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ABSTRACT

EVALUATION OF THE FRAGILITY OF EAST BAY MUNICIPAL UTILITY
DISTRICT (EBMUD) MOKELUMNE AQUEDUCT

by Sara Chalian

The East Bay Municipal Utility District provides water to the eastern region of the
San Francisco Bay Area. Water is delivered through the Mokelumne Aqueduct, which
consists of three large diameter steel pipelines. Approximately 15 miles of the aqueducts
cross the fragile Sacramento-San Joaquin Delta. A stability analysis has been conducted
to evaluate how resilient the elevated aqueduct is in the Delta. Subsidence in the Delta
considerably reduces the lateral support of piles. Based on previous studies, and available
survey and LIDAR data, the amount of subsidence in the Delta has been predicted over
time. In addition, site-specific seismic studies have been considered in order to estimate
strong ground motion parameters. A series of axial single pile analyses, lateral single pile
analyses, and pile group analyses have been performed to quantify the impact of ground
loss due to subsidence on pile capacities along the 15-mile alignment. Results were
compared with both the maximum expected lateral load at the pile cap occurring due to
seismic ground motion (base shear) and the lateral capacity at the 1-inch horizontal
displacement of the pile cap (threshold). Analysis shows a significant reduction in the
piles’ lateral and axial capacities, caused by lack of soil shear strength. The analytical

studies are presented and discussed in order to develop retrofit alternatives.
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Introduction
Aging Infrastructure

America’s aging infrastructure is currently a highlighted topic in the media. The
problem is extensive, affecting transportation systems, water supplies, communication
networks, and the energy grid. Every four years, the American Society of Civil Engineers
(ASCE) Committee on America’s Infrastructure provides a broad assessment of 16 major
infrastructure categories in ASCE’s Infrastructure Report Card. The Report Card studies
current infrastructure conditions, estimates the investment needed in each infrastructure
category, and makes recommendations to improve them (American Society of Civil
Engineers, 2017).

Infrastructure is not only the foundation of a society’s economy and quality of life; it
is also critical to the public’s health and wellbeing. The infrastructure’s condition has a
huge impact on the economy, business productivity, employment, and personal income in
a nation. Therefore, it is not wise to defer investment in our nation’s critical infrastructure
systems. This investment must be consistently and wisely allocated. Smart investment
will be possible with leadership, planning, and a clear vision.

California faces its own infrastructure challenges. According to the ASCE California
Infrastructure Report Card (American Society of Civil Engineers, 2017), “Driving on
roads in need of repair in California costs each driver $844 per year, and 5.5% of bridges
are rated structurally deficient. Drinking water needs in California are an estimated $44.5
billion, and wastewater needs total $26.2 billion. 678 dams are considered to be high-

hazard potential.” This deteriorating infrastructure has a huge effect on California’s


http://infrastructurereportcard.org/making-the-grade/about-asce/advisory-council/

economy. A greater delay in investment will increase the costs of aging infrastructure
systems.
East Bay Municipal Utility District Challenge of Aging Water Infrastructure

The East Bay Municipal Utility District (EBMUD) provides drinking water to 1.4
million people in Alameda and Contra Costa counties on the east side of the San
Francisco Bay (EBMUD, 2013a). The main source of water is the Mokelumne River
watershed in the foothills of the Sierra Nevada Mountains, located about 90 miles
northeast of the San Francisco East Bay Area. Water is collected in the Pardee Reservoir
on the western slope of the Sierra Nevada Mountains and delivered to the East Bay Area
through the 82-mile Mokelumne Aqueduct, which consists of three large diameter steel
pipelines of 65, 67, and 87 inches, built in 1929, 1949, and 1963, respectively.
Approximately 15 miles of the pipelines run across the Sacramento-San Joaquin Delta:
nearly 10 miles of elevated pipeline, 4.5 miles of buried pipeline, and three river
crossings with half a mile of submerged pipeline (Prashar, Irias, & Shewbridge, 2009).
According to the California Department of Water Resources (DWR), the Delta is an area
of interconnected waterways surrounded by about 60 islands that have supplied
agricultural land since the mid-1800s. The islands are protected by 1,100 miles of fragile
levees up to 100 years old. During the last century, there were over 160 levee failures in
the Delta.

In 2008, DWR completed the Delta Risk Management Strategy (DRMS) Project to
perform a risk analysis of the San Joaquin Delta (Phase 1) and to develop improvement

strategies to manage the risks (Phase 2). In addition, EBMUD has evaluated the risks and



provided possible mitigations for potential hazards affecting the Mokelumne Aqueduct.
These risks are evaluated in the context of the DRMS process. Based on probabilistic
methods and analysis, it is not possible and economical to eliminate all risks.

The completed studies helped decision-makers better understand the issues and make
appropriate decisions to protect the water supplies in the Delta. The government tends to
invest in new projects instead of maintaining the existing infrastructure, which results in
higher costs and lower quality standards. In order to make both cost-effective and wise
long-term investments in the critical lifelines, EBMUD conducted planning studies to
identify a long-term solution to improve the reliability of the water transmission system
across the Delta. Accordingly, the District proposed a new deep tunnel with dual
pipelines across the Delta as the preferred long-term protection alternative based on the
results of the risk assessment. The identified tunnel alignment follows the right-of-way
for the existing Mokelumne Aqueduct. Because it will take several years to accomplish a
long-term protection strategy, short-term improvements of the critical lifelines are
essential to meet present-day requirements.

Recently, EBMUD has initiated a comprehensive asset management system to set
priorities and evaluate the reliability of existing facilities, the cost of replacement versus
rehabilitation, and the effects of downtime or failure. The first step is the evaluation of
the fragility of the aqueducts’ foundation across the Delta as the critical component of

EBMUD’s water system.



Background

EBMUD, a public utility in California, supplies drinking water, provides pollution
prevention and wastewater treatment services, and generates renewable energy.
EBMUD Water Sources

Central Sierra supply. According to EBMUD (2013a), the Mokelumne River on the
western slope of the Sierra Nevada collects melted snow from Alpine, Amador, and
Calaveras counties. This protected watershed provides 90% of the water used by
EBMUD, which has rights to use up to 364,000 acre-feet of water per year from the
Mokelumne River.

The District stores water in Camanche and Pardee Reservoirs and is licensed to store
209,950 acre-feet water per year in Pardee Reservoir, which is equivalent to a 10-month
supply for EBMUD’s customers. Camanche Reservoir, 10 miles downstream from
Pardee Dam, has a capacity of 417,120 acre-feet to store water for EBMUD’s customers.

Local/emergency supply. A 6-month emergency supply is maintained in local
reservoirs. The EBMUD (2013a) stores up to 151,670 acre-feet of water in the East Bay
reservoirs to provide local emergency supplies. In addition, Bayside Groundwater
Injection Well is being used to transfer water into a deep underground aquifer for storage.

Sacramento River supply. According to EBMUD (2013a), during a drought period
or emergency, the Mokelumne River cannot supply what the customers need. The
Sacramento River is the supplemental source of water, which provides up to 100 million

gallons per day. When needed, EBMUD draws water from the Freeport Regional Water



Facility through a pipeline and the Folsom South Canal and then transfers the water south

to the Mokelumne Aqueduct. Figure 1 shows EBMUD water sources.
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Figure 1.\E®BMUD water sources. Adapted frorﬁ “All About EBMUD” by EBMUD,
2013.
Mokelumne Aqueduct in the Delta

The study area includes approximately 15 miles of the aqueducts that cross the Delta
through five islands. The area extends from the outskirts of Stockton in the east to
EBMUD’s maintenance yard at Bixler in the west. The Delta crossing consists of nearly
10 miles of elevated pipeline, 4.5 miles of buried pipeline, and three major river crossings
with approximately half a mile of submerged pipeline (Prashar et al., 2009). Figure 2
shows the location of the Delta crossing, along the aqueducts’ alignment. Figure 3
illustrates the location of buried and elevated pipelines, river crossings, and road

crossings in the study area.
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Mokelumne Aqueduct

According to EBMUD (2013a), the Mokelumne Aqueduct is a 95-mile water supply
which begins at Pardee Reservoir (formed by Pardee Dam on the Mokelumne River).
Mokelumne Aqueduct travels southwest through the western foothills of Sierra Nevada
and then west across the Central Valley and along the Calaveras River before crossing the
Sacramento-San Joaquin River Delta. Close to Lodi, an extension of the Folsom South
Canal is joined by the three aqueducts to supplement the Mokelumne River supply. In the
Berkeley Hills above the East Bay, it is channeled into a distribution system including six
terminal reservoirs (Briones, Chabot, Lafayette, San Pablo, and Upper San Leandro).
Before passing through the Claremont Tunnel (on the western side of the range between
Berkeley and Oakland), the water is treated at the Sobrante, San Pablo, and San Leandro
treatment plants.

The three aqueducts follow a common alignment along their entire lengths from
Pardee Reservoir (Station 0) through Stockton, Brentwood, and Port Chicago to the
Walnut Creek Pumping Plant in Contra Costa County, California (Station 4500), with
Agueduct No. 1 in the middle, and Aqueducts No. 2 and No. 3 located approximately 15
feet south and 25 feet north of Aqueduct No. 1, respectively (EBMUD, 2013a).

Aqueduct No. 1. Completed in 1927, Aqgueduct No. 1 is 65 inches in diameter. On
both sides of and across Indian Slough, the elevated aqueduct is supported on as-built
battered timber piles (30 feet apart) with no major retrofit over the years. From Indian
Slough to Holt, a major retrofit was performed on the aqueduct’s foundation in 1990.

Since then, the aqueduct is supported on two battered timber piles, precast concrete bent,


https://en.wikipedia.org/wiki/Briones_Reservoir
https://en.wikipedia.org/wiki/Lake_Chabot
https://en.wikipedia.org/wiki/Lafayette_Reservoir
https://en.wikipedia.org/wiki/San_Pablo_Reservoir

and 12 inch by 6 inch redwood saddle or hard plastic saddle every 30 feet. The average
subsidence along the alignment of Aqueduct No. 1 through the delta is assessed in this
study.

Aqueduct No. 2. Completed in 1949, Aqueduct No. 2 is 67 inches in diameter. The
elevated portion of the aqueduct is supported on pile groups (60-foot intervals). Aqueduct
No. 2 is not included in this study.

