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ABSTRACT 

 

Deep learning contains a set of algorithms that are based on the functioning of human brain i.e. 

neural networks. These algorithms require a lot of computation power and time along with 

complex setup to get good results. The project contains several artificial neural network 

implementation for a variety of tasks like data classification, image classification, natural 

language processing and more. The project contains an exploratory analysis of hyperparameters 

of deep learning algorithms in domain of deep learning applications to prove that it is possible to 

achieve a good accuracy with less resources. 
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1  Project Description 
1.1  Introduction 

Machine learning is the science of getting computers to act without being explicitly programmed. 

[1] It is the practice of parsing data, learning from it and then making decisions based on what 

the algorithm has learned from the data. In all the machine learning algorithms, artificial neural 

networks have formed their own place and are categorized as deep learning, where deep is the 

number of layers in the artificial neural network. 

Deep Learning is generally used to do a task for which standard machine learning is not an 

optimal choice like problems associated with computer vision, speech recognition, artificial 

intelligence and many more. In this project, we will be using multiple artificial neural networks 

like Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Deep Neural 

Network (DNN/NN) and Long Short Term Memory (LSTM) and will analyze their performance 

on several applications. These algorithms will be used in the project for data science problem 

like classification, image classification, object detection, and natural language processing. Each 

of the application that will be covered uses a different artificial neural network and multiple 

layers and activation functions. 

Every artificial neural network is designed for a particular type of data problem. Deep learning 

models have a higher level of complexity associated with them when compared to standard 

machine learning. The number of parameters the model has and the ways in which a model can 

be created for the same problem far exceeds the complexity of standard machine learning 

problems. In the project, we will discuss these models, their architecture, hyperparameters, 

performance, implementation, applications and drawbacks. 

1.2  Literature Review 
The applications of deep learning are researched extensively and are a big part of literature. The 

technology is applied to several problems and new use cases are developed on a regular basis. 

Each type of artificial neural network has been researched extensively and has a very different 

set of properties when compared to other. These neural networks are made to complement each 

other for complicated tasks as every type of neural network has a different set of properties based 

on the task it could be used for. 
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1.2.1  Artificial Neural Networks 

The motive behind creating artificial neural network was to create learning models that would 

imitate the working of a human brain [3]. These models are capable of learning any mapping 

function like a human brain. The building block of an artificial neural network, just like a 

biological neural network, is neuron. Neurons are computational units with weighted input 

signals and an activation function associated with it which produces an output signal. Each 

neuron has a bias which is an input that starts with value 1 and is weighted. If a neuron has four 

input, then it will have five weights, four for input and one for bias [4]. 

The initial weights for the model could be simple random values or they can be computed using 

complex techniques. For activation of neurons, the inputs are summed and passed through the 

neuron’s activation function. An activation function is often termed as a transfer function 

because it starts the transfer of data from one neuron to the next. This function is a simple 

mapping of weighted input to the output. The reason it is called an activation function is that a 

neuron is activated only when the input reaches a particular threshold value [5]. 

Components of an artificial neural network: 

• Neurons: A neural network is made up of neurons, which is the basic unit of any neural 

network. Every neuron takes in input and produces an output based on the input and 

weight associated with those inputs. If the output is greater than threshold, the neuron 

gets activated. In theory, it is a mathematical function [5]. 

 
Fig. 1  Neuron Architecture 

• Connection and Weights: The links between neurons that are used to send data are called 

connections and every connection has a weight assigned to it, which comes with the data 
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on that connection [24]. The weight gives the input the importance it needs to make an 

impact. Some inputs are given more weight than others because they might be more 

relevant to the end result. 

• Summation Function: The inputs and weights are vectors that are input to a neuron and 

the total input is the dot product of these two vectors which ends up in a single number. 

The summation function could be more complex than a simple dot product [25]. The 

exact summation function depends on the neural network and the model. 

• Learning Rule: Every connection has a weight associated with it which has to change 

based on the input and what model has learned. If the weights are never changed, then the 

model will never improve and will be stuck at the same level. The functions to change 

weights are utilized during backward propagation in the neural network. These functions 

are also called as adaptation functions.. There are two types of learning rule, supervised 

learning and unsupervised learning. In supervised learning, the neural network is trained 

with a labeled dataset and the performance is measured by checking the output from 

neural network with the original result. Based on the performance the model is tweaked 

and tested again. The process is repeated to reduce the error. In supervised learning, the 

model must be trained before it can be useful. The training data needs to be fairly large 

and also needs to contain all necessary information to make sure that all important 

features are learned. Unsupervised learning, on the other hand, is limited to academic 

research and does not have a widespread use right now.  

Layers 

When neurons are arranged into a network, a single row of neurons in that network are termed as 

a layer. A neural network can be divided into three layers [15]. 

• Input Layer: This is the first layer in the neural network which takes raw input. These 

inputs are normalized in a given range using normalization techniques for better working 

of the neural network. Since all the operations in the neural network are mathematical, 

normalization of data is very important before it is fed to the input layer. 

• Hidden Layer: This layer takes the output of the input layer as input. The neurons present 

in this layer extract information and relevant features from the input data. There can be 

multiple hidden layers in a neural network and all the computation is done in these layers. 

They cannot be accessed from the outside world, hence the name is hidden layer. A 
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neural network must always have an input layer and an output layer, but this layer can be 

removed from a simple neural network [4]. 

• Output Layer: This is the last layer in a neural network which takes the computation from 

the hidden layer and produces an output based on that data. The choice of activation 

function matters a lot in the output layer as it decides whether the output is for a 

regression problem or for a classification problem [17]. 

