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ABSTRACT 

EVALUATION OF THE FRAGILITY OF EAST BAY MUNICIPAL UTILITY 

DISTRICT (EBMUD) MOKELUMNE AQUEDUCT 

by Sara Chalian 

The East Bay Municipal Utility District provides water to the eastern region of the 

San Francisco Bay Area. Water is delivered through the Mokelumne Aqueduct, which 

consists of three large diameter steel pipelines. Approximately 15 miles of the aqueducts 

cross the fragile Sacramento-San Joaquin Delta. A stability analysis has been conducted 

to evaluate how resilient the elevated aqueduct is in the Delta. Subsidence in the Delta 

considerably reduces the lateral support of piles. Based on previous studies, and available 

survey and LiDAR data, the amount of subsidence in the Delta has been predicted over 

time. In addition, site-specific seismic studies have been considered in order to estimate 

strong ground motion parameters. A series of axial single pile analyses, lateral single pile 

analyses, and pile group analyses have been performed to quantify the impact of ground 

loss due to subsidence on pile capacities along the 15-mile alignment. Results were 

compared with both the maximum expected lateral load at the pile cap occurring due to 

seismic ground motion (base shear) and the lateral capacity at the 1-inch horizontal 

displacement of the pile cap (threshold). Analysis shows a significant reduction in the 

piles’ lateral and axial capacities, caused by lack of soil shear strength. The analytical 

studies are presented and discussed in order to develop retrofit alternatives.
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Introduction 

Aging Infrastructure  

America’s aging infrastructure is currently a highlighted topic in the media. The 

problem is extensive, affecting transportation systems, water supplies, communication 

networks, and the energy grid. Every four years, the American Society of Civil Engineers 

(ASCE) Committee on America’s Infrastructure provides a broad assessment of 16 major 

infrastructure categories in ASCE’s Infrastructure Report Card. The Report Card studies 

current infrastructure conditions, estimates the investment needed in each infrastructure 

category, and makes recommendations to improve them (American Society of Civil 

Engineers, 2017).  

Infrastructure is not only the foundation of a society’s economy and quality of life; it 

is also critical to the public’s health and wellbeing. The infrastructure’s condition has a 

huge impact on the economy, business productivity, employment, and personal income in 

a nation. Therefore, it is not wise to defer investment in our nation’s critical infrastructure 

systems. This investment must be consistently and wisely allocated. Smart investment 

will be possible with leadership, planning, and a clear vision.  

California faces its own infrastructure challenges. According to the ASCE California 

Infrastructure Report Card (American Society of Civil Engineers, 2017), “Driving on 

roads in need of repair in California costs each driver $844 per year, and 5.5% of bridges 

are rated structurally deficient. Drinking water needs in California are an estimated $44.5 

billion, and wastewater needs total $26.2 billion. 678 dams are considered to be high-

hazard potential.” This deteriorating infrastructure has a huge effect on California’s 

http://infrastructurereportcard.org/making-the-grade/about-asce/advisory-council/
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economy. A greater delay in investment will increase the costs of aging infrastructure 

systems. 

East Bay Municipal Utility District Challenge of Aging Water Infrastructure 

The East Bay Municipal Utility District (EBMUD) provides drinking water to 1.4 

million people in Alameda and Contra Costa counties on the east side of the San 

Francisco Bay (EBMUD, 2013a). The main source of water is the Mokelumne River 

watershed in the foothills of the Sierra Nevada Mountains, located about 90 miles 

northeast of the San Francisco East Bay Area. Water is collected in the Pardee Reservoir 

on the western slope of the Sierra Nevada Mountains and delivered to the East Bay Area 

through the 82-mile Mokelumne Aqueduct, which consists of three large diameter steel 

pipelines of 65, 67, and 87 inches, built in 1929, 1949, and 1963, respectively. 

Approximately 15 miles of the pipelines run across the Sacramento-San Joaquin Delta: 

nearly 10 miles of elevated pipeline, 4.5 miles of buried pipeline, and three river 

crossings with half a mile of submerged pipeline (Prashar, Irias, & Shewbridge, 2009). 

According to the California Department of Water Resources (DWR), the Delta is an area 

of interconnected waterways surrounded by about 60 islands that have supplied 

agricultural land since the mid-1800s. The islands are protected by 1,100 miles of fragile 

levees up to 100 years old. During the last century, there were over 160 levee failures in 

the Delta.  

In 2008, DWR completed the Delta Risk Management Strategy (DRMS) Project to 

perform a risk analysis of the San Joaquin Delta (Phase 1) and to develop improvement 

strategies to manage the risks (Phase 2). In addition, EBMUD has evaluated the risks and 
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provided possible mitigations for potential hazards affecting the Mokelumne Aqueduct. 

These risks are evaluated in the context of the DRMS process. Based on probabilistic 

methods and analysis, it is not possible and economical to eliminate all risks.  

The completed studies helped decision-makers better understand the issues and make 

appropriate decisions to protect the water supplies in the Delta. The government tends to 

invest in new projects instead of maintaining the existing infrastructure, which results in 

higher costs and lower quality standards. In order to make both cost-effective and wise 

long-term investments in the critical lifelines, EBMUD conducted planning studies to 

identify a long-term solution to improve the reliability of the water transmission system 

across the Delta. Accordingly, the District proposed a new deep tunnel with dual 

pipelines across the Delta as the preferred long-term protection alternative based on the 

results of the risk assessment. The identified tunnel alignment follows the right-of-way 

for the existing Mokelumne Aqueduct. Because it will take several years to accomplish a 

long-term protection strategy, short-term improvements of the critical lifelines are 

essential to meet present-day requirements.  

Recently, EBMUD has initiated a comprehensive asset management system to set 

priorities and evaluate the reliability of existing facilities, the cost of replacement versus 

rehabilitation, and the effects of downtime or failure. The first step is the evaluation of 

the fragility of the aqueducts’ foundation across the Delta as the critical component of 

EBMUD’s water system. 
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Background 

EBMUD, a public utility in California, supplies drinking water, provides pollution 

prevention and wastewater treatment services, and generates renewable energy.  

EBMUD Water Sources 

Central Sierra supply. According to EBMUD (2013a), the Mokelumne River on the 

western slope of the Sierra Nevada collects melted snow from Alpine, Amador, and 

Calaveras counties. This protected watershed provides 90% of the water used by 

EBMUD, which has rights to use up to 364,000 acre-feet of water per year from the 

Mokelumne River. 

The District stores water in Camanche and Pardee Reservoirs and is licensed to store 

209,950 acre-feet water per year in Pardee Reservoir, which is equivalent to a 10-month 

supply for EBMUD’s customers. Camanche Reservoir, 10 miles downstream from 

Pardee Dam, has a capacity of 417,120 acre-feet to store water for EBMUD’s customers. 

Local/emergency supply. A 6-month emergency supply is maintained in local 

reservoirs. The EBMUD (2013a) stores up to 151,670 acre-feet of water in the East Bay 

reservoirs to provide local emergency supplies.  In addition, Bayside Groundwater 

Injection Well is being used to transfer water into a deep underground aquifer for storage. 

Sacramento River supply. According to EBMUD (2013a), during a drought period 

or emergency, the Mokelumne River cannot supply what the customers need. The 

Sacramento River is the supplemental source of water, which provides up to 100 million 

gallons per day. When needed, EBMUD draws water from the Freeport Regional Water 
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Facility through a pipeline and the Folsom South Canal and then transfers the water south 

to the Mokelumne Aqueduct. Figure 1 shows EBMUD water sources. 

 
Figure 1. EBMUD water sources. Adapted from “All About EBMUD” by EBMUD, 

2013.  