Aqueduct No. 3. Completed in 1963, Aqueduct No. 3 is 87 inches in diameter. The
elevated portion of the aqueduct is supported on pile groups (60-foot intervals). A pile
group consists of at least four piles, and each pile is driven on a 3 vertical to 1 horizontal
(3V:1H) batter, in directions of 30 degrees from the perpendicular to the pipeline. The
projections of the centerlines of the four piles intersect at a vertical distance of 9.5 feet
above the top of the piles. There are 775 pile groups with four piles (BENT 1) and 50 pile
groups with one additional vertical pile (BENT II) or two additional vertical piles (BENT
I11), as shown in Appendix A, Figure A1. When one or more of the battered piles did not
meet the specified driving resistance during installation, the vertical piles were added
within the battered group. There are 35 saddles (each saddle has two battered piles) in the
transition zones from the elevated to the under-river crossings. In addition, there are 44
temperature anchors spaced at nearly 1000-foot intervals. The temperature anchors are
supported on groups of 10 to 12 battered piles in directions parallel and at right angles to
the pipeline. There are 19 pile groups located at bends and road crossings; each has more

than 10 piles (all or most of the piles are battered). There is a large bend structure near



Holt which has 101 piles. The stability of Aqueduct No. 3 is evaluated in this study.

Figure 4 shows the Mokelumne Aqueduct including Aqueducts No. 1, No. 2, and No. 3.

-
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F’i’gure 4.‘Mokéiumne Aqueduct, Sacramer.lto:San Joaé;'ivn' De'Ita Caiifornia. J\une, 2017
Agueducts No. 1, No. 2, and No. 3.
Sacramento-San Joaquin Delta

The Delta legal boundary. According to DWR, portions of Alameda, Contra Costa,
Sacramento, San Joaquin, Solano, and Yolo counties make up the Delta. Each county is
responsible for the planning and zoning of land use. Figure 5 shows the Delta’s official

boundary. It also presents the Delta uplands and lowlands and the Delta service area (the

irrigated lands within the Delta that receive water directly from its channels).
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Figure 5. The Delta legal boundary. Adapted from “Delta Overview” by the California
Department of Water Resources (n.d.).
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The Delta subsurface. Delta subsurface is composed of the following four main
strata (Prashar et al., 2009):

Levee Fills: Located at river crossings, the stratum consists of mixed fine sands, silts,
and clays with occasional peat lenses. Levee fills are susceptible to liquefaction under
moderate levels of horizontal ground acceleration (0.1g).

Peat: This layer runs along much of the aqueducts’ alignment and consists of highly
compressible organic material up to 30 feet thick. The peat material varies from fibrous
to decayed organic matter. It is also mixed with varying amounts of silt and clay. In
general, the peat layer has low unit weight, high moisture content, low shear strength, and
high compressibility. Peat soils can continue to settle for several years after loading. The
top of the peat layer is located at and below sea level.

Holocene alluvium: Underlying the peat, these soils are generally of moderate shear
strength and consist of medium stiff clays and silts with loose to medium dense sandy
soils typically towards the top of the stratum. This layer is generally below the
groundwater, and the material is susceptible to liquefaction during earthquakes.

Pleistocene alluvium: This layer underlies the entire alignment at depths starting at
about 40 feet. It consists of dense sands of variable silt content with interbedded zones of
stiff to very stiff clays. This layer is generally of higher density, higher shear strength,
and lower compressibility, and it is generally not susceptible to liquefaction.

Subsidence in the Delta. Due to river flow and tidal action over the last several
million years, upstream sediment was deposited in the Delta and thick organic soil (peat)

was formed. Peat is both highly productive for agriculture and very susceptible to
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subsidence. Causes of peat subsidence are (1) oxidation of soil organic matter, (2)
shrinkage as a result of dewatering, (3) burning, (4) consolidation as a result of buoyant
force and loading, and (5) wind and water erosion. Present subsidence in the Delta is
caused mainly by microbial oxidation of organic carbon. Continuous oxidation removes
tens of thousands of cubic yards of soil daily (Deverel, Ingrum, & Leighton, 2016).

The subsidence of peat threatens the Delta infrastructure and water supply for
Californians. To determine the risks of subsidence to Mokelumne Aqueduct, it is
important to assess the subsidence rates over time. A reduction in landmass decreases
levee resistance to hydraulic pressure from adjacent channels; therefore, subsidence has
contributed to levee failure and flooding. Future subsidence will increase the volume of
water that flows onto islands during flooding, increasing levee vulnerability. Moreover,
the downward movement of the land surface causes the loss of lateral support against the
aqueducts’ deep foundation, which can adversely impact resistance to static and dynamic
lateral loading.

DWR has estimated the future subsidence rate in the Delta as a function of soil
organic matter content. Using ArcGIS Spatial Analyst, DWR predicted land-surface
elevations for 2050, 2100, and 2200. The study has projected the following subsidence
rates: 0 to 5 feet by 2050, 0 to over 9 feet by 2100, and 0 to over 18 feet by 2200. Figure
6 shows the estimated land surface elevation changes from 1998 to 2050 along the

aqueducts’ alignment.

12



§ -
: L
- .

Figure 6. Estimated land surface elevation changes from 1998 to 2050. Adapted from Technicl Memorandum: Delta Risk
Management Strategy (DRMS) Phase 1- Subsidence by California Department of Water Resources, 2008.
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EBMUD Evaluation of Hazard to Mokelumne Aqueduct in the Delta
EBMUD has assessed seismologic, flooding, and geotechnical hazards and their
associated risks to the existing water supply. The following hazards have been considered
(Prashar et al., 2009):
e High water level and tidal action in the channels
e Flooding and levee instability due to subsidence of the islands, overtopping, wave
action, or underseepage
e Earthquake shaking
e Additional settlement due to construction dewatering
e Highly compressible peat soil, which is susceptible to large magnitudes of
settlement and is causing land subsidence
e Low lateral resistance of near-surface peat soils during earthquakes
e The potentially liquefiable soils in and beneath Delta islands
e Liquefaction-induced lateral spreading at river crossings
Table 1 provides a summary of the risks and the qualitative probabilities of occurrence

within three different time periods.
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Table 1
Summary of Hazards and Associated Probabilities (Qualitative)

Hazard Description Year 2040 | Year 2100 | Year 2200
Sea level rise High High High
Subsidence High High High
Flooding High High High
Scouring Medium High High
Seismic/ground shaking High High High
Liquefaction High High High
Lateral spreading High High High
Fault crossings Low Low Low
Wave propagation High High High
Landsliding Low Low Low

Note. Adapted from “East Bay Municipal Utility District’s Mokelumne Aqueduct in the
Sacramento-San Joaquin Delta: Hazard Evaluation” by Y. Prashar, X. J. Irias, S. E.
Shewbridge, 2009.
EBMUD Strategy for Protecting Mokelumne Aqueduct in the Delta

The strategy for protecting the aqueducts in the Delta presents a process to help
decision-makers understand the investment options to protect water supplies and make
cost-effective and wise long-term investments in EBMUD’s infrastructure. To this end,
EBMUD evaluated possible mitigations for hazards affecting the aqueducts and the costs
of these mitigation activities. The strategy in place combines short-term mitigations, to
lower risks quickly, with long-term mitigations that lower them significantly. Short-term
improvements were also evaluated because a long-term protection strategy would take
several years to implement.

Short-term protection alternative. The short-term strategies are envisioned to
provide lower-cost mitigations in the near term and an almost immediate reduction of

identifiable risks.
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In 2000, a seismic upgrade to Aqueduct No. 3 provided a measure of vulnerability
reduction. Seismic isolation was implemented by using a mechanical device located
between the aqueduct and the foundation. This isolator is designed to relieve destructive
earthquake movement by separating the superstructure from the ground (EBMUD’s
consultant, 1999). Figure 7 shows the location of the seismic isolation between Aqueduct

No. 3 and the pile cap to protect the aqueduct against seismic forces.

Figure 7. Aqueduct No. 3 seismic upgrade, Sacramento-San Joad'u}n Delta, California.
June, 2017. Base isolator on Aqueduct No. 3 (2000).

In 2013, interconnections between the aqueducts were constructed on the eastern and

western sides of the Delta to provide temporary risk reduction. In the event that all three

16



aqueducts should fail, the interconnections would not be effective. Further, the
reinforcement of the levees on the water side of the pipeline-levee crossing provides
significant protection against pipeline failure caused by lateral spreading and liquefaction
where the pipelines cross the levees (Prashar et al., 2009).

Long-term protection alternative. In 2000, the District initiated studies to identify a
long-term solution to improve the reliability of the water supply across the Delta. In a
2007 report, the District identified a new deep tunnel with dual pipelines across the Delta
as the preferred long-term mitigation alternative. The proposed Delta tunnel is currently
both the most effective long-term mitigation plan and one of the lower-cost alternatives
studied. The Delta tunnel alignment is envisioned to follow the existing right-of-way for
the pipelines, extending about 16.5 miles from where the aqueducts cross under Interstate
Highway I-5 in Stockton to the District’s Bixler Maintenance Yard on the west side of
the Delta. Further geotechnical studies and subsurface investigations are essential to
minimize uncertainties in geologic conditions, identify the potential depth of liquefaction
along the proposed tunnel alignment, refine the optimal tunnel depth, and evaluate the

potential impact of tunnel excavation on existing pipelines.
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Methodology

The Sacramento-San Joaquin Delta soils are composed of mineral sediments
delivered by the rivers and peat derived from decaying marsh vegetation. Subsidence is
caused primarily by the ongoing oxidation of peat. Studies (CA DWR - DRMS, 2008) on
subsidence in the Delta have predicted 3 to 4.5 feet of additional subsidence between the
years 1998 to 2050. To assess the amount of subsidence over time along the aqueducts’
alignment, data obtained by surveying in 1967 and 2004, and LiDAR data (Light
Detection and Ranging) have been used. Subsidence or loss of lateral soil support against
piles and pile caps can adversely impact resistance to lateral (static and seismic) loading.