 

Activation Function 

In the above explanation, there is a constant use of the term activation functions which are 

present in the neurons and are responsible for their firing up and computation. The role of 

activation function is to perform computation on the input based on the weights, impose a bias 

and decide whether the result has reached the threshold for activating the neuron or not. For 

example, in a neuron 

 
Here, the value of Y could range from negative infinity to positive infinity. Now, neuron does 

not know what value it should be activated for. To make this decision, activation functions are 

added to the neural network. There are several types of activation functions [6][7]. 

• Step Function: This is the simplest form of activation function which uses a binary 0 or 1 

decision based on the value of threshold and value of neuron. If the value of neuron is 

greater than the threshold, the neuron is activated [25]. 

 
Fig. 2  Step Function 

The output is 1 or true for activation and the output is 0 or false when the value is smaller 

than the threshold. The biggest drawback of this activation function is that it works great 
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for a binary classification but fails when it comes to multi-class classification. In binary 

classification, one class will be 0 and the other one will be 1 but in multi-class 

classification, several class might get activated. To avoid this, we need an activation 

function that would give out an analog value for the activation rather than binary value.  

• Linear Function: This is the best option to solve the drawbacks of the step function. The 

linear function is a straight line function where activation is proportional to the input. So, 

if more than one neuron gets activated, the final neuron can be decided based on the one 

with the highest value. But there is a problem with this method. If all the layers have a 

linear activation function, the output of one layer becomes input for the next layer and so 

on till the final layer. This way the activation function at the final layer will be nothing 

but the linear function output of the first layer. This means that we are losing the ability 

to stack up layers in the neural network [8]. 

• Sigmoid Function: Sigmoid function is a non-linear function which means that 

combining multiple sigmoid functions will yield a non-linear function in the end. The 

function gives analog output too, so solves the problem of step functions. 

 
Fig. 3  Sigmoid Function 

The biggest advantage of the sigmoid function is that it can make a clear differentiation 

on the prediction. Being a non-linear activation function [18], the output for this is always 

going to be in the range of 0 to 1, which is a big improvement over negative infinity to 

positive infinity for the linear function. This is great because it will never result in a crash 
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in the activation function. One drawback of this activation function is that the model 

slows down the learning after a certain point as shown in Fig. 3 for -6 on x-axis. 

• Tanh Function: This activation function is very similar to the sigmoid activation function. 

 
Fig. 4  Tanh Function 

It can be said that is a scaled sigmoid function. 

tanh(x) = 2 sigmoid (2x) - 1  

Instead of being limited to 0 to 1 range, like the sigmoid activation function, it has a 

range from -1 to 1. One difference in tanh and sigmoid is that gradient is stronger in the 

former but it still suffers from vanishing gradient problem [25]. 

• ReLu (Rectified Linear Unit): It is a very simple activation function with formula F(x) = 

max(0,x). So the function will return x if the value of x is greater than 0, else it will return 

0. ReLu is a non-linear function so stacking of layers is possible but ReLu does not have 

any bound on the positive side so the value could be positive infinity which can blow up. 

ReLu is not computationally as expensive as sigmoid or tanh. In sigmoid and tanh, the 

activation functions are all analog so almost every neuron will fire up which becomes 

computationally expensive. In ReLu, the activations are sparse which puts less load on 

the neural network. 
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Fig. 5  ReLu Function 

Relu suffers from a major problem in which the gradient can become 0. For activations in 

negative region, the gradient will be 0 so those neurons will stop learning as the error is 

also 0. 

Types of neural network: 

Multi-Layer Feed Forward Neural Network 

This artificial neural network is often referred to as neural network and it is one of the most 

commonly used basic neural networks. It is a feed-forward neural network in which signal only 

goes in one direction, that is from the input layer to the output layer. Once a signal passes 

through a layer, it will never come back to that layer and all the neurons from one layer are 

connected to all the neurons at the next layer. Being a feed-forward neural network, deep neural 

networks cannot be used for a variety of complex applications which require knowledge of what 

happened at an earlier layer or if some data needs to be transferred to a previous layer. This 

model of the neural network is also sometimes referred to as Multi-Layer Perceptron (MLP) 

where perceptron is a single layer neural network. 
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Fig. 6  Multi-Layered Feed Forward Neural Network 

These neural networks have at least three layers out of which one layer is the input layer, one is 

the output layer and rest are all hidden layer. Hidden layers are responsible for dealing with the 

raw input from the input layer, perform computations on the data to extract high-feature statistics 

and transfer the data to the output layer. Each layer in these models learns to extract a different 

feature from the data, just like the human brain does [11]. 

The objective of creating a neural network is to make it learn the same way a human brain learns.  

Learning occurs in this neural network by altering the connection weights after every iteration of 

data processing. The weight is calculated based on the error that is in the output when compared 

to the actual result. This learning is achieved using backpropagation, a mean squares algorithm. 

The error in an output node j in the nth data point is represented by  

 
Where d is the target value and j is the value computed by the model. Based on these errors, new 

weights are calculated. The formula for this weight is given by 

 
The change in the weight can be calculated using gradient descent and is denoted by  

 
The weights are recomputed till the desired result is achieved in the neural network. 
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Recurrent Neural Network 

The biggest drawback of feed-forward neural network is that once a signal passes a layer, it can 

never come back to it and the layer will never remember it. The original aim of creating artificial 

neural network was to imitate the working of the human brain, but human brain is capable of 

sending data back to a previous layer. So, the feed-forward neural network is not a correct 

imitation of the human brain. In a recurrent neural network, the connections between units form 

a directed circle and each neuron has its own internal memory which they use to process random 

sequence of input [12]. They are called recurrent because the same operation could be performed 

multiple times for a sequence of input. The memory captures the information about what has 

been calculated so far. 

