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ABSTRACT 

SQL Injection continues to be one of the most damaging security exploits in terms of personal 

information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the 

most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional 

defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are 

mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much 

current research involves the use of machine learning techniques, which are able to detect unknown 

attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current 

intrusion detection strategies involve collection of traffic coming into the web application either from a 

network device or from the web application host, while other strategies collect data from the database 

server logs. In this project, we are collecting traffic from two points: the web application host, and a 

Datiphy appliance node located between the webapp host and the associated MySQL database server. In 

our analysis of these two datasets, and another dataset that is correlated between the two, we have been 

able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-

based and decision tree are nearly the same as those with a neural network algorithm, but with greatly 

improved performance. 

Keywords— Network Intrusion Detection, SQL Injection, Machine Learning 
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CHAPTER 1.  Introduction 

Web attacks such as SQL Injection, although they have been around for decades, continue to be a 

relevant and increasingly damaging cause of exposure of personal data as well as negative financial impact 

to business and governmental entities [2]. This is true, in particular, as old attacks are modified and evolved, 

and new attack vectors continue to appear. Industry and security firms devote a great deal of resources to 

mitigation of web attacks, and many current mitigation strategies have limitations that current research is 

continually striving to overcome [1]. 

Much traditional web attack mitigation is done by static analysis of incoming web traffic, also known as 

signature detection. This strategy involves the creation of a signature characteristic of the web attack and 

then when this signature is detected, the suspicious traffic can be blocked by a firewall or other security 

appliance. This method has the benefit of being quick and can be implemented in real time to protect 

network resources, but one drawback is that only known attacks can be detected. 

Another strategy for web attack mitigation specific to SQL injection is to focus on the structure of 

incoming SQL queries, and if a malformed query is detected, this is considered to be an SQL injection 

attack. This method has good detection results, and can also detect new attacks that involve malformed 

queries, but a drawback is that it requires significant knowledge of the application and the structure of what 

are considered "normal" queries. 

An SQL injection detection strategy that is a current topic of research involves the use of machine 

learning techniques. Popular techniques in this research are decision trees, rule-based learning techniques, 

support vector machines (SVM), and neural networks. A primary advantage of these techniques is that they 

are capable of detecting new attacks. A potential drawback with these techniques, however, is the possibility 

of increased processing time depending on the algorithm used. 

Research into the SQL detection techniques mentioned and others rely on the availability of good data. 

Much current research uses web traffic captured coming in to the web application, or uses logs from the web 

application and/or web server [3]. The strategy that we are proposing uses traffic captured inbound to the 

web application in combination with traffic captured between the web application and the associated 

database server at a Datiphy appliance network node. We are using traffic captured at these two points to 

create our datasets, and we then create a third dataset by correlating events between the datasets derived 

from the two capture points. 

In the intrusion detection problem space, as well as in any situation involving streaming of large 

quantities of data, an important concern is the speed and efficiency of operation of a potential classification 
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system. In our project we investigate the use of efficient, quick algorithms to compare their accuracy with 

those that are potentially more accurate such as neural networks, but with the possible trade off of 

efficiency, to see if we can combine the speed and efficiency characteristic of signature detection techniques 

with the potentially increased accuracy and ability to detect new attacks of machine learning techniques. 

Another well-known issue with modern IDS research is that realistic attack data can be difficult to gather, 

and many projects use data from as early as 1999 that is widely considered to be unrepresentative of modern 

web-based attacks. Many researchers go the route of generating traffic instead of using existing traffic, and 

many of these projects are using automatic generation tools such as sqlmap. This is a tool that is actually in 

use by security researchers and attackers, whether directly or as part of a larger project such as Metasploit. 

In our project, we experimented with generating traffic with sqlmap extensively, but found that certain 

features tended to be characteristic of this traffic and thus the data proved to be simple to classify. Our 

approach involves automated generation of realistic traffic incorporating manually coded SQL injection 

attacks as the basis for machine learning. 

The rest of the paper is organized as follows: Section II covers background material and related work. 