Because Aqueduct No. 3 is the most reliable among the three aqueducts, it was
evaluated for stability in this study. First, the aqueduct’s deep foundation pile cap types
(bent, saddle, temperature anchor, road anchor, bend anchor, and combination anchor)
were identified and variations in subsurface conditions were investigated. The subsurface
soils along the alignment are generally loose peaty soil deposits overlying alternating
layers of loose unconsolidated and potentially liquefiable Holocene deposits to depths
over 150 feet. In addition, site-specific strong ground motion parameters were identified
based on different studies.

Next, a series of axial and lateral single pile (APILE/LPILE) and pile group
(GROUP) analyses were performed to assess the service limit state of the aqueduct’s
deep foundation pile caps. The applied lateral load (p) as a function of the lateral

deflection (y) of the pile head was also investigated.
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Finally, the lateral load that would produce the anticipated deflection was computed.
The result was compared with both the maximum expected lateral load at the pile cap
occurring due to seismic ground motion (base shear) and the lateral capacity at the 1-inch
horizontal displacement of the pile cap (threshold).

The analysis has quantified the impact of ground loss (due to subsidence in the Delta)
on pile lateral and axial capacities along the aqueduct’s alignment. The analytical studies

are presented and discussed in order to develop retrofit alternatives in the future.
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Results and Discussion
Average Subsidence Analysis

The Delta soils are composed of mineral sediments delivered by the rivers and of peat
derived from decaying marsh vegetation. Subsidence is caused primarily by the ongoing
oxidation of peat. The State Department of Water Resources has conducted the Delta
Risk Management Strategy program (DRMS) on subsidence in the Sacramento-San
Joaquin Delta and predicted 3 to 4.5 feet of additional subsidence between the years 1998
and 2050. This amount of subsidence or loss of lateral soil support against piles and pile
caps can adversely impact resistance to lateral (static and seismic) loading.

In order to determine the amount of subsidence over time along the aqueducts’
alignment, the following sets of data were used to detect and predict the average
subsidence:

e 1966, 2010 and 2015 survey data (EBMUD)

e 2007 LiDAR data (United States Geological Survey)

By taking advantage of ArcGIS (Geographic Information System mapping tools), LIDAR
data along the aqueducts’ alignment were selected from the Delta area database.

Aqueduct No. 1 alignment. Two sets of LIDAR data were selected from the Delta
area database (Figure 8):

1. Top of the aqueduct (blue line)

2. 6-foot offset from the aqueduct centerline (red line)
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LiDAR Data top of the aqueduct
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Figure 8. Aqueduct No. 1 LiDAR data 2007. Adapted from EBMUD GIS Online
Mapping Center by Esri, 2013.

Selected sets of data were used to produce Figure 9, and noisy data were eliminated.
In addition, ground surface elevation survey data (EBMUD, 1966) were added. The
distance between ground surface elevation in 2007 (red line) and ground surface
elevation in 1966 (purple line with yellow dots) shows the average subsidence along the
aqueducts’ alignment from 1966 to 2007. Figure 10 presents the overall view of

Agqueduct No. 1 in the Delta, including pile tip elevation.
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Figure 9. Average subsidence along Aqueduct No. 1 from 1966 to 2007. The graph is adapted from data from EBMUD GIS
Online Mapping Center by Esri, 2013.
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Figure 10. Overall view of Aqueduct No. 1 in the Delta. The graph is adapted from data from EBMUD GIS Online Mapping
Center by Esri, 2013.
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Aqueduct No. 3 alignment. Three sets of LIDAR data were selected from the Delta
area database (Figure 11):

1. Top of the aqueduct (purple line)

2. Top of the pile cap (blue line)

3. 10-foot offset from the aqueduct centerline (red line)

LiDAR Data top of the aqueduct

LiDAR Data top of the pile cap

LiDAR Data 10-foot offset from the aqueduct centerline

Figure 11. Aqueduct No. 3 LIDAR data 2007. Adapted from EBMUD GIS Online
Mapping Center by Esri, 2013.

Selected sets of data were used to produce Figure 12, and noisy data were eliminated.
In addition, survey data (EBMUD, 2010; and EBMUD, 2015) were added. Due to the
short time frame from 2007 to 2010 and 2015, the average subsidence is not visible.

Figure 13 presents the overall view of Aqueduct No. 3, including pile tip elevation.
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Figure 12. Average subsidence along the Aqueduct No. 3 from 2007 to 2015. The graph is adapted from data from EBMUD
GIS Online Mapping Center by Esri, 2013.
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Taking all of the previous studies into account, it can be concluded that the average
subsidence is 3.5 feet along the aqueducts’ alignment from 1998 to present. In this study,
the same subsidence rate (3.5 feet over 20 years) is predicted in the future.

Structural Features

Because Aqueduct No. 3 is the most reliable among all three aqueducts, it was used
for the stability evaluation. There are 775 pile groups with four piles (BENT 1) and 50
pile groups with one additional vertical pile (BENT II) or two additional vertical piles
(BENT I111). Therefore, 94% of the bents are type I, and only 6% are types Il and I11; thus,
BENT | was used in this study (see Appendix A, Figure Al). Aqueduct No. 3 is entirely
supported on 16-inch square pre-stressed concrete piles driven on 3 vertical to 1
horizontal (3V:1H) batter (see Appendix A, Figure A2). Pile properties are listed in
Appendix A, Table Al.

Axial load on pile. The axial load on each pile group was calculated by summing up
the dead load (DL) of the pipe, the steel bent, the pile cap, and water in the pipe. Also, the
seismic vertical load and load factor (1.2 DL) were considered in this calculation (see
Appendix A, Table A2). The axial load on each pile was calculated by dividing the total
axial load on the pile group by the number of piles in each pile group. Table 2 provides

the amount of axial load on each vertical and battered pile.
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Table 2

Axial Load on Each Vertical and Battered Pile

No. of Load per Pile Batter Load per
BENT Type Pilles Vertical Pile Angle Battered Pile
(Kips) (degree) (Kips)
BENT I 4 75.6 18 79.5
BENT Il 5 60.5 18 63.6
BENT 11 6 50.4 18 53

Note. The axial load on each pile was calculated by dividing the total axial load on the
pile group by the number of piles in each pile group.

Degree of fixity of pile. In order to determine the degree of fixity of each pile, the
American Concrete Institute (ACI) has provided ACI 318-14, Table 25.4.2.2 to calculate
the development length for different bar sizes in order to obtain 100% fixity (see
Appendix A, Table A3).

According to the specification ASTM-A15, grade 33 and 40 rebar were used between
1911 and 1966. Appendix A, Table A4 presents all the parameters needed to calculate the
development length for the bars to achieve 100% fixity at the pile cap. Accordingly, the
existing development length (24 inches) provides 92% fixity with grade 33 bars, and 76%

fixity with grade 40 bars (Table 3).

Table 3
Degree of Fixity of Pile at Pile Cap
Development Existing
Rebar Length (in) Development | Degree of
Grade 100% fixity Length (in) Fixity
33 26.1 24 92%
40 31.6 24 76%

Note. Existing development length (24 inches) provides 92% fixity with grade 33 bars,

and 76% fixity with grade 40 bars.
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Pile group action. Group action should be considered when the pile spacing in the
direction of lateral loading is less than 6 to 8 times the pile width (pile width = 16 inch).
Pile spacing at the pile head (in the direction of lateral loading) increases with depth due
to the pile batter angle (3V:1H). Therefore, pile spacing at ground surface is more than 8
times the pile width. In conclusion, a group action evaluation is not required.

Seismic Study

Two different seismic studies were considered in order to identify the peak ground
acceleration (PGA) along the aqueducts in the Delta:

e United States Geological Survey (USGS)

e AECOM seismic study (AECOM, 2017a)

The lower of the deterministic and probabilistic ground motions has been considered
as the PGA by USGS. The results are comparable with those obtained from the AECOM
seismic study of the proposed Delta Tunnel Project (see Appendix B, Figure B1, Figure
B2, and Figure B3).

The study area was divided into four regions based on the effect of near-fault ground
motion on the 15 miles of aqueducts in the Delta (Figure 14). The results of the seismic
studies were compared at Region 1. Table 4 compares the results at a return period of 475
years, while Table 5 is related to a return period of 2475 years. The results of the studies

at both return rates were in good agreement.
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Figure 14. Four regions in the Delta. The map is adapted from Google maps.
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Table 4
PGA from Two Seismic Studies (475-Year Return Period)

Bixler to Indian Slough PGA
USGS deterministic study 0.42
USGS probabilistic study 0.49
(Return period: 475 years) '

Lower of deterministic 0.42

and probabilistic study ’

AECOM seismic study 0.42

(Return period: 475 years)

Note. USGS data are adapted from “U.S. Seismic Design Maps” by United States
Geological Survey. AECOM data are adapted from Delta Tunnel Seismic Study Report-
Phase 1 by AECOM, 2017.

Table 5
PGA from Two Seismic Studies (2475-Year Return Period)
Bixler to Indian Slough PGA
USGS probabilistic study 0.76
(Return period: 2475 years) ’
AECOM seismic study 0.75

(Return period: 2475 years)

Note. USGS data are adapted from “U.S. Seismic Design Maps” by United States
Geological Survey. AECOM data are adapted from Delta Tunnel Seismic Study Report-
Phase 1 by AECOM, 2017.

Based on these seismic studies, the PGA at a 475-year return period was estimated for
the four identified regions in the Delta. The highest PGA is 0.42g at Region 1 in the west,
which is closer to active faults; the lowest PGA is 0.37g at Region 4 in the east, which is

farther from the active faults. Figure 15 presents the location of the Delta aqueducts, the

nearby faults, and the variation of PGA along the aqueducts.
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Figure 15. Variation of PGA alon the Delta aqueducts. The map is adapted from
EBMUD GIS Online Mapping Center by Esri, 2013.

The maximum expected lateral load at the pile cap occurring due to seismic ground
motion (base shear) was determined for these four regions in the Delta. Appendix B,

Table B1 provides references and parameters for the determination of base shear.

Accordingly, Table 6 provides PGA and base shear at the four Delta regions.