 

 

Mokelumne Aqueduct in the Delta 

The study area includes approximately 15 miles of the aqueducts that cross the Delta 

through five islands. The area extends from the outskirts of Stockton in the east to 

EBMUD’s maintenance yard at Bixler in the west. The Delta crossing consists of nearly 

10 miles of elevated pipeline, 4.5 miles of buried pipeline, and three major river crossings 

with approximately half a mile of submerged pipeline (Prashar et al., 2009). Figure 2 

shows the location of the Delta crossing, along the aqueducts’ alignment. Figure 3 

illustrates the location of buried and elevated pipelines, river crossings, and road 

crossings in the study area. 
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Figure 2. Location of Delta area crossing. The map is adapted from EBMUD GIS Online Mapping Center by Esri, 2013.  

 

 

 

 

 

Figure 3. Study area in the Delta. The map is adapted from Google maps.  
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Mokelumne Aqueduct  

According to EBMUD (2013a), the Mokelumne Aqueduct is a 95-mile water supply 

which begins at Pardee Reservoir (formed by Pardee Dam on the Mokelumne River). 

Mokelumne Aqueduct travels southwest through the western foothills of Sierra Nevada 

and then west across the Central Valley and along the Calaveras River before crossing the 

Sacramento-San Joaquin River Delta. Close to Lodi, an extension of the Folsom South 

Canal is joined by the three aqueducts to supplement the Mokelumne River supply. In the 

Berkeley Hills above the East Bay, it is channeled into a distribution system including six 

terminal reservoirs (Briones, Chabot, Lafayette, San Pablo, and Upper San Leandro). 

Before passing through the Claremont Tunnel (on the western side of the range between 

Berkeley and Oakland), the water is treated at the Sobrante, San Pablo, and San Leandro 

treatment plants. 

The three aqueducts follow a common alignment along their entire lengths from 

Pardee Reservoir (Station 0) through Stockton, Brentwood, and Port Chicago to the 

Walnut Creek Pumping Plant in Contra Costa County, California (Station 4500), with 

Aqueduct No. 1 in the middle, and Aqueducts No. 2 and No. 3 located approximately 15 

feet south and 25 feet north of Aqueduct No. 1, respectively (EBMUD, 2013a). 

Aqueduct No. 1. Completed in 1927, Aqueduct No. 1 is 65 inches in diameter. On 

both sides of and across Indian Slough, the elevated aqueduct is supported on as-built 

battered timber piles (30 feet apart) with no major retrofit over the years. From Indian 

Slough to Holt, a major retrofit was performed on the aqueduct’s foundation in 1990. 

Since then, the aqueduct is supported on two battered timber piles, precast concrete bent, 

https://en.wikipedia.org/wiki/Briones_Reservoir
https://en.wikipedia.org/wiki/Lake_Chabot
https://en.wikipedia.org/wiki/Lafayette_Reservoir
https://en.wikipedia.org/wiki/San_Pablo_Reservoir
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and 12 inch by 6 inch redwood saddle or hard plastic saddle every 30 feet. The average 

subsidence along the alignment of Aqueduct No. 1 through the delta is assessed in this 

study. 

Aqueduct No. 2. Completed in 1949, Aqueduct No. 2 is 67 inches in diameter. The 

elevated portion of the aqueduct is supported on pile groups (60-foot intervals). Aqueduct 

No. 2 is not included in this study. 

Aqueduct No. 3. Completed in 1963, Aqueduct No. 3 is 87 inches in diameter. The 

elevated portion of the aqueduct is supported on pile groups (60-foot intervals). A pile 

group consists of at least four piles, and each pile is driven on a 3 vertical to 1 horizontal 

(3V:1H) batter, in directions of 30 degrees from the perpendicular to the pipeline. The 

projections of the centerlines of the four piles intersect at a vertical distance of 9.5 feet 

above the top of the piles. There are 775 pile groups with four piles (BENT I) and 50 pile 

groups with one additional vertical pile (BENT II) or two additional vertical piles (BENT 

III), as shown in Appendix A, Figure A1. When one or more of the battered piles did not 

meet the specified driving resistance during installation, the vertical piles were added 

within the battered group. There are 35 saddles (each saddle has two battered piles) in the 

transition zones from the elevated to the under-river crossings. In addition, there are 44 

temperature anchors spaced at nearly 1000-foot intervals. The temperature anchors are 

supported on groups of 10 to 12 battered piles in directions parallel and at right angles to 

the pipeline. There are 19 pile groups located at bends and road crossings; each has more 

than 10 piles (all or most of the piles are battered). There is a large bend structure near 
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Holt which has 101 piles. The stability of Aqueduct No. 3 is evaluated in this study. 

Figure 4 shows the Mokelumne Aqueduct including Aqueducts No. 1, No. 2, and No. 3. 

 
Figure 4. Mokelumne Aqueduct, Sacramento-San Joaquin Delta, California. June, 2017. 

Aqueducts No. 1, No. 2, and No. 3. 

 

 

Sacramento-San Joaquin Delta  

The Delta legal boundary. According to DWR, portions of Alameda, Contra Costa, 

Sacramento, San Joaquin, Solano, and Yolo counties make up the Delta. Each county is 

responsible for the planning and zoning of land use. Figure 5 shows the Delta’s official 

boundary. It also presents the Delta uplands and lowlands and the Delta service area (the 

irrigated lands within the Delta that receive water directly from its channels).  
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Figure 5. The Delta legal boundary. Adapted from “Delta Overview” by the California 

Department of Water Resources (n.d.).  
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The Delta subsurface. Delta subsurface is composed of the following four main 

strata (Prashar et al., 2009): 

Levee Fills: Located at river crossings, the stratum consists of mixed fine sands, silts, 

and clays with occasional peat lenses. Levee fills are susceptible to liquefaction under 

moderate levels of horizontal ground acceleration (0.1g). 

Peat: This layer runs along much of the aqueducts’ alignment and consists of highly 

compressible organic material up to 30 feet thick. The peat material varies from fibrous 

to decayed organic matter. It is also mixed with varying amounts of silt and clay. In 

general, the peat layer has low unit weight, high moisture content, low shear strength, and 

high compressibility. Peat soils can continue to settle for several years after loading. The 

top of the peat layer is located at and below sea level. 

Holocene alluvium: Underlying the peat, these soils are generally of moderate shear 

strength and consist of medium stiff clays and silts with loose to medium dense sandy 

soils typically towards the top of the stratum. This layer is generally below the 

groundwater, and the material is susceptible to liquefaction during earthquakes.  

Pleistocene alluvium: This layer underlies the entire alignment at depths starting at 

about 40 feet. It consists of dense sands of variable silt content with interbedded zones of 

stiff to very stiff clays. This layer is generally of higher density, higher shear strength, 

and lower compressibility, and it is generally not susceptible to liquefaction. 

Subsidence in the Delta. Due to river flow and tidal action over the last several 

million years, upstream sediment was deposited in the Delta and thick organic soil (peat) 

was formed. Peat is both highly productive for agriculture and very susceptible to 
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subsidence. Causes of peat subsidence are (1) oxidation of soil organic matter, (2) 

shrinkage as a result of dewatering, (3) burning, (4) consolidation as a result of buoyant 

force and loading, and (5) wind and water erosion. Present subsidence in the Delta is 

caused mainly by microbial oxidation of organic carbon. Continuous oxidation removes 

tens of thousands of cubic yards of soil daily (Deverel, Ingrum, & Leighton, 2016). 

The subsidence of peat threatens the Delta infrastructure and water supply for 

Californians. To determine the risks of subsidence to Mokelumne Aqueduct, it is 

important to assess the subsidence rates over time. A reduction in landmass decreases 

levee resistance to hydraulic pressure from adjacent channels; therefore, subsidence has 

contributed to levee failure and flooding. Future subsidence will increase the volume of 

water that flows onto islands during flooding, increasing levee vulnerability. Moreover, 

the downward movement of the land surface causes the loss of lateral support against the 

aqueducts’ deep foundation, which can adversely impact resistance to static and dynamic 

lateral loading.  

