampling mode, which supports unicast,
multicast and broadcast messages; and (2) queuing mode in
which only unicast messages are obligatory. The main
difference is that queuing ports allow multiple messages to
be buffered, whereas sampling ports do not (i.e. received
messages always overwrite previous data).

As network links and workload are controlled in safety-
critical scenarios, channels, ports and their attributes should
be entirely defined at configuration time. In a system built
around the space and time partitioning paradigm, the
application supplier is only aware of the information which
is sent or received within its own partition, while the system
integrator has the overall responsibility of configuring the
communication channels in order to ensure the correct
routing of messages from source to destination/s. From the
viewpoint of software development, this strict separation of
roles provides important benefits [1][2] and so it should be
addressed in the integration with distribution middleware.

III. SYSTEM DESIGN
The DDS distribution model resembles the one proposed

by the ARINC communication service, as it provides
flexibility and decoupling features which are required for
composability and reuse. For instance, ARINC proposes an
asynchronous messaging service where the application
suppliers only know about the specific data that must be
produced or consumed. Similarly, the DDS conceptual
model is based on publisher and subscriber entities that
respectively write (produce) and read (consume) data
independently of its location.

However, there is a set of differences among the family of
DDS and ARINC-653 standards, which compromises the
integration of the two technologies as described below in the
list of issues and possible solutions.

A Communications

Issue #1. While DDS supports one-to-one, one-to-many and
many-to-one communication models, the ARINC
communication service supports the first two models

REACTION 2014 35

through sampling ports, but only unicast communications are
required for queuing ports. Although the many-to-one
communication model is not explicitly prohibited in the
standard, it is not allowed by some underlying networks
(e.g., AFDX [3]) and implementations (e.g., XtratuM [24]).

Solution #1. The many-to-one communication model is one
basic block for implementing redundancy at the DDS layer
[25], as several DWs can be in charge of updating the same
topic [5]. As shown in Figure 1, support for this
communication model should be built at the DDSI level, as
the underlying transport over ARINC-653 may only support
one-to-one and one-to-many communications.

Issue #2. Although DDS communication mode is essentially
asynchronous, it also supports mechanisms for synchronous
access to data. However, the synchronous communication
mode is not explicitly considered in the ARINC-653 Part 1
specification [1], which leaves the use of this feature as
optional as long as it is guaranteed and provided by the
underlying system when required. It is also worth noting that
the ARINC-653 Part 4 specification [23] does not allow
blocking calls to be used.

Solution #2. There is a set of different communication
mechanisms supported by DDS. On the publisher side, the
transmission of data is essentially asynchronous. Moreover,
it also supports the synchronous behaviour by blocking the
calling thread until the reception of acknowledgments from
the matched DRs. On the subscriber side, data can be
received through (1) polling, (2) listeners to asynchronously
access the data, and (3) wait-sets for the synchronous access
to data [5]. If the underlying system is not suited to support
blocking calls or it must be ARINC-653 Part 4 compliant,
middleware must rely on polling and listener mechanisms
which should be implemented accordingly (i.e., without
using blocking calls to listen for incoming messages).

B Transport protocols

Issue #3. One DDSI message is comprised by a fixed-size
header and a variable number of sub-messages, as it may
include not only user but also protocol data. It is particularly

critical in ARINC-like systems where the maximum size of
messages must be specified at configuration time. This point
may also jeopardize the determinism of the distributed
system [21].

Solution #3. Current DDSI protocol should be restricted in
ARINC-like systems to preserve the boundary of messages
from upper layers and therefore the maximum message size
can be computed as the sum of the maximum size of the
topic and the protocol headers. Otherwise, the maximum size
of a DDSI message that can be sent or received by the
ARINC-653 communication service must be restricted at
configuration time.

Issue #4. For interoperability purposes, DDSI over UDP/IP
relies on pre-defined communication ports to receive user
and discovery data, and these ports can be shared among
multiple sources. In ARINC-like systems, a receiving port
should receive messages from a single sending port (see
Issue #1 and Figure 1).

Solution #4. A new mechanism to associate the
corresponding port name/s with each DR/DW entity should
be implemented. For example, this kind of information can
be automatically obtained from a static discovery service
(see subsection D). As multiple DWs can be updating the
same topic at the same time, it is important to remark that the
use of the topic name to identify the corresponding port
name is not suitable due to the single data source issue
illustrated in Figure 1.