Table 6
PGA and Base Shear at Four Regions in the Delta
Region Area PGA | Vbas (Kips)
1 Bixler to Indian Slough 0.42 90
2 Indian Slough to Old River | 0.40 87
3 Old River to Middle River | 0.39 84
4 Middle River to Holt 0.37 77
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Stability Analysis Approaches

In this study, two different approaches were used to evaluate the stability of the
aqueducts’ deep foundation:

e APILE/LPILE analysis

e GROUP analysis
APILE, LPILE and GROUP are software products of ENSOFT Inc., based in Austin,
Texas.

APILE/LPILE analysis. APILE is used to compute the axial and uplift (tension)
capacities of a single pile as a function of depth. Load capacities in side resistance (skin
friction) and end bearing are computed, along with the total capacities to sustained axial
and uplift loadings (ENSOFT, 2015).

LPILE is used for analyzing a single pile under lateral loading using the p-y method.
Depending on pile-head boundary conditions, LPILE computes shear force, bending
moment, lateral deflection, pile-head rotation, and soil response over the length of the
pile. LPILE can perform pushover analysis to evaluate the pile behavior after the
development of plastic hinges or yielding (ENSOFT, 2016a). Figure 16 presents how the
ultimate lateral load is computed in APILE/LPILE analysis. Lateral load vs. deflection
(P-Y) is computed in LPILE for a single pile, and T (tension) and Q (compression) are
computed in APILE for a single pile. For BENT I, the sum of P-Y for four piles, the
horizontal component of T (TH) for two piles, and the horizontal component of Q (QH)

for two other piles is equal to the ultimate lateral load.
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Axial Load

Figure 16. APILE/LPILE analysis approach. The image is adapted from “LPILE” by
ENSOFT Inc., 2016.
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GROUP analysis. GROUP is used for analyzing the behavior of piles in a group
subjected to both axial and lateral loadings. GROUP provides stiffness and/or flexibility
matrices in 2D or 3D models. For closely spaced piles in one group, group effects can be
considered, though as stated above the piles in these foundations are not close enough to
have an interactive effect on each other. The program computes the force and
displacement on the pile cap, such as the axial force (tension and compression), the
lateral forces (shear and moment) and the displacement of the pile cap in different

directions (ENSOFT, 2016b) (Figure 17).

Axial Load

Figure 17. GROUP analysis approach. The image is adapted from “GROUP” by
ENSOFT Inc., 2016.
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Analysis Limit State

Following are the limit states for deep foundation lateral analysis (Samtani, 2017):

e Service limit state

e Strength limit state

e Extreme event limit state

e Fatigue limit state (generally does not apply)

The service limit state relates to deformation by considering the serviceability while
the strength limit state relates to structural and/or geotechnical instability by considering
the failure aspect. Lastly, the extreme event limit state considers the events likely to occur

during the design life of the facility. The service limit state is applicable to this study

(Figure 18).
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Figure 18. Service limit state. Adapted from “Geotechnical Engineering Features Deep
Foundations: Lateral Analysis” by N. C. Samtani, August 28, 2017, ASCE Knowledge
and Learning. Copyright 2017 by NCS GeoResources, LLC.
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A series of axial and lateral single pile (APILE/LPILE) and pile group (GROUP)
analyses were performed to assess the service limit state of the aqueducts’ deep
foundation pile cap. The applied lateral load (p) was investigated as a function of the
lateral deflection (y) of the pile head. A model computed the lateral load that would
produce the desired deflection. The result was compared with both the maximum base
shear and the lateral load at the 1-inch horizontal deflection of the pile cap.

Studies in the Delta

Previous studies on the performance of the aqueducts’ foundations in the Delta were
examined as part of this analysis. In 1999, a seismic upgrade study was performed on
Agueduct No. 3. In general, the soil profile along the aqueducts’ alignment is considered
to be composed of three soil types: peat, Holocene alluvium, and Pleistocene alluvium.
For analysis purposes, the pipeline alignment was characterized using five profiles,
designated as A (Al and A2), B, C, and D. Pile capacities were calculated using the
recommendations in ACI 318-99 and FEMA 356. The ultimate shear capacity was
calculated using the recommendations for pre-stressed concrete members in Chapter 11
of ACI 318-99. The ultimate axial and uplift capacities are based upon the soil profile and
Cone Penetration Testing (CPT) data (see Appendix C, Table C1).

In 2000, the District initiated planning studies to identify a long-term solution to
improve the reliability of the water transmission system across the Delta. In a 2007
report, the District identified a new deep tunnel across the Delta as the preferred long-
term mitigation alternative. The proposed Delta Tunnel is envisioned to extend about

16.5 miles from where the aqueducts cross under Interstate Highway I-5 in Stockton to
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the District’s Bixler Maintenance Yard on the west side of the Delta. The proposed tunnel
alignment follows the existing right-of-way for the aqueduct pipelines. In 2016, EBMUD
offered the geotechnical exploration and seismic study of the proposed Delta Tunnel
project to AECOM. The firm has conducted a phase 1 field investigation and seismic
study. The findings are considered in this study. Appendix C, Figure C1 provides the
proposed exploration plan. Appendix C, Figure C2 to Figure C9 provide the boring logs,
which are utilized in this study.
Stability Analysis

A different evaluation has been conducted in each region. Table 7 shows the regions

corresponding to each area of evaluation.

Table 7
Regions Corresponding to Each Area of Evaluation
Evaluation Region Area of Evaluation
Order
Region 3: Evaluation of the 1999 study by
1 Olc? Rive.r to Middle River EBMUD’s consultant (hereinafter referred
to as ““ the 1999 study”)
Region 4: . . .
2 Middle River to Holt Subsidence impact evaluation
Region 1: . . . .
3 Bixler to Indian Slough Liquefiable subsurface impact evaluation
Region 2: . . . .
4 Indian Slough to Old River Liquefiable subsurface impact evaluation

Region 3: Old River to Middle River. The 1999 study of Region 3 was reviewed for
the current study. Two different soil profiles considered in this evaluation:
e The 1999 study: Soil profile A2 (Table 8)

e AECOM study: Boring log DT-B6A-2016 (Table 9)
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Table 8

The 1999 Study by EBMUD s Consultant: Soil Profile A2 (Old River to Middle River)

Layer No. | Depth (ft) Description Unit Weight (pcf) | Friction Angle (degree) | Cohesion (psf)
1 0-7  |[Holocene peat Peat 75 0 100
2 7-23  |Holocene alluvium  |Lean clay 100 0 1000
3 23-50 |Pleistocene alluvium |Lean clay 100 0 2000
Note. Adapted from Aqueduct No.3 Seismic Upgrade by EBMUD’s consultant, 1999.
Table 9
AECOM Study: Boring Log DT-B6A-2016 (Old River to Middle River)
Layer No. Depth (ft) Description | Unit Weight (pcf) | Friction Angle (degree) [Cohesion (psf)] Ngq
1 0-2 Fill 110 30 0
2 2-5.5 Peat 75 0 100
3 5.5-16.5 |Lean clay 100 1000
4 16.5-18.5 |Lean clay 100 2000
5 18.5-32  |Sand 120 32 0 27
6 32-34 Lean clay 100 0 2000
7 34-40 Sand 120 35 0 47.6
8 40-50 Lean clay 100 0 2000

Note. Adapted from Phase 1 Geotechnical Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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At this location, the maximum ground acceleration during earthquake shaking is
calculated to be 0.39g, and the maximum expected lateral load at pile cap is calculated to
be 84 Kips.

Based on the 1999 study, the ultimate lateral capacity of four piles (BENT 1) is
approximately 220 kips, and the horizontal displacement of the pile cap corresponding to

the ultimate lateral capacity is 2.7 inches (Figure 19).
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Figure 19. The 1999 study by EBMUD’s consultant: Region 3, ultimate lateral capacity
of pile group. The data are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s
consultant, 1999.

APILE/LPILE analysis and GROUP analysis were performed and the soil profile A2
considered. LPILE has the capability to analyze pile behavior after the development of

plastic hinges (yielding). GROUP is not able to continue the analysis beyond the limit, so
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output data were extended by extrapolation. Figure 20 presents the results and

comparison between the 1999 study and APILE/LPILE and GROUP analyses.
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Figure 20. Region 3, comparison between the1999 study by EBMUD’s consultant and
APILE/LPILE and GROUP analyses. Data from the 1999 study are adapted from
Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.

To match the ultimate lateral capacity from the APILE/LPILE analysis with the
ultimate lateral capacity from the 1999 study, soil cohesion values were increased in
APILE/LPILE analysis to approximately twice the value considered in 1999 study.
Moreover, a large difference in model initial stiffness response was distinguished (low
displacement), as shown in Figure 21.

To match the ultimate axial/uplift capacity assumptions in the 1999 study with the

APILE/LPILE analysis, soil cohesion values were increased in APILE/LPILE analysis to
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approximately four times those considered in the 1999 study. A large difference in model

initial stiffness response was distinguished (low displacement), as shown in Figure 22.
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Figure 21. Region 3, matching the ultimate lateral capacity from the APILE/LPILE
analysis with the 1999 study by EBMUD’s consultant. Data from the 1999 study are
adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
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Figure 22. Region 3, matching the ultimate axial/uplift capacity assumptions in the 1999

study by EBMUD’s consultant with the APILE/LPILE analysis. Data from the 1999

study are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
Based on the current analyses, the 1999 study utilized subsurface profile that was

unreasonably simplified. This oversimplification of the profile led to unrealistically high

ultimate axial and uplift capacities, as well as inaccurate stiffness estimations.
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Region 4: Middle River to Holt. The evaluation of the subsidence impact on the
ultimate lateral capacity of the pile group was investigated in Region 4. Two different
soil profiles considered in this evaluation:

e The 1999 study: Soil profile A2 (Table 10)

e AECOM study: Boring log DT-B13-2016 (Table 11)

At this location, the maximum ground acceleration during earthquake shaking is
calculated to be 0.37g, and the maximum expected lateral load at the pile cap is
calculated to be 77 Kips.