Section III discusses our system design and implementation. Section IV goes into detail about our 

experiment and results, and Section V concludes our paper. 
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CHAPTER 2. Background and Related Work 

2.1 SQL Injection 
SQL injection is the extension or modification of a web application's SQL statement by an attacker in 

order to extract or update information in the database that they are not authorized to access [32]. Suppose a 

webapp generates the following SQL statement: 

 

SELECT author,title,year FROM books WHERE publisher = 'Wiley' and published=1 

 

If an attacker were to enter a string such as: 

 

Wiley' OR 1=1— 

 

into the search form, this would result in the following query: 

 

SELECT author,title,year FROM books WHERE publisher = 'Wiley' OR 1=1—' and 

published=1 

 

This query would return every row in the database where the publisher is Wiley, or 1=1, which is always 

true, thus returning all rows in the database [33]. 

There is much existing research that attempts to examine and mitigate SQL injection attacks. One 

technique in use involves static analysis of code to form a model that can be compared to dynamic queries at 

runtime to detect SQL injection attacks. In Lee et al. [6] the authors propose a system that performs analysis 

of PHP-based websites to evaluate the SQL queries, then processes these queries by removing parameters to 

form general query structures, a process they refer to as query transformation. These are then compared to 

live SQL queries generated dynamically and a query that has a different structure will be flagged as an attack. 

In addition to removing parameters, Kar et al. [8] generalize SQL queries into structural elements, and were 

able to achieve a 100% detection rate with their technique. 

2.2 Architecture 
Many different architectures have been explored for Intrusion Detection Systems (IDS). In Djanali et al. 

[5], the authors create a clustered architecture using Raspberry Pi computing devices. This project uses the 

HIHAT honeypot system [9] and the SQL injection detection technique proposed in Lee et al. [8]. The 

system uses a load-balancing server to route computation to the Raspberry Pi cluster. 
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Sadasivam et al. [10] propose a distributed, multi-honeypot architecture. They use several different 

honeypot systems connected to a front-end server, and the system is modular to accommodate the addition 

or removal of honeypot systems. This distributed architecture has the advantage that it's capable of gathering 

more data than any one of the honeypot systems, and the authors mention that the attacks they detected were 

primarily targeting SSH, as well as MySQL, MSSQL, and telnet, and originate primarily in China and the 

US. 

Tawari and Jane [11] propose a complicated architecture they refer to as a "virtual honeynet" designed to 

maximize the time spent by an attacker in the system and thus the amount of data gathered about attackers. 

This system uses the SNORT [19] IDS to detect malicious traffic which is then diverted to the honeynet. 

The virtual honeypots use the HIHAT [9] system as well as the Sebek [30] data capture tool as components, 

and combine these into a complicated architecture designed to confuse and delay attackers. 

In the Honeydoop [12] system, the authors propose a dynamic architecture using Hadoop for data 

collection. This system uses dynamic allocation based on currently observed network conditions, with the 

goal of efficient utilization of resources and increased security. The authors mention that in their experience 

these dynamically created honeypots receive much more traffic than those that are statically generated. The 

authors use Snort [19] for traffic capture, but the architecture is modular so any IDS system could be used. 

2.3 Machine Learning 
Machine learning is a technique for automated discovery of patterns in data. In a network security 

context, machine learning is used to determine the most accurate and efficient way to classify network 

traffic as an attack or as normal traffic to best protect digital assets while allowing normal business to 

proceed uninterrupted [31]. There are many machine learning algorithms in use in current research. In Moh 

et. al [3] the authors are using Naive Bayes and Bayes Net techniques which are creating probability models 

to classify traffic. In Hanmanthu et al. [13] the authors are using a decision tree technique, and are also 

evaluating their results in terms of performance characteristics. Another popular technique in current IDS 

research is the use of Neural Networks, discussed below. 

In our project, we're using Decision Tree, Rule-based, Support Vector Machine, Neural Network, and 

Random Forest algorithms. Background information about each of these is discussed briefly below. We also 

discuss feature selection, which is the reduction of dimensions in data. 

