
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

Image Robust Hashing for Malware Detection
Wei-Chung Huang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Huang, Wei-Chung, "Image Robust Hashing for Malware Detection" (2018). Master's Projects. 625.
DOI: https://doi.org/10.31979/etd.y28j-9k9u
https://scholarworks.sjsu.edu/etd_projects/625

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/625?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Image Robust Hashing for Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wei-Chung Huang

May 2018

c○ 2018

Wei-Chung Huang

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Image Robust Hashing for Malware Detection

by

Wei-Chung Huang

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2018

Mark Stamp Department of Computer Science

Katerina Potika Department of Computer Science

Fabio Di Troia Department of Computer Science

ABSTRACT

Image Robust Hashing for Malware Detection

by Wei-Chung Huang

This research is focused on a novel approach to detect malware based on static

analysis of executable files. Specifically, we treat each executable file as a two-

dimensional image and use robust hashing techniques to identify whether a given

executable belongs to a particular family or not. The hashing stage comprises two

steps, namely, feature extraction, and compression. We compare our robust hashing

approach to other machine learning-based techniques.

ACKNOWLEDGMENTS

I would like to thank my family for their support. Furthermore, I would like

to express my deep gratitude to my research supervisor, Dr. Mark Stamp, for his

patient guidance.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Previous Work . 3

2.2 Malware Images . 4

2.3 Hashing Function . 6

2.3.1 Cryptographic Hashing . 7

2.3.2 Robust Hashing . 7

2.4 Compression . 9

2.4.1 JPEG Compression (Encoding) 9

2.4.2 Channel Coding . 12

2.4.3 Distributed Source Coding 16

2.5 Image Features . 17

2.5.1 Local Feature . 17

2.5.2 Global Feature . 19

2.6 Support Vector Machines . 24

2.6.1 SVM Overview . 24

2.6.2 Training Phase . 25

2.6.3 Scoring Phase . 26

3 Implementation and Result . 28

3.1 Dataset . 28

vi

vii

3.2 Classification . 31

3.2.1 Machine Learning-Based 31

3.2.2 Robust Hashing-Based . 36

3.3 Detection . 47

3.3.1 Machine Learning-Based 47

3.3.2 Robust Hashing-Based . 52

3.4 Discussion . 56

3.4.1 Machine Learning-Based 56

3.4.2 Robust Hashing-Based . 57

3.4.3 Comparison . 58

4 Conclusion and Future Work . 60

4.1 Conclusion . 60

4.2 Future Work . 61

LIST OF REFERENCES . 63

LIST OF TABLES

1 Example of generating parity bit in Hamming(7, 4) 15

2 A view of error-correcting in Hamming(7,4) 16

3 MALIMG Dataset. 29

4 AUC results with the different threshold approaches. 50

5 AUC results with the different hashing approaches. 54

viii

LIST OF FIGURES

1 Visualizing malware as an image. 5

2 These three malware images are type of Trojan Downloader which
is belonging to the same family named Swizzor.gen!E. 5

3 More example of malware images. The left three images are family
Agent.FYI. The right top three images are C2LOP.P, and the right
bottom three images are Alueron.gen!J 6

4 Various sections of an malware image sample. 6

5 Process of robust hashing. 8

6 Source image of JPEG compression. 11

7 8x8 DCT coefficients . 12

8 Quantized 8x8 DCT coefficients 13

9 An example of zig-zag scan of the DCT coefficient map. 13

10 Hamming(7,4) example. 14

11 Distributed source compression. 17

12 Process of extracting LBP feature. 18

13 Process of extracting HOG feature. 19

14 Process of obtaining the horizontal edge map (from left to right). 20

15 Feature vector of horizontal-edge. 20

16 Feature vector of horizontal-edge. Side-by-side comparison with
the source image. 21

17 Wavelet decomposed image for each level (sub-bands). 23

18 Separating hyperplane with maximizing margin. 24

19 SVM kernel trick. 26

ix

x

20 Examples of benign images. 28

21 Malware images belonging to different families. 30

22 Classification accuracy using the local feature. 32

23 Classification accuracy using the global feature. 33

24 UFS result of all 6 types of features based on malware accuracy. . 34

25 RFE result on horizontal-edge feature. 35

26 Confusion matrix of classifying all 25 families using reduced
horizontal-edge. 35

27 Classification result with error-correcting approach over 25 families. 37

28 Accuracy in different wavelet transform level. 38

29 Overview of distributed coding scheme. 39

30 Classification result with distributed coding approach over 25 fam-
ilies. 40

31 Accuracy with different horizontal segments in distributed coding
approach. 41

32 Classification result with multi-phase approach over 25 families. . 43

33 Robust hashing with different approaches. 44

34 Image view of family Autorun.K and Yuner.A. 45

35 Comparison of different features and channel coding types. 46

36 Minimum and maximum probability in each family. 48

37 Relationship between the threshold and the number of families. . 49

38 Benign detection accuracy over top k performed families. 49

39 ROC of malware detection by using SVMs with the threshold is
evenly distributed. 50

40 ROC of malware detection by using SVMs with the threshold is
using the minimum probability. 51

xi

41 AUC view of different threshold approaches. 52

42 ROC of malware detection by using error-correcting approach of
robust hashing. 54

43 ROC of malware detection by using distributed coding approach
of robust hashing. 55

44 ROC of malware detection by using multi-phase approach of robust
hashing. 55

CHAPTER 1

Introduction

Malware is software that is intentionally designed to cause harm to computer

systems [1]. Due to our heavy reliance on computers in general, and software in

particular, malware detection is a vitally important topic in information security.

Signature scanning (i.e., pattern matching) is the most common form of malware

detection, and hence malware writers have developed many concealment strategies

aimed at defeating standard signature scanning techniques [1]. These concealment

strategies result in malware families consisting of large numbers of related malware

variants. In such cases, malware detectors must focus on strategies aimed at entire

families, rather than individual malware samples.

Malware detection can be based on static analysis or dynamic analysis, or a

combination of the two. As the names suggest, static malware detection is based on

features that can be extracted without executing (or emulating) the code. For exam-

ple, mnemonic opcodes are an example of a static feature [2, 3]. On the other hand,

dynamic malware detection inspects the behavior of software, that is, the software is

executed (or emulated) and features are extracted. In any case, the resulting features

are then used to classify samples as malware or benign. In this research, we rely on

static features and we apply techniques from image robust hashing [4] and machine

learning to analyze these features

The remainder of this paper is organized as follows. In Chapter 2 we discuss

relevant background topics, including the malware data format in Section 2.2, the

introduction of robust hashing in Section 2.3 and Section 2.4, the features and machine

1

learning techniques that we use will be discussed in Section 2.5 and Section 2.6. In

Chapter 3 we discuss our dataset in Section 3.1 and show the experiment result in

Section 3.2 and Section 3.3. Then Section 3.4 gives the comparison of the result from

using robust hashing approach to other machine learning-based techniques. In the

end, we give the conclusion and discuss the future work in Chapter 4.

2

CHAPTER 2

Background

2.1 Previous Work

In [5] they visualized raw binary data in executable files such as data files and

process memory as image, in [6] they proposed a method to visualize and classify

malware using image processing techniques where they are mainly used to extract

features to be classified. In [6] they concluded that the variation caused by conceal-

ment strategies would be ignored if we view them as an image. In [7], Tian et al

suggest that the function length plays a significant role in classifying Trojans and

they achieved 88% average accuracy over 7 different types of Trojans and 721 mal-

ware samples. In contrast to [7], [6] uses GIST [8] feature and the classifier, k-nearest

neighbors, to obtain average classification accuracy of 98% on 9,458 samples with 25

malware families.

In [4] they proposed a robust image hashing to handle the proliferation of digital

images where it can be used in many applications such as managing huge image

databases, image indexing, or image authentication [9, 10, 11]. Especially for the

hashing method of [11], it uses both global and local features where global features

are based on luminance and chrominance, and local features are based on the image

textures whereas in [12] they discussed the mathematical framework for the studies

of texture perception.

The scheme of feature extraction in the robust image hashing was proposed

by [13] where the research partitioned the process of retrieving an image hash into

two steps, feature vector extraction and compression. The extracted feature in [13]

3

was also proposed by the same author of earlier research in [14]. And [15] showed an

evidence of distinguishing malicious manipulations from JPEG compression which is

based on the Discrete Cosine Transform (DCT) coefficient. The methods of [4] include

an image feature extraction by using a wavelet decomposition, a quantization, an

error-correcting, and a hash value measurement which is called equality percentage

(EP), the percentage of equal vector components. [4] also achieved close to 100%

EP for resistance to attacks in 100 images and achieved 45% to 65% for the test of

collision with unrelated images.