APILE/LPILE analysis and GROUP analysis were performed, and soil profile A2
was considered with a 6-foot peat layer in 1999, a 2.5-foot peat layer in 2017, and no peat
layer in the future. Results were compared to the maximum base shear and the lateral
load at the 1-inch horizontal deflection of the pile cap. Figure 23 and Figure 24 present
APILE/LPILE analyses and GROUP analyses for different peat layer thickness. The
analysis shows that the ultimate lateral capacity decreases over time due to the loss of

lateral soil support from the peat layer against the piles and pile caps.
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Table 10

The 1999 Study by EBMUD s Consultant: Soil Profile A2 (Middle River to Holt)

Layer No. | Depth (ft) Description Unit Weight (pcf) | Friction Angle (degree) | Cohesion (psf)
1 0-6  |[Holocene peat Peat 75 0 100
2 6-23  |Holocene alluvium  |Lean clay 100 0 1000
3 23-50 |Pleistocene alluvium [Lean clay 100 0 2000

Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.

Table 11

AECOM Study: Boring Log DT-B13-2016 (Middle River to Holt)

Layer No. Depth (ft) Description | Unit Weight (pcf) | Friction Angle (degree) Cohesion (psf) Ng
1 0-1.5 Fill 110 30 0
2 154 Peat 75 100
3 4-13 Lean clay 100 500
4 13-19.5 Lean clay 100 0 1000
5 19.5-39.5 Sand 120 35 0 47.6
6 39.5-50 Fat clay 100 0 2000

Note. Adapted from Phase 1 Geotechnical Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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Figure 23. Region 4, evaluation of subsidence impact (APILE/LPILE analysis). The data

are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
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In addition, APILE/LPILE and GROUP analyses were completed using the soil
profile determined from the AECOM boring log with a 2.5-foot peat layer. Results were
compared to APILE/LPILE and GROUP analyses results by considering soil profile A2
with a 2.5-foot peat layer. The ultimate lateral capacities are compared to the maximum

base shear and the lateral load at the 1-inch horizontal deflection of the pile cap (Figure
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Figure 25. Region 4, APILE/LPILE and GROUP analyses (present condition). The data
are adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999, and

Phase 1 Geotechnical Exploration Program—Delta Tunnel Project (GDR) by AECOM,

2017.
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Region 1: Bixler to Indian Slough. The impact of liquefiable soils on the ultimate
lateral capacity of pile groups was investigated in Region 1. Two different soil profiles
considered in this evaluation:

e The 1999 study: Soil profile Al (Table 12)

e AECOM study: Boring log DT-B1-2016 (Table 13)

At this location, the maximum ground acceleration during earthquake shaking is
estimated to be 0.42g, and the maximum expected lateral load at pile cap is estimated to

be 90 Kips.
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Table 12

The 1999 Study by EBMUD s Consultant: Soil Profile A1(Bixler to Indian Slough)

Layer No. | Depth (ft) Description Unit Weight (pcf) | Friction Angle (degree) | Cohesion (psf)
1 0-15  |Holocene alluvium  |Lean clay 100 0 1000
2 15-50 |Pleistocene alluvium |Lean clay 100 0 2500
Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
Table 13
AECOM Study: Boring Log DT-B1-2016 (Bixler to Indian Slough)
Layer No.| Depth (ft) Description Unit Weight (pcf) | Friction Angle (degree) | Cohesion (psf) | Nq

3 7-8 Lean clay 100 0 2000

4 812 Sand 120 32 0 27.0
5 12-17 Liquefiable sand taken as very soft clay with C=300 psf and Ko =1.1

6 17-34 Sand 120 35 0 47.6
7 3446 Lean clay 100 0 3000

- Not Observed

Note. Adapted from Phase 1 Geotechnical Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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In order to model the liquefiable layer, the equivalent residual strength of liquefiable
sand is needed. Seed and Harder (1999) developed a relationship between residual
strength and an equivalent clean-sand SPT resistance (see Appendix C, Figure C10). The
equivalent clean-sand SPT resistance equation is (Kramer, 1996)

(N1)60-cs = (N1)s0 + Ncorr (Equation 1)
Seed and Harder recommended a fines correction (Ncorr) for the estimation of residual
undrained strength (see Appendix C, Table C2). The corrected SPT N-value equation is
(California Department of Transportation, 2014)

(N1)so= Nm CnCeCg CrCs (Equation 2)
Appendix C, Table C3 provides parameters to calculate (N1)eo. Based on these
calculations, the residual undrained shear strength of the liquefiable layer is 300 psf.

The APILE/LPILE and GROUP analyses were completed using soil profile Al with
no peat layer in 1999 and the soil profile determined from the AECOM boring log with a
6-foot peat layer and a 5-foot liquefiable layer. Ultimate lateral capacities were compared
with the maximum base shear and the lateral load at the 1-inch horizontal deflection of
the pile cap (Figure 26). It is evident that not considering the liquefiable soil in the 1999

study had a considerable impact on the ultimate capacity of the pile group.
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Figure 26. Region 1, evaluation of liquefiable subsurface impact (APILE/LPILE and
GROUP analyses). The data are adapted from Aqueduct No. 3 Seismic Upgrade by
EBMUD’s consultant, 1999, and Phase 1 Geotechnical Exploration Program-Delta
Tunnel Project (GDR) by AECOM, 2017.

Region 2: Indian Slough to Old River. The second evaluation of the liquefiable
subsurface impact on the ultimate lateral capacity of the pile group was investigated in
Region 2. Two different soil profiles considered in this evaluation:

e The 1999 study: Soil profile Al (Table 14)

e AECOM study: Boring log DT-B4-2016 (Table 15)

At this location, the maximum ground acceleration during earthquake shaking is

calculated to be 0.40g, and the maximum expected lateral load at the pile cap is

calculated to be 87 Kips.
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Table 14

The 1999 Study by EBMUD s Consultant: Soil Profile Al (Indian Slough to Old River)

Layer No. | Depth (ft) Description Unit Weight (pcf) | Friction Angle (degree) | Cohesion (pst)
1 0-15 |Holocene alluvium  |Lean clay 100 0 1000
2 15-50 [Pleistocene alluvium |Lean clay 100 0 2500
Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
Table 15
AECOM Study: Boring Log DT-B4-2016 (Indian Slough to Old River)
Layer No. | Depth (ft) Description | Unit Weight (pcf) | Friction Angle (degree) |Cohesion (psf)] Nq
1 0-1 Fill 110 30 0
2 1-9 Peat 75 0 100
3 9-12 Lean clay 100 0 1000
4 12-25 Liquefiable sand taken as very soft clay with C = 300 psfand Ko = 1.1
5 2543 Sand 120 35 0 47.6
6 43-50 Lean clay 100 0 3000

Note. Adapted from Phase 1 Geotechnical Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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The APILE/LPILE and GROUP analyses were completed considering soil profile Al
with no peat layer in 1999 and the soil profile determined from the AECOM boring log
with an 8-foot peat layer and a 13-foot liquefiable layer. Ultimate lateral capacities are
compared with the maximum base shear and the lateral load at the 1-inch horizontal
deflection of the pile cap (Figure 27). It is evident that not considering the liquefiable soil

in the 1999 study had a considerable impact on the ultimate capacity of the pile group.
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Figure 27. Region 2, evaluation of liquefiable subsurface impact (APILE/LPILE and
GROUP analyses). The data are adapted from Aqueduct No. 3 Seismic Upgrade by
EBMUD’s consultant, 1999, and Phase 1 Geotechnical Exploration Program—Delta
Tunnel Project (GDR) by AECOM, 2017.
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Surface geology significantly influences the amplitude, frequency, and duration of
seismic motions at the ground surface. In liquefiable soils, progressive buildup of pore
water pressure decreases strength and stiffness, resulting in large bending moments and
shear forces on the pile and in settlement and tilt of the pile caps and the superstructure.

These analyses show a significant reduction in the piles’ lateral and axial capacities
caused by the liquefiable soils. In addition to the reduction on lateral support, liquefiable
soils may amplify the spectral acceleration of ground motions. Consequently, the
maximum expected lateral force that will occur due to seismic ground motion (base
shear) increases. As a result, the impact of a liquefied soil may be more significant than

what is predicted in this study. A seismic site response analysis is needed to investigate
the effect of the liquefiable soil on PGA and Vypgse in different regions. AECOM is

conducting a site response analysis, which makes the comprehensive evaluation of

liquefaction hazards in the Delta feasible.
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Conclusions and Future Studies

EBMUD has provided interim risk reduction to aqueducts, including a major retrofit
of Aqueduct No. 1 in 1990, a seismic upgrade of Aqueduct No. 3 in 2000, and
interconnections between the aqueducts on the eastern and western sides of the Delta in
2013. Each project provided a measure of vulnerability reduction.

To minimize the risk of water supply disruption to the East Bay Area before
undertaking the preferred long-term protection alternative, EBMUD is developing cost-
effective short-term alternatives that will improve the reliability of these critical lifelines.
This study is quantifying the impact of subsidence and liquefaction on the pile
foundations of the Mokelumne Aqueduct in order to develop retrofit alternatives in the
future.

A review of the study conducted in 1999 by EBMUD’s consultant has led to the
following observations:

e Subsurface profiles were unreasonably simplified.

e No potentially liquefiable sand layer was identified in subsurface profiles.

e Unrealistically high ultimate axial and uplift capacities were reported.

The current study utilized subsurface profiles determined from boring logs recently
prepared by AECOM. A stability analysis was performed by considering both the 1999
and current soil profiles, and results have been compared. The analysis quantified the
impact on pile lateral and axial capacities due to subsidence. Subsidence in the Delta is
predicted to reduce the lateral support of the piles, which is critical to reflect in the

mitigation plan. Furthermore, pile instability due to identified liquefiable layers has been
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investigated. Analysis shows that liquefaction would lead to a significant reduction in the
piles’ lateral and axial capacities due to loss of soil shear strength.

The following are observations and recommendations for future work:

1. This study evaluated the stability of BENT | at different regions along the
aqueducts’ alignment. A stability analysis of temperature anchors, road anchors
and bend anchors should also be completed.

2. AECOM is currently conducting seismic and liquefaction studies for the Tunnel
Geotechnical Exploration Project. This current study should be improved based
on the final results of the soil investigation.

3. In 2000, the Agueduct No. 3 Seismic Upgrade Project identified base isolators,
located between the pipeline and the foundation, as desirable mechanisms to
relieve most of the potential destructive earthquake movement that could occur
during a seismic event. The impact of base isolators on the stability of Aqueduct
No. 3 needs further analysis.

4. Soil collapse due to moisture ingress is a potential hazard. The effects on the
lateral stability of the aqueducts as a result of this soil collapse should be
assessed.