 
Fig. 7  Recurrent Neural Network 

Recurrent neural network shows great accuracy and success in natural language processing. In 

the application domain of language modelling and text generation, we want to predict the 

probability of a word based on its previous predicted word. RNN is used for machine translation, 

speech recognition mostly. A very important concept in RNN is Backpropagation Through Time 

(BPTT). In a neural network, the flow of data is usually from input to output which is forward-

propagation and it is checked if the output is correct or not. If the output is not correct, 

backpropagation is done, in which we go backwards in the network to find the partial error with 

respect to weights [13] [14].  

 

Convolutional Neural Network 

This class of neural network is used for visual analysis. CNN is a feed-forward neural network 

and uses a variety of layers. The reason why CNN is used for visual data is that it requires least 
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preprocessing. Regular feed-forward neural networks cannot be used for visual data because they 

do not scale well. For example, for a 32x32x3 images with length and width as 32 and 3 as color 

channels, the total number of weight required in one neuron in the hidden layer will be 32*32*3 

= 3072 weights. Now if the image is of size 200x200x3, then the total weights will be 120,000. 

This kind of input in one neuron is not easily manageable and can lead to network failure. To 

resolve this scaling issue, in CNN the neurons are placed in 3 dimensions. 

CNN has different layers than a normal neural network or a recurrent neural network. In CNN, 

one layer transforms one activation volume to another using a differentiable function. Some of 

the following layers are: 

• Input Layer: This layer takes in the raw pixel values of the image. So in case of the 

CIFAR10 dataset, the length is 32, width is 32 and three colors red, green, and blue. 

• Convolution Layer: These layers are made of filters and feature maps. Filters are nothing 

but neurons which are present in this layer and have input weights and gives a value as 

output. These filters always have fixed size inputs. If the convolutional layer is the first 

layer in the model and has to consume the input, it will take the raw data but if it is a 

hidden layer, then it will only take feature map as an input. Feature map is the output of 

another filter from the previous layer. 

This layer does most of the heavy work in CNN. The parameters at this layer have 

learnable filters and every filter is small spatially but covers the entire depth of the input 

volume. So in case of CIFAR10 dataset, we assume that we have the first convolution 

layer of size 5x5x3, so this layer will convolve across the entire input volume and will 

calculate the dot product. As the window slides over the input, a 2D activation map is 

generated.  

A big part of the convolutional layer is parameter sharing to control the number of 

parameters. For example, if there are 290,400 neurons and each neuron has 364 weights 

including one bias. Together, this yields 105,705,600 parameters on the first layer which 

is too much. These parameters could be reduced by making an assumption that if one 

feature is useful for computation at (x,y), then it would also be useful at (x2, y2). By 

making this assumption, it is possible to use same set of weights and bias in a 2-

dimensional slice of depth. This would reduce the number of parameters from 

105,705,600 to 34,944 [15].  
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• ReLu Layer: This layer applies the activation function on the data and follows ReLu 

activation properties. This layer leaves the size of the input data volume unchanged. 

• Pooling Layer: CNN highly depends on the data compression as the features obtained 

from images are huge. This compression of features is done by the pooling layer as they 

downsample the feature map obtained from previous layers. Pooling layers are not used 

after every convolutional layer but after a sequence of layers so that the data from these 

layers could be compressed down. The purpose is also to generalize the feature. So after 

this layer, a [32x32x12] input might become [16x16x12]. 

• Fully-connected Layer: These are simple neural network layer which resembles the layers 

present in any feed-forward neural network [16]. These layers might have a non-linear 

activation function to generate the output probabilities of predictions. They are used at 

the end after all the features are extracted and consolidated at the previous layers. The 

activation function at this layer is generally sigmoid it this layer is placed as the output 

layer, else it could be any. Thus, this layer computes the class score and reduces the 

volume like [1x1x10] where each 10 numbers will correspond to class score. 

Mostly the layer stacking starts with multiple convolutional and relu layers, followed by pooling 

layer to compress their output. This pattern of layers is repeated till the images are reduced 

spatially to smaller size. It is also possible to transition to fully-connected layer in between these 

layers. The last fully-connected layer holds the output, which could be a score of various classes 

in the data [19]. 

Convolutional neural network has formed a base of several popular modern applications like 

self-driving cars, autonomous bots, facial recognition software and a lot more. CNN learns using 

small squares of input data over the input. By dividing the data into smaller chunks, the model 

uses less weights when compared to its other counterparts like deep neural network or artificial 

neural network. 

 

Long Short Term Memory Network 

LSTM neural network is a special branch of recurrent neural network which is capable of 

learning long-term dependencies in sequence based data. The capacity of RNN in predicting 

long-term dependencies is small. For example, RNN could be used to predict the last word in 

“water in the ocean is blue” because further context is not required and the sequence is small. 
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But if RNN is used to predict the last word of “I was in Spain for ten years, I speak fluent 

Spanish”, it will not be able to this. RNN can figure out that the next word will be a language, 

but it will not recognize which language as the gap between relevant information and the point 

where it is needed is large. This is also known as the vanishing gradient problem. 

To solve this problem, LSTM networks are used. They are designed to learn long-term data 

dependencies and avoid the problems present in RNN. LSTM reduces the problem of gradient 

descent by using an internal memory state which is added to the processed input, rather than 

multiplying it. The architecture of LSTM cell is shown in Fig. 9. 