Another novel robust image hashing was found in [16], which proposed a dither-

based secure image hashing using distributed coding. The research had adopted the

idea of distributed source coding with Wyner-Ziv encoder [17] and a dithering process

which can be viewed as a side information in the distributed coding scheme and as

a way to amortize a quantization error for the similar input. Based on Wyner-Ziv

encoder, [16] proposed to treat the syndrome as the final hash value. In the experiment

result, [16] tested for 3 images in 12 variation attacks and got 16% difference in

Hamming distance manner. Moreover, the research tested 15 pairs of distinct images

on a collision experiment then achieved about 40% difference in hamming distance

manner.

2.2 Malware Images

As [6] proposed, Nataraj et al transformed a malware executable file into a two-

dimensional image. Basically, the transformation process takes the raw byte data

in an executable file as a pixel value, and then concatenate every byte (gray-level

pixel) to form a two-dimensional image. Figure 1 shows the process how it works. It

is worth to note that when generating a two-dimensional image it takes width and

4

height as a factor but here it only has the overall image length, which is the size of

width plus the size of height.

Figure 1: Visualizing malware as an image.

The malware obfuscation might be mitigated when viewing it as an image. Some

malware pictures that are shown in Figure 2 indicate the similarity between different

variations of the same family. Figure 3 includes more examples for different families.

If we look closely at the transformed executable files in Figure 4, it is clear to tell that

there are some fragments showing the structure of the executable file. For example,

.rdata section represents read-only data such as literal strings and debug directory

information, and black padding sections show the zero padding. More detail about

the binary fragment can be found in [18].

Figure 2: These three malware images are type of Trojan Downloader which is be-
longing to the same family named Swizzor.gen!E.

5

Figure 3: More example of malware images. The left three images are family
Agent.FYI. The right top three images are C2LOP.P, and the right bottom three
images are Alueron.gen!J

Figure 4: Various sections of an malware image sample.

2.3 Hashing Function

In some sense, hashing means a mapping from something to something. From

the perspective of computer science, a hash function is any function that maps the

6

data to a specific data of fixed size. On the one hand it provides an efficient way to

retrieve the data from a given hash value. On the other hand, different data could

be mapped to the same hash value, that is, collision. Here we skip normal hash

functions, instead, we look into two specific types of hashing, cryptographic hashing,

and robust hashing.

2.3.1 Cryptographic Hashing

A cryptographic hash function generally is used in cryptographic applications,

such as signature identification [19], and some hashing functions such as MD5 and

SHA-1 or even the improved version [20] are pretty popular nowadays. The reason

why it is suitable for cryptographic uses due to the following properties have to be

satisfied [21].

∙ Deterministic: No matter what size of input, it will output the small fixed

number of bits.

∙ Efficiency: It has to be efficient to compute any give data.

∙ One-way: It is infeasible to construct a message from its hash value except for

doing an exhaustive search.

∙ Collision-resistance: It is infeasible to find a collision.

∙ Sensitivity: A small change of the input message causes the hash value exten-

sively.

2.3.2 Robust Hashing

The significant difference from cryptographic hashing is that robust hashing tends

to preserve the change of the message, that is, sensitivity property is traded off

7

such that it creates more collision. Although it sounds a little counter-intuitive,

it can be used to identify similar messages or data object. Clearly, it is a good

technology for authentication problems. For example, Biometric Authentication [22],

Image Watermark authentication [9], or Image Indexing [4].

As mentioned before, many applications of robust hashing are surrounded by

the field of image applications. Usually, images are subject to many modifications

such as JPEG compression, image adjustment, or malicious modification. Even those

modifications are applied, the modified images still look the same or similar. Ob-

viously, that adjudgment is based on the decision from human, not computer. So

robust hashing comes into the picture. Its goal is to identify similar visual look of

images by hashing them to the same hash value. And basically, the process of image

robust hashing can be seen at Figure 5 proposed by [13]. In Figure 5, the feature

extraction step is about to retrieve useful information in the image, and the goal of

compression step is, explicitly, to compress the intermediate hash value, or implicitly,

to reduce minor difference or noise such that similar hash values can be clustered to

the same group.

There are two main approaches proposed in the step of compression, [4] proposed

using an error-correction decoding to cancel small perturbations, and [16] proposed

using distributed source coding schema comprising a dithering process and a Wyner-

Ziv Encoder [17].

Figure 5: Process of robust hashing.

8

2.4 Compression

Data compression has been widely used in many fields, for example, audio pro-

cessing, video processing, or data transmission, cryptographic, etc. Simply speaking,

it is about to compress the data by eliminating the less informative portion of data.

In terms of digital signal, it reduces bits from the original data bit-stream. Data com-

pression can be categorized into lossless and lossy compression. As the name suggests,

lossless compression reduces the size of data by eliminating statistical redundancy,

whereas lossy compression aggressively removes “unnecessary” bits. In this research,

we are more interested in lossy compression since the difference introduced in the

intermediate hash value are expected to be compressed or removed. Furthermore,

we choose to use the well-known compression technique based on an image, that is,

JPEG compression, since the data format in our research is a two-dimensional image.

2.4.1 JPEG Compression (Encoding)

JPEG stands for Join Photographic Experts Group, is a very common lossy

compression method used in 2D digital images. It is a lossy compression based on

the frequency domain, that is, the Discrete Cosine Transform (DCT) comes into the

picture. Rather than introducing its tedious history, we briefly explain the major

steps that are used in the compression.

1. Discrete Cosine Transform (DCT)

DCT is generally compared with the Discrete Fourier Transform (DFT), where

they both aim to decompose a discrete-time vector from the spatial domain

to frequency domain with using different basis functions. DFT uses a set of

complex exponential functions while DCT uses cosine functions. Despite several

variants of the DCT, we choose the most common form, the DCT, or called

9

DCT-II. We compute a 1D DCT-II as

𝑋𝑘 =
𝑁−1∑︁
𝑛=0

𝑥𝑛 cos

[︂
𝜋

𝑁

(︂
𝑛+

1

2

)︂
𝑘

]︂
𝑘 = 0, ..., 𝑁 − 1

where the 𝑁 real numbers 𝑥𝑖 are transformed into the 𝑁 real numbers 𝑋𝑖.

Hence, a 2D DCT-II is given by

𝑋𝑘1,𝑘2 =

𝑁1−1∑︁
𝑛1=0

𝑁2−1∑︁
𝑛2=0

𝑥𝑛1,𝑛2 cos

[︂
𝜋

𝑁2

(𝑛2 +
1

2
)𝑘2

]︂
cos

[︂
𝜋

𝑁1

(𝑛1 +
1

2
)𝑘1

]︂
In the normal process of JPEG compression, an 8x8 pixel-based block-wise DCT

is applied to produce DCT coefficient matrices which represent the response to

particular frequency revealing a frequency distribution. The following shows

an example of DCT transformation with the source Figure 6 and a coefficient

view applied with 8x8 blocks in Figure 7. As it shows, the overall structure

is visually recognizable due to the high frequencies along with the edges. This

observation is also proven by the fact that humans are more sensitive to the

energy of high frequency than the low frequency in an image. Hence, the next

step of the JPEG compression is to reduce the low-frequency part of the image.

2. Quantization

This quantization step takes the most critical and also the unique part of com-

pression. In general, quantization is a process of constraining the data from a

large set to a small set. For instance, converting a real number to an integer

number is always a good example. However, the metric that is used in quan-

tization really depends on the application. A good metric would result in a

good compression (low distortion rate) while a bad metric might just reduce

the set size abruptly. Recall that for the JPEG compression, we want to keep

informative data (high frequency) and reduce the low-frequency part where hu-

mans can rarely distinguish the difference. Since we have a DCT coefficient

10

Figure 6: Source image of JPEG compression.

map, it is common to quantize by dividing it with an 8x8 matrix, or so-called

Quantization Matrix where having larger matrix values in low frequencies and

smaller values in high frequencies. Figure 8 shows an example of quantization

by reducing low frequent bits from the DCT coefficient map in Figure 7.

3. Zig-Zag Scan

Since the low frequent bits are reduced, the DCT coefficient map may contain

continuous zero values. As Figure 9 denotes, this step introduces a way to

generate a coefficient vector by starting from the high frequency to the low

frequency in a zig-zag order. On one hand, a general JPEG compression can

use Huffman coding on what is left to reduce the data size. On the other hand,

the vector can be served as a frequency distribution of the given image.