C Addressing scheme

Issue #5. Middleware requires a way to contact with remote
nodes (i.e., the assignment of identifiers to entities in order to
denote their location).

Solution #5. A data flow is uniquely identified within DDSI
by the set {transport, address, port}. This addressing
information or locator is used to send messages to matching
readers through a specific transport protocol.

In the case of UDP/IP, the locator is composed of the UDP
destination port and the IP destination address. For the
ARINC-653 communication service, the locator shown in
Table 1 is proposed. Unlike UDP/IP, the ARINC-653
communication service relies on the source port to send a
message to the destination, as they are statically connected
by means of a channel.

D Discovery

Issue #6. DDS requires information to be obtained about the
presence of remote entities and their properties at runtime,

APPLICATION

DATA READER

TOPIC

DDSDDS

DDSIDDSI READER

PORTPORT

APPLICATION

DATA WRITER

DDSI WRITER

PORT

APPLICATION

DATA WRITER

DDSI WRITER

PORT

DDSI

ARINC COMM ARINC COMM

Fig. 1 Many-to-one communication model for DDS through
ARINC-653 ports

REACTION 2014 36

but ARINC-653 channels are entirely defined at
configuration time by the system integrator.

Solution #6. According to the standard, Discovery is a two-
step process where new applications announce their presence
within the distributed system. When two DDS applications
have discovered one another, they exchange information
about their DWs and DRs and then the possible matches are
determined. As a result, discovery can be implemented
following three different strategies:
• Dynamic, in which DDS entities are able to exchange

information with any other entity on the network, and
they are dynamically matched and tracked at runtime
(i.e., plug-and-play system). The information is
automatically exchanged in the context of discovery data
by a pre-defined set of built-in entities. This represents
the standard discovery mechanism defined by the
specification [5].

• Static, in which all the information about DDS entities is
statically configured before runtime (i.e., no data is sent
through the network).

• Quasi-static, in which part of the information is sent
through the network, while the rest is statically
configured [12] [26].

ARINC-like systems are characterized by using pre-
configured communication links with static workload. Under
this scenario, it seems reasonable that each node does not
have information about the whole distributed system (i.e.,
non-matching entities should not be discovered).
Furthermore, since decoupled communications is a desired
feature at the application supplier level, the location of DDS
entities should be built upon the system integrator
configuration. While the use of static discovery is the natural
choice, the quasi-static approach can be considered with
some restrictions. When the same ARINC port is used for the
distribution of both application and discovery data,
communication channels are simpler to configure at the cost
of certain complexity at runtime (i.e., there is an initial
discovery phase before transmitting any application data).
Otherwise, the system integrator should be responsible for
specifying the required configurations related to the DDS
discovery process (e.g., channels for the built-in entities).

E Mapping of entities

Issue #7. DDS entities and their properties should contain
enough information to comply with the attributes required by
the ARINC-653 communication service.

Solution #7. An ARINC-653 communication port is
basically defined by a set of 5 attributes:
• Transfer direction. DWs represent source ports, whereas

DRs are identified as destination ports.
• Port name. New information to denote the

corresponding port name/s should be attached to DWs
and DRs, as proposed in Solution #4.

• Message storage. According to the DDS standard, the
message storage requirements are specified by History
QoS and its corresponding depth parameter [5].
Therefore, the maximum number of messages associated
with a queuing port should be equal to the value of the
depth parameter.

• Mode of transfer. This attribute is closely related to the
message storage requirements, as multiple messages can
only be buffered by queuing ports.

• Message length. DDS messages should be restricted in
size, as proposed in Solution #3.

The basic mapping of DDS entities to the underlying
ARINC-653 communication service is shown in Table 2.

IV. EVALUATION
This section aims to describe a partitioned platform to

validate the proposed approach by obtaining a set of
performance metrics. The hardware platform is composed of
an Intel i5-4570 processor with a clock rate of 3.2 Ghz. The
software platform is shown in Figure 2 and consists of a
single C application distributed through RTI Connext Micro
v2.2.31. This application is running on top of a real-time
operating system called MaRTE OS (v1.9) [27], which in
turn is executed on top of an hypervisor called XtratuM

Table 1: DDS locator for ARINC-653 communications

Locator_t

attribute type value

kind long LOCATOR_KIND_ARINC653

channel unsigned long Identifies the ARINC653 channel

port_name string Identifies the ARINC653 source port

1. RTI Connext DDS Micro is available at http://www.rti.com

.
Table 2: Mapping of DDS and ARINC-653 entities

ARINC-653 DDS

Port Name New entity information

Message Storage Depth parameter in History QoS

Message Length Max IDL type + DDSI header

Transfer Direction
(source/destination)

DataWriter/DataReader

Mode of Transfer
(sampling/queuing)

Depth parameter in History QoS

REACTION 2014 37

(v3.7) [24]. This hypervisor is responsible for providing
temporal and space isolation, and it allows a complete
operating system to be executed in each partition.