Decision Tree Algorithms. Decision tree algorithms are a category of classification algorithms that create 

a predictive model based on the values of features in the dataset, at each point in the process choosing a 

feature that divides the dataset to maximize information gain [31], which is a measure of how well each 

feature is able to predict the class that the data record belongs to, essentially the purity or homogeneity of 
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the covered records in terms of class prediction. A decision tree algorithm iterates through the features of the 

dataset and chooses the feature with the highest information gain and the best coverage of the dataset, in 

other words it prefers predictive decisions that contain larger numbers of records. In Hanmanthu et al. [13] 

the authors are using a custom decision tree technique, and are also evaluating their results in terms of 

performance characteristics. Their accuracy on SQL injection data is in the 86-87% range. 

Rules-based Algorithms. Rule-based algorithms are similar to decision tree algorithms in that they are 

iterating through features of the dataset and selecting those which best predict the class label. The output of 

rule-based algorithms is a set of rules for classification of the form Condition → Class, an example of which 

is [31]: 

 

(Gives Birth = no) ^ (Aerial Creature = yes) → Birds 

 

These rules are evaluated in terms of their coverage and accuracy. Coverage is the ratio of instances of 

the dataset that are covered by the rules, accuracy is the ratio of the instances that belong to the predicted 

class to the total instances covered by the rule. Rule-based classifiers are typically comparable in 

performance to decision tree algorithms, but are considered to be very easy to interpret compared to other 

classification algorithms [31]. 

Support Vector Machine Algorithms. Support Vector Machine (SVM) algorithms are a classification 

technique based on statistical methods which work well with high dimensional datasets [31]. SVM attempts 

to create a decision boundary between classes using instances of training data referred to as support vectors. 

This is done by finding a maximal hyper-plane separation between instances of the different classes. SVM is 

considered to be better at finding globally optimal solutions than rule-based or neural network techniques 

[31]. In Kar et. Al. [7] the authors are using an SVM classifier, and are experimenting with different 

centrality metrics as input to the SVM classifier. In Choi et. al [16] the authors are using an SVM classifier 

with n-gram based analysis rather than text-based as we’re using for the current project. The authors 

evaluate SVM in comparison with a kNN (K-nearest neighbor) algorithm and achieve better results with 

SVM. In Komiya et. al. [17] the authors compare SVM with kNN and also Naïve-Bayes algorithms and find 

that the best results are obtained with SVM. 

Neural Network Algorithms. Neural Network algorithms were originally designed to simulate the human 

brain structure, with a system of linked nodes conceptually related to neurons. At the simplest level, there 

are input nodes that are exposed to features of the dataset, and output nodes corresponding to the 

classification outcomes. The output nodes represent a weighted combination of the input, and these weights 
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are updated during the learning process based on learning rate and classification error [31]. A Multi-Layer 

Perceptron is a type of Neural Network with one or more hidden layers of nodes intermediate to the input 

and output nodes. An issue with Neural Networks, as mentioned, is the potential slowness of the training 

phase. "Training an ANN is a time-consuming process, especially when the number of hidden nodes is 

large." [31]. Another issue discussed in current research is that the results of Neural Networks can be 

difficult to interpret and in some cases this may leave applications vulnerable to adversaries [15]. In Pinzón 

et al. [14] the authors are using MultiLayer Perceptron and Support Vector Machine (SVM) techniques in 

combination to improve accuracy, and compare their results to those of other algorithms such as J48 

decision tree and JRip rule-based, discussed below, and have been able to achieve improved accuracy with 

their technique. 

Ensemble Techniques. The purpose of ensemble techniques is "improving classification accuracy by 

aggregating the predictions of multiple classifiers". [31] These techniques use base classifiers such as those 

mentioned above and then perform classification by using a voting scheme from the predictions made by the 

base classifiers. One such technique used in this project is random forests, which use decision trees as their 

base classifier. 

Feature Selection. Feature selection is used to reduce the dimensionality of data for performance reasons. 

This is a technique to remove redundant features, which are providing duplicate information of another 

feature, and irrelevant features, which are providing little or no useful information to help with classification 

[31]. In Kar et. al., the authors use an information gain technique for feature selection and are using Weka 

[21]. In our project we’re using CFS, correlated feature set, in combination with a genetic search algorithm, 

both of which are discussed below. 