11

Figure 7: 8x8 DCT coefficients

2.4.2 Channel Coding

Channel coding is a term for the error control which is used in a communication

system. In the telecommunication theory, messages are sent as a bit-stream and are

subject to channel noise. Thus, some error could be introduced from the sender to

the receiver. Error control and then comes into the picture to either detect or correct

the error, that is, ensuring the message received at the receiver is likely the same as

the original as possible. For the error correction, there are two main ways to deal

with by sending extra bits along with the message as a header or “solution”. The first

one is Automatic Repeat Request (ARQ), where the receiver will request a resend if

an error is detected. The second one is Forward Error Correction (FEC), where no

resend request is made but the message would be encoded in some way to be able to

12

Figure 8: Quantized 8x8 DCT coefficients

Figure 9: An example of zig-zag scan of the DCT coefficient map.

13

be recover. In our research, we are more interested in viewing the difference from each

image with the same family as the channel noise, and then we adopt a well-known

error-correcting method, Hamming codes [23], to eliminate the noise (differences).

2.4.2.1 Hamming Encoding

Hamming codes is a family of linear error-correcting codes. It has the ability

to correct the message given to the following conditions. Given an integer 𝑟 ≥ 2,

there is a codeword with length 𝑛 = 2𝑟 − 1, and message length 𝑘 = 2𝑟 − 𝑟 − 1. For

instance, Hamming(7, 4), which is a popular configuration in the Hamming codes,

can correct 1 bit error by carrying 4 bits data with 3 extra parity bits. Figure 10

shows the concept of how it works. Within the 7 bits transmitted message, 𝑝1, 𝑝2, 𝑝3

are the parity bits and 𝑑1, 𝑑2, 𝑑3, 𝑑4 are data bits. As the figure shows, 𝑝1 determines

𝑑1, 𝑑2, 𝑑4 so on and so forth. In other words, 𝑑1 only contributes 𝑝1 and 𝑝2, 𝑑2 only

contributes 𝑝1 and 𝑝3. This implies that if 𝑑1 is flipped, then only 𝑝1 and 𝑝2 will be

affected. However, the problem would become how to associate each parity bit with

data bit such that we can validate 𝑝1 and 𝑝2 with 𝑑1 accordingly. Fortunately, 𝑝1 can

also be validated by 𝑑2 and 𝑝3.

Figure 10: Hamming(7,4) example.

14

The idea behind is using an even parity check. Given the coverage of the diagram

in Figure 10, each parity bit will be determined by satisfying an even count of bits

with the followed data bits. For example, Table 1 shows an example of how to produce

𝑝1 by its coverage. If 𝑑1 and 𝑑2 is 0 and 𝑑4 is 1, and then 𝑝1 will be set to 1. These

parity bits are also called the syndrome vector, which will be transmitted along with

the message.

Table 1: Example of generating parity bit in Hamming(7, 4)

𝑝1 𝑑1 𝑑2 𝑑4
0 0 0 0
1 0 0 1
1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1
0 1 1 0
1 1 1 1

2.4.2.2 Hamming Decoding

In the decoding stage, we briefly introduce how to use the syndrome to recon-

struct the original message. Follow the discussion above, once the syndrome is pro-

duced, we can simply validate or locate the error bit by utilizing its even-count prop-

erty. Strictly speaking, the received syndrome will be used to check if the even-count

property is still held. If not, then we claim that there is an error in the specific

coverage. Table 2 shows the un-satisfied condition for each possible transmitted bit

is flipped. For example, assume 𝑑1 is flipped, after checking the even-count property,

the coverage will give a unique combination to indicate 𝑑1 is flipped. That is, we

know 𝑑1 is altered because 𝑝1 and 𝑝2 are not satisfied as expected. As Table 2 sug-

15

gests, each flipped bit will cause a unique 3-bit combination. Therefore, by using this

mechanism, some channel noise can be corrected.

Table 2: A view of error-correcting in Hamming(7,4)

coverage 𝑑1 𝑑2 𝑑3 𝑑4 𝑝1 𝑝2 𝑝3
𝑝1 → 𝑑1 𝑑2 𝑑4 x x o x x o o
𝑝2 → 𝑑1 𝑑3 𝑑4 x o x x o x o
𝑝3 → 𝑑2 𝑑3 𝑑4 o x x x o o x

2.4.3 Distributed Source Coding

Distributed source coding (DSC) [24] is a concept of reducing the computational

burden from an encoder side. But it is subject to multiple correlated information do

not communicate with each other. How it works is by putting some information to

the decoder as a side information. Take video compression as an example. Assume

we have many embedded camera sensors deployed around Central Station to collect

pictures for an arbitrary analysis. The simple approach is letting each sensor encodes

a picture, sends it back to the server, and then the server will decode it accordingly.

However, what if there are some image noise need to be cleared, each sensor will then

have to apply a de-noise task before the compression and transmission. This certainly

reduces an overall efficiency because the noise each sensor received is similar. As a

result, DSC comes into the picture, the noise will be viewed as a side information and

acquired directly on the decoder side.

Wyner-Ziv encoder [17] is a famous example where it argues that a Wyner-Ziv

coder depends almost only on the source data, not the side information. Also, [16]

gives a conceptual view of DSC in Figure 11.

16

Figure 11: Distributed source compression.

2.5 Image Features

There are many kinds of features in the field of image classification. In general,

it can be categorized to local and global features. The local feature represents the

modifications or differences in a small region of interest, such as textures. On the other

hand, global feature tends to represent the global structure of images, for example,

edges. By observing some malware images, we decide to use the following eight

features from local and global groups and two of global features are used in robust

hashing. It is also worth noting that malware images are all in gray-level view, that

is, we only consider one-channel cases.

2.5.1 Local Feature

The local feature is commonly used in texture analysis, texture synthesis. Al-

though there is no strict definition of texture, normally, people will say the repeated

patterns can be viewed as texture. Here we use two common local features attempting

to extract the repeated patterns of malware image.

17

2.5.1.1 Local Binary Patterns

In the recent decade, Local Binary Patterns (LBP) is a well-known texture de-

scriptor in facial recognition [25]. The idea of LBP is extracting the local pixel

contrast while preserving the information of pixel position. Figure 12 shows the uni-

form LBP feature extraction process. Basically, the image is separated by blocks, and

each block is divided by cells, and each cell computes a histogram with respect to the

center of the cell. Finally, combine those local histograms so that we will get an LBP

descriptor of a feature vector.

Figure 12: Process of extracting LBP feature.

2.5.1.2 Histogram of Oriented Gradient

Another texture descriptor is Histogram of Oriented Gradient (HOG). Similar

to other scale-invariant feature transform descriptors, HOG has been wildly used in

object detection because of its robustness on appearance, geometric and photometric.

For example, human detection [26]. Unlike LBP using contrast, HOG uses a gradient

as its local descriptor. However, they share the process of dividing an image into

blocks and cells. Figure 13 shows how orientation histograms produce the feature

vector.

18

Figure 13: Process of extracting HOG feature.

2.5.2 Global Feature

As the name suggests, the global feature is focusing on the entire image object

instead of local regions. In other words, the global feature can reflect the struct of

images. We observed that there are many commonplaces with respect to structure

such as black lines, lightness, and overall similarity.

2.5.2.1 Horizontal Edge

Edge is a very strong feature that has been widely used in many digital image

processing applications. It can also be used in combined with other techniques or

be used standalone. In our problem, we focus on those horizontal black lines with

regards to its vertical position. That is, we want to extract the distribution of all

horizontal edges in the image by projecting the magnitude on the edge map onto a

one-dimensional space. Figure 14 shows the flow of feature extraction process. Note

that we apply a low-pass filter in the middle process to enhance the edge.

To deal with the variant size of images, the pixel-based edge extraction could

be too sensitive to have a good representation. Therefore, instead of pixel-based

approach, we project it block-by-block. Figure 15 shows the distribution after the

projection. To better show the relationship between the feature and the source image,

19

Figure 14: Process of obtaining the horizontal edge map (from left to right).

Figure 16 displays a side-by-side comparison in which the middle figure is the rotated

view from Figure 15.

Figure 15: Feature vector of horizontal-edge.

2.5.2.2 Pixel Intensity

The idea of this feature is to find the image-to-image similarity by measuring all

pixel intensity values. Due to the variant size of images, we compute the pixel mean

value based on grids over an entire image.

20

Figure 16: Feature vector of horizontal-edge. Side-by-side comparison with the source
image.

2.5.2.3 Contrast

Contrast is one of the features that has been broadly used. Intuitively, contrast

tells us the variance for the brightness and darkness with regards to two different

image regions. However, it is not straightforward to present the difference with more

than two objects in a single value or vector. As a result, histogram comes into the

picture, and we generate a histogram for an entire image as a feature vector.