A prototype implementation of the proposed approach has
been developed as a proof of concept. The development of
this prototype has focused on validating the proposed
software integration, leaving the use of safety-related
hardware and implementation efficiency for future work. To
this end, the DDS implementation has been extended to
provide support for the ARINC-653 communication service,
as described below.

A Extensions to the DDS implementation
RTI Connext Micro is a minimal DDS middleware aimed

at resource-constrained devices and which has been designed
with certification requirements in mind. This middleware
relies on a set of abstraction layers to support a variety of
platforms and transport protocols. The abstract
communication interface is used between different I/O layers
in the core library and therefore the following extensions
have been added:
• The ARINC-653 middleware interface to comply with

the requirements imposed by the core library, such as
operations to send or receive DDSI messages, create I/O
threads, bind to destination addresses, etc.

• The ARINC-653 low-level interface to provide
operations to transmit and receive data via the ARINC-
653 communication service. This not only includes the
functionality for sending and receiving data, but it also
implements the operations to create the required
communication ports. Furthermore, a blocking receive
operation has been implemented to allow I/O threads to
wait for incoming data instead of polling for it. This
functionality relies on the extended interrupt mechanism
provided by the hypervisor to notify partitions about
incoming messages, and it can be of interest for a
number of partitioned systems as specified in Issue #2.

• New addressing information for the ARINC-653
communication service, and the corresponding
functionality to manage it within the core library.

B Extensions to the hypervisor
XtratuM is an ARINC-653-like hypervisor especially

designed for real-time embedded systems developed at the
Real-Time System Group of the Instituto de Automática e
Informática Industrial of the Universitat Politècnica de
València (Spain). This hypervisor features spatial and
temporal isolation by (1) allocating partitions to a unique
address space which is not accessible by other partitions and
(2) through a fixed cyclic scheduler, respectively.

In the communication service implemented by XtratuM,
channels, ports and their attributes are entirely defined
through an XML configuration file. In the case of channels,
their current configuration does not include any identifier
that allows their information to be linked with the discovery
service. Therefore, the discovery information is currently
provided to the prototype by hand, although an automatic
generation of this configuration from the hypervisor
configuration file is planned.

C Results
For our purposes, this paper will only consider a steady

and static partitioned system (i.e., initialization and
discovery processes have been completed and late-joiners
are strictly forbidden) in which applications are connected
through the ARINC-653 communication service provided by
XtratuM.

The test will measure the round-trip latency of a remote
operation, that is, the time between the call to publish data
and the return of the read operation. The data payload is
bounded to 100 bytes, and the operation is executed 10,000
times to estimate the average, maximum, and minimum
times, together with the standard deviation and the 99th
percentile (i.e., the value below which 99 percent of the
measurements are found). The results for the performance
analysis are shown in Table 3, which includes three different
evaluations that are detailed below.

The first evaluation aims to estimate the performance of
the ARINC-653 transport for DDS. In this case, the
application only consists of one partition and, therefore, this
evaluation is not influenced by the overhead associated with
the time partitioning. From the results obtained for the single
partition scenario, it can be observed that the DDS
implementation together with the proposed extensions is a

P U B L I S H E R P A R T I T I O N

C APP.

DDS

M
A

R
T

E
 O

S

S U B S C R I B E R P A R T I T I O N

XTRATUM

ARINC COMM

APPLICATION

MIDDLEWARE

HYPERVISOR

ARINC UDP/IP

DDSI

M
AR

T
E

 O
S

C APP.

DDS

ARINCUDP/IP

DDSI

TRANSPORT

Fig. 2 Software architecture in the partitioned platform

Table 3: Measurements of the round-trip latency (in μsecs)

MIN AVG MAX STD PER99

SINGLE PARTITION 37 42 102 4 64

TWO PARTITIONS 333 384 741 16 414

TWO PARTITIONS WITH 4KB
OF PAYLOAD

342 388 779 35 440

REACTION 2014 38

lightweight middleware which, as expected, presents a low
standard deviation due to the low CPU utilization associated
with the proposed test.