2.4 Attack Generation 
Gathering data for SQL injection research is generally done in two primary ways: capturing actual web 

traffic coming into an organization or honeypot, or the generation of realistic simulated traffic. Both 

approaches have their advantages and disadvantages. Real web traffic is of course the most realistic, but it 

can be difficult to determine which packets belong to an attack. It can also be difficult to obtain this type of 

traffic, as organizations are typically reluctant to share web traffic due to privacy and security concerns. 

Another issue is that a simple research honeypot may capture mostly automated scans generated by common 

attack tools that would be more easily captured in a controlled lab setting. Simulated attacks have the 

advantage that they are controlled so that normal and malicious traffic is easily distinguished for labeling 

purposes, and a good assortment of attacks can be included based on the latest techniques. 
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There are many tools in use by researchers in an effort to generate realistic attack traffic to test proposed 

detection and mitigation strategies. As mentioned, Lee et. al. [8] use the attack simulation tool Paros [29]. 

The most commonly used attack tool as determined by searches on Google Scholar is SQLMap [28]. Pinzón 

et al. [14] among others are using SQLMap to generate malicious traffic. Kar and Panigrahi [6] discuss and 

have tested several examples, including SQLMap and manually coded attacks. Many researchers such as 

Moh et al. [3], as well as our previous research [4] and the current project, are using manually coded SQL 

injection attacks to generate attack traffic. 
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CHAPTER 3.  System Design and Implementation 

 

The approach that we propose in this paper uses machine learning techniques to classify incoming traffic 

as normal or malicious. The system consists of custom enterprise chat web application with a remote 

MySQL server backend. Data is captured in two places—HTTP traffic between the traffic generation server 

and the webapp server is captured, and the resulting MySQL traffic between the webapp server and the 

remote database server is captured. These two sets of data are then processed and correlated to create a 

separate dataset containing features from both datasets. Machine learning is done with the Weka Machine 

Learning Framework, and the machine learning algorithms used are evaluated for classification accuracy as 

well as efficiency in terms of time to build models and time to classify the training data with 5-fold cross-

validation. The general process of our system is illustrated in Fig. 1. 

 

 

Figure 1: System Process 

 

3.1 Architecture 
The architecture we're using consists of four server nodes, which are KVM virtual machines running on 

an HP server with dual quad-core processors and 64G of RAM. These nodes are: a webapp server, a traffic 

generation server, a database server, and a Datiphy MySQL data capture node. These are illustrated in Fig. 1 

and discussed briefly below. 
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Figure 2: Network Architecture 

Web Application Server. The webapp server is running Ubuntu/Apache, with the custom web application 

installed in the webspace. This webapp has a MySQL backend which is located on the database server. This 

server is also running Snort for data capture and is one of our two points of data capture. 

Traffic Generation Server. This server is used to generate both normal and malicious traffic, and is 

running the Kali Linux distribution. The normal and malicious traffic is generated with Python/shell scripts 

using the Beautiful Soup Python libraries. 

Database Server. This server is running Ubuntu/MySQL. This server is set up for remote access to the 

database from the chat application on the webapp server, and all MySQL traffic for the webapp occurs 

between these two servers. 

Datiphy MySQL Data Capture Server. This server consists of a Datiphy appliance VM provided for 

research by Datiphy Inc. [18]. This appliance allows for visibility of SQL traffic, among other types of 

database traffic, and this is how it's being used for this project. Traffic between the webapp and the MySQL 

database server is routed through this Datiphy appliance, thus allowing for visibility of all traffic in the 

Datiphy web interface. 

3.2 Data Preprocessing 
The data generation process we're using consists of three phases: traffic generation, capture, and pre-

processing. These are briefly discussed below. 

Traffic Generation. The simulated normal and malicious traffic for our project is generated from the 

scripts located on the traffic generation server as discussed previously. This traffic consists of HTTP POST 

requests from this server to the chat webapp, which then generates MySQL traffic between the webapp 

server and the database server. Normal traffic consists of simulated normal interaction with the chat web 
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application. Malicious traffic differs in the inclusion of manually coded SQL injection attacks as discussed 

below. The text is randomly generated to be reasonably realistic in terms of commonality of words and 

sentence structure in order to simulate statistically realistic web-based communication. 