DWR has estimated the future subsidence rate in the Delta as a function of soil 

organic matter content. Using ArcGIS Spatial Analyst, DWR predicted land-surface 

elevations for 2050, 2100, and 2200. The study has projected the following subsidence 

rates: 0 to 5 feet by 2050, 0 to over 9 feet by 2100, and 0 to over 18 feet by 2200. Figure 

6 shows the estimated land surface elevation changes from 1998 to 2050 along the 

aqueducts’ alignment.  
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Figure 6. Estimated land surface elevation changes from 1998 to 2050. Adapted from Technical Memorandum: Delta Risk 

Management Strategy (DRMS) Phase 1- Subsidence by California Department of Water Resources, 2008.  
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EBMUD Evaluation of Hazard to Mokelumne Aqueduct in the Delta 

EBMUD has assessed seismologic, flooding, and geotechnical hazards and their 

associated risks to the existing water supply. The following hazards have been considered 

(Prashar et al., 2009): 

• High water level and tidal action in the channels  

• Flooding and levee instability due to subsidence of the islands, overtopping, wave 

action, or underseepage 

• Earthquake shaking  

• Additional settlement due to construction dewatering  

• Highly compressible peat soil, which is susceptible to large magnitudes of 

settlement and is causing land subsidence  

• Low lateral resistance of near-surface peat soils during earthquakes 

• The potentially liquefiable soils in and beneath Delta islands 

• Liquefaction-induced lateral spreading at river crossings 

Table 1 provides a summary of the risks and the qualitative probabilities of occurrence 

within three different time periods. 
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Table 1 

Summary of Hazards and Associated Probabilities (Qualitative) 

 

Note. Adapted from “East Bay Municipal Utility District’s Mokelumne Aqueduct in the 

Sacramento-San Joaquin Delta: Hazard Evaluation” by Y. Prashar, X. J. Irias, S. E. 

Shewbridge, 2009. 

 

 

EBMUD Strategy for Protecting Mokelumne Aqueduct in the Delta 

The strategy for protecting the aqueducts in the Delta presents a process to help 

decision-makers understand the investment options to protect water supplies and make 

cost-effective and wise long-term investments in EBMUD’s infrastructure. To this end, 

EBMUD evaluated possible mitigations for hazards affecting the aqueducts and the costs 

of these mitigation activities. The strategy in place combines short-term mitigations, to 

lower risks quickly, with long-term mitigations that lower them significantly. Short-term 

improvements were also evaluated because a long-term protection strategy would take 

several years to implement.  

Short-term protection alternative. The short-term strategies are envisioned to 

provide lower-cost mitigations in the near term and an almost immediate reduction of 

identifiable risks. 

Hazard Description Year 2040 Year 2100 Year 2200 

Sea level rise High High High 

Subsidence High High High 

Flooding High High High 

Scouring Medium High High 

Seismic/ground shaking High High High 

Liquefaction High High High 

Lateral spreading High High High 

Fault crossings Low Low Low 

Wave propagation High High High 

Landsliding Low Low Low 
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In 2000, a seismic upgrade to Aqueduct No. 3 provided a measure of vulnerability 

reduction. Seismic isolation was implemented by using a mechanical device located 

between the aqueduct and the foundation. This isolator is designed to relieve destructive 

earthquake movement by separating the superstructure from the ground (EBMUD’s 

consultant, 1999). Figure 7 shows the location of the seismic isolation between Aqueduct 

No. 3 and the pile cap to protect the aqueduct against seismic forces. 

 
Figure 7. Aqueduct No. 3 seismic upgrade, Sacramento-San Joaquin Delta, California. 

June, 2017. Base isolator on Aqueduct No. 3 (2000). 

 

 

In 2013, interconnections between the aqueducts were constructed on the eastern and 

western sides of the Delta to provide temporary risk reduction. In the event that all three 
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aqueducts should fail, the interconnections would not be effective. Further, the 

reinforcement of the levees on the water side of the pipeline-levee crossing provides 

significant protection against pipeline failure caused by lateral spreading and liquefaction 

where the pipelines cross the levees (Prashar et al., 2009). 

Long-term protection alternative. In 2000, the District initiated studies to identify a 

long-term solution to improve the reliability of the water supply across the Delta. In a 

2007 report, the District identified a new deep tunnel with dual pipelines across the Delta 

as the preferred long-term mitigation alternative. The proposed Delta tunnel is currently 

both the most effective long-term mitigation plan and one of the lower-cost alternatives 

studied. The Delta tunnel alignment is envisioned to follow the existing right-of-way for 

the pipelines, extending about 16.5 miles from where the aqueducts cross under Interstate 

Highway I-5 in Stockton to the District’s Bixler Maintenance Yard on the west side of 

the Delta. Further geotechnical studies and subsurface investigations are essential to 

minimize uncertainties in geologic conditions, identify the potential depth of liquefaction 

along the proposed tunnel alignment, refine the optimal tunnel depth, and evaluate the 

potential impact of tunnel excavation on existing pipelines.  
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Methodology 

The Sacramento-San Joaquin Delta soils are composed of mineral sediments 

delivered by the rivers and peat derived from decaying marsh vegetation. Subsidence is 

caused primarily by the ongoing oxidation of peat. Studies (CA DWR - DRMS, 2008) on 

subsidence in the Delta have predicted 3 to 4.5 feet of additional subsidence between the 

years 1998 to 2050. To assess the amount of subsidence over time along the aqueducts’ 

alignment, data obtained by surveying in 1967 and 2004, and LiDAR data (Light 

Detection and Ranging) have been used. Subsidence or loss of lateral soil support against 

piles and pile caps can adversely impact resistance to lateral (static and seismic) loading.  

Because Aqueduct No. 3 is the most reliable among the three aqueducts, it was 

evaluated for stability in this study. First, the aqueduct’s deep foundation pile cap types 

(bent, saddle, temperature anchor, road anchor, bend anchor, and combination anchor) 

were identified and variations in subsurface conditions were investigated. The subsurface 

soils along the alignment are generally loose peaty soil deposits overlying alternating 

layers of loose unconsolidated and potentially liquefiable Holocene deposits to depths 

over 150 feet. In addition, site-specific strong ground motion parameters were identified 

based on different studies. 

Next, a series of axial and lateral single pile (APILE/LPILE) and pile group 

(GROUP) analyses were performed to assess the service limit state of the aqueduct’s 

deep foundation pile caps. The applied lateral load (p) as a function of the lateral 

deflection (y) of the pile head was also investigated.  
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Finally, the lateral load that would produce the anticipated deflection was computed. 

The result was compared with both the maximum expected lateral load at the pile cap 

occurring due to seismic ground motion (base shear) and the lateral capacity at the 1-inch 

horizontal displacement of the pile cap (threshold).  

The analysis has quantified the impact of ground loss (due to subsidence in the Delta) 

on pile lateral and axial capacities along the aqueduct’s alignment. The analytical studies 

are presented and discussed in order to develop retrofit alternatives in the future. 
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Results and Discussion 

Average Subsidence Analysis 

The Delta soils are composed of mineral sediments delivered by the rivers and of peat 

derived from decaying marsh vegetation. Subsidence is caused primarily by the ongoing 

oxidation of peat. The State Department of Water Resources has conducted the Delta 

Risk Management Strategy program (DRMS) on subsidence in the Sacramento-San 

Joaquin Delta and predicted 3 to 4.5 feet of additional subsidence between the years 1998 

and 2050. This amount of subsidence or loss of lateral soil support against piles and pile 

caps can adversely impact resistance to lateral (static and seismic) loading.  

In order to determine the amount of subsidence over time along the aqueducts’ 

alignment, the following sets of data were used to detect and predict the average 

subsidence: 

• 1966, 2010 and 2015 survey data (EBMUD) 

• 2007 LiDAR data (United States Geological Survey) 

By taking advantage of ArcGIS (Geographic Information System mapping tools), LiDAR 

data along the aqueducts’ alignment were selected from the Delta area database.  

Aqueduct No. 1 alignment. Two sets of LiDAR data were selected from the Delta 

area database (Figure 8): 

1. Top of the aqueduct (blue line) 

2. 6-foot offset from the aqueduct centerline (red line) 
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Figure 8. Aqueduct No. 1 LiDAR data 2007. Adapted from EBMUD GIS Online 

Mapping Center by Esri, 2013.  