 
Fig. 8  Long Short Term Memory Network [11] 

In Fig. 9, the flow of data is from left to right with the input xt and the output of the previous cell 

as ht-1 concatenated and entering the top data path. The data then passes through gates which is 

what makes LSTM different from RNN [20]. 

• Input Gate: As discussed before, tanh activation function yields an output in the range (-

1,1). The input gate is a hidden layer with sigmoid activation function with weighted 

input values.  The output of input gate is a value between 0 and 1 which is used to 

determines which inputs are switched on and off.  

• Forget Gate: The forget gate is a sigmoid activated set of nodes which is multiplied by 

internal state of the network at time t-1. This element-wise multiplication is used to 

decide which previous states to forget and which to remember. 
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• Output Gate: The output gate performs two functions, first two squash the input using a 

tanh function and an output sigmoid function. The output sigmoid activation function is 

multiplied with current state of network to determine the output of the cell for this state.  

1.3  Problem Statement 

Deep learning applications and algorithms require  lot of computational power and time for 

training. Without providing these two things, it is really difficult to utilize their full potential. All 

major computer vision and natural language processing applications are completed by either big 

companies or research foundation with grants. These kind of resources are not available to a 

student or a freelancer looking to make a career in deep learning. The implementations given in 

papers and research work is not optimized to be executed on a normal laptop or a low power 

cloud platform. 

1.4  Project Goal 
The project goal is to perform exploratory analysis of deep learning algorithms by tuning the 

hyperparameters to reduce the required computation power and training time. Through this 

project, we will have a better understanding about the layers and activation functions in a neural 

network along with different types of neural network. The project will also involve stacking 

layers of different neural networks together to achieve success on cross domain problems 

between computer vision and natural language processing. The project also aims to use deep 

learning algorithms for data science problems like classification.  

1.5  Dataset Description 
Failed Cases Dataset 

TABLE I 

FAILED CASES DATASET DESCRIPTION 

Input Features 9 

Target Features 1 

Type of features Categorical, Numerical 

Rows 124,494 

Positive : Negative class ratio 106 : 124495 

Challenges Class Imbalance, No feature information 
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CIFAR10 

The dataset contains 60,000 images of size 32x32. The dataset is divided in 10 classes with each 

class having 6,000 images. The dataset comes split in two parts for training and testing where 

50,000 images are for training the model and 10,000 for testing the model. The training data and 

testing data are split randomly from the original dataset and the training data is divided into 5 

batches with 10,000 images in each batch. It is possible that a training batch might contain more 

images from one class. The classes in the dataset are airplane, automobile, bird, cat, deer, dog, 

frog, horse, ship, and truck. All the pictures in the dataset are unique. This dataset will be used 

for image classification. 

 

CIFAR100 

The dataset contains 60,000 images of size 32x32 but the dataset is divided into 100 classes with 

600 images for each class. The dataset contains 500 training images for each class and 100 

testing images. For the CIFAR100, the 100 classes are grouped in 20 superclasses. For example, 

subclasses beaver, dolphin, otter, seal and whale belongs to the superclass aquatic mammals. All 

the pictures in data are unique and have no overlap with any other class. Every superclass has 5 

subclasses. This dataset will be used for image classification. 

 

Flickr8K 

It is a publically available dataset and is available from the University of Illinois at Urbana, 

Champaign. The dataset is made up of random images with each image having 5 captions 

associated with it. The dataset has no image of a popular person or a place. The dataset will be 

used for the automatic image captioning.  The dataset contains a total of 8,000 images with each 

image of varying size. One part of the dataset is the images and one part is the text files which 

contain raw captions, lemmatized version of captions, training images, validation images, and 

test images. 

2  Project Implementation 

In this section, there will be detailed explanation on how the project was implemented along with 

instructions on installing the software on the local machine. The majority of the project was 

implemented on Google Collaboratory and Amazon AWS, which are cloud platform for high 

computation power, so there will be a guide to install and run the project on those platforms as 
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well. The section will also describe about the steps taken to prepare the data for feeding into the 

neural network. 

2.1  Software Installation and Setup 

The project was entirely implemented in Python programming language version 3.6.3 because of 

the support in language for data analysis as well as deep learning libraries. The libraries that 

were used in the project are Pandas, NumPy, Keras, SciPy, Bokeh, MatPlotLib, Scikit-learn and 

TensorFlow. The Pandas library is used in Python for its data structure and data analysis tools. 

The library has several functions for data loading and data preparation. NumPy provides 

functions for scientific computing in Python, which in this project is required during the vector 

computation of the images and for reshaping the input data for CSV file problems. NumPy is 

also required by Keras on the backend. Keras is a high-level neural network API which uses 

TensorFlow or Theano on its backend. The library is written in Python and works on both GPU 

and CPU. TensorFlow is a high performance numerical computation library which uses data-

flow graphs. The library has support for machine learning and deep learning on GPU, CPU and 

TPU. 

The project requires graphical processing unit for computations because deep learning takes a lot 

of time and computational power which is not available on a normal computers central 

processing unit. The task that will take days on a CPU will be done in a few hours on GPU. 

Tensor Processing Unit (TPU) are special hardware which can do the same task in a few 

minutes, but they are not available in the market for public use. 

2.1.1  Setup on Windows 7 
The project was initially started on Windows 7, installed on a local machine with no GPU 

support. The GPU was not required for the data science part of the project at an early stage. The 

setup on the Windows platform was done using Anaconda, a repository for packages, notebooks 

and environment. Anaconda gives easy installation for libraries used in the project. The 

installation instructions can be found on https://anaconda.org/. 