Traffic Capture. The traffic is captured at two points, at the webapp server, and at the Datiphy appliance. 

At the webapp server, we are capturing traffic using the Snort IDS tool which saves its data in the form of 

PCAP files. At the Datiphy appliance node, the traffic resulting from the interaction between the webapp 

and the remote MySQL server is captured and a report of this traffic is generated in the Datiphy web 

interface and saved in CSV format. 

Data Pre-processing. Data pre-processing is primarily done with bash shell scripts on the webapp server, 

as this is where the PCAP files resulting from the Snort data capture are located. The PCAP data is processed 

using TShark, which is a command line interface to Wireshark [20]. TShark allows us to process the PCAP 

files and extract certain fields of interest from the webapp traffic packets. The result of this is a CSV file, 

which is then cleaned up with shell scripts for further processing. The data captured at the Datiphy appliance 

is also processed similarly with shell scripts. In the final stage these two datasets are processed into one file 

with shell scripts to create the correlated dataset. Correlation is done with the insertion of a token in the form 

of a unique text string that can be compared and then removed from the dataset once events are correlated. 

3.3 Web Application 
The web application we're using in our system is a custom coded simulation of an enterprise chat 

application. This is written in PHP and is running on an Apache webserver. The app uses an HTML form and 

is configured to use a remote MySQL database backend to store the simulated chat messages. We have 

designed this webapp to be vulnerable to SQL injection, and the specific vulnerability occurs in an INSERT 

statement. 

3.4 Attacks 
The attacks we're using for this project are manually coded SQL injection attacks of several different 

types, including timing-based attacks, a few types of error-based attacks, and general injection of SQL 

functions. Timing-based attacks are typically used when there is no immediate display of the results of 

injection attempts. These attacks, which are also often called blind SQL injection, take the general form: 

 

CASE (SUBSTRING(version(),1,1)) when 4 then sleep(5) else sleep(0) ... 

 

Successfully injecting code such as this has the effect of introducing a five second delay in the processing of 

the request when the initial character of the MySQL version is '5'. In our architecture the MySQL version is 
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actually 5.5, so this query will pause five seconds before returning and thus give an attacker information 

about the database backend of the web application. 

An example of one of the error-based attacks we're using is the injection of the following code: 

 

... or updatexml (1,concat(0x7e,(user())),0) or ... 

 

This code when injected into an SQL statement results in an XPATH error from the database which 

potentially contains information useful to an attacker, in this case the username under which the webapp is 

accessing the database. XPath, or XMP Path Language, is a language to interact with XML documents from 

within MySQL. Common functions used in XPATH SQL injections are UpdateXML() and ExtractValue(), 

and we're using both for these attacks [33]. 

Some of the other attacks we're using inject SQL functions such as user(), database(), version(), etc., into 

the INSERT statement by breaking out of the statement with a single quote character and then injecting the 

function and proper characters to complete the query, and then inserting characters to comment out the rest 

of the query. An example of this type of attack is the injection of the following code: 

 

',(select database()),now()); -- 

 

When injected into an INSERT statement, this code will cause the database name to be substituted for the 

actual input field. 

3.5 Machine Learning 
Our analysis of the processed data is done with Weka, which is a Machine Learning framework that 

includes many current ML techniques [21]. Once the data resulting from the pre-processing steps mentioned 

earlier is imported into Weka, the numerical and nominal data is used as is, and the string data is further 

processed into word vectors using the Weka filter StringToVec. We then are using Correlated Feature 

Selection to reduce the number of features to allow for efficient machine learning. This algorithm selects a 

subset of features that are highly correlated with the class attribute, which in this case is one of our two 

classes, normal or malicious, but have low correlation with each other. With the CFS algorithm in Weka 

we're using a genetic search algorithm to find subsets of features to test for the correlation mentioned above. 