5. A more comprehensive stability analysis that would capture nonlinear soil-
structure interaction utilizing FEA modeling would provide more reliable results.

6. Comprehensive mitigation plan that is necessary to improve the reliability of

critical lifelines.
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Table Al
Pre-tensioned Pre-stressed Concrete Pile Properties

Pre-tensioned Pre-stressed Concrete Pile
Section |15: 16 inch square pile
Ultimate strength 250 ki
Mo. of strands 12
Strand dia. 7/16 |in
Pre-stressed Steel [ASTM A= 16) Strand circle dia. 11 9/16 |in
Strand cover 2 in
Initial pre-stress load [per strand) 18900 (lbs
Final working force [per strand) 15120 |(lbs
Pre-stress Force 1] 709 psi
Longitudinal Bars [Mild 5teel} - File Cap | Bar No. B #
Connection (2 ftinto pilecap+4.5ft | Bar length 78 in
into pile) Bar dia. 1 in
MNo. of wire 5 #
Section 1 (1to 6 in depth) 5 turns @ 17 pitch
spiral Hoops (ASTM A-82) S-E:t?unllﬁtu E-d-ini.:lepthll IEturns@S"p?tch
Section 3 (54 to 306 in depth) 42 turns @ &" pitch
Section 4 (306 to 354 in depth) 16 turns (@ 3" pitch
Section 5 (354 to 359 in depth) 5 turns @ 1" pitch
fici [at time of pre-stressing) 3500 psi
Concrete Strength fic 5000 psi
Cement Type Il

Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
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Table A2
Axial Load on Pile Group

Aqueduct No. 3

BENT L, II, III

Pipe
Outside Dia. O.D. 89.50 in
Inside Dia. LD. 88.50 in
Pipe thickness t 0.50 in
Modulus of elasticity Es 29000 ksi
Moment of inertia I 138424.71| in’
Arca A 139.8 | in’
Steel unit weight 490 | o/t
Inside mortar O.D. 88.5 in
LD. 87.5 in
t 0.5 in
Arca A 1382 | in’
Mortar unit weight 100 b/t
Approx. weight per ft \Y 0.57 kips/ft
Pipe length L 60 ft
Approx. weight \\% 34.30 kips
BENT Length 174 in
Weight per ft 0.045 kips/ft
Length 120 in
Weight per ft 0.1 kips/ft
Length 96 in
Weight per ft 0.017 kips/ft
Approx. weight W 1.79 kips
Pile Cap Length 114 in
Width 78 in
Height 33 in
Approx. weight W 25.47 kips
'Water
Approx. weight per ft W 2.67 kips/ft
Pipe length L 60 ft
Approx. weight W 159.94 kips
Total weight 221.5 kips
Total weight + seismic vertical force 252.1 kips
1.2 DL 302.5 kips
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Table A3
Development Length for Deformed Bars and Deformed Wires in Tension

Table 25.4.2.2—Development length for deformed
bars and deformed wires in tension

No. 6 and
smaller bars and [ No. 7 and
Spacing and cover deformed wires | larger bars

Clear spacing of bars or wires being
developed or lap spliced not less
than dy, clear cover at least d,,. and

stirups or ties throughout £ not less
than the Code mininmm EAAA PR LN A
or 25017
Clear spacing of bars or wires being
developed or lap spliced at least 2ds
and clear cover at least dj,

Ifww,

) =

Note. Retrieved from Building Code Requirements for Structural Concrete (ACI 318 —
14) by American Concrete Institute (ACI), 2014.

Table A4
Parameters to Calculate Development Length for Bars
Parameters Value Description
wt 1 Larger bottom bars
ve 1 Uncoated reinforcement
A 1 Normal weight concrete

fy (psi) 33000 |Yield strength (ASTM spec - A15)

fy (psi) 40000 |Year 1911 to 1966

f'c (psi) 4000 |Concrete compressive strength

d, (in) 1 # 8 rebar diameter

Note. Adapted from Building Code Requirements for Structural Concrete (ACI 318 — 14)
by American Concrete Institute (ACI), 2014, and ASTM - A15 by American Society for
Testing and Materials (ASTM), 1966.
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Appendix B: Seismic Study
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Figure B1. Selected boring logs for PGA determination. Adapted from the Delta Tunnel Seismic Study Report - Phase 1 by
AECOM, 2017.
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5% Damping

Spectral Acceleration (g)

\
0.01 | AR A s ] 1 AR A (G s ] 54 1 IIIII\I
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Figure B2. Region 1, PGA determination. Adapted from Delta Tunnel Seismic Study
Report- Phase 1 by AECOM, 2017.
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Figure B3. Region 4, PGA determination. Adapted from Delta Tunnel Seismic Study

Report- Phase 1 by AECOM, 2017.
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Table B1
References and Parameters for Determination of Base Shear

Source USGS website
Reference ASCE 7-10 (ch15)
Structure Type Rigid nonbuilding structure
Time Period T<0.06

Site Class E

Risk Category 1\%

Importance Factor (1) 1.25

Sy Variable at 4 regions
Wien: (kiPS) 300

Vbase 0.3 Sys Wien e

Note. The data are adapted from “U.S. Seismic Design Maps” from the United States
Geological Survey (n.d.), and ASCE 7-10: Minimum Design Loads for Buildings and
Other Structures (chapter 15) by the American Society of Civil Engineers, 2010.
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Appendix C: Stability Analysis
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Table C1
The 1999 Study by EBMUD’s Consultant: Ultimate Axial and Uplift Capacities
Assumption

Station Ultimate Ultimate Ultimate
Axial Toe Uplift
Capacity Capacity Capacity
(Kips) (Kips) Kips
2150
2178 240 130 110
2230 260 120 140
2280 260 120 140
2329 330 120 110
2379 300 150 150
2438 190 130 60
2467 180 120 60
2519 210 110 100
2548 165 105 60
2589 205 115 90
2630 225 120 105
2671 220 160 60
2700

Note. Adapted from Aqueduct No. 3 Seismic Upgrade by EBMUD’s consultant, 1999.
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——Existing Mokelumne Aqueducts
Tunnel Ali

BDCP A
+ Existing Borings
4 Existing CPTs
% Proposed 200-t deep Borings
| % Proposed 300-% deep Borings
. b

AZCOM Figure 2-1 PROPOSED EXPLORATION PLAN

Figure C1. Proposed exploration plan. Adapted from Phase 1 Geotechnical Exploration Program-Delta Tunnel Project
(GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B6A-2016
Project Location: San Joaquin and Contra Costa Counties, CA
Project Number: 60490108 Sheel 1 of6
Bale(®) 7121116 - 7122016, 7125116 - 7127116 Logged By M. Turner Checked By
Drilli Drill Bit 5-3/84n. 4-tooth bit; Total
Driting Mud Rotary and Punch Core T Tt e Tt Depth 202.0 feet
m“'g Moblle B80 Driling o Gregg Drilling & Testing Surveyed Ground _9.21 feet
Groundwales Samplit Bulk.SPT.D&MU-‘I’ype.D&MpOm Hammer Automatic trip hammer;
Lewi(s)  Notmeasured Method(3) pu Data 140 Ibs, 30-inch drop
Sorehole . Cement-bentonite grout to surface peigl = Joith side of Locaton - N2165645.047 E 6258663.856
SAMPLES
. & o 3
s . 85l |3 # %|2%y
3 & 5 852 el 2 MATERIAL DESCRIPTION £|Ez 33 ;| REMARKS AND
83 332 € §‘§¥ g8l & 52|25|c;§| O™ERTESTS
e 2328 &) & =38|82|3%5
> SILTY GRAVEL WITH SAND (GM), light brownish vasrz. Start hand sugering
10 60% fine anguiar graved, 20% ) ‘?nedhm-g Agay( ) B toSMat1100on
\20% nonplaste fines, &y IROADBASE] _ _ _ _ _ _ _ _ _ _ / gf.’(' 16. e
SANDY LEAN CEAY (CL). dark brown (10VR 31) with sam|
brown mottiing, o ! e B 455 fine 1 ”‘ng‘?s'w
| \grained sand;mollet: -5 T e R S e ! in
ORGANIC SILT (OL dark Drown (10YR 2/2), 60% low plastty PP=0 tsf
nes, AU% oS T ek vy AR o P |
P mGANI%SsLAY OL), very dark bron:\ %Rzrz) 75% medium gﬁh‘im
R et A Ol iling. DM piston,
e S T P
5 : 7 a6, Pl
/ metedal, moist, stff | WA: 93%<r200 sieve
'L§_—“‘s§u_'ii'ﬁﬁwm - ---- (G T 55 A
AT C S0 with T4y s iow ™
18 X g plasticity fines, m{w W 342|832 LL=35, P1=10
I i PP=0.75 sf
ﬁ?&ﬁ‘(&f&fm’““ﬁ@i’ﬁiﬂ‘x_ o0% mgn | D&M piston sampler.
plasticity, very high dry strength , race fine-grained sand, moist, | 514 | 67.9| 998 |LL=78, Pl=46
20 16 i i SA 100%-<#200 sieve
#—Becomes greenish black (Gley 12.5/1) i PP=1.5 tsf
B "SILTY SAND (SM), very dark greenish gray (Gley 1 3/1), e
T s dark greenish 131), J
T 05 fnesrames o A ot Tt ity lzmoscus, wet
17 [T< SANDYS&T(u],myMg(mnbhgay(Gley1 am).msm i WA: 68%<0200 sieve
L11 pastcity fines, 30% fine-grained sand, wel, medium st PP=0.75 tsf
/ LEANCLAY (CL) very dark greenish gray (Gley 1 3/1)
902% medium plasticity fines, 10% fine-grained sand, mak moist, medium | PP=0.75 tsf
2 30 / snﬂansmgreennhusa(c;en 1), 95% medium tohigh |
i 7/ _plasticity fines, 5% sand, zones of increased sand
's ) mniimiech s e ST i
Nes, samj
? 14 /u. nmlsuﬂlnvarys{;!gh 155nt.ydeaeasedsana|n 0% i Pszp;-sz.Stsl o
H
B A cumsvsm dark 131 ]
H % me&.m'b—gm m&smqnm)s moist
; 42 [ Grades 1o 65% sand, 35% fines —
;=30 POORLY GRADED SAND WITH SILT (SP-SM damgfeenlsh ]
5 :'gmy(Geyﬂsm $0-95% fine- meaém—g 3
i f (Somlasuck; plasticity fines, nnst.mediumdmsevldm i
£ vans
5 15 1. 7 No whita veins or cementation | 195 [103.3 WA: 8%<#200 sieve
; )
; 1 §—Weak cementation (moderste HCI reaction) 1
—§— Grades to 90% fine- to medu sand, 10% ic -
i 57 g—nm ne- m-grained nonplastic
-as .
? - §— Grades to 80% fine-grained sand, 10% fines, dense 1
i 18 ! i SA 1091200 sieve
; B | End for 7/21/16.
; A2 SILTY SAND (SM), olive (SY 4/4) (see next sheel] Resume on 7/22/16.