2.1.2  Setup on Google Collaboratory 
Collaboratory is a Google research project which is free to use to help with machine learning, 

education, and research. Collaboratory uses a Jupyter Notebook environment which requires no 

setup to run or use Python version 2 or version 3. The cloud platform comes pre-installed with 
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various Python libraries like Pandas, MatPlotLib and NumPy which are essential for machine 

learning and deep learning projects. The cloud platform also comes pre-installed with 

TensorFlow which can run libraries like Keras and Theano. Googles cloud platform was used in 

the project because of its Jupyter like interface and its free GPU access, which was essential for 

the project. 

The Collaboratory platform is still in the development stage thus faces several issues like losing 

Python connection during the execution of the code. The virtual machine also has limited storage 

space available which was a problem in some parts of the project because of being memory 

intensive. All of the issues were acceptable as the platform is free to use and is a great effort 

from Google to make learning easier. 

2.1.3  Setup on Amazon AWS 
Due to the setbacks faced in Collaboratory, the project was switched to Amazon AWS cloud. 

AWS provides several pre-built Amazon Machine Image (AMI). There are AMI which comes 

with GPU computation support that are just built for deep learning applications. There are 

several versions of AMI, each with different level of computation power and memory. An AMI 

with GPU computation is charged more heftily than an AMI with less computation power.  

To setup the machine on AWS, the procedure was followed on the AWS website. 

Link: https://aws.amazon.com/blogs/machine-learning/get-started-with-deep-learning-using-the-

aws-deep-learning-ami/ [22] 

There is no need to change the environment in AWS from CPU to GPU as these AMI comes 

with GPU computation support by default. Using AWS require a basic understanding of 

networking concepts like ssh and scp to transfer files or access the cluster as the AMI does not 

come with a graphical interface [23]. 

2.2  Data Preprocessing 
CIFAR10 
The dataset comes for multiple programming languages. The dataset in the project was 

downloaded from https://www.cs.toronto.edu/~kriz/cifar.html. The dataset is also available 

within the Keras library. The dataset contains images in machine consumable byte format, thus 

no processing is required to convert the images into matrix format. 

 

CIFAR100 



Deep Learning Algorithm Recommender  Rajat Kabra 

26 
 

The dataset comes for multiple programming languages. The dataset in the project was 

downloaded from https://www.cs.toronto.edu/~kriz/cifar.html. The dataset is also available 

within the Keras library. The dataset contains images in machine consumable byte format, thus 

no processing is required to convert the images into matrix format. 

 

Flickr8K 
The dataset is available only on University of Illinois at Urbana, Champaign. To download the 

dataset, a form is supposed to be filled over the university website and an a download link is 

emailed for the dataset. The images in the dataset are in JPG format. There are a total of 8000 

images in the dataset. The dataset will be divided in the ratio of 6:1:1 for training, validation and 

testing respectively. To extract features from the image, the INCEPTIONV3 model was used. 

The model is freely available over the internet for extracting features from an image and is about 

500 MB.  

The dataset contains captions associated with every image, so the captions are to be associated 

with the image features and they require minimal cleaning. The photo ID is used to map the 

images to the descriptions. The data is converted into a dictionary with photo ID and associated 

text. To create a vocabulary for the model, the captions are cleaned to convert uppercase to 

lowercase and remove all the punctuations , stop words and numbers. Once the data is cleaned, 

the model will have a shorter vocabulary to learn. The dictionary is saved into a file with image 

ID and image captions, so 5 entries per file.  

 
Fig. 9 Image ID with Caption sample 

2.3  Model Training 

2.3.1  Data Science 
Deep Neural Network 

The training data prepared during the data processing part can be directly used to train the model 

in deep neural network. The constraint needs to be placed in the first layer of the deep neural 

network which should have an input shape which is same as the number of features in the 

training set. For example, if the dataset has 8 features, then the input shape should be (8,). The 
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last layer in the neural network should have 1 neuron if it is a binary classification and the 

activation function should be sigmoid [9]. Sigmoid gives an output of either 0 or 1.  

The model is trained and tested on both the original data with the imbalance and the upsampled 

data with no class imbalance. The model is evaluated on the basis of accuracy, precision, recall, 

F1 score and support. [19] 

 

Other Artificial Neural Networks 

The training data prepared during the data processing needs to be reshaped before the data can be 

fed into the model [10]. These models only accept data in the form of a 3D matrix. For data 

science, the flow of the model needs to be sequential. The first layer of the models needs to be a 

model specific layer. The input data needs to be reshaped into a format where it should make the 

multiplication of the three dimension length makes up for the total features in the training set. So 

if the training data has 10 columns and 100 rows which makes a total of 1000 features, the data 

could be either reshaped into (100,5,2). The first dimension needs to be equal to the number of 

rows in the training set [2]. The first layer of the model will have the same number of neurons as 

the number of rows in the training set. The activation function used in the first layer in the model 

is relu for its advantages discussed in the literature review. The activation function could be 

replaced with other activation functions. There are other ways to construct the model with a 

different number of neurons but that requires data reshaping to be done accordingly. [15] 

Once the input layer is placed, multiple layers of different neural networks like RNN, LSTM, 

DNN can be placed after it with reducing number or same number of neurons till the final layer 

is reached. The final layer is always a dense layer to make the classification output. Before the 

final dense layer of the neural network, a flattening layer needs to be added which flattens the 

output of convolution part of the neural network into a 1D vector. The reason to do this is that 

the final layer cannot work with a 3D matrix to generate a classification output. After the model 

is stacked up, it is compiled and fitted with training data. The fit command has several passable 

arguments but the arguments used in the project are epochs, batch_size, shuffle, and verbose. 