 

 

Selected sets of data were used to produce Figure 9, and noisy data were eliminated. 

In addition, ground surface elevation survey data (EBMUD, 1966) were added. The 

distance between ground surface elevation in 2007 (red line) and ground surface 

elevation in 1966 (purple line with yellow dots) shows the average subsidence along the 

aqueducts’ alignment from 1966 to 2007. Figure 10 presents the overall view of 

Aqueduct No. 1 in the Delta, including pile tip elevation. 
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Figure 9. Average subsidence along Aqueduct No. 1 from 1966 to 2007. The graph is adapted from data from EBMUD GIS 

Online Mapping Center by Esri, 2013.  
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Figure 10. Overall view of Aqueduct No. 1 in the Delta. The graph is adapted from data from EBMUD GIS Online Mapping 

Center by Esri, 2013.  
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Aqueduct No. 3 alignment. Three sets of LiDAR data were selected from the Delta 

area database (Figure 11): 

1. Top of the aqueduct (purple line) 

2. Top of the pile cap (blue line) 

3. 10-foot offset from the aqueduct centerline (red line) 

 
Figure 11. Aqueduct No. 3 LiDAR data 2007. Adapted from EBMUD GIS Online 

Mapping Center by Esri, 2013.  

 

 

Selected sets of data were used to produce Figure 12, and noisy data were eliminated. 

In addition, survey data (EBMUD, 2010; and EBMUD, 2015) were added. Due to the 

short time frame from 2007 to 2010 and 2015, the average subsidence is not visible. 

Figure 13 presents the overall view of Aqueduct No. 3, including pile tip elevation. 
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Figure 12. Average subsidence along the Aqueduct No. 3 from 2007 to 2015. The graph is adapted from data from EBMUD 

GIS Online Mapping Center by Esri, 2013.  
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Figure 13. Overall view of Aqueduct No. 3 in the Delta. The graph is adapted from data from EBMUD GIS Online Mapping 

Center by Esri, 2013.  
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Taking all of the previous studies into account, it can be concluded that the average 

subsidence is 3.5 feet along the aqueducts’ alignment from 1998 to present. In this study, 

the same subsidence rate (3.5 feet over 20 years) is predicted in the future. 

Structural Features 

Because Aqueduct No. 3 is the most reliable among all three aqueducts, it was used 

for the stability evaluation. There are 775 pile groups with four piles (BENT I) and 50 

pile groups with one additional vertical pile (BENT II) or two additional vertical piles 

(BENT III). Therefore, 94% of the bents are type I, and only 6% are types II and III; thus, 

BENT I was used in this study (see Appendix A, Figure A1). Aqueduct No. 3 is entirely 

supported on 16-inch square pre-stressed concrete piles driven on 3 vertical to 1 

horizontal (3V:1H) batter (see Appendix A, Figure A2). Pile properties are listed in 

Appendix A, Table A1. 

Axial load on pile. The axial load on each pile group was calculated by summing up 

the dead load (DL) of the pipe, the steel bent, the pile cap, and water in the pipe. Also, the 

seismic vertical load and load factor (1.2 DL) were considered in this calculation (see 

Appendix A, Table A2). The axial load on each pile was calculated by dividing the total 

axial load on the pile group by the number of piles in each pile group. Table 2 provides 

the amount of axial load on each vertical and battered pile. 
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Table 2 

Axial Load on Each Vertical and Battered Pile 

BENT Type 
No. of 

Piles 

Load per 

Vertical Pile 

(kips) 

Pile Batter 

Angle 

(degree) 

Load per 

Battered Pile 

(kips) 

BENT I 4 75.6 18 79.5 

BENT II 5 60.5 18 63.6 

BENT III 6 50.4 18 53 

Note. The axial load on each pile was calculated by dividing the total axial load on the 

pile group by the number of piles in each pile group. 

 

 

Degree of fixity of pile. In order to determine the degree of fixity of each pile, the 

American Concrete Institute (ACI) has provided ACI 318-14, Table 25.4.2.2 to calculate 

the development length for different bar sizes in order to obtain 100% fixity (see 

Appendix A, Table A3). 

According to the specification ASTM-A15, grade 33 and 40 rebar were used between 

1911 and 1966. Appendix A, Table A4 presents all the parameters needed to calculate the 

development length for the bars to achieve 100% fixity at the pile cap. Accordingly, the 

existing development length (24 inches) provides 92% fixity with grade 33 bars, and 76% 

fixity with grade 40 bars (Table 3). 

Table 3 

Degree of Fixity of Pile at Pile Cap 

Rebar 

Grade 

Development 

Length (in)  

100% fixity 

Existing 

Development 

Length (in) 
Degree of 

Fixity 
33 26.1 24 92%  
40 31.6 24 76%  

Note. Existing development length (24 inches) provides 92% fixity with grade 33 bars, 

and 76% fixity with grade 40 bars. 
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Pile group action. Group action should be considered when the pile spacing in the 

direction of lateral loading is less than 6 to 8 times the pile width (pile width = 16 inch). 

Pile spacing at the pile head (in the direction of lateral loading) increases with depth due 

to the pile batter angle (3V:1H). Therefore, pile spacing at ground surface is more than 8 

times the pile width. In conclusion, a group action evaluation is not required.  

Seismic Study 

Two different seismic studies were considered in order to identify the peak ground 

acceleration (PGA) along the aqueducts in the Delta: 

• United States Geological Survey (USGS) 

• AECOM seismic study (AECOM, 2017a) 

The lower of the deterministic and probabilistic ground motions has been considered 

as the PGA by USGS. The results are comparable with those obtained from the AECOM 

seismic study of the proposed Delta Tunnel Project (see Appendix B, Figure B1, Figure 

B2, and Figure B3). 

The study area was divided into four regions based on the effect of near-fault ground 

motion on the 15 miles of aqueducts in the Delta (Figure 14). The results of the seismic 

studies were compared at Region 1. Table 4 compares the results at a return period of 475 

years, while Table 5 is related to a return period of 2475 years. The results of the studies 

at both return rates were in good agreement. 
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Figure 14. Four regions in the Delta. The map is adapted from Google maps.
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Table 4 

PGA from Two Seismic Studies (475-Year Return Period) 

Bixler to Indian Slough PGA 

USGS deterministic study 0.42 

USGS probabilistic study 

(Return period: 475 years) 
0.49 

Lower of deterministic 

and probabilistic study 
0.42 

AECOM seismic study 

(Return period: 475 years) 
0.42 

Note. USGS data are adapted from “U.S. Seismic Design Maps” by United States 

Geological Survey. AECOM data are adapted from Delta Tunnel Seismic Study Report-

Phase 1 by AECOM, 2017.  
 

 

Table 5 

PGA from Two Seismic Studies (2475-Year Return Period) 

Bixler to Indian Slough PGA 

USGS probabilistic study 
(Return period: 2475 years) 

0.76 

AECOM seismic study 
(Return period: 2475 years) 

0.75 

Note. USGS data are adapted from “U.S. Seismic Design Maps” by United States 

Geological Survey. AECOM data are adapted from Delta Tunnel Seismic Study Report- 

Phase 1 by AECOM, 2017.  

 

 

Based on these seismic studies, the PGA at a 475-year return period was estimated for 

the four identified regions in the Delta. The highest PGA is 0.42g at Region 1 in the west, 

which is closer to active faults; the lowest PGA is 0.37g at Region 4 in the east, which is 

farther from the active faults. Figure 15 presents the location of the Delta aqueducts, the 

nearby faults, and the variation of PGA along the aqueducts. 
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Figure 15. Variation of PGA along the Delta aqueducts. The map is adapted from 

EBMUD GIS Online Mapping Center by Esri, 2013.  

 

 

The maximum expected lateral load at the pile cap occurring due to seismic ground 

motion (base shear) was determined for these four regions in the Delta. Appendix B, 

Table B1 provides references and parameters for the determination of base shear. 