A=COM
Figure C2. Boring log DT-B6A-2016. Adapted from Phase 1 Geotechnical Exploration
Program-Delta Tunnel Project (GDR) by AECOM, 2017.

73



Project: EBMUD Delta Tunnel Log of Boring DT-B6A-2016
Project Location: San Joaquin and Contra Cofsta Counties, CA
Project Number: 60490108 Sheet 2 of 6
SAMPLES
= 3
c gs #| R8BS
3 5 [25° MATERIAL DESCRIPTION ¢les ggﬁ_ REMARKS AND
33 £ g.gg 82|2B(C3§| OTHERTESTS
z B2 = 3|5 =|325
SILTY SAND (SM), olive (5Y m) TO% fine: 1o mecium-grained
40 P05 sand, 30% non| fines, wet; at 30.5 1, 6-inch-thick lens of LEAN |
3" CLAY WITH SAND (CL
$-LFS § Grades to BS% sand. 15% medi fines
10 V774 LEAN CLAY (CL), light olive brown (2.5Y 5/4) with gray mottling, PP=1.51sf
S09 10 / 85% medium(to lzng.r??:wdly nnes.( 5% fine-grai ) neagngnd mg.l. i
14 stif PP=2.0 tsf
P CLAYEY SAND (SC), ioht oive brown (2. 5Y /), 60% fine- 1o
P 74 medium-grained sand, medium plasticity fines, moist _
e - AT | I I N - - - E e ot e o B A L P Pt Y Sl Rl G
PODRLY GRADED SAND WITH sn.r (spsu) Glive brown
v (2 5Y 5/4), 90-95% fine-grained sand, nmpg;ucnne& wed,
s10 ;3 | WA: 7%<#200 sieve
POT i LEAN CLAY (CL), olive (5Y 53}, 90% medium 1o high plasticity
—-50 L fines, 10% fine-grained sand, moist, stiff i PP=1.5 tsf
i PP=1.75 tsf
- §—Becomes oiive gray (5Y 5/2) with iron cxidation spots, 95% fines, EPw1-25tef
s11 ‘;’ / '_S%ﬂMwyyz)ﬂ PP=2.251s!
1 PP=2.5tsf
12 ‘
J PP=2.0 tsf
Becomes suff
o PP=1.51sf
| &k i 82 PP2.0 ts
T PP=1.51sf
T PP=2.0 tef
LEAN TH C 52), 80% 1 PPet 081
CLAY WITH SAND (CL 5Y medi ] PP=1.0 tsf
oo (CL). samgayt 2}, ot ;m k
SANDY LEAN %mvev woéwscx give gray (sv s.rz) -
60 medium stff chy B
PP=1.0 tsf
SANDY SILT (ML), gray (5Y 5/1), 65% norplastic fines, 35% fine- |
X 7 1 ined sand, wet, very stiff; at 52 t, interbedded with SAND (SP)
E 812 172 ses 1/4 101 Inch thick | WA: 65%<0200 sieve
i J
M Bl ]l B e e e e e e e e e e e e e - — —————
i I POORLY GRADED SAND WITH SILT (SP-SM), dark ish _
3 P10 38 4 kGhyN“) 90% fine- to medium-gi ! sanz} grB;r}mcgray
)65 ;8 J
§
\ 12 POORLY GRADED SAND (SP), dark greenish gray (Gley 1471), |
} s13| 23 | 6 559 e 10 medumm-grain o3 oand. o P enpiashe e st dense
H 50
5
Sand grades fine- 1o ined, with dastsand
; e B R v ey e
£ P11 12 7]
i-70 ]
H EJYEY_ SAND (SC), dark greenish gray (Gley 1 4/1), 60-65% | E o]
3 11 / l to medum-grained ( ) 3& gray Si(g.yyﬂnes )we(, o
i $14 g 16 /_f.' mmcnm | SAIE%<H200 sieve
3 s i No recovery in punch
! INR) 0 s core 63.567.0 1L
)
§

A=COM

Figure C3. Boring log DT-B6A-2016 continued. Adapted from Phase 1 Geotechnical
Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B13-2016
Project Location: San Joaquin and Contra Costa Counties, CA

Project Number: 60490108 Sheet 1o 6
Bal®) 22116 - 812516 Logged By M. Maghsoudiou Checked By S. Gambino
Drifing Mud Rotary and Punch Core D"&;ﬁ"m 5-3/84n. drag bit; 134-mm punch core | T0 Depin 200.0 feet
Trpe 9 Mobile B-53 Driling .~ Gregg Drilling & Testing Suvayed Sround g 61 feet
Groundwates Sampling  Bulk, SPT, Modified Callfornia, Hammer Automatic trip hammer;
Levei(s) Not measured Method(s)  Shelby tube, punch core Data 140 Ibs, 30-inch drop
Borahole Borahole Coordinale
Soree  cement-bentonite grout to surface pratiis jm%%;‘%’g‘;‘,%%“ Cootinale N 2164239.772 E 6287939.780
SAMPLES
B 2 — o 3
c 5 Pl | 8%
S A 8 3 # ]
§ < | gl289 3|3 MATERIAL DESCRIPTION 2|3 5| 52%| REmaRKs AND
3 #8lo 2 (B22 & 52|55(574| OTHERTESTS
e A& 3 £ 3 5| 20|58
Tl 2 (328 2G|a2 (556
> POORLY GRADED GRAVEL (GP), fine gravel to 3/4 inch Start hand
| (NSORECATE BASE] Ry i b3 onaaaie
] Fiesd PEAT (PT), black 70% organic malerial, 30% fines, fibrous, moist,
oo ae SOM
hesese J Bulk sample S01
.10 ““““‘*d‘ retained in bag.
7 L_EZN_Q_.'AV_CC&FW;__ER_-__T _____
%‘ EERNCLAY o0y dark reciah ray. pchy e, no |
Switch to mud
/_ i cilliny ooy
2 /
T ST ML), very dark gray, 80% jow piastity fn fines, repid diatancy, | PP=0 tst
* very ugsy plasticity rapid diatancy, ]
15
j_ 7] PP=0 tsf
- .
___________________________ PP=0 tsf
TEAN CUAY (CL), biack, B5% redim pRabaty fnes, no GIstancy,
a7 5% fine-grained sand, moist, very soft PP=0 tsf
g—mmwﬂwwn . PP=1.75tsf
—-20 PP=0.75 tsf
SANDY LEAN CLAY (CL). very dark greensh gray, 60% lowto |
/ Mummmtym( s Gactarcy, J0% fine reined sendt motst, | PPe2.25 taf
3 25 % T117.7 |113.0| 2084 |LL=28, PIs14
; i WA: 58%<200 sieve
; / PP=1.25 tsf
il2s " % 1 PP=1751sf
i ]
H SiTY SAND (S 859, fine- 1o medium-grained sand, _
5 = mnpms(c )gray maist, medium densa
; 10 i
5
i 4
£
f
{30 2 I
; i
5
H WA: 1391200 sieve
SILTY CLAY (GUML), very dark greenish gray, 90% iow piastcity :
? r_fnes, o dhathncy, 105 AR-araiied send moist vesy St - _ FrmaS
} , [t POGRLY GRADED SAND WITHSILT (SP-SM). erk gry. i
435 3% 90-95% fine-grained and few medium-grained
i 5-10% nonplastic fines, moist, dense |
§
f

A=COM
Figure C4. Boring log DT-B13-2016. Adapted from Phase 1 Geotechnical Exploration
Program-Delta Tunnel Project (GDR) by AECOM, 2017.
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SIMAVIT 1 3EY 1D

FUSELTE WITLS TUT T LWARG TR LN IV R ATV AR,

Project: EBMUD Delta Tunnel

Project Location: San Joaquin and Contra Costa Counties, CA

Log of Boring DT-B13-2016

Project Number: 60490108 Shest2.o80
SAMPLES
-l €| = 3
% 2 plal & |3 #| |2
T & 5 [£82 8 | 2 MATERIAL DESCRIPTION 7| & Z| 37| REMARKS AND
CH P 8932 § & 82(5%| - §| OTHERTESTS
& oelg 5583 4 55| 28|o52
4 Z loxal @ | O SO |0 |35
11 B POORLY GRADED SAND WITH SILT (SP-SM] m gray,
Al| sS04 13 12 fine-grained and few medium-grained 4 SA 5%<#200 sieve
18 i 5-10% nonpiastic fines, moist, dense (C ontmuaw
40 POS 4 7
13 7
so5 | 17 | 1 ]
21
1 Nor in punch
| core 36,540 .
45 P06 0
FAT CLAY (CH), dark grayish brown, 90% high piasticty fines, no |
6 alalancy 10% fine-grained sand, molst, stff to very stiff, siightly PP=1.75 tsf
S06 7 18 ated, with iron oxide staining i PP=20 tst
9 PP=2.25tsf
i PP=2.5 s
1 PP=1.751sf
. PO7 31
50 § Becomes very siff to hard | PPea.0 tsf
PP=4.251s!
5 Becomes very siff = PP=2251s!
so7 10 10 4302 LL=78, Pl=54
1 PP=2.5 151
T PP=1.251s!
45 i PP=2.25tsf
—55 e PP=2.75 1s!
PP=2.25tsf
12 7
s08 | 13 2 i
15 End for 8/22/16.
- Resume on 8/23/16.
PP=3.5 tsf
60 Po9 6 1 PP=3.25 tsf
SILTY SAND (SM), dark graylsh beown, B5% fnegramed sand, |
L 15% mnptase(c nn)m mcgta)‘deme —
8
S09 20 14 ] SA: 16% <0200 sieve
20
| POORLY GRADED ! s—ArTDTNTrFsTL? (SP-S Tn___oa_m—v;ﬁs?? ]
65 P10 42 [ gray, 50% fine-grained sand, 1 mroiasuc : VG'Y ’
7 — N . N L L .. -
s10 20 10 | POORLY GRADED SAND (SP), dark greenish gay 95% fine- 1o i
27 Mum—gvsmed 5% nonplastic fines, moist, medium dense
7 . LEAN CLAY {CL), very dark greenish gray. 90% medum plasticty | PPe2.75 tsf
70 P11 18 / fines, no diatancy, 10% fine-grained sand, moist, very stiff PPe375 taf
2.