2.3.2  CIFAR10 and CIFAR100 
For the project, both CIFAR10 and CIFAR100 dataset were used to find the performance of 

stacked convolutional neural network and simple convolutional neural network. Multiple models 

were created and trained on CIFAR10 and CIFAR100 dataset to analyze the effects of the 
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training data, activation function, layer stacking and data augmentation. The architecture of one 

of the complex model is given in Fig. 11. 

 
Fig. 10 Model Summary 

Several models were used with different stack of convolutional layers with different activation 

functions. In the model shown in Fig. 11, there are 6 convolutional layer with the model starting 

with 2 convolutional layer followed by one pooling layer to compress the output from the two 

convolution layers. After these layer, a dropout layer is added to the model to prevent the model 

from overfitting. At dropout layer, a fraction on input units is dropped at random to prevent the 

model from overfitting. After the dropout layer, the model is again followed by a two pairs of 

convolutional layer and pooling layer and the same concept is repeated. After the training, the 
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output was flattened to pass through a dense layer with 512 neurons which is then reduced to 10 

neurons, equal to the number of classes in CIFAR10 dataset. 

The exact same models were trained on CIFAR100 dataset as well for measuring and comparing 

the performance of the model. Data augmentation techniques were used to generate more 

training data for both CIFAR10 and CIFAR100 dataset and the model was trained and tested on 

these augmented datasets as well.  

2.3.3  Automatic Image Captioning 

This part of the project is associated with creating a model that is a combination of convolutional 

neural network and LSTM network to detect objects in an image and describe that image with a 

caption. It requires methods from the domain of computer vision and from language modelling. 

The model is trained on the Flickr8K dataset which contains images and 5 captions associated 

with every image. The training of the model requires several steps once the data is processed.  

• Load the processed data into the memory. 

• From the data, load 6000 training images, 1000 validation images and 1000 testing 

images. 

• Create a dictionary with key as image ID and value as a list of captions for training, 

testing and validation dataset. 

• The images are compressed into size (299,299) for consistency before encoding and are 

converted into array. 

• The images are encoded using the INCEPTIONV3 model. As discussed in literature 

review and other projects, the last layer is for classification in neural networks. The same 

applies to INCEPTIONV3 as well. The last layer is a softmax layer with 1000 neurons 

and it is removed. This makes the last layer a dense layer with 4096 neurons. The size of 

encoded images will be (1,2048). 

• All the images are encoded using the modified INCEPTIONV3 model into shape 

(1,2048). 

• The encoded data could be saved down to system to remove these time consuming steps 

when retraining the model. 

• The same process is done with validation and test images. 
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• The vocabulary of the model is built using unique words from all the captions. There are 

a total of 8256 unique words in the model. 

• All the unique words are mapped to indexes. 

• All the captions in are appended with start and end sequence to mark the start and end of 

an caption. 

• The caption and image ID are divided into a list with caption starting with <start> and 

ending in <end> and its image id. This yields a total of 30000 entries. Example: 

 ('<start> Two girls playing in a park . <end>', '3421928157_26a325345f.jpg') 

• Sample of how the words are mapped to the index. 

<start> => 5553 Two => 2666 girls => 4606 playing => 3779 in => 8156 a => 32 park 

=> 1816 . => 7023 <end> => 5232 

• Deep learning model 

o Image Mode: A sequential model with one dense layer because the images are 

already processed by the INCEPTIONV3 model. 

o Caption Model: To predict the next word based on the previous word. This 

requires the model to have return_sequences enabled. This is LSTM model. 

o Final_model: The image model and the caption model are concatenated together 

to yield the final model with the final softmax activation layer. 
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Fig. 11 Model Summary 

 

• The model is compiled and trained using the data generator function which sends one 

word at a time for an image and keeps on appending words. 

• The models weight and architecture is saved as an h5 file. 

3  Results 

The results from the project are summarized in this section. There are different evaluation 

matrices used for different task of the project because of the difference in their domain. The 

results are divided into multiple section, each section for a different part of the project. 

3.1  Data Science 

Predict Failure Dataset 
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Convolutional Neural 
Network (Convolutional 
Layer) 

 
3.2  CIFAR10 and CIFAR100 

 
Fig. 12 Result from CIFAR10 Classification 
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3.3  Automatic Caption Generator 

 
Fig. 13 Result of Caption Generator -I 
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Fig. 14 Result of Caption Generator -II 

 

 
Fig. 15 Result of Caption Generator -III 
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Fig. 16 Result of Caption Generator -IV 

 

 
Fig. 17 Result of Caption Generator -V 
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4  Analysis 
4.1  Data Science 

Using deep learning is a highly complicated task when dealing with data science problems like 

classification or regression. The model trains itself slowly when compared to standard machine 

learning algorithms like random forest, decision tree or support vector machine. Deep learning 

algorithms are less prone to overfitting the training data unlike machine learning models but this 

advantage does not overcome the other drawbacks. The following inferences could be made by 

comparing the results: 

• Reshaping the data is a challenging aspect which can greatly affect the performance of 

the model as the number of parameters the model will take depends on it. 

• Stacking up layers with different properties can help reduce overfitting but increase 

computation time. 

• Model requires GPU computation power and high memory space to complete training, 

unlike standard machine learning algorithms. 

• The model creation requires extensive knowledge of the dataset and features. 

• Data normalization is extremely important and can have a huge effect on the model. 

• Models are less prone to class imbalance than many standard machine learning 

algorithms. 

• Unlike machine learning, in deep learning the choice of model can have huge 

performance impact. RNN and LSTM work great on sequence-based data while CNN 

works best for data with higher dimensions. 