Accordingly, Table 6 provides PGA and base shear at the four Delta regions. 

Table 6 

PGA and Base Shear at Four Regions in the Delta 

Region Area PGA Vbase (kips) 

1 Bixler to Indian Slough 0.42 90 

2 Indian Slough to Old River 0.40 87 

3 Old River to Middle River 0.39 84 

4 Middle River to Holt 0.37 77 
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Stability Analysis Approaches 

In this study, two different approaches were used to evaluate the stability of the 

aqueducts’ deep foundation: 

• APILE/LPILE analysis 

• GROUP analysis 

APILE, LPILE and GROUP are software products of ENSOFT Inc., based in Austin, 

Texas. 

APILE/LPILE analysis. APILE is used to compute the axial and uplift (tension) 

capacities of a single pile as a function of depth. Load capacities in side resistance (skin 

friction) and end bearing are computed, along with the total capacities to sustained axial 

and uplift loadings (ENSOFT, 2015). 

LPILE is used for analyzing a single pile under lateral loading using the p-y method. 

Depending on pile-head boundary conditions, LPILE computes shear force, bending 

moment, lateral deflection, pile-head rotation, and soil response over the length of the 

pile. LPILE can perform pushover analysis to evaluate the pile behavior after the 

development of plastic hinges or yielding (ENSOFT, 2016a). Figure 16 presents how the 

ultimate lateral load is computed in APILE/LPILE analysis. Lateral load vs. deflection 

(P-Y) is computed in LPILE for a single pile, and T (tension) and Q (compression) are 

computed in APILE for a single pile. For BENT I, the sum of P-Y for four piles, the 

horizontal component of T (TH) for two piles, and the horizontal component of Q (QH) 

for two other piles is equal to the ultimate lateral load. 
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Figure 16. APILE/LPILE analysis approach. The image is adapted from “LPILE” by 

ENSOFT Inc., 2016.  
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GROUP analysis. GROUP is used for analyzing the behavior of piles in a group 

subjected to both axial and lateral loadings. GROUP provides stiffness and/or flexibility 

matrices in 2D or 3D models. For closely spaced piles in one group, group effects can be 

considered, though as stated above the piles in these foundations are not close enough to 

have an interactive effect on each other. The program computes the force and 

displacement on the pile cap, such as the axial force (tension and compression), the 

lateral forces (shear and moment) and the displacement of the pile cap in different 

directions (ENSOFT, 2016b) (Figure 17). 

 
Figure 17. GROUP analysis approach. The image is adapted from “GROUP” by 

ENSOFT Inc., 2016.  
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Analysis Limit State 

Following are the limit states for deep foundation lateral analysis (Samtani, 2017): 

• Service limit state 

• Strength limit state 

• Extreme event limit state 

• Fatigue limit state (generally does not apply) 

The service limit state relates to deformation by considering the serviceability while 

the strength limit state relates to structural and/or geotechnical instability by considering 

the failure aspect. Lastly, the extreme event limit state considers the events likely to occur 

during the design life of the facility. The service limit state is applicable to this study 

(Figure 18). 

 
Figure 18. Service limit state. Adapted from “Geotechnical Engineering Features Deep 

Foundations: Lateral Analysis” by N. C. Samtani, August 28, 2017, ASCE Knowledge 

and Learning. Copyright 2017 by NCS GeoResources, LLC. 
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A series of axial and lateral single pile (APILE/LPILE) and pile group (GROUP) 

analyses were performed to assess the service limit state of the aqueducts’ deep 

foundation pile cap. The applied lateral load (p) was investigated as a function of the 

lateral deflection (y) of the pile head. A model computed the lateral load that would 

produce the desired deflection. The result was compared with both the maximum base 

shear and the lateral load at the 1-inch horizontal deflection of the pile cap. 

Studies in the Delta 

Previous studies on the performance of the aqueducts’ foundations in the Delta were 

examined as part of this analysis. In 1999, a seismic upgrade study was performed on 

Aqueduct No. 3. In general, the soil profile along the aqueducts’ alignment is considered 

to be composed of three soil types: peat, Holocene alluvium, and Pleistocene alluvium. 

For analysis purposes, the pipeline alignment was characterized using five profiles, 

designated as A (A1 and A2), B, C, and D. Pile capacities were calculated using the 

recommendations in ACI 318-99 and FEMA 356. The ultimate shear capacity was 

calculated using the recommendations for pre-stressed concrete members in Chapter 11 

of ACI 318-99. The ultimate axial and uplift capacities are based upon the soil profile and 

Cone Penetration Testing (CPT) data (see Appendix C, Table C1). 

In 2000, the District initiated planning studies to identify a long-term solution to 

improve the reliability of the water transmission system across the Delta. In a 2007 

report, the District identified a new deep tunnel across the Delta as the preferred long-

term mitigation alternative. The proposed Delta Tunnel is envisioned to extend about 

16.5 miles from where the aqueducts cross under Interstate Highway I-5 in Stockton to 
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the District’s Bixler Maintenance Yard on the west side of the Delta. The proposed tunnel 

alignment follows the existing right-of-way for the aqueduct pipelines. In 2016, EBMUD 

offered the geotechnical exploration and seismic study of the proposed Delta Tunnel 

project to AECOM. The firm has conducted a phase 1 field investigation and seismic 

study. The findings are considered in this study. Appendix C, Figure C1 provides the 

proposed exploration plan. Appendix C, Figure C2 to Figure C9 provide the boring logs, 

which are utilized in this study. 

Stability Analysis  

A different evaluation has been conducted in each region. Table 7 shows the regions 

corresponding to each area of evaluation. 

Table 7 

Regions Corresponding to Each Area of Evaluation 

Evaluation 

Order 
Region Area of Evaluation  

1 
Region 3: 

Old River to Middle River 

Evaluation of the 1999 study by 

EBMUD’s consultant (hereinafter referred 

to as “ the 1999 study”) 

2 
Region 4:  

Middle River to Holt 
Subsidence impact evaluation 

3 
Region 1:  

Bixler to Indian Slough 
Liquefiable subsurface impact evaluation 

4 
Region 2:  

Indian Slough to Old River 
Liquefiable subsurface impact evaluation 

 

 

 

Region 3: Old River to Middle River. The 1999 study of Region 3 was reviewed for 

the current study. Two different soil profiles considered in this evaluation: 

• The 1999 study: Soil profile A2 (Table 8) 

• AECOM study: Boring log DT-B6A-2016 (Table 9)
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Table 8 

The 1999 Study by EBMUD’s Consultant: Soil Profile A2 (Old River to Middle River) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) 
1 0–7 Holocene peat Peat 75 0 100 

2 7–23 Holocene alluvium  Lean clay 100 0 1000 

3 23–50 Pleistocene alluvium  Lean clay 100 0 2000 
Note. Adapted from Aqueduct No.3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

Table 9 

AECOM Study: Boring Log DT-B6A-2016 (Old River to Middle River) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) Nq  
1 0–2 Fill 110 30 0   
2 2–5.5 Peat 75 0 100   
3 5.5–16.5 Lean clay 100 0 1000   
4 16.5–18.5 Lean clay 100 0 2000   
5 18.5–32 Sand 120 32 0 27 
6 32–34 Lean clay 100 0 2000   
7 34–40 Sand 120 35 0 47.6 
8 40–50 Lean clay 100 0 2000   

Note. Adapted from Phase 1 Geotechnical Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017. 
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At this location, the maximum ground acceleration during earthquake shaking is 

calculated to be 0.39g, and the maximum expected lateral load at pile cap is calculated to 

be 84 kips. 

Based on the 1999 study, the ultimate lateral capacity of four piles (BENT I) is 

approximately 220 kips, and the horizontal displacement of the pile cap corresponding to 

the ultimate lateral capacity is 2.7 inches (Figure 19). 

 
Figure 19. The 1999 study by EBMUD’s consultant: Region 3, ultimate lateral capacity 

of pile group. The data are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s 

consultant, 1999.  

