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Abstract 

Object detection plays a vital role in many real-world computer vision applications such as self-

driving cars, human-less stores and general purpose robotic systems. Convolutional Neural 

Network(CNN) based Deep Learning has evolved to become the backbone of most computer 

vision algorithms, including object detection. Most of the research has focused on detecting objects 

that differ significantly e.g. a car, a person, and a bird. Achieving fine-grained object detection to 

detect different types within one class of objects from general object detection can be the next step. 

Fine-grained object detection is crucial to tasks like automated retail checkout. This research has 

developed deep learning models to detect 200 types of birds of similar size and shape. The models 

were trained and tested on CUB-200-2011 dataset. To the best of our knowledge, by attaining a 

mean Average Precision (mAP) of 71.5% we achieved an improvement of 5 percentage points 

over the previous best mAP of 66.2%. 

Keywords: Object Detection, Computer Vision, Deep Learning, Convolutional Neural Networks, 

Region based Convolutional Neural Network, Inception, You Only Look Once, Single Shot 

Detection. 
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1 Introduction 

Advancements in computer vision have made self-driving cars and automated retail a possibility. 

One of the key computer vision tasks in all these applications is object detection. Object detection 

has evolved from image classification. Image classification is a supervised learning problem that 

takes images and corresponding class labels as input data for training. Once the model is trained it 

can classify a test image with a class label. For e.g. once trained, an image classification model 

can label a given image as a car, a pedestrian, a bicycle or background (none). In this case, we 

have four classes i.e. car, pedestrian, bicycle and background. Object localization builds on image 

classification. Given an image, it classifies it into a class and locates a bounding box around the 

object in the image. Object localization requires the image to contain only one object of any of the 

classes under consideration. Object detection is the supervised learning problem of classifying 

multiple objects and localizing them in an image. Thus, object detection consists of two main tasks: 

• Identify the class label for each object in the image 

• Create bounding boxes for all the objects 

Machine learning techniques like Support Vector Machine (SVM) [1] classifiers have solved 

image classification problems with high accuracy. LeCun et al. [2] in their monumental research 

in 1998, developed a deep Convolutional Neural Network(CNN) to identify human hand written 

images with an accuracy of more than 99%. Since then CNN has been the de facto architecture for 

image classification. It was a natural progression to develop CNN [3] based models for object 

detection. However, object detection encounters significant additional challenges than image 

classification and object localization such as: 

• Variable number of objects: As image classification and object localization 

contains only one object, the input label and the output is of the same size for all 
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the images. As the number of objects in object detection is variable, the size of input 

labels and output can change from image to image depending on the number of 

objects in the image. This represents a crucial challenge as almost all previous 

machine learning and deep learning algorithms took an input of fixed size and 

generated an output of fixed sized. 

• Combining classification and localization: Object detection performs classification 

and localization simultaneously for multiple objects. Object detection deep learning 

models must perform both these tasks accurately while performing them 

simultaneously. 

Given the success of CNN based deep learning models in image classification and the non-linear 

nature of the task, all latest successful object detection models employ CNN based deep learning. 

As of now, two approaches are at the forefront of object detection research: 

• Region Based Convolutional Neural Network (R-CNN) [4, 5]: Faster R-CNN [6] 

is the latest and most accurate model in this series. R-CNN based models use a 

sliding window approach and CNN based classification for object detection. 

• Regression based models – While these models also use a CNN based architecture, 

they deviate from the traditional viewpoint of seeing object detection as a 

classification problem and characterize it a regression problem. YOLO [7] was the 

first algorithm to propose this approach. Since then YOLO:9000 [8] and Single 

Shot MultiBox Detection (SSD) [9] have emerged as the most accurate models in 

this category. While these models are generally less accurate then their R-CNN 

counterparts, they are significantly faster. 
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In fine-grained object detection, we split a class of objects into further classes and apply object 

detection to them. General purpose object detection tasks use object detection datasets like COCO 

[10] and PASCAL VOC [11] where the object classes are significantly different from each other 

e.g. a person, a car, a bird etc. Characteristics such as shape, size, color of a person, car and a bike 

are very different from each other. Fine grained object detection splits a class in general object 

detection into different categories and uses them as classes for object detection. For our research, 

we use CUB-200-2011 [12] dataset, which consists of 200 classes of birds. It can be viewed as the 

birds’ class in general object detection being split into 200 classes. Fine-grained object detection 

encounters additional challenges to general purpose object detection. 