A genetic algorithm is based on the biological concept of natural selection, with a candidate population 

randomly mutated and tested for fitness, then evolved toward an optimal solution. The genetic search 

algorithm in Weka is an implementation of the simple genetic algorithm described in Goldberg [22][23].  
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For the genetic search algorithm, our parameters are as follows: max. generations is set to 200, and 

population size is also set to 200. In our experiments these values led to the best results. The mutation 

probability is set to 0.033 and the cross-over probability is set to 0.6—these are the Weka defaults. The 

number of features for the Snort data is 1611, which is reduced through feature selection to 57. For the 

Datiphy data, there are originally 1656 features, and this is reduced to 56. For the combined data, the 

features are reduced from 1662 to 58. The feature reduction led to increased efficiency in our experiments, 

and was also necessary in our environment to allow the Neural Network algorithm to run in a reasonable 

amount of time. 

For our classification, we are using the J48 decision tree algorithm, the JRip rule-based algorithm, a 

Random Forest algorithm, an SVM algorithm, and a MultiLayer Perceptron Neural Network, discussed in a 

previous section. J48 is an open-source implementation in Java of the common C4.5 decision tree algorithm 

[22]. The decision tree resulting from our experiments for the webapp dataset has 101 nodes and 18 levels, 

for the Datiphy dataset 97 nodes and 21 levels, and for the correlated dataset 185 nodes and 23 levels. JRip is 

an implementation of the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) rule-based 

algorithm proposed by William Cohen [24]. Our ruleset for the webapp dataset consists of 21 rules, for the 

Datiphy dataset 35 rules, and for the correlated dataset 44 rules. The Random Forests are an ensemble 

technique which use decision trees as their base classifier. The Random Forest implementation in Weka is 

based on an implementation by Leo Breiman [25]. The SVM implementation in Weka is from LibSVM [26], 

which implements a version of the SVM algorithm discussed in Knerr et. al [27]. The MultiLayer Perceptron 

implementation in Weka is a generic classifier with sigmoid nodes using backpropagation [22]. The Neural 

Network resulting from our experiments has one hidden layer for each model, with 30 nodes for the webapp 

dataset, 29 nodes for the Datiphy data, and 30 nodes for the correlated dataset. In our results, presented 

below, we're evaluating the algorithms for classification accuracy, as well as performance in terms of time 

spent building the classification model and total time to run on the testing datasets with 5-fold cross 

validation. 

 

 

 

 

CHAPTER 4.  Experiment and Results 

4.1 Datasets 
The datasets used in this project consist of simulated normal and malicious traffic originating from the 

traffic generation server and collected and correlated as previously discussed. For our results the dataset 
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consists of 20000 entries, 10000 normal traffic and 10000 malicious traffic. Unique aspects of each of the 

three datasets are discussed briefly below. 

Web Application dataset. This dataset as mentioned was captured inbound to the webapp, and as such 

some of the unique features include information about the TCP and HTTP packets. Specific features which 

have been useful for machine learning in our experiments are the tcp.length and http.content_length. 

Datiphy dataset. The Datiphy dataset is unique as it's capturing features typical of log analysis such as 

the SQL statement that results from the request to the web application, but it's also capturing and correlating 

features such as Response Length and Result that are returned from the database server to the web 

application. To our knowledge this is the first project to use such a dataset. 

Correlated dataset. This dataset, as a combination of the previous two datasets, combines features from 

both, and in our experiments the machine learning algorithms are able to use features from both of these 

datasets. 

4.2 Results 
Results of our experiments with various machine learning algorithms are summarized in Table 1. 

Accuracy is the classification accuracy achieved with the various algorithms, Model Time is the processing 

time to build the machine learning models, and Testing Time is the time to classify the testing dataset with 

5-fold cross-validation. Classification accuracy is plotted in Fig. 2, with F-scores presented in Table 2. 
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Table 1: Results With 20000 Records 