  

 

APILE/LPILE analysis and GROUP analysis were performed and the soil profile A2 

considered. LPILE has the capability to analyze pile behavior after the development of 

plastic hinges (yielding). GROUP is not able to continue the analysis beyond the limit, so 

220 

2.7 
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output data were extended by extrapolation. Figure 20 presents the results and 

comparison between the 1999 study and APILE/LPILE and GROUP analyses. 

 
Figure 20. Region 3, comparison between the1999 study by EBMUD’s consultant and 

APILE/LPILE and GROUP analyses. Data from the 1999 study are adapted from 

Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

To match the ultimate lateral capacity from the APILE/LPILE analysis with the 

ultimate lateral capacity from the 1999 study, soil cohesion values were increased in 

APILE/LPILE analysis to approximately twice the value considered in 1999 study. 

Moreover, a large difference in model initial stiffness response was distinguished (low 

displacement), as shown in Figure 21. 

To match the ultimate axial/uplift capacity assumptions in the 1999 study with the 

APILE/LPILE analysis, soil cohesion values were increased in APILE/LPILE analysis to 
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approximately four times those considered in the 1999 study. A large difference in model 

initial stiffness response was distinguished (low displacement), as shown in Figure 22. 

 
Figure 21. Region 3, matching the ultimate lateral capacity from the APILE/LPILE 

analysis with the 1999 study by EBMUD’s consultant. Data from the 1999 study are 

adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999. 

The 1999 study 
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Figure 22. Region 3, matching the ultimate axial/uplift capacity assumptions in the 1999 

study by EBMUD’s consultant with the APILE/LPILE analysis. Data from the 1999 

study are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

Based on the current analyses, the 1999 study utilized subsurface profile that was 

unreasonably simplified. This oversimplification of the profile led to unrealistically high 

ultimate axial and uplift capacities, as well as inaccurate stiffness estimations. 

 

 

The 1999 study 
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Region 4: Middle River to Holt. The evaluation of the subsidence impact on the 

ultimate lateral capacity of the pile group was investigated in Region 4. Two different 

soil profiles considered in this evaluation: 

• The 1999 study: Soil profile A2 (Table 10) 

• AECOM study: Boring log DT-B13-2016 (Table 11) 

At this location, the maximum ground acceleration during earthquake shaking is 

calculated to be 0.37g, and the maximum expected lateral load at the pile cap is 

calculated to be 77 kips. 

APILE/LPILE analysis and GROUP analysis were performed, and soil profile A2 

was considered with a 6-foot peat layer in 1999, a 2.5-foot peat layer in 2017, and no peat 

layer in the future. Results were compared to the maximum base shear and the lateral 

load at the 1-inch horizontal deflection of the pile cap. Figure 23 and Figure 24 present 

APILE/LPILE analyses and GROUP analyses for different peat layer thickness. The 

analysis shows that the ultimate lateral capacity decreases over time due to the loss of 

lateral soil support from the peat layer against the piles and pile caps. 
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Table 10 

The 1999 Study by EBMUD’s Consultant: Soil Profile A2 (Middle River to Holt) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) 
1 0–6 Holocene peat Peat 75 0 100 

2 6–23 Holocene alluvium  Lean clay 100 0 1000 

3 23–50 Pleistocene alluvium  Lean clay 100 0 2000 
Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

Table 11 

AECOM Study: Boring Log DT-B13-2016 (Middle River to Holt) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) Nq 

1 0–1.5 Fill 110 30 0   

2 1.5–4 Peat 75 0 100   

3 4–13 Lean clay 100 0 500   

4 13–19.5 Lean clay 100 0 1000   

5 19.5–39.5 Sand 120 35 0 47.6 

6 39.5–50 Fat clay 100 0 2000   

Note. Adapted from Phase 1 Geotechnical Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure 23. Region 4, evaluation of subsidence impact (APILE/LPILE analysis). The data 

are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

 
Figure 24. Region 4, evaluation of subsidence impact (GROUP analysis). The data are 

adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  
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In addition, APILE/LPILE and GROUP analyses were completed using the soil 

profile determined from the AECOM boring log with a 2.5-foot peat layer. Results were 

compared to APILE/LPILE and GROUP analyses results by considering soil profile A2 

with a 2.5-foot peat layer. The ultimate lateral capacities are compared to the maximum 

base shear and the lateral load at the 1-inch horizontal deflection of the pile cap (Figure 

25). 

 
Figure 25. Region 4, APILE/LPILE and GROUP analyses (present condition). The data 

are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999, and 

Phase 1 Geotechnical Exploration Program–Delta Tunnel Project (GDR) by AECOM, 

2017. 
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Region 1: Bixler to Indian Slough. The impact of liquefiable soils on the ultimate 

lateral capacity of pile groups was investigated in Region 1. Two different soil profiles 

considered in this evaluation: 

• The 1999 study: Soil profile A1 (Table 12) 

• AECOM study: Boring log DT-B1-2016 (Table 13) 

At this location, the maximum ground acceleration during earthquake shaking is 

estimated to be 0.42g, and the maximum expected lateral load at pile cap is estimated to 

be 90 kips.
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Table 12 

The 1999 Study by EBMUD’s Consultant: Soil Profile A1(Bixler to Indian Slough) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) 
1 0–15 Holocene alluvium  Lean clay 100 0 1000 
2 15–50 Pleistocene alluvium  Lean clay 100 0 2500 

Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

Table 13 

AECOM Study: Boring Log DT-B1-2016 (Bixler to Indian Slough) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) Nq 
1 0–1 Fill 110 30 0   
2 1–7 Peat 75 0 100   
3 7–8 Lean clay 100 0 2000   
4 8–12 Sand 120 32 0 27.0 
5 12–17 Liquefiable sand taken as very soft clay with C=300 psf and Kơ = 1.1 
6 17–34 Sand 120 35 0 47.6 
7 34–46 Lean clay 100 0 3000   

 
Note. Adapted from Phase 1 Geotechnical Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017. 

Not Observed 
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In order to model the liquefiable layer, the equivalent residual strength of liquefiable 

sand is needed. Seed and Harder (1999) developed a relationship between residual 

strength and an equivalent clean-sand SPT resistance (see Appendix C, Figure C10). The 

equivalent clean-sand SPT resistance equation is (Kramer, 1996) 

(N1)60-cs = (N1)60 + Ncorr                                                                                                                           (Equation 1) 

Seed and Harder recommended a fines correction (Ncorr) for the estimation of residual 

undrained strength (see Appendix C, Table C2). The corrected SPT N-value equation is 

(California Department of Transportation, 2014)  

(N1)60 = Nm CN CE CB CR CS                                                                                                                        (Equation 2) 

Appendix C, Table C3 provides parameters to calculate (N1)60. Based on these 

calculations, the residual undrained shear strength of the liquefiable layer is 300 psf. 

The APILE/LPILE and GROUP analyses were completed using soil profile A1 with 

no peat layer in 1999 and the soil profile determined from the AECOM boring log with a 

6-foot peat layer and a 5-foot liquefiable layer. Ultimate lateral capacities were compared 

with the maximum base shear and the lateral load at the 1-inch horizontal deflection of 

the pile cap (Figure 26). It is evident that not considering the liquefiable soil in the 1999 

study had a considerable impact on the ultimate capacity of the pile group. 
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Figure 26. Region 1, evaluation of liquefiable subsurface impact (APILE/LPILE and 

GROUP analyses). The data are adapted from Aqueduct No. 3 Seismic Upgrade by 

EBMUD’s consultant, 1999, and Phase 1 Geotechnical Exploration Program-Delta 

Tunnel Project (GDR) by AECOM, 2017.  