Firstly, the model needs to learn fine-grained features. In general purpose object detection, the 

model can learn to detect a bird (as opposed to a person or a car) by learning its features like a 

beak, a tail, feathers, its body shape etc. In our case, all the 200 classes will have these features. 

Hence to detect these objects the model must learn more fine-grained features. For e.g. two of the 

classes in the dataset are black footed albatross and laysan albatross [12]. The model should first 

learn to classify an albatross from other type of birds and then learn that the black footed albatross 

is dark gray/ black in color while the laysan albatross has a significant white colored portion. 

Secondly, as the number of classes is 200 and they are similar, increasing the probability of false 

positives significantly.  

Training a model from start can require huge resources and even then, takes a lot of training time. 

To reduce the training time, we used transfer learning. We retrained COCO object detection 

models on the CUB dataset using transfer learning. We used data augmentation to distinguish 

between similar classes. The detailed approach is explained in Section 3. We achieved a mean 
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average precision(mAP) of 71.5 % on the test dataset. To the best of our knowledge, it represents 

an improvement of 5 % points from the previous best of 66.24% [13]. 

The paper is structured with section 2 surveying related works, sections 3 and 4 covering the 

dataset and evaluation metric respectively, section 5 explaining the proposed approach, section 6 

describing the experiments and how their results compare with the baseline. Finally, we outline 

our conclusions in section 7. 
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2 Related Works 

Fine-grained object detection builds upon object detection. In this section, we survey the landscape 

of object detection. 

2.1 Machine Learning Approaches 

2.1.1 Viola-Jones Object Detection [14, 15] 

Viola-Jones [14] in 2001 was the first machine learning algorithm devised to detect objects 

accurately in real-time. The framework carried out its experiments by detecting faces in images. 

Viola-Jones object detection consists of four main stages: 

• Haar feature selection 

• Creating integral image 

• Adaboost training 

• Cascading classifiers 

The major highlights of this approach were its use of Haar features to detect facial features and 

Adaboost training to reduce training time. Haar features are rectangular kernels that can be used 

to detect areas in the image that are alike. The Haar feature shown below can be used to detect the 

eye region. 

 

Figure 1. Haar feature for eye region [14] 

The Haar feature shown in Fig. 1, slides across the entire image, shifting by 1 pixel in each 

operation and gives an output value. The output value will be higher for regions that resemble the 

filter and lower for other regions. This operation is comparable to convolution that is covered in 
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detail in Section 2.2.1.1. The eye region is darker than the region below it and hence it can be 

detected by the Haar feature in Fig. 1. Viola-Jones divided the image into a 24x24 sub windows 

and ran multiple Haar features over it. Considering all the different positions, scales and types of 

Haar features, a 24x24 window yielded 160,000 features, which was extremely high to perform 

real time object detection. Viola-Jones used the Adaboost algorithm to consider only relevant 

features. Adaboost trains a strong classifier as a weighted combination of these features. Only 

those features that perform better than random guessing are considered. Thus, Adaboost combines 

several weak classifiers linearly to form a strong classifier. The Viola-Jones was the first object 

detection model that gave a high detection rate of 76.1% (with a threshold of 10 false positives) in 

real time and at a speed of 67 ms [14]. One of the major limitations in adapting the model for 

general purpose object detection is to identify Haar features to be used. The complexity of 

identification of Haar features increases as the number of classes to be detected increases. Another 

challenge is the need for domain knowledge to select Haar features. Also, Viola-Jones considered 

detection accuracy as the metric. With the evolution of object detection, mean Average Precision 

(mAP) became the metric for measuring accuracy of a model. The mAP metric is explained in 

detail in section 4. 