The second evaluation measures the performance of the
partitioned application. In this case, the system holds two
partitions: (1) the Publisher partition, and (2) the Subscriber
partition which reads the data and sends the reply. The
system has been configured to have a dedicated time window
of 200μs for the Publisher, and 200μs for the Subscriber
partition, resulting in a scheduling plan repeated every
400μs. As shown in Table 3, the operation for the single
partition scenario takes a maximum of 102μs, while this
value is 741μs for the partitioned system. Therefore, the
variation in performance shown in Table 3 for the two
partition scenario strongly depends on the nature of the
partitioned system and its time window configuration.

An additional evaluation has been carried out to evaluate
the impact of the proposed approach when the payload is
increased from 100 bytes to 4 Kilobytes. In this case, the
minimum, average and maximum times obtained are similar
to the previous scenario, but the standard deviation has
slightly increased. Again, an important part of the maximum
latency is due to the time isolation property, but it is also due
to the current prototype implementation. Further work on the
implementation efficiency could minimize the extra-delay
incurred when the processing is completed during the next
time window.

Finally, it should be noted that most of the measurements
are close to the average value, as can be deduced from the
99th percentile.

V. CONCLUSIONS AND FUTURE WORK

This paper represents a first step towards the integration
of the DDS and ARINC-653 standards. As has been
highlighted through the set of integration issues listed in this
paper, the current DDS specification requires applying some
extensions to cope with the restrictions imposed by ARINC-
like partitioned systems. Hence, the proposed extensions
include:
• Bounded size of DDSI messages, as the current

specification does not impose any limitations in the
number of sub-messages.

• The use of static discovery, or quasi-static discovery
under certain conditions.

• Conditioned support for synchronous communications,
as its usage is strictly system-dependent.

• A new locator to uniquely identify a data flow using the
ARINC-653 communication service.

• Support for the many-to-one communication model
should be implemented at the DDSI level.

• New information attached to each DW/DR entity to
denote the corresponding ARINC-653 communication

port. This information also provides support for the
many-to-one communication model.

Additionally, other integration issues have also been
addressed related to the configuration and mapping between
the DDS distribution entities and the ARINC-653
communication service entities, such as communication
ports and channels.

As a result of the evaluation, we can conclude that the
approach provides sufficiently low dispersion to build
predictable applications. However, there is still room for
improvement in terms of efficiency which deserves further
research.

In the short term we plan to complete our implementation
to evaluate its benefits and performance and to analyze its
limits and constraints in complex scenarios. Finally, further
investigation is also required to fully determine which
features of the DDS specification can be applied in future
airborne systems, such as the list of supported QoS
configurations or the use of keys.

REFERENCES

[1] Airlines Electronic Engineering Committee, Aeronautical
Radio INC. “Avionics Application Software Interface,
required Services”. ARINC Specification 653-1. November,
2010.

[2] P.J. Prisaznuk. “ARINC 653 role in Integrated Modular
Avionics (IMA)”, Proc. of the 27th IEEE/AIAA Digital
Avionics Systems Conference (DACS), pp. 1.E.5 1-10, 2008.

[3] Airlines Electronic Engineering Committee, Aeronautical
Radio INC. “Aircraft Data Network, Part 7 - Avionics Full
Duplex Switched Ethernet (AFDX) Network”. ARINC
Specification 664-7. September, 2009.

[4] Technical Standard for Future Airborne Capability
Environment, Edition 2.1. The Future Airborne Capability
Environment (FACE) Consortium, The Open Group. 2014.

[5] Object Management Group. Data Distribution Service for
Real-time Systems. OMG Document, v1.2, formal/07-01-01.
2007.

[6] A. Hakiri, P. Berthou, A. Gokhale, D. Schmidt and G. Thierry.
“Supporting SIP-based end-to-end Data Distribution Service
QoS in WANs”, Journal of Syst. Software, http://dx.doi.org/
10.1016/j.jss.2014.03.078. 2014.

[7] W. Kang, K. Kapitanova and S. H. Son: “RDDS: A Real-Time
Data Distribution Service for Cyber-Physical Systems”, IEEE
Transactions on Industrial Informatics, vol.8, no.2, pp.393-
405. 2012.

[8] R. Wahlin, and G. Hunt, “Towards a Safety Critical profile for
DDS,” Real-time and Embedded Systems Workshop,
Arlington, VA (USA), 2009.