 

 

Region 2: Indian Slough to Old River. The second evaluation of the liquefiable 

subsurface impact on the ultimate lateral capacity of the pile group was investigated in 

Region 2. Two different soil profiles considered in this evaluation: 

• The 1999 study: Soil profile A1 (Table 14) 

• AECOM study: Boring log DT-B4-2016 (Table 15) 

At this location, the maximum ground acceleration during earthquake shaking is 

calculated to be 0.40g, and the maximum expected lateral load at the pile cap is 

calculated to be 87 kips.
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Table 14 

The 1999 Study by EBMUD’s Consultant: Soil Profile A1 (Indian Slough to Old River) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) 

1 0–15 Holocene alluvium  Lean clay 100 0 1000 

2 15–50 Pleistocene alluvium  Lean clay 100 0 2500 
Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  

 

 

Table 15 

AECOM Study: Boring Log DT-B4-2016 (Indian Slough to Old River) 

Layer No. Depth (ft) Description Unit Weight (pcf) Friction Angle (degree) Cohesion (psf) Nq 
1 0–1 Fill 110 30 0   
2 1–9 Peat 75 0 100   
3 9–12 Lean clay 100 0 1000   
4 12–25 Liquefiable sand taken as very soft clay with C = 300 psf and Kơ = 1.1 
5 25–43 Sand 120 35 0 47.6 
6 43–50 Lean clay 100 0 3000   

Note. Adapted from Phase 1 Geotechnical Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017. 
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The APILE/LPILE and GROUP analyses were completed considering soil profile A1 

with no peat layer in 1999 and the soil profile determined from the AECOM boring log 

with an 8-foot peat layer and a 13-foot liquefiable layer. Ultimate lateral capacities are 

compared with the maximum base shear and the lateral load at the 1-inch horizontal 

deflection of the pile cap (Figure 27). It is evident that not considering the liquefiable soil 

in the 1999 study had a considerable impact on the ultimate capacity of the pile group. 

 
Figure 27. Region 2, evaluation of liquefiable subsurface impact (APILE/LPILE and 

GROUP analyses). The data are adapted from Aqueduct No. 3 Seismic Upgrade by 

EBMUD’s consultant, 1999, and Phase 1 Geotechnical Exploration Program–Delta 

Tunnel Project (GDR) by AECOM, 2017.  
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Surface geology significantly influences the amplitude, frequency, and duration of 

seismic motions at the ground surface. In liquefiable soils, progressive buildup of pore 

water pressure decreases strength and stiffness, resulting in large bending moments and 

shear forces on the pile and in settlement and tilt of the pile caps and the superstructure. 

These analyses show a significant reduction in the piles’ lateral and axial capacities 

caused by the liquefiable soils. In addition to the reduction on lateral support, liquefiable 

soils may amplify the spectral acceleration of ground motions. Consequently, the 

maximum expected lateral force that will occur due to seismic ground motion (base 

shear) increases. As a result, the impact of a liquefied soil may be more significant than 

what is predicted in this study. A seismic site response analysis is needed to investigate 

the effect of the liquefiable soil on PGA and Vbase in different regions. AECOM is 

conducting a site response analysis, which makes the comprehensive evaluation of 

liquefaction hazards in the Delta feasible.  
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Conclusions and Future Studies 

EBMUD has provided interim risk reduction to aqueducts, including a major retrofit 

of Aqueduct No. 1 in 1990, a seismic upgrade of Aqueduct No. 3 in 2000, and 

interconnections between the aqueducts on the eastern and western sides of the Delta in 

2013. Each project provided a measure of vulnerability reduction.    

To minimize the risk of water supply disruption to the East Bay Area before 

undertaking the preferred long-term protection alternative, EBMUD is developing cost-

effective short-term alternatives that will improve the reliability of these critical lifelines. 

This study is quantifying the impact of subsidence and liquefaction on the pile 

foundations of the Mokelumne Aqueduct in order to develop retrofit alternatives in the 

future. 

A review of the study conducted in 1999 by EBMUD’s consultant has led to the 

following observations: 

• Subsurface profiles were unreasonably simplified. 

• No potentially liquefiable sand layer was identified in subsurface profiles. 

• Unrealistically high ultimate axial and uplift capacities were reported. 

The current study utilized subsurface profiles determined from boring logs recently 

prepared by AECOM. A stability analysis was performed by considering both the 1999 

and current soil profiles, and results have been compared. The analysis quantified the 

impact on pile lateral and axial capacities due to subsidence. Subsidence in the Delta is 

predicted to reduce the lateral support of the piles, which is critical to reflect in the 

mitigation plan. Furthermore, pile instability due to identified liquefiable layers has been 
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investigated. Analysis shows that liquefaction would lead to a significant reduction in the 

piles’ lateral and axial capacities due to loss of soil shear strength. 

The following are observations and recommendations for future work: 

1. This study evaluated the stability of BENT I at different regions along the 

aqueducts’ alignment. A stability analysis of temperature anchors, road anchors 

and bend anchors should also be completed. 

2. AECOM is currently conducting seismic and liquefaction studies for the Tunnel 

Geotechnical Exploration Project. This current study should be improved based 

on the final results of the soil investigation. 

3. In 2000, the Aqueduct No. 3 Seismic Upgrade Project identified base isolators, 

located between the pipeline and the foundation, as desirable mechanisms to 

relieve most of the potential destructive earthquake movement that could occur 

during a seismic event. The impact of base isolators on the stability of Aqueduct 

No. 3 needs further analysis. 

4. Soil collapse due to moisture ingress is a potential hazard. The effects on the 

lateral stability of the aqueducts as a result of this soil collapse should be 

assessed.  

5. A more comprehensive stability analysis that would capture nonlinear soil-

structure interaction utilizing FEA modeling would provide more reliable results. 

6. Comprehensive mitigation plan that is necessary to improve the reliability of 

critical lifelines. 

 



            

 

57 

 

References 

AECOM. (2017a). Delta tunnel seismic study report- Phase 1. Oakland, CA: EBMUD 

Archives. 

AECOM. (2017b). Phase 1 geotechnical exploration program - Delta tunnel project 

(GDR). Oakland, CA: EBMUD Archives. 

American Concrete Institute. (2014). ACI 318 – 14 Building code requirements for 

structural concrete and commentary. Cambridge, MA: ACI. 

American Society of Civil Engineers. (2010). Minimum design loads for buildings and 

other structures (7-10). Reston, VA: ASCE. 

American Society of Civil Engineers. (2017). Infrastructure in California. Retrieved from 

https://www.infrastructurereportcard.org/state-item/california/ 

American Society for Testing and Materials. (1966). ASTM - A15: Specification for steel 

bars for concrete reinforcement. West Conshohocken, PA: ASTM International. 

California Department of Transportation. (2014). Caltrans geotechnical manual. 

Retrieved from 

http://www.dot.ca.gov/hq/esc/geotech/geo_manual/page/Embankments_Dec2014.pdf 

California Department of Water Resources. (n.d.). Delta overview. Retrieved from 

http://baydeltaoffice.water.ca.gov/sdb/tbp/deltaoverview/index.cfm 

California Department of Water Resources. (2008). Technical memorandum: Delta risk 

management strategy (DRMS) phase 1- Subsidence. Retrieved from 

http://www.water.ca.gov/floodmgmt/dsmo/sab/drmsp/docs/Subsidence_TM.pdf 

Deverel, S. J., Ingrum, T., & Leighton, D. A. (2016). Present-day oxidative subsidence of 

organic soils and mitigation in the Sacramento-San Joaquin Delta. Hydrogeology 

Journal, 24, 569-586. 

EBMUD. (1966; 2010; and 2015). DOX database: Aqueducts’ survey data. Oakland, CA: 

EBMUD Archives. 

EBMUD. (1968). DOX database: 4190-G-5.26 & 5.28. Oakland, CA: EBMUD Archives. 

EBMUD. (2013a). All about EBMUD. Retrieved from http://www.ebmud.com/about-

us/publications/ 

EBMUD. (2013b). EBMUD GIS online mapping center. Retrieved from 

http://ebmudisd.maps.arcgis.com 



            

 

58 

 

EBMUD’s consultant. (1999). Aqueduct No. 3 seismic upgrade. Oakland, CA: EBMUD 

Archives. 