2.5.2.4 Median Filter

A median filter is one of the low-pass filters for which many de-noise techniques

are used to apply. As other low-pass and high-pass filters, the median filter does a

convolution on the image but with different window operator. Unlike average filter

and Gaussian filter, median filter tends to preserve the edge while smoothing images.

So it becomes a good candidate in our malware image analysis.

21

2.5.2.5 Frequency Distribution

Based on the concept of JPEG compression, we can generate a frequency dis-

tribution for an image by taking the quantized DCT coefficient into account. Recall

that in JPEG compression, we apply the DCT to acquire a coefficient matrix for each

8x8 pixel block. Then we quantize the matrix to reduce less informative data, par-

ticularly for the low-frequency part. Finally, we re-order the matrix in a zigzag scan

manner to place each particular frequency in a descending order. Hence, if we want

to get a frequency distribution to represent the whole image, we then collapse each

distribution for each 8x8 pixel block to construct an overall distribution where the

high-frequency energy part of the image falls into the top position and low frequent

part to the end position. In sum, this frequency distribution tells the variance of

visual look in terms of frequency regardless of its position.

2.5.2.6 Statistical Features based on Wavelet Transform

Regardless of the heavy mathematical structure of the wavelet transform [27],

we are more interested in extracting some statistical features based on a frequency

domain. Very roughly speaking, the wavelet transform can be used to analyze the

signal in the frequency domain with a temporal information, unlike Fourier transform,

it more focuses on the precise frequency analysis. Furthermore, wavelet transform has

been widely accepted to use on many image processing analysis.

In our case, we decompose the image to several sub-bands as shown in Figure 17.

We then compute some statistical features from each band. For example, we compute

the mean pixel value on the coarse band and the variance on the fine band. To increase

the resolution of the feature, we tilt each sub-band image into multiple blocks and

then apply the extraction accordingly. One reason we extract different feature on the

22

different band is due to the information gain by the given band. For example, the

coarse band provides fewer details but more overviews. Lastly, we concatenate each

value to form a feature vector and apply a uniform quantizer 𝑄 to produce a length-𝑙

vector 𝑥 = 𝑄(statistical features) ∈ {0, 1, ..., 127}𝑙

Figure 17: Wavelet decomposed image for each level (sub-bands).

23

2.6 Support Vector Machines

Among those well-known machine learning techniques, Support Vector Machines

(SVM) [28] is a supervised learning and a powerful tool which has been widely used

in many machine learning problems due to its efficiency and simplicity. Especially

for the classification, unlike an HMM or PCA which typically generates scores, SVM

produces the direct classification result. Therefore, SVM is always a good starting

tool to address classification problems.

2.6.1 SVM Overview

From the perspective of classification, a good classifier should separate each class

clearly. In other words, there are one or more hyperplanes that can split the training

samples into the corresponding classes. And SVM comes into the picture. Figure 18

gives an overview. In general, there are four ideas behind SVM as following.

Figure 18: Separating hyperplane with maximizing margin.

24

∙ Separating hyperplane

For typical SVM, we are used to indicating a binary classification. Therefore,

one of the goals of SVM is to find a hyperplane that can separate two labeled

data. The hyperplane here means a space with 1 less dimensionality than the

original space.

∙ Maximize the margin

Not only finding a separating hyperplane, SVM tends to maximize the margin

between training data and the hyperplane. One of the significant advantages

is that it can have more space to classify the data. On the other hand, a

disadvantage is the margin could be affected by an outlier, fortunately, SVM

has a mechanism to deal with this, that is, support vectors.

∙ Classify in a higher dimensional space

Sometimes the data is bare to be separated in its own space or dimension,

however, in the context of SVM, it provides a way to transform the original

space to higher space in order to get a more clear view for the data.

∙ Kernel trick

To transform the data to higher space brings a significant drawback, which is

heavy computation. However, as the name suggests, this kernel trick plays an

important role to transform the data with much less computation overhead.

Figure 19 shows data separation in different view of dimensions.

2.6.2 Training Phase

Since SVM is a supervised learning having labels with 1 and -1 as an example

of binary classification. As mentioned before, the goal of SVM is to find a separating

25

Figure 19: SVM kernel trick.

hyperplane with maximizing its margin to training sample points. As a result, an

optimization problem comes into the picture. To be more specific, the problem of

SVM training becomes an optimization problem. The general training steps are given

below.

1. Given a set of labeled training samples 𝑋𝑖 where 𝑖 = 1, 2, ..., 𝑛 with the corre-

sponding class in labeled value 𝑧𝑖 ∈ {+1,−1}.

2. Choose a kernel function 𝐾 and a regularization parameter 𝐶 > 0 , where 𝐶

indicates the tolerance of the margin.

3. Obtain 𝜆𝑖 and 𝑏 by solving the optimization problem

Maximize : 𝐿(𝜆) =
𝑛∑︁

𝑖=1

𝜆𝑖 −
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜆𝑖𝜆𝑗𝑧𝑖𝑧𝑗𝐾(𝑋𝑖, 𝑋𝑗)

Subject to :
𝑛∑︁

𝑖=1

𝜆𝑖𝑧𝑖 = 0 and 𝐶 ≥ 𝜆𝑖 ≥ 0 for 𝑖 = 1, 2, ..., 𝑛

2.6.3 Scoring Phase

To score the testing sample, by leveraging the hyperplane, SVM simply plug the

testing sample in the trained hyperplane and check the direction with respect to the

labeling training data.

26

1. Given a testing sample 𝑦 and obtain a score.

𝑓(𝑦) =
𝑠∑︁

𝑖=1

𝜆𝑖𝑧𝑖𝐾(𝑋𝑖, 𝑦) + 𝑏

where 𝜆𝑖 and 𝑏 is computed from the training phase and s is the number of

support vectors

2. Classify the score according to

𝑐(𝑦) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑓(𝑦) > 0,

−1 otherwise

27

CHAPTER 3

Implementation and Result

3.1 Dataset

The dataset we use from [6] is called MALIMG dataset. As Table 3 shows,

this dataset consists of total 9,342 grayscale images of transformed binaries from 25

families including family type Wrom, Trojan, Backdoor, PWS, and etc. Figure 21

gives an overview of malware images belonging to various families. The detail of how

does an executable file transform from the raw binary to a two-dimensional image can

be found in Section 2.2. To construct our benign samples, we use 120 executable files

that can be downloaded for free online and passed the antivirus software we have, for

example, the 360 Total Security. The benign executable files include PHPSetup.exe,

Audio Record Wizard.exe, WindowsDeviceRecoveryToolInstaller01.exe, and etc. To

make the samples comparable, we also convert them to grayscale images. By doing

this, we obtain 120 grayscale images of benign samples. Figure 20 shows some benign

images that are transformed from various executable files.

Figure 20: Examples of benign images.

28

Table 3: MALIMG Dataset.

No. Family Name Family No. of Variants
1 Allaple.L Worm 1591
2 Allaple.A Worm 2949
3 Yuner.A Worm 800
4 Lolyda.AA 1 PWS 213
5 Lolyda.AA 2 PWS 184
6 Lolyda.AA 3 PWS 123
7 C2Lop.P Trojan 146
8 C2Lop.gen!G Trojan 200
9 Instantaccess Dialer 431
10 Swizzor.gen!I Trojan Downloader 132
11 Swizzor.gen!E Trojan Downloader 128
12 VB.AT Worm 408
13 Fakerean Rogue 381
14 Alueron.gen!J Trojan 198
15 Malex.gen!J Trojan 136
16 Lolyda.AT PWS 159
17 Adialer.C Dialer 125
18 Wintrim.BX Trojan Downloader 97
19 Dialplatform.B Dialer 177
20 Dontovo.A Trojan Downloader 162
21 Obfuscator.AD Trojan Downloader 142
22 Agent.FYI Backdoor 116
23 Autorun.K Worm:AutoIT 106
24 Rbot!gen Backdoor 158
25 Skintrim.N Trojan 80

29

Figure 21: Malware images belonging to different families.

30

3.2 Classification

Before we dive into the detection process, it is always worth to evaluate how well

the selected features are and how good the model is. General speaking, if we can

properly classify the malware families with the selected features and classifiers, those

features and models are then played as a good representation in some sense.

3.2.1 Machine Learning-Based

From a high volume of machine learning techniques, we pick SVM as our clas-

sifier due to its robustness, simplicity, and efficiency. Therefore, in this section, the

discussion will be covered from feature selection to the classification result.