• The model performs poorly than machine learning algorithms on most of the dataset. One 

reason for this could be the less number of layers that could be stacked due to computing 

limit. 

4.2  CIFAR10 and CIFAR100 
Both the dataset contains images of size 32x32 with 3 color dimensions. The difference between 

the two datasets is the huge difference in training samples for every class. In CIFAR10, there are 

6000 images for every class while in CIFAR100 there are only 600 images per class. Based on 

the models generated on this dataset, the following are the findings. 
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• Data augmentation can significantly increase a models performance in terms of accuracy 

on the validation set but the same cannot be said for the training set. 

• The type of activation function has minimal effect on the performance of the model in 

terms of accuracy when the dataset is of a limited size with fixed size images. 

• The type of activation function has a good effect on the training time. 

• The choice of activation function at the final layer affects the models as it decides the 

what the model should predict. 

• The choice and number of layers can have a great impact on the performance of the 

model. 

• For better training and to avoid overfitting, the model needs to have at least three to four 

convolutional layer along with dropout layers at regular intervals with a good range. 

• The dropout should start with 25% and should go as high as 50% at the end. Dropout 

higher than 75% leads to important feature loss. 

• The size of pooling layer depends on the size of the input feature maps. If the input and 

feature maps are of small size, a pool of size 2x2 works the best. By using a huge pool, 

the model can remove important features. 

• The number of feature maps should start with a small number at starting layer and should 

go high based on the features in the data. 

• Pooling layer should be placed after at least two convolutional layers to reduce their size. 

Pooling the output of every convolutional layer slows down the model and also does not 

utilize full potential of the pooling layers. 

The results on the two models are as follows: 

CIFAR10 Results: 
TABLE II 

CIFAR10 RESULTS 

CL 

Layer 

Architecture Train 

Accuracy 

Validation 

Accuracy 

Train Loss Validati

on loss 

3 conv48, conv48, pool2x2, drop25, 

conv96, pool, flat, dense1024, 

drop25, dense10 

78.25 

 

76.54 0.53 

 

0.61 
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4 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

flat, dense 1024, drop50, dense10 

83.74 

 

79.41 

 

0.47 

 

0.76 

5 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192 flat, dense 1024, drop50, 

dense10 

84.25 

 

81.46 

 

0.36 

 

0.7 

6 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192, conv192, pool2x2, 

drop25 flat, dense512, drop25, 

dense256, drop50, dense10 

91.78 

 

85.07 

 

0.22 

 

0.67 

6 

with 

augm

entati

on 

conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192, conv192, pool2x2, 

drop25 flat, dense512, drop25, 

dense256, drop50, dense10 

89.12 87.97 0.27 0.64 

 

To recommend an appropriate model for the problem, several architectures were tried by adding 

layers and tuning the hyperparameters. In the following results, the representation will be 

Convolutional Layer CL(Input feature map size) 

Dropout Layer DR (dropout percentage) 

Flatten Layer FL 

Dense Layer DS (number of neurons) 

Pooling Layer PL (pool size) 

 

Two Layer Models: 

The first model was tried with a total of two convolutional layers and multiple other layers 

including pooling layer, dense layer, dropout layer and flatten layer. Every model was executed 

for a total of 10 epochs to compare the effects of the hyperparameter. 
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Fig. 18 CIFAR10 Two Layer Model Results 

 
Fig. 19 CIFAR10 Two Layer Mode Accuracy Results 
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Fig. 20 CIFAR10 Two Layer Mode Loss Results 

 

 

 

Three Layer Models:  

 
Fig. 21 CIFAR10 Three Layer Model Results 
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Fig. 22 CIFAR10 Three Layer Mode Loss Results 
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Fig. 23 CIFAR10 Three Layer Mode Accuracy Results 
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Four Layer Models: 

 
Fig. 24 CIFAR10 Four Layer Model Results 

 

 
Fig. 25 CIFAR10 Four Layer Model Loss Results 
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Fig. 26 Four Layer Model Accuracy Results 

 

CIFAR 100 Results: 
TABLE III  

CIFAR100 RESULTS 

CL 

Layer 

Architecture Train 

Accuracy 

Validation 

Accuracy 

Train Loss Validati

on loss 

3 conv48, conv48, pool2x2, drop25, 

conv96, pool, flat, dense1024, 

drop25, dense10 

51.57 

 

49.1 0.65 

 

0.95 

4 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

flat, dense 1024, drop50, dense10 

60.14 

 

55.35 

 

0.59 

 

0.87 
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5 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192 flat, dense 1024, drop50, 

dense10 

63.45 

 

57.44 

 

0.54 

 

0.76 

6 conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192, conv192, pool2x2, 

drop25 flat, dense512, drop25, 

dense256, drop50, dense10 

67.11 

 

60.31 

 

0.47 

 

0.74 

6 

with 

augm

entati

on 

conv48, conv48, pool2x2, drop25, 

conv96, conv96, pool2x2, drop25, 

conv192, conv192, pool2x2, 

drop25 flat, dense512, drop25, 

dense256, drop50, dense10 

66.93 65.71 0.49 0.73 

 

The same model stacks starting from basic two-layer models were repeated for CIFAR100 

dataset as well with similar observations. 