Dataset Algorithm Accuracy Model 

Time 

Testing 

Time 

Webapp JRip 94.740% 3m30.85s 2.70s 

 J48 95.630% 1m42.65s 2.55s 

 RF 96.525% 5m30.20s 30.60s 

 SVM 94.025% 2m35.80s 1m10.45s 

 ANN 96.715% 46m03.55s 3.35s 

Datiphy JRip 95.980% 6m10.90s 3.35s 

 J48 96.995% 1m59.30s 2.45s 

 RF 97.210% 6m10.20s 33.50s 

 SVM 95.190% 2m11.50s   1m3.45s 

 ANN 97.285% 41m23.00s 2.95s 

Correlated JRip 97.150% 11m50.80s 2.10s 

 J48 97.295% 2m01.80s 2.05s 

 RF 98.055% 4m22.55s 35.45s 

 SVM 95.715% 3m30.85s 1m5.90s 

 ANN 97.615% 47m25.25s 3.80s 

 

 

 

 

Table 2: F-score for 20000 Record Data 

Dataset Algorithm True Pos. False Pos. True Neg. False Neg. 

Webapp JRip 9117 169 9831 883 

 J48 9385 259 9741 615 

 RF 9487 182 9818 513 

 SVM 9134 329 9671 866 

 ANN 9501 158 9842 499 

Datiphy JRip 9291 95 9905 709 

 J48 9538 139 9861 462 

 RF 9757 46 9954 243 

 SVM 9226 188 9812 774 

 ANN 9613 156 9844 387 

Correlated JRip 9623 193 9807 377 

 J48 9656 197 9803 344 

 RF 9860 32 9986 140 

 SVM 9457 314 9686 543 

 ANN 9644 121 9879 356 
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Figure 3: Classification Accuracy 
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Figure 4: Modeling Time 
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Figure 5: Testing Time 
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CHAPTER 5.  Analysis 

An intuitive understanding of this process would suggest that as there's more data available from the 

correlated dataset, as it's a combination of two datasets, the results obtained would be better in terms of 

classification accuracy. In our experiments so far this has been the case, with JRip for example using 

features from both datasets in generating rules as mentioned earlier. As an example, several of the highest 

ranking rules created from the JRip algorithm are incorporating both the http.content_length from the 

webapp dataset and the SQL Length from the Datiphy dataset. 

In our previous results [4], we used 2000 records for our datasets, and experimented with the JRip and 

J48 algorithms. Those results were similar in that we're consistently getting much better results with the 

correlated datasets than with either of the individual datasets alone. We've also seen a consistent 

improvement in results across all metrics with larger datasets. Although we have randomization in our attack 

generation, the data is apparently falling into categories that the machine learning algorithms can create a 

model from, and that capability improves as the algorithms are exposed to more data. For the current 

project, we have added the SVM, Random Forest, and ANN algorithms, and have also recorded 

performance data. 

One aspect of the performance results to note is the good relative performance of the decision tree 

algorithm in our experiments. Decision tree algorithms are often considered to be resource intensive, and 

our thought to explain the results in the current project are that when the data is generally easy to classify 

based on a few well-selected features, then decision tree algorithms perform quite well relative to other 

classification algorithms. 

Based on our experiments, we've been able to determine that on these datasets the results obtained with 

the correlated dataset using the faster algorithms are nearly as accurate as our results with the MultiLayer 

Perceptron algorithm, but with a much lower time of execution. One implication of these experiments is that 

gathering data from multiple sources can potentially improve classification results as much as or more than 

the choice of potentially more accurate algorithms. 
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CHAPTER 6. Conclusion and Future Work 

SQL injection attacks, and web-based attacks in general, continue to be a major issue in the security of 

financial, health, and other critical data, and this problem only increases in importance as more societal 

processes become more dependent on the internet. In this project we have proposed a multi-source data 

analysis system for increased accuracy in detection of SQL injection attacks, and have established that the 

algorithms we have experimented with such as rule-based and decision tree algorithms have in our 

experiments achieved accuracy close to that of Neural Networks and are much better in terms of time 

necessary to build models and execution time when classifying testing data. Future works include collection 

of additional data such as traffic outbound from the web application to the browser, collection of larger 

datasets to see if this improves performance, analysis of additional machine learning techniques for both 

accuracy and performance, and adapting this system to detect other types of web-based attacks. 
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