2.2 Deep Learning Approaches 

CNNs are an integral part of all deep learning approaches for object detection. CNNs gained 

prominence when LeCun et al. [2] used a deep CNN, LeNet-5, to classify hand written digits with 

an accuracy of more than 99%. In this section, we look at the important components and concepts 

of a CNN [3, 16]. 
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2.2.1 Convolution Neural Network 

2.2.1.1 Convolution [3,16] 

The convolution operation takes an image and a filter (also referred to as kernel) as an input. 

Consider an image and a filter as shown in Fig. 2: 

 

Figure 2. Convolution operation in CNN 

A filter of 3x3 size performs convolution on the input image. The red boxes highlighted in the 

figure denote input and output of one convolution operation. The filter then strides over the image 

one pixel towards the right at a time until it reaches the end while staying within the boundary of 

the image and performs a convolution every time. When it reaches the end of the row it takes a 

stride down. The convolution operation reduces the size of the input. In the example in Fig. 2, the 

output size reduces to 4x4 from 6x6 because of convolution. To maintain the input size, we can 

pad the input image with zeros. When we pad to maintain the size of the input image during 

convolution it is known as same padding. When no padding is employed it is called valid padding. 

The convolution filter in Fig. 2. detects a vertical edge. In the above example, we have considered 

a gray scale image as the input. For a RGB image the input image will have 3 channels (depth). 
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For e.g. The RGB equivalent of the image considered in Fig. 2 would be of size 6x6x3. It is an 

accepted norm that the filter has the same number of channels as the input image. As a result, the 

filter would also be of size 3x3x3 size having 27 weights. Since the input and the filter also have 

a third dimension they are also referred as volumes. A convolution layer can contain many such 

filters and it stacks the output of each filter along the channels of the output. So, the number of 

channels in the output will be equal to the number of filters used in a convolution layer. Thus, the 

output of convolution also has a third dimension (channels) and hence is referred to as volume 

activation. 

2.2.1.2 Pooling [3, 16] 

The output of convolution is fed to a pooling layer. Max pooling is the most common pooling used. 

 

Figure 3. Pooling operation in CNN 

Consider a 2x2 max pool applied to the output of a convolution layer as shown in Fig. 3. Each 

pooling operation selects the maximum value from a 2x2 area from the input and produces the 

output. The maximum value in the 2x2 area starting at pixel (0,0) is 6. Hence pixel (0,0) of the 

output will be six. Generally, the pooling operation takes a stride equal to its size. We follow the 

same norm in this example. So, the pooling operation moves to the 2x2 region starting at pixel 

(0,2) and gives a value of 9 for output pixel (0,1). 

Pooling helps to reduce the height and width of the input layer while still maintaining relevant 

features learnt by the network. Suppose we are learning to identify faces and perform convolution 

using a vertical edge filter. The convolution operation should detect a nose in all the input images 

6	 9	

5	 8	
Max Pooling = 
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and thereby give a high value in the output for the pixels in the middle region (where the nose is 

situated). The exact pixels where the convolution output gives high values will differ slightly for 

different images. Our network need not learn the exact pixel locations where the vertical edge is 

detected but rather learn that there should be a vertical edge in the center region. Max pooling 

helps us achieve that. This behavior of pooling also has a regularization effect on the model. 

Further pooling by its nature reduces the height and width of the input, thus playing an important 

role in developing a convergent CNN architecture.  

The advantages achieved from CNN architecture are: 

1. In a CNN, the weights of a specific filter remain same across the image. This sharing of 

weights reduces the number of weights dramatically as compared to a fully connected layer. 

2.  Sharing and localization of weights allows the same feature to be detected in different 

areas of the image. If a filter learns to detect a vertical edge, it can be used to detect vertical 

edges in all areas of the image, which is accomplished by the convolution operation. 