ENSOFT. (2015). APILE (v7): A program for the analysis and design of axially loaded 

piles. Retrieved from 

http://www.ensoftinc.com/products/apile/doc/description_sheet.pdf 

ENSOFT. (2016a). LPILE (v9): Analysis and design of deep foundations under lateral 

loads. Retrieved from 

http://www.ensoftinc.com/products/lpile/doc/description_sheet.pdf 

ENSOFT. (2016b). GROUP (v10): A program for the analysis of piles in a Group. 

Retrieved from http://www.ensoftinc.com/products/group/doc/description_sheet.pdf 

Kramer, S. L. (1996). Geotechnical earthquake engineering. Upper Saddle River, NJ: 

Prentice Hall. 

Samtani, N. C. (2017, August 28). Geotechnical Engineering Features Deep 

Foundations: Lateral Analysis [Webinar]. Retrieved from 

https://www.asce.org/continuing-education/live-webinars/ 

Prashar, Y., Irias, X. J., & Shewbridge, S. E. (2009). East Bay Municipal Utility 

District’s Mokelumne Aqueduct in the Sacramento-San Joaquin Delta: Hazard 

evaluation. Pipelines 2009: Infrastructure’s Hidden Assets, 1263-1275. 

United States Geological Survey. (n.d.). EarthExplorer. Retrieved from 

https://earthexplorer.usgs.gov 

United States Geological Survey. (n.d.). US seismic design maps. Retrieved from 

https://earthquake.usgs.gov/hazards/designmaps/usdesign.php 

 

  



            

 

59 

 

Appendices 

Appendix A: Structural Features 
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Figure A1. Aqueduct No. 3 pile caps for elevated pipe. East Bay Municipal Utility District DOX Database (4190-G-5.28). As-

built drawing, 1968.
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Figure A2. Aqueduct No. 3 concrete pile details. East Bay Municipal Utility District 

DOX Database (4190-G-5.26). As-built drawing, 1968.
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Table A1 

Pre-tensioned Pre-stressed Concrete Pile Properties 

Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  
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Table A2 

Axial Load on Pile Group 

 

 

Aqueduct No. 3       
BENT I, II, III       
Pipe       
Outside Dia. O.D. 89.50 in 
Inside Dia. I.D. 88.50 in 
Pipe thickness t 0.50 in 
Modulus of elasticity Es 29000 ksi 
Moment of inertia I 138424.71 in

4 
Area A 139.8 in

2 
Steel unit weight   490 Ib/ft

2 
Inside mortar O.D. 88.5 in 
  I.D. 87.5 in 
  t 0.5 in 
Area A 138.2 in

2 
Mortar unit weight   100 Ib/ft

2 
Approx. weight per ft W 0.57 kips/ft 
Pipe length L 60 ft 
Approx. weight W 34.30 kips 
BENT Length  174 in 
  Weight per ft 0.045 kips/ft 
  Length  120 in 
  Weight per ft 0.1 kips/ft 
  Length  96 in 
  Weight per ft 0.017 kips/ft 
Approx. weight W 1.79 kips 
Pile Cap  Length 114 in 
  Width 78 in 
  Height 33 in 
Approx. weight W 25.47 kips 
Water       
Approx. weight per ft W 2.67 kips/ft 
Pipe length L 60 ft 
Approx. weight W 159.94 kips 
        
Total weight   221.5 kips 
Total weight + seismic vertical force   252.1 kips 
1.2 DL   302.5 kips 
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Table A3 

Development Length for Deformed Bars and Deformed Wires in Tension 

 
Note. Retrieved from Building Code Requirements for Structural Concrete (ACI 318 – 

14) by American Concrete Institute (ACI), 2014. 

 

 

Table A4 

Parameters to Calculate Development Length for Bars 

Parameters Value Description 

ᴪt 1 Larger bottom bars 

ᴪe 1 Uncoated reinforcement 

λ 1 Normal weight concrete 

fy  (psi) 33000 Yield strength (ASTM spec - A15) 

fy  (psi) 40000 Year 1911 to 1966 

f'c  (psi) 4000 Concrete compressive strength 

d
b
  (in) 1 # 8 rebar diameter 

Note. Adapted from Building Code Requirements for Structural Concrete (ACI 318 – 14) 

by American Concrete Institute (ACI), 2014, and ASTM - A15 by American Society for 

Testing and Materials (ASTM), 1966. 
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Appendix B: Seismic Study 
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Figure B1. Selected boring logs for PGA determination. Adapted from the Delta Tunnel Seismic Study Report - Phase 1 by 

AECOM, 2017.  
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Figure B2. Region 1, PGA determination. Adapted from Delta Tunnel Seismic Study 

Report- Phase 1 by AECOM, 2017.  
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Figure B3. Region 4, PGA determination. Adapted from Delta Tunnel Seismic Study 

Report- Phase 1 by AECOM, 2017.   
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Table B1 

References and Parameters for Determination of Base Shear  

Source USGS website 
Reference ASCE 7-10 (ch15 ) 
Structure Type Rigid nonbuilding structure 
Time Period T < 0.06 
Site Class  E 
Risk Category  IV 
Importance Factor (I

e
) 1.25 

S
ds
 Variable at 4 regions 

W
bent 

(kips) 300 
V

base 
 0.3 S

ds 
W

bent
 I

e
 

Note. The data are adapted from “U.S. Seismic Design Maps” from the United States 

Geological Survey (n.d.), and ASCE 7-10: Minimum Design Loads for Buildings and 

Other Structures (chapter 15) by the American Society of Civil Engineers, 2010. 
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Appendix C: Stability Analysis 
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Table C1 

The 1999 Study by EBMUD’s Consultant: Ultimate Axial and Uplift Capacities 

Assumption 

 
Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.  
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Figure C1. Proposed exploration plan. Adapted from Phase 1 Geotechnical Exploration Program–Delta Tunnel Project 

(GDR) by AECOM, 2017. 
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Figure C2. Boring log DT-B6A-2016. Adapted from Phase 1 Geotechnical Exploration 

Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C3. Boring log DT-B6A-2016 continued. Adapted from Phase 1 Geotechnical 

Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C4. Boring log DT-B13-2016. Adapted from Phase 1 Geotechnical Exploration 

Program–Delta Tunnel Project (GDR) by AECOM, 2017.  

 

 



            

 

76 

 

 
Figure C5. Boring log DT-B13-2016 continued. Adapted from Phase 1 Geotechnical 

Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C6. Boring log DT-B1-2016. Adapted from Phase 1 Geotechnical Exploration 

Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C7. Boring log DT-B1-2016 continued. Adapted from Phase 1 Geotechnical 

Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C8. Boring log DT-B4-2016. Adapted from Phase 1 Geotechnical Exploration 

Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C9. Boring log DT-B4-2016 continued. Adapted from Phase 1 Geotechnical 

Exploration Program–Delta Tunnel Project (GDR) by AECOM, 2017.  
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Figure C10. Relationship between residual strength and corrected SPT resistance. 

Reprinted from Geotechnical Earthquake Engineering (p.411), by S. L. Kramer, 1996. 

 

 

Table C2 

Fines Correction for Estimation of Residual Undrained Strength 

Percent 

Fines 

Ncorr 
(blows/ft) 

0 0 

10 1 

15 - 

20 - 

25 2 

30 - 

35 - 

50 4 

75 5 
Note. Adapted from Geotechnical Earthquake Engineering (p.411), by S. L. Kramer, 

1996. 
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Table C3 

Parameters to Determine Corrected SPT N-Value 

Parameters Value Description 

Nm 8 from AECOM boring log 

CN 1.1 Depth correction factor 

CE 1.13 Hammer energy correction factor (ERi/60) 

CB 1 Borehole diameter correction factor 

CR 0.95 Rod length correction factor 

CS 1.2 
Correction factor for samplers with or without 
liner 

Note. Adapted from Caltrans Geotechnical Manual by the California Department of 

Transportation, 2014.  
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