3.2.1.1 Feature Selection

In the machine learning-based approach, we use 2 global and 4 local features in

the experiment. Those are LBP, HOG, Horizontal-Edge, Pixel Intensity, Contrast,

and Median Value. Although there are many types of feature in image processing,

the reason we only pick total 6 kinds of features in our experiment is that malware

image provides limited information. All we can perceive is not really human readable,

for example, most of the images consist of noise and line segments. As a result, we

do not use a feature such as color, saturation or SIFT, which is commonly used in

object detection.

3.2.1.2 Parameter Tuning

In our parameter tuning, we classify all 25 families with smaller data set by

five-fold cross-validation for each type of features and take as much parameter sets

as possible. The goal is to find the “best” parameter set in terms of every individual

31

type of features. Figure 22 shows the accuracy with respect to different settings in the

certain type of feature for the global features, and Figure 23 shows the same result

for the local features.

Figure 22: Classification accuracy using the local feature.

It is worth noting that in Figure 22, the global features do not perform well in

the case of malicious images, the highest accuracy is less than 80%. Whereas the local

features in Figure 23 outperform the global one, they nearly achieve 90% accuracy.

And this can be explained by the fact that the malware images are dominated by

noises and lead to a bad accuracy.

3.2.1.3 Feature Reduction

In the context of classification, we would like to reduce those unrelated feature

dimensions to keep a good consistency. As a result, we proceed a feature reduc-

tion process in two steps, Univariate Feature Selection (UFS) and Recursive Feature

Elimination (RFE).

1. Univariate Feature Selection (UFS)

In this step, we take each type of features to feed into our classifier then keep the

32

Figure 23: Classification accuracy using the global feature.

best one in terms of accuracy, then based on the selected one, we combine with

the rest features to generate a two-types feature up to total 6. Figure 24 depicts

a bar chart for the experiment. Surprisingly, one of the features outperforms

the others, and it is the horizontal-edge feature.

2. Recursive Feature Elimination (RFE)

According to the result from UFS, we pick the feature with a highest accuracy

as an input in the RFE process. But the length of dimensionality is still too

high, for example, 256 dimensions in our case. Thus, we run a feature reduction

process. RFE is an iterative process to eliminate feature dimension. In brief, it

removes a dimension, re-trains the rest of dimensions, and removes so on and so

33

Figure 24: UFS result of all 6 types of features based on malware accuracy.

forth. The result can be seen in Figure 25. The accuracy is getting lower when

we reduce the dimension to 20% of original dimensions (50 out of 256), and this

is because the horizontal-edge is designed to represent the whole structure of

an entire image. Thus, even though cutting the dimensions to 50 can reduce

more space, we pick the one with the maximum accuracy in the number of 169

dimensions.

3.2.1.4 Result

In our classification experiment, We achieved 92% overall accuracy on 25 families

with five-fold cross-validation using reduced feature in SVM classifier. Figure 26 gives

a confusion matrix view for more classification detail.

34

Figure 25: RFE result on horizontal-edge feature.

Figure 26: Confusion matrix of classifying all 25 families using reduced horizontal-
edge.

35

3.2.2 Robust Hashing-Based

Recall that in Figure 5, a general robust hashing has two major steps, feature

vector extraction and compression. In this project, we implemented two approaches

from [4] and [16], and then we conducted an improvement based on those two methods.

The following sections will discuss each approach in detail from the step of feature

extraction to classification.

3.2.2.1 Error-Correcting Approach

This approach is based on [4], using a wavelet feature and a error-correcting

decoder. The general idea is that extract some statistical information (features) from

different frequency bands and then put those features altogether by eliminating small

difference leveraged an error-correcting decoder.

Under this approach, with 25 families and five-fold cross-validation we achieve

79% average accuracy and 90% while taking 19 families into account. Figure 27

gives more detail. Specifically, we use a 2D Haar-wavelet transform with 5 levels

decomposition and apply an uniform tilting for each sub-band to form a feature

vector. And then we use a scalar quantization to normalize the feature vector with

128 scales. After all features are acquired, we choose Hamming(7, 4) decoder to

correct the sequence of quantized 7-bits value to generate a vector representing an

image from one family.

∙ Implementation

We compute a representative hash value for a certain family by taking the mean

hash values from the training set. And therefore, we will have multiple keys to

form a model to indicate which hash value should belong to which family. For

36

Figure 27: Classification result with error-correcting approach over 25 families.

example, we classify a sample 𝐼 to 𝐼𝑖 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐼, 𝐼𝑖) is the minimum Euclidean

distance for 𝑖 = 1 to 25.

Furthermore, Figure 28 gives another view while using wavelet features in our

application. For the first and the second (from left to right) bin, it shows that

the fewer wavelet level is used, the fewer information is gained, therefore the

accuracy is compromised. However, if we fix the wavelet level while increasing

the number of tilting blocks, the accuracy is increasing as shown in (5, 5)

setting to (5, 10) in the same figure. In other words, the result suggests that

the more wavelet levels and blocks not only increase the chance of acquiring the

information but also improve the accuracy.

37

Figure 28: Accuracy in different wavelet transform level.

38

3.2.2.2 Distributed Coding Approach

From the idea of distributed coding [16] and its diagram Figure 29, we know

that we could put a side information (which is dither in our case) as another secret

key in a hashing and produce less side effect to the hash value. And from [29], we

implement Wyner-Ziv encoder by using a JPEG compression along with Hamming

code to produce the syndrome as the final hash value.

Figure 29: Overview of distributed coding scheme.

Overall we achieve 83.34% classification accuracy over 25 families by using five-

fold cross-validation. Compared with the error-correcting approach, it improves 4%

accuracy. However, the dithering process is not a cheap work, it dramatically reduces

the efficiency more than 10 times. And therefore, we isolate the dithering step to

keep good efficiency with less impact on the accuracy, that is, we are able to maintain

almost 83% accuracy and a consistent performance from the previous approach. As

Figure 30 shows, without dithering, the overall accuracy is 82.63%, and 90% accuracy

can be reached if we only discard 3 families over 25 families.

∙ Implementation

39

Figure 30: Classification result with distributed coding approach over 25 families.

There is one adjustment we put in this approach. In feature extraction step,

not only we take each DCT block to generate a frequency distribution then

produce the feature vector, but also we separate a source image into several

horizontal segments before extracting features. The reason we do this way is

we observe that the major visual difference between each family is the position

of those horizontal lines in an image. Hence, we believe that we can extract

better information by segmenting some horizontal blocks. Figure 31 shows the

result of using a different number of segments and it also supports our horizontal

segments assumption. As it suggests, when we uniformly split the image into

8 horizontal segments, the better accuracy can be achieved. The reason is that

40

more segments will consider more unrelated pixels (noise), and fewer segments

will lose the detail from the perspective of global view.

Figure 31: Accuracy with different horizontal segments in distributed coding ap-
proach.

After we acquire an extracted feature vector 𝑉𝑖 for each family sample, we then

use Hamming(7, 4) to encode and produce a syndrome by concatenating the 3

syndrome bits to form a length 𝑙 string 𝑆𝑖, where 𝑖 = 1 to the number of training

samples in a family. For all 𝑆𝑖 we then pick and append the majority symbol (0

or 1 in our case) at the aligned position within the length 𝑙 to generate our final

hash key 𝐾𝑖. Finally, we use Hamming distance function 𝑓ℎ as an evaluation

metric to determine the classification. That is, we classify a sample 𝐼 to 𝐼𝑖 if

𝑓ℎ(𝐼, 𝐼𝑖) < 𝑓ℎ(𝐼, 𝐼𝑗) where 𝑖 ̸= 𝑗.

41

3.2.2.3 Multi-phase Approach

From the classification result of the previous approaches, we observe that some

families are classified well in one approach whereas classified bad in another, for exam-

ple, family Autorun.k is classified well in error-correcting approach but in distributed

coding approach. Given this observation, we decide to combine this two approaches

to conduct a new multi-phase approach which is shown as follows.

1. Scoring from error-correcting approach

Recall that we have a set of hash keys 𝐾𝑎 = {𝐻𝑎𝐾𝑖} which are generated from

the error-correcting approach where 𝑖 is the index of family and 𝑎 is the index of

approach, and we then compute a Euclidean distance for each incoming sample

𝐼 with 𝐾𝑎 to get a set of distance where 𝐷𝑎 = {𝐷𝑎𝑖}. Then, we get a set of

similarity scores 𝑆𝑎 = 1/(1 +𝐷𝑎). The higher score it is, the higher probability

𝐼 will be classified to.