The performance of same models on CIFAR10 and CIFAR100 have huge differences because of 

the limited data available in CIFAR100. The data in CIFAR100 is also fine labeled which causes 

a problem when a shark can be categorized as a whale. The performance on CIFAR10 is 

significantly higher because the data is 10 times more than the data available in the CIFAR100 

for every class. The results in Table IV and Table V proves the concept mentioned in the 

literature review that more layers mean different layer can concentrate on learning different 

features of an image which makes the model more efficient. Data augmentation has resulted in 

improvement in the validation accuracy for both the dataset but the training accuracy dropped. A 

few possible reasons for the drop in training accuracy is that augmentation makes training data 

more difficult then validation data. Augmentation also increases the size of training data by 

multiple times, thus the data becomes huge and the accuracy is checked for the entire dataset. 

4.3  Automatic Image Captioning 

There is no computerized way to detect the performance of this model as the captions generated 

are based on human inference. It is possible that the caption in the test dataset read “Thee men 
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sitting in a park” and the model could predict the image as “Three man sitting on a bench in 

park”. Both the statements are correct for a human but are different for a computer. One 

evaluation matric that was used in the training phase was the loss. The loss should have less 

value, unlike accuracy. The final model after a training of 24 hours, got a loss of 2.65 which is a 

great result. After 24 hours, the training was stopped because the improvement in the model was 

slow. 

The model was able to generate perfect captions for many images as shown in Fig. 14 to Fig. 18. 

There were some minor errors as well in the prediction while some were totally off. For example 

in Fig. 18, the land is classified as water because of the blurry image that could be misinterpreted 

as water. In Fig. 15, the model is able to classify that a person is riding a skateboard but 

skateboard was mostly associated with a slide or a park in the training set, so the model generates 

the caption involving a slide. In this project, the output highly depends on what is present in the 

training set. For example, if a training set has never seen a whale, the model will never predict a 

caption for an image involving a whale. It will be able to predict the whale as a fish in the ocean 

as the training set will have fish. 

There are several datasets available over the internet which could be used for the project but 

these datasets are so huge that they cannot be used for academic purpose. The model could be 

trained on multiple dataset too which will improve the model to a great extent as it would have 

data to learn from and more objects to classify. 

5  Conclusion 
We can say with proof that the deep learning models are not recommended for general data 

science classification or regression problems. The amount of resources that are needed for data 

preparation and training the model are far more costly than the advantages of using these neural 

networks. The neural networks are designed to deal with a level of complex data which cannot 

be solved using standard machine learning algorithms or have bad performance with these 

algorithms. Data science problems involving binary classification or regression can be better 

solved with models like random forest, decision tree, clustering, support vector machine or other 

machine learning models.  

Convolutional neural networks are best recommended for high dimensional data like images and 

video. But the use cases of CNN are simply not limited to visual data as they can also be used for 

natural language processing, music recognition, acoustic modeling and several other 
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applications. Convolutional networks are also not efficient for tasks other than image recognition 

when used without any other neural network. For example, in music recognition, CNN will 

require a recurrent network associated with it to remember the previous melodies. A 

recommended model for these problems is based on the type and size of data along with the 

output expected. If the data is huge and spatial, it is expected to have multiple pooling layers to 

extract the features of the data. It is beneficial to have pooling layer and dropout layer after at 

least two convolutional layers to make sure that they are used correctly and are beneficial. A 

dropout of 0.25 or 0.5 is the best-suited option in the model with 0.25 at the beginning for better 

results. A dropout higher than this could result in poor results. The size of the pool depends on 

the size of input data. For an input of 32x32 in CIFAR dataset, the pooling size of (2x2) is the 

best option to avoid data loss. These parameters are always inter-dependent on each other. 

The recurrent neural network is recommended for natural language or linguistic data or 

sequence-based data. The architecture of these models depends on the prediction or the expected 

output. In the caption generation model, since previous words are used to predict the next word, 

the model returns sequences, which in this case are the previous words. The neural network also 

requires an embedding to convert the indexes into dense vectors. If the output of the RNN/LSTM 

has to go through a flatten and dense layer, it should also have an input_length, which is true in 

our case.  

The project could be improved greatly but there are a few setbacks due to limited computation 

power availability. Several deep learning algorithms require a processing power that is not 

available on a normal laptop or a computer. A normal laptop with high-end configurations and 

GPU was only able to run one data science problem of all the problems and failed on others due 

to memory issues. One of the high-end machine on AWS also took more than 24 hours to train 

the model. This limited availability of resources stopped several improvements like batch 

processing, transfer learning, data stacking and bigger models. The possible future work in the 

project could be to improve on the model by increasing the neural network layer to be more 

precise to features in the data and to use more data. The data classification part of the project is 

an unexplored territory in the deep learning world and could have great potential. The CIFAR 

dataset becomes a base for several deep learning projects and could be used as a base for image 

captioning model too. The caption generation model has a huge scope for improvement. It would 
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be an apt choice to use a combination of Flickr8K, Flickr30K and MS COCO dataset which 

together contains over a million images with a size of more than 16 GB. 
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7  Appendix 

7.1  Source Code 
The source code for the project is available at https://github.com/RajatKabra. 

7.2 Dataset 

• The dataset for data science problems are available at https://github.com/RajatKabra. 

• The CIFAR10 and CIFAR100 dataset are freely available at 

https://www.cs.toronto.edu/~kriz/cifar.html. 

• The Flickr8K dataset can be requested from by filling a form 

http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html. 

7.2  Model Training and data preparation 
The code and process is under the repository and section 2 of the report. The code needs access 

to Google Collaboratory and Amazon AWS account with GPU computation. A step by step 

guide to use AWS account for deep learning is available at 

https://aws.amazon.com/blogs/machine-learning/get-started-with-deep-learning-using-the-aws-

deep-learning-ami/. 

A complete guide to using Google Collaboratory is given here https://medium.com/deep-

learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d. 
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