A=COM

Figure C5. Boring log DT-B13-2016 continued. Adapted from Phase 1 Geotechnical
Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B1-2016
Project Location: San Joaquin and Contra Costa Counties, CA
Project Number: 60490108 woeet1009
Dals(s) 1011816 - 10/21/16, 10/24/16 - 10/25/16;
Diled 101258 (well); 10/26/16 (VWP) Logged By M. Turner ChackaniBy.
Drilli Drill Bit 5-3/84n. 4-tooth drag bit; 2-7/8-n. Total Depth
Metheyy  Mud Rotary and Punch Core SizeType _tricone bit (PMT); 1 o core | of Borehble 302.0 feet
Tipe 9 Mobile B8 (021) Driling .« Gregg Drilling & Testing Sunvayed Sround 47,85 feet
Groundwater Sampli Modified California, Hammer Automatic trip hammer;
Level(s) 8 feet bgs on 10/18/16 Methed ) smbym punch core Data 140 1bs, 30-inch drop
B o o TG W | Locokon,  EBMUD Bixler Yard; Sta. 2716+55 | Po(UFS"® N 42765.000 E 6237222.981
SAMPLES
o] [~ o 5
c ol - -|laus
S 8 5 |9 5 ]
i 5 |28 5| 2 MATERIAL DESCRIPTION 3|ed a§2¢ REMARKS AND
33 B3ls E Bzg g & 58|55/ 74| OTHERTESTS
2 &(a 8 8 5| 02|08
e 2 323 2 Surface Condition: Gravel cover =062 |536
- Matedal not obeerved i 7 feet of borehole. Vi dear o 101t
- , R ] =
r
| and salg;!g q
] L 1 B5t.
15 4 L 4
5 L _
LEAN GLAY (Eqm' Pt live brown (2.5Y ¢ 533.‘9&“«;&15 T PPe2.5 st
10 A\ y &gﬂ_m moist, very s&f s
SILTY SAND SM),MWUYR a mﬂnegnmed
mealum at 8,511, grades 10 70% sand, rnes T
POORLY GRADED -S—Ahvli)—\_NTTl-_iS_lL;igP_Sﬁ)_ ________
L5 (10YR 5/8), 90% fne-grained ines, wel, icose |
| ]
3 + §—Becomes medium dense g
i _
3
: ]
[ =}
14
; ]
¥ - §—Becomes yellowish brown (10YR 5/6), derse 4
5 .5 J SA 10%<0200 sieve
[1
! ]
5 _
8 -
[4
5 g *Drill 27-32 A with
2 2-7/8-in. tricone bit for
10 4 165t
5 PMT). Test
¥ ] wered at 30 ft)
ailed, hole washed
§ out or probe blew.

A=COM
Figure C6. Boring log DT-B1-2016. Adapted from Phase 1 Geotechnical Exploration
Program-Delta Tunnel Project (GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B1-2016
Project Location: San Joaquin and Contra Costa Counties, CA
Project Number: 60490108 Shest 200y
SAMPLES
g 8
8 gs i g 2| 3 Eg&
3 5 252 5|2 MATERIAL DESCRIPTION 2| 2| 55%| Remarks ano
k-] 2 & 82|10%|~ ;% OTHERTESTS
d2 HIGEEN HE SE2
2 |lwxs| & | O 20|02 |36
] pos ST POORLY GRADED SAND WITH SILT s M), brown Remove probe and
PMT* 19 }égm%)) 90% fine-grained sand, 1 fines, wet, dense | P g;.m
(fal) Punch core 27-32 ft is
1 overdrill of PMT hole.
|15 Clean out hole
4 32-331t
27 /in, weone bt fo
7 LEAN CLAY Wi ?H_SFNT) (—cﬁm_um_ _(z_V_Ts_ss? medium | PMT. Tost ‘mw'
POE prastcity fines, 15% fine-grained sa i 1o very suff ) at 36 ft) agan faded
2 PMTT 12 !a Imh(svmimhe
(fai) / b 3388 1t is overdrill o'
/ } ricone hoke.
.20 / J PP=2.0 tsf
el 2 | %,—c«mmnmmmzﬁm mottied with gray ] P15 e
10
% i oozt
PO7 30 /_ - very st ] PP=1.5tst
/ | PP=3.0 tsf
10 PP=4.0 tsf
25 S06 | 15 18 4 §— Grades to 75% fines, 25% sand i PP=2.751s!
19 / 196 [111.4 LL=33, Pi=17
J WA: 74%-<0200 sieve
/ PP=2.5 tsf
POB 25 /éf‘ 2
TT7 SILTY SAND (SM), light oive brown (2.5Y 5/4), 55% finegrained | End for 1018167
L mﬁ%la:pla)u'g;mw( . e i Resume on 10/19/16.
—-30 L J
*Drill 47-52 A with
: | 2-7/8-in. tcone bt
for PMT. PMT#1
" | cantered at SO
7 - §— Grades from 75% fine-grained sand, 25% nonplastic to low 4
¢bas sor | 16 | 18 |, -plastichy finas, daneo i SA: 279200 sieve
5 s § Grades o B5% sand, 15% nonpiastic fines
9 r 4
5
: P09 34 | POORLY GRADED SAND WITH SILT (spsm ight iive beown
3 L (2.5Y §/4), 90% fine-grained sand, 10% nonplastic Tines, wet i
L]
; 17 - §— Very dense E
if—40 SR| = - §—Grades with thin zones of SILTY SAND (SM), 85% sand, .
H 15% fines
i - §—Grades 1o 90-85% sand, 5-10% fines 1
§
: P10 43 = -
5 - J
E 24 + §— Becomes dense 1
; 45 soo| 23 | 16 [
3 18 SILTY SAND (SM), light yeliowish brown (2.5Y 604}, 70% fine- SA 30%<200 sieve
] B35 - L grained sand, 30% nonplastic 1o low plasticity fines, moist, dense i
2
¥
i
g

A=ZCOM

Figure C7. Boring log DT-B1-2016 continued. Adapted from Phase 1 Geotechnical
Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B4-2016
Project Location: San Joaquin and Contra Costa Counties, CA

Project Number: 60490108 Sheet1of)
Bales) 7125016 - 712816 Logged By K. Zelger and M. Onnen Checked By
Mthey  Hollow-Stem Auger and Punch Core [ 2713%  4.5n.4D auger; 134-mm punch core | 702 DRED 300.0 feet
Il R I
Db Mobile B-53 Driling o Gregg Drilling & Testing Surveyed Ground 10,50 feet
Groundwater Sampli Bulk, SPT, Mcdified California, Shelby| Hammer Automatic trip hammer;
Level(s) Not measured Method(s) _tube, punch core ™| bt 140 1bs, 30-inch drop
Borehole VWP Installed with transducer at 100 Borehole Coordinale
Bockfil grouted to surtace ft, | Borehole  Orwood East; Sta. 2578+78.66 Lo N2166191.007 E 6251025.049
[ SAMPLES
) e — D
5 g2l 5 #| §[33t
T & 5 ?gf = MATERIAL DESCRIPTION £ | 2| £ E<| REMARKS AND
8% B3|s £ (B3 58|55(55% OTHER TESTS
2 ag|g 55| >3 258
Tl 2 (328 £0|a2|506
i POORLY GRADED GRAVEL WITH SAND (GP) [ROAD FILL] Start hand auger
. on K
SILTY SAND (SM), black (SY 2.5/1), B0% medium-grained sand, K. zsiger logging.
4 20% low plastaty fines, high organc content, dry, cohesive, visible
i muscovite grains
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Figure C8. Boring log DT-B4-2016. Adapted from Phase 1 Geotechnical Exploration
Program-—Delta Tunnel Project (GDR) by AECOM, 2017.
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Project: EBMUD Delta Tunnel Log of Boring DT-B4-2016
Project Location: San Joaquin and Contra Costa Counties, CA
Project Number: 60490108 Sheet 2. o9
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Figure C9. Boring log DT-B4-2016 continued. Adapted from Phase 1 Geotechnical
Exploration Program—Delta Tunnel Project (GDR) by AECOM, 2017.
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2000 |

@ Earthquake — induced liquefaction and sliding case histories where
SPT data and residual strength parameters have been measured.

1600 O Earthguake — induced quuefacﬁon and sliding case histories where

SPT data and residual strength parameters have been measured.

[0 Construction — induced liquefaction and sliding case histories
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Figure C10. Relationship between residual strength and corrected SPT resistance.
Reprinted from Geotechnical Earthquake Engineering (p.411), by S. L. Kramer, 1996.

Table C2
Fines Correction for Estimation of Residual Undrained Strength
Percent Necorr
Fines (blows/ft)
0 0
10 1
15 -
20 -
25 2
30 -
35 -
50 4
75 5

Note. Adapted from Geotechnical Earthquake Engineering (p.411), by S. L. Kramer,
1996.
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Table C3
Parameters to Determine Corrected SPT N-Value

Parameters | Value Description
Nm 8 from AECOM boring log
Cn 1.1 | Depth correction factor
Ce 1.13 | Hammer energy correction factor (ERi/60)
Ce 1 Borehole diameter correction factor
Cr 0.95 | Rod length correction factor
Cs 1.9 IC_orrection factor for samplers with or without
iner

Note. Adapted from Caltrans Geotechnical Manual by the California Department of
Transportation, 2014.
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