2. Scoring from distributed coding approach

Similar to the phase1, we replace the part of classification approach with dis-

tributed coding. Clearly, we will also get a set of scores 𝑆𝑏 = 1−𝐷𝑏 where 𝐷𝑏

is a set of normalized Hamming distance for input 𝐼 to the stored hash keys 𝐾𝑏.

3. Merging

This phase will combine the score set 𝑆𝑎 and 𝑆𝑏, and then determine which

classification result should be used by taking the variance of scores in each

set into account. In other words, by selecting the ability of classification for

different approaches, multiple choice manner should perform better than just

using a single approach. Intuitively, it is easy to pick the best score of them

42

then determine which approach should be used, however, those scores are not

from the same distance basis, that is, the score only correlates to itself within

the same approach. As a result, we devise a way to combine those scores by

connecting different score bases altogether. To be more specific, for 𝑆𝑎 and 𝑆𝑏,

we compute a variance which provides information of how “separate” each set

of hash keys is. For example, if top 3 score of 𝑆𝑎 is 1.0, 0.9, 0.9, and top 3 score

of 𝑆𝑏 is 1.0, 0.7, 0.4, and then 𝑆𝑏 will be chosen due to its high variance.

Figure 32 shows the result, 87.3% average accuracy is achieved over 25 families

and we are able to maintain a high accuracy 90% by just discarding one family.

Figure 32: Classification result with multi-phase approach over 25 families.

43

3.2.2.4 Comparison

In the comparison section, Figure 33 shows the classification accuracy over three

different hashing approaches. Obviously, the multi-phase approach is able to select a

better approach from the error-correcting and the distributed coding, as a result, it

generates a better classification accuracy. It is also worth noting that the distributed

coding has 0% accuracy at the family Autorun.K but the error-correcting approach

can achieve 100%. After we carefully investigate that family and the scores, we find

out there is another family Yuner.A which is very close to Autorun.K. As Figure 34

shows, these two families are perceptually identical and this explains why Autorun.K

is classified to Yuner.A in the distributed coding approach.

Figure 33: Robust hashing with different approaches.

44

Figure 34: Image view of family Autorun.K and Yuner.A.

We also want to examine what is the outcome if we mix up the hashing ap-

proaches and the features plus the h-edge which is well performed in our machine

learning-based approach. So far we have two channel coding types, Hamming de-

coding (error-correcting) and Hamming encoding (syndrome), and two features, fre-

quency distribution and statistic wavelet. And now we want to examine another

feature, h-edge, which is the selected feature from our machine learning based ap-

proach in Section 3.2.1, to see if it still works in a robust hashing manner. We

carefully experiment all of these three features and two channel coding types while

picking the best parameter configuration on each experiment round.

Figure 35 gives the overall comparison with regard to the average accuracy over

25 families. As a result, we have the following two conclusions. First, the h-edge does

not perform well with the use of robust hashing which is because, in the machine

45

learning-based, SVM has support vectors whereas in robust hashing-based it takes

the whole feature vector into either decoder (error-correcting) or encoder (syndrome).

That is, the channel coding process considers a whole picture of view in the extracted

features. Second, the error-correcting approach is less sensitive to the features. That

could be explained by the fact that error-correcting is designed to eliminate noise

(or the difference between features) such that no matter what features are coming,

a certain among of noise will be removed. On the other hand, the syndrome does

nothing for correcting or eliminating noise, what it does is picking 3 important bits

from the original source data. That is, it is expected to reflect robustness of selected

features.

Figure 35: Comparison of different features and channel coding types.

46

3.3 Detection

In this section, we discuss how we handle the benign case with the existing models

and two major approaches from our previous classification architecture. Furthermore,

we then show the detection result by the view of ROC curve and AUC table.

3.3.1 Machine Learning-Based

This approach is based on our multi-class classification model in the previous

section. To achieve the detection we simply treat all families as one big family, called

malware. The idea behind this approach is by using a method proposed by [30] which

estimated a probability of each sub-model. That is, each testing sample will output

𝑁 probabilities where 𝑁 is the number of sub-models. Given all training samples,

we then expect to find a minimum probability which is being correctly classified for

each family and that implies the chance of given sample will be classified to which

family. For example, in the training phase, if we set those minimum probabilities as

the threshold for each sub-model, the sample will be determined as a certain malware

family if the classifying probability is larger than the minimum threshold that we

have trained. If the classifying probability is smaller than all of them, it will be

treated as benign. As a result, we will have a probability as the threshold for all

training families. Figure 36 shows the minimum and maximum correctly classifying

probabilities within each family.

Also, as Figure 36 suggests, however, some sub-models do not perform well

(C2LOP.gen!g, C2LOP.P, Swizzor.gen!E, Swizzor.gen!I). Based on the higher min-

imum probability indicates the better inner classification, we claim that those low

probability sub-models do not contribute that much. In other words, those models

could harm the overall detection rate.

47

Figure 36: Minimum and maximum probability in each family.

A similar conclusion can also be made from Figure 37, which gives the number

of families of which the minimum probability is larger than a certain threshold. The

higher the threshold we set, the fewer families satisfy, the better the benign detection

accuracy rate will be. As we can see from the figure, the benign detection accuracy

rate drop to almost 0 from 0.78 when family numbers increase from 22 to 25.

To better prove our deduction, we experiment the benign accuracy in the sense

of ranked models. Similar to UFS, we select the top-k well-performed families as

our training set, and Figure 38 shows the result. As we expected, it achieves 91%

benign accuracy when 21 families are used. It is worth to note that the detection

rate is based on the minimum probability of each trained model being set to be the

threshold. The accuracy of malware sustains a very high rate by eliminating the four

sub-models that do not perform well.

From Figure 38 we are more interested in the set of 25 families, 24 families, and

to the 18 families. In the following experiment, we compare different approaches for

determinng the threshold in the detection. First, we treat all sub-models evenly and

48

Figure 37: Relationship between the threshold and the number of families.

Figure 38: Benign detection accuracy over top k performed families.

give a uniform threshold for each of them. As we concluded before, each sub-model

might contribute unevenly. Therefore, in the second approach, we use minimum

probability as the base for each family. And in the third approach, we want to

49

examine the mix case on the first approach and the second approach, that is, we lower

each threshold from the second approach by two standard deviations. Figure 39 and

Figure 40 reveal the ROC curve and Table 4 shows the AUC results.

Figure 39: ROC of malware detection by using SVMs with the threshold is evenly
distributed.

Table 4: AUC results with the different threshold approaches.

Approach Number of sub-models
18 19 20 21 22 23 24 25

Uniform value 0.996 0.996 0.996 0.998 0.998 0.995 0.987 0.988
Lower minimum probability 0.984 0.986 0.972 0.922 0.794 0.768 0.791 0.801

Minimum probability 0.986 0.989 0.984 0.975 0.904 0.830 0.793 0.756

Clearly, if we use a uniform threshold for all sub-models, the detection rate out-

performs the separated one. This can be explained that the generated probabilities of

most samples are higher the threshold in an uniform thresholding manner. Also, when

50

Figure 40: ROC of malware detection by using SVMs with the threshold is using the
minimum probability.

we use the minimum probability as the threshold, for the low probability sub-models,

there are more zooms to increase the threshold and it is likely to be misclassified

as benign, hence the true positive rate drops. In other words, as we discard those

sub-models, meaning we tend to keep high probability sub-models, the range of the

threshold in each sub-model is more stable.

Given the high threshold (probability) for most of our samples, we want to see

what happen if we loosen the threshold to make it lower than the minimum proba-

bility but keep their individual impact of each sub-model by subtracting two times of

standard deviation on the training probabilities. The result can be seen at Figure 41.

As we concluded, discarding some low probability sub-models can improve the ac-

curacy, but the AUC does not change that much in that the samples of mid-high

probability sub-models have higher variance such that the AUC is compromised.

51

Figure 41: AUC view of different threshold approaches.

Although the approach of using individual weight is worse than using the uniform

weight, it is still worth to construct these two models to generate a two-pass detection

process. In the first pass, we can use the model with the uniform weight to easily

separate benign and malware. If the sample is detected as malware, it will be fed into

the second pass, which uses the weighted models. The benefit of using the two-pass

model is we can classify the malware more precisely. For example, we can give a strict

and loosen threshold for high risk and low-risk family respectively.

3.3.2 Robust Hashing-Based

In this section, we discuss how we use robust hashing to detect malware. Since

we already have a hash secret key for each malware family, we can treat all secret

keys in all families as a one malware family. If there is a new sample whose hash

value is close enough to any family, then say it is malware, otherwise benign.