[9] R. Karoui, and A. Corsaro. “Real time Data Distribution for
Airborne Systems,” Workshop on Real-time, Embedded and
Enterprise-Scale Time-Critical Systems, Washington DC,
(USA), 2011.

REACTION 2014 39

[10] H. Pérez, and J. J. Gutiérrez, “Towards the integration of data-
centric distribution technology into partitioned embedded
systems”, Proc. of the 2nd International Workshop on Real-
Time and Distributed Computing in Emerging Applications
(REACTION), Vancouver (Canada), 2013.

[11] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L.
Fiege, M. Armbruster, G. Spiegelberg, A. Knoll. “RACE: A
Centralized Platform Computer Based Architecture for
Automotive Applications”, Proc. of the 2013 IEEE
International Electric Vehicle Conference (IEVC), pp. 1-6,
2013.

[12] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W.R. Otte, J.
Parsons, C. Szabo, A. Coglio, E. Smith and P. Bose. “A
software platform for fractionated spacecraft”, Proc. of the
2012 IEEE Aerospace Conference, pp. 1-20, 2012.

[13] Object Management Group. Realtime Corba Specification.
OMG Document, v1.2. formal/2005-01-04. 2005.

[14] R. Ekik and S. Hasnaoui, “Application of a CAN bus transport
for DDS middleware”, In Second International Conference on
the Applications of Digital Information and Web
Technologies (ICADIWT), pp. 766 –771. 2009.

[15] R. Bouhouch, H. Jaouani, A.B. Ncira and S. Hasnaoui. “DDS
on Top of FlexRay Vehicle Networks: Scheduling Analysis”,
International Journal of Computer Science and Artificial
Intelligence, Vol. 3 Iss. 1, pp. 10-26. 2013.

[16] Y. Cho, J. Choi, and J. Choi, “An integrated management
system of virtual resources based on virtualization API and
data distribution service,” Proc. of the ACM Cloud and
Autonomic Computing Conference, New York (USA), 2013.

[17] M. Garcia-Valls, P. Basanta-Val and R. Serrano-Torres.
“Benchmarking communication middleware for cloud
computing virtualizers”. Proc. of the 2nd International
Workshop on Real-Time and Distributed Computing in
Emerging Applications (REACTION), Vancouver (Canada),
2013.

[18] Z. Gu and Q. Zhao. “A State-of-the-Art Survey on Real-Time
Issues in Embedded Systems Virtualization” Journal of
Software Engineering and Applications, 5, 277-290,
doi:10.4236/jsea.2012.54033. 2012.

[19] M. Garcia-Valls, T. Cucinotta and C. Lu. “Challenges in Real-
Time Virtualization and Predictable Cloud Computing”, in
Elsevier Journal of Systems Architecture, DOI: 10.1016/
j.sysarc.2014.07.004. 2014.

[20] H. Pérez, and J. J. Gutiérrez, “On the schedulability of a data-
centric real-time distribution middleware”, Computer
Standards & Interfaces (34:0), pp. 203-211, 2012.

[21] H. Pérez, and J. J. Gutiérrez, “A Survey on Standards for
Real-Time Distribution Middleware”. ACM Computing
Surveys, Vol. 46, No. 4, Article 49. 2014.

[22] Object Management Group. The Real-time Publish-Subscribe
Wire Protocol. DDS Interoperability Wire Protocol
Specification. OMG Document, v2.1, formal/2010-11-01,
2010.

[23] Airlines Electronic Engineering Committee, Aeronautical
Radio INC. “Avionics Application Software Interface, Subset
Services”. ARINC Specification 653-4. June, 2012.

[24] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge, “Xtratum a
hypervisor for safety critical embedded systems,” Proc. of the
11th Real-Time Linux Workshop, Dresden (Germany), 2009.

[25] M. Ryll and S. Ratchev. “Application of the Data Distribution
Service for Flexible Manufacturing Automation”, Proc. of
World Academy of Science: Engineering & Technolog, Vol.
43, pp. 178, 2008.

[26] P. Pazandak. “Affordable Avionics through Commercial
Certified Middleware”, Proc. of the Safe & Secure Systems &
Software Symposium (S5), Dayton (USA), 2014.

[27] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proc. of the
International Conference on Reliable Software Technologies,
Ada-Europe, Leuven, Belgium, LNCS 2043, 2001.

REACTION 2014 40