52

Instead of comparing the hash value and the secret key directly, we use the score

that comes from our error-correcting and distributed coding approach to determine if

it is malware or benign. Recall that this score indicates how close to a certain family

the sample is. It is worth to note that the reason we do not use the score from the

multi-phase approach is that the basis of the score could be vary such that there is

no single threshold can determine.

In our experiment, we detect malware based on three robust hashing approaches

that we have discussed previously. In order to visualize the detection result, we use a

ROC curve and an AUC to represent the robustness of robust hashing on the malware

detection. Furthermore, we are also interested in what is the impact of just using

top-k well-classified families, such that it can be carefully compared with the result in

the Section 3.3.1. Figure 42 shows the best detection rate while using error-correcting

approach in terms of ROC curve and AUC. Figure 43 and Figure 44 show the ROC

curve of using distributed coding and multi-phase approach respectively, and Table 5

gives more AUC result from three different hashing approaches.

As we concluded in the classification section, multi-phase should have the ability

to select the best approach to detect or classify, and our result shows it performs better

than the other two approaches. However, there is only one difference in the detection,

that is, we use two thresholds for determining which score should be considered.

The reason why error-correcting approach outperforms to distributed coding

is that the error-correcting has more abilities to handle unknown samples, and its

wavelet decomposition serves as a better feature due to its variety and statistical

property in different image sub-bands. In contrast, the distributed coding approach

relies more on its extracted features due to the lack of correcting step, even though

its classification result is slightly better than the other.

53

Table 5: AUC results with the different hashing approaches.

Approach Number of sub-models
18 19 20 21 22 23 24 25

Error-correcting 0.814 0.782 0.764 0.754 0.744 0.734 0.731 0.720
Distributed coding 0.732 0.711 0.681 0.677 0.677 0.663 0.649 0.649

Multi-phase 0.810 0.779 0.763 0.745 0.734 0.726 0.722 0.720

Figure 42: ROC of malware detection by using error-correcting approach of robust
hashing.

54

Figure 43: ROC of malware detection by using distributed coding approach of robust
hashing.

Figure 44: ROC of malware detection by using multi-phase approach of robust hash-
ing.

55

3.4 Discussion

3.4.1 Machine Learning-Based

The first approach we implement is by using a supervised learning classifier which

we pick SVMs, with extracting some image features based on the observation of input

images. This also includes feature selection and feature reduction. In our experiment,

we carefully select features from the perspective of global and local, and we find out

global feature performs better than the local. Furthermore, there is only one feature,

h-edge, stands out of total 6 features by running a univariate feature selection, and

achieve 92% classification accuracy over 25 different families. We then move on to

the detection phase based on our SVM model.

In the detection step, we need to consider another sample set, the benign set.

But there are not many similarities in between, for example, the original malware

family has many similarities in its line structure. As a result, instead of training the

benign set into our malware model, we leverage a generic multi-class SVM scheme to

generate a probability for each family of being correctly classified. From this manner,

we are able to determine a sample should be classified to a specific family, or classified

to benign if none of the probability or threshold is held.

At the first stage, unfortunately, we test all 25 families and the benign set, the

detection accuracy for the benign is almost 0%. Meanwhile, we find that there are

some families or sub-models do not contribute that much because of low probability

they have. So we do another experiment to see the accuracy by discarding the family

or sub-model that theoretically contributes less in the whole picture. Finally, we get

an AUC 0.756 over 25 families and AUC 0.986 over 18 families. And we relax the

assumption that each sub-model has its own contribution in the overall detection

scheme, as a result, we get AUC 0.988 over 25 families.

56

3.4.2 Robust Hashing-Based

Using a robust hashing on malware detection is a novel idea. Through our

implementation and experiment, we are able to hash each malware sample into a hash

value, or even to generate a secret hash key to represent the family. By comparing with

the hash value and the secret hash key, we then can do classification problems under

the definition of robust hashing. In our work, we implement three robust hashing

methods, error-correcting, distributed coding, and multi-phase. The first two are

partially from the previous work. We also use the feature from the previous work

as a comparison. Those features are wavelet-decomposition and DCT coefficients.

However, due to the application and the specific type of input images that we use,

it is not trivial to compare our result with the previous work. Instead, we take

the previous work in our experiment as the base to be compared with our machine

learning-based approach and multi-phase approach.

In the classification, we get 79% accuracy in error-correcting approach and 83%

accuracy in distributed-coding approach over 25 different families. We also carefully

analyze different configurations of the features in terms of the average accuracy. Fi-

nally, we propose a new method, multi-phase, which is generally based on previous

two approaches. It has the ability to pick which approach should be used and as

expected, it gets improved and achieves 87% accuracy overall. By showing our ex-

periment result, we also delicately analyze the difference between the previous work

and our work.

Based on three robust hashing methods that we have implemented, we take the

benign set into consideration and deem every malware family as one giant malware

family. That is, we hash a benign sample into a hash value and then compare it with

25 pre-hashed secret keys. If it is close enough to one of malware family, we then

57

label it to malware, otherwise to benign. Under this manner, we get the AUC 0.72

over 25 families and AUC 0.81 over 18 families by using the proposed multi-phase

approach.

3.4.3 Comparison

Overall, regarding classification, machine learning-based approach achieves bet-

ter classification accuracy, 92% over 87% in robust hashing-based. This is not really

surprising because, from the perspective of SVMs, its goal is to maximize the margin

for different classes of samples. Moreover, in the step of feature reduction, SVMs is

able to have a clear view of the features to train a model. In other words, it can

inherently eliminate noise or outliers before going through the training process. If

the feature is well selected and representative, then the classification result should be

really sweet.

However, for the robust-hashing, even though the feature we have extracted is

also representative, unlike SVMs, robust hashing does not have optimization step to

find the best separation. Instead, it only takes one class at a time into consideration

and trying to eliminate the difference between the samples. Another evidence to prove

our conclusion is that SVMs has a kernel trick, which lets the classifier to process in

higher dimensions in which the separation might be better.

When considering the detection problem, generally it is more difficult than clas-

sification problem. Theoretically, we could say the more malware families we have,

the harder we can recognize benign sample. Based on this assumption, we gradually

discard one family at a time, and the detection accuracy does improve. Again, ma-

chine learning-based approach outperforms than robust hashing-base, however, if we

carefully check on the ROC curve of the case of minimum probability in SVM ap-

58

proach and the cases in robust hashing approach, the latter is relatively stable when

we discard certain families. This can be explained that when training the SVMs,

some well-defined sub-models might dominate the less-representative sub-models. Or

it can say those “good” sub-models are compromised by a small portion of the “bad”

sub-models. In that case, when we gradually discard families, the detection accuracy

dramatically gets improved. On the other hand, the training process in robust hash-

ing is independent of other families. So even when we reduce the number of families,

the detection accuracy does not improve real quick.

In sum, those two ways of malware classification and detection are performing

not much significant different in terms of the accuracy. But they could be distinct

from practical applications. For example, if there are more families come into the

picture, in SVMs, it must re-train the model which is not very efficient, and the

most important is that the new model could be significantly different from the old

model, therefore, the overall model could be unstable. However, robust hashing can

simply train a new family for generating its secret key without introducing significant

compromise in the previous keys, hence the burden is much less than using SVMs.

59

CHAPTER 4

Conclusion and Future Work

4.1 Conclusion

In our work, we presented a novel way for malware classification and detection

based on robust hashing and carefully compared it with using machine learning tech-

niques.

First of all, based on the malware images we were able to build a classification

model by using SVMs. By observing the given malware images, we concluded that the

global features outperform the local features and one of the global features, namely,

horizontal-edge feature, plays a critical role in our machine learning-based approach,

although there were other 5 features that might be good to represent a malware image.

We also carefully examined the configurations of each type of features and leveraged

UFS and RFE to select the final feature in our classification model.

Followed by the classification model, we conducted a detection method utilized

the probability of each malware family that is being correctly classified. Given the

probability of each family, we concluded that some malware families are not well-

contributed in the detection process, thus, we trained two models with different prob-

ability thresholding metrics. The result showed these two models can be used as a

two-pass detection process, that is, the first pass will use an uniform thresholding to

determine if it is malware, then in the second pass, the model will be used to do a

precise classification.

Secondly, we developed a robust image hashing on the malware images with

two different kinds of approaches. These approaches also involved other researching

60

areas such as communication system, information theory, and data compression. We

delved into each categories extracting some concept that can help with the robust

hashing and finally completed implementing the classification and detection process.

We also improved the classification in terms of the average accuracy by devising a

new approach in which we consider a score from the two approaches. At the end, we

concluded that while the robust hashing-based approach does not exceed the machine

learning-based in terms of the accuracy, it is still worth to use the robust hashing-

based approach given that a large number of malware families could be a practical

situation.

4.2 Future Work

We presented two ways of addressing malware detection, machine learning-based,

and robust hashing-based, where those are based on image processing techniques. But

there are some elements might improve our detection.

The first one is the features. Given our observation of malware images, global

features play an important role in our case, however, there are few families that

do not reflect this property. For example, images in family Swizzor.gen!I are not

visually identical in terms of the structure. One way to improve this is obviously by

combing other local features such as Gabor filter, etc. But the most important thing

is if we can determine whether the compared family is well presented with local or

global features. Maybe we can devise a scoring mechanism in a two-phase detection

manner, if the sample gets a bad score from the first pass, then the second pass

will take place by involving local features. Another experiment we can try is to use

Principal Component Analysis (PCA) on the combined features instead of throwing

the feature away under the case of UFS or RFE.

61

Another interesting work we can do is to analyze the malware image, specifically,

the executable files. As we discussed in Section 2.2, there are various sections such as

.text and .rdata section, etc. In our work we treated those sections evenly, however, we

can try to focus more on each section to give them different weights. Furthermore, it

would be interesting if we can find out where the most of variations would be spotted,

we might be able to target those area(s) for further precise detection process.

Second, in terms of the classification, we can also use a hybrid classifier which

might include Naive Bayes, Random Forest, AdaBoost, etc. In that sense, we will be

able to get a series of classification results or scores and then we make the final classi-

fication decision. For instance, by picking the major vote on the result or classifying

with the scores.

Third, from the robust hashing-based perspective, we can try different cluster-

ing techniques such as K-means, K-nearest-neighbor, Gaussian Mixture Model, etc.

where those techniques are closely related to the concept of robust hashing. From

the perspective of the generated secret key, it would be interesting if we view the key

as a plain text and the incoming hashed value as a cipher text, then the simple sub-

stitution attack might help with solving the clustering problem. And of course, from

the side of the compression, it could be replaced by other channel coding algorithms

such as Reed-Muller coding or Trellis-Coded Modulation (TCM).

Lastly, we can separate our detection process into several sub-processes. As we

suggested before, for SVMs, it performed really good for a small number of families.

So we could separate our malware SVM model into different models where each model

is customized for different families. The reason is trying to make the SVM training

more precise on some specific types of family. Also, different features could be made

if there is not only one big malware model is presented.

62

LIST OF REFERENCES

[1] J. Aycock, Computer Viruses and Malware. Springer, 2006.

[2] A. Yewale and M. Singh, “Malware detection based on opcode frequency,” in Ad-
vanced Communication Control and Computing Technologies (ICACCCT), 2016
International Conference on. IEEE, 2016, pp. 646–649.

[3] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and P. G.
Bringas, “Idea: Opcode-sequence-based malware detection,” in International
Symposium on Engineering Secure Software and Systems. Springer, 2010, pp.
35–43.

[4] R. Venkatesan, S.-M. Koon, M. H. Jakubowski, and P. Moulin, “Robust image
hashing,” in Proceedings of 2000 International Conference on Image Processing,
ser. ICIP 2000, vol. 3. IEEE, 2000, pp. 664–666.

[5] G. Conti and S. Bratus, “Voyage of the reverser: A visual study of binary species,”
Black Hat, 2010.

[6] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images: Vi-
sualization and automatic classification,” in Proceedings of the 8th International
Symposium on Visualization for Cyber Security, ser. VizSec’11. ACM, 2011,
pp. 4:1–4:7.

[7] R. Tian, L. M. Batten, and S. Versteeg, “Function length as a tool for mal-
ware classification,” in 3rd International Conference on Malicious and Unwanted
Software, ser. MALWARE 2008. IEEE, 2008, pp. 69–76.

[8] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin, “Context-
based vision system for place and object recognition,” https://www.cs.ubc.ca/
~murphyk/Papers/iccv03.pdf, 2003.

[9] M. Schneider and S.-F. Chang, “A robust content based digital signature for
image authentication,” in Proceedings of 1996 International Conference on Image
Processing, ser. ICIP 1996. IEEE, 1996, pp. 227–230.

[10] C.-Y. Lin and S.-F. Chang, “Generating robust digital signature for image/video
authentication,” in Multimedia and Security Workshop at ACM Multimedia,
1998, pp. 49–54.

[11] Y. Zhao, S. Wang, X. Zhang, and H. Yao, “Robust hashing for image authenti-
cation using zernike moments and local features,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 1, pp. 55–63, 2013.

63

https://www.cs.ubc.ca/~murphyk/Papers/iccv03.pdf
https://www.cs.ubc.ca/~murphyk/Papers/iccv03.pdf

[12] J. D. Victor, “Images, statistics, and textures: Implications of triple correlation
uniqueness for texture statistics and the julesz conjecture: Comment,” Journal
of the Optical Society of America A, vol. 11, no. 5, pp. 1680–1684, 1994.

[13] V. Monga, A. Banerjee, and B. L. Evans, “A clustering based approach to percep-
tual image hashing,” IEEE Transactions on Information Forensics and Security,
vol. 1, no. 1, pp. 68–79, 2006.

[14] V. Monga and B. L. Evans, “Robust perceptual image hashing using feature
points,” in Proceedings of 2004 International Conference on Image Processing,
ser. ICIP 2004. IEEE, 2004, pp. 677–680.

[15] C.-Y. Lin and S.-F. Chang, “A robust image authentication method distinguish-
ing jpeg compression from malicious manipulation,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 11, no. 2, pp. 153–168, 2001.

[16] M. Johnson and K. Ramchandran, “Dither-based secure image hashing using
distributed coding,” in Proceedings of 2003 International Conference on Image
Processing, ser. ICIP 2003. IEEE, 2003, pp. 751–754.

[17] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side
information at the decoder,” IEEE Transactions on Information Theory, vol. 22,
no. 1, pp. 1–10, 1976.

[18] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-Alemany,
B. Sangster, and M. Supan, “A visual study of primitive binary fragment types,”
Black Hat, 2010.

[19] M. Stamp, Introduction to Machine Learning with Applications in Information
Security. Boca Raton: Chapman and Hall/CRC, 2017.

[20] X. Chan and G. Liu, “Discussion of one improved hash algorithm based on MD5
and SHA1,” in Proceedings of the World Congress on Engineering and Computer
Science, ser. WCECS 2007, 2007.

[21] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics: Defini-
tions, implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance,” in International Workshop on Fast Software
Encryption. Springer, 2004, pp. 371–388.

[22] Y. Sutcu, H. T. Sencar, and N. Memon, “A secure biometric authentication
scheme based on robust hashing,” in Proceedings of the 7th Workshop on Multi-
media and Security. ACM, 2005, pp. 111–116.

[23] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs Tech-
nical Journal, vol. 29, no. 2, pp. 147–160, 1950.

64

[24] S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes
(DISCUS): Design and construction,” IEEE Transactions on Information The-
ory, vol. 49, no. 3, pp. 626–643, 2003.

[25] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary
patterns: Application to face recognition,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006.

[26] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, ser. CVPR 2005. IEEE, 2005, pp. 886–893.

[27] I. Daubechies, “The wavelet transform, time-frequency localization and signal
analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–
1005, 1990.

[28] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

[29] D. Varodayan, Y.-C. Lin, A. Mavlankar, M. Flierl, and B. Girod, “Wyner-ziv
coding of stereo images with unsupervised learning of disparity,” in Proceedings
of Picture Coding Symposium, 2007.

[30] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-class clas-
sification by pairwise coupling,” Journal of Machine Learning Research, vol. 5,
pp. 975–1005, August 2004.

65

	San Jose State University
	SJSU ScholarWorks
	Spring 2018

	Image Robust Hashing for Malware Detection
	Wei-Chung Huang
	Recommended Citation

	Introduction
	Background
	Previous Work
	Malware Images
	Hashing Function
	Cryptographic Hashing
	Robust Hashing

	Compression
	JPEG Compression (Encoding)
	Channel Coding
	Distributed Source Coding

	Image Features
	Local Feature
	Global Feature

	Support Vector Machines
	SVM Overview
	Training Phase
	Scoring Phase

	Implementation and Result
	Dataset
	Classification
	Machine Learning-Based
	Robust Hashing-Based

	Detection
	Machine Learning-Based
	Robust Hashing-Based

	Discussion
	Machine Learning-Based
	Robust Hashing-Based
	Comparison

	Conclusion and Future Work
	Conclusion
	Future Work

	LIST OF REFERENCES