2.2.1.3 VGG-16 [17] 

A CNN architecture uses three types of layers: 

• Convolutional layer 

• Pooling layer 

• Fully connected layer (traditional neural net layer) 

A CNN stacks multiple layers of these types and operates on an input volume of activations to 

generate an output volume of activations. The final layer can be a softmax [3] or sigmoid layer 

depending on the task on hand. While a variety of CNN architectures have emerged, some of the 

classical CNN architectures LeNet-5[2], AlexNet [18] and VGG-16 [17] have shaped general 

themes on CNN architecture. We will consider VGG-16 for understanding these themes: 
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Figure 4. VGG-16 architecture [17] 

2.2.1.3.1 Description of VGG-16 [17] 

The input image is a RGB image of size 224x224x3. Before VGG-16, many architectures used 

filters and max-pool units of different sizes across different layers. However, VGG-16 used 

uniform sized filters and max-pool units across all layers and achieved excellent results. 

Subsequently, most of the architectures followed uniform filter and max-pool sizes across layers 

unless otherwise required. In VGG-16 every convolution filter is of size 3x3. Each 3x3 filter will 

have the same number of channels as the input layer e.g. first convolution layer operating on input 

image will have 3x3x3 filters. By convention we only refer to the first two dimensions of the filter 

as the third dimension can be deduced from the input. Henceforth we will refer to a filter with two 

dimensions. Every max-pool unit is of size 2x2. Max-pooling units do not look at the activations 

across channels (depth). Hence, they preserve the number of channels (depth) of the input. 

• Filter details:  
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o Size =3x3 

o Stride=1 

o Padding = same 

• Max-pool details: 

o Size=2x2  

o Stride=2 

Convolution (Layer 1) and Max-Pool (Layer-2): 

We explain the principle behind the initial convolutional and max-pool layers. The remaining 

layers can be interpreted on similar lines from Fig. 4. CNN layer 1 contains 64 filters of 3x3 size. 

As all of them use same padding, the width and height of the output is still 224x224. As there are 

64 filters, the output of the convolutional layer is 224x224x64. CNN layer 2 doubles the number 

of channels of the output with same padding, giving output activation volume of 

224x224x128.This is then operated by a max-pool layer. Max pooling with a 2x2 unit produces an 

output of 112x112x128.  

2.2.1.3.2 Themes of CNN architecture 

• One or more convolutional layers are followed by a max-pool layer. This pattern is 

repeated and at the end there are one or more fully connected layers followed by a 

softmax layer or a sigmoid layer or a linear layer depending on the task at hand. 

• Convolution operation with same padding maintains the width and height from the 

input. The number of filters in convolutional layers increases from left to right, 

thereby increasing the depth of output volume activations. 

• Max-pooling reduces the width and height from the input activation while 

maintaining its depth. 
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• Each convolution filter detects a specific feature across the entire image. 

• Max-pooling aggregates this information and reduces the number of neurons 

making the network convergent. Generally, as we move from left to right in a neural 

network we want the number of neurons to gradually decrease. 

• This architecture combines elementary features into more sophisticated features as 

we move from left to right. 

• At the end of the network, the output of convolutional and max-pool layers is 

flattened by one or more fully connected layers and fed to a softmax layer or a 

sigmoid layer or a linear layer depending on the task at hand. 

Subsequently VGG-19 architecture was developed which consisted of 19 layers as the name 

suggests. 

2.2.1.4 Inception Network [19] 

One of the key decisions in designing a CNN is to choose the size of the filter in each layer. 3x3 

and 5x5 are common filter sizes used. Inception network by Szegedy et al. in 2014 proposed that 

instead of selecting the filter size, multiple filter sizes could be computed and the network be 

allowed to select the most suitable size during training. 

 

Figure 5. Inception layer without channel reduction [16, 19] 
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As shown in Fig. 5, the input convolutional layer contains 1x1, 3x3, 5x5 convolution filters and a 

max-pool filter. All the convolutions and max pool use same padding, and the results are 

concatenated channel wise to get the output. One of the issues faced by such an architecture was a 

huge increase in computations. Lin et al. in their network in network architecture [20] in 2013 had 

used a 1x1 convolution to reduce the number of channels. The modified inception network shown 

in Fig. 6 uses 1x1 filters to reduce channels in the intermediate layer and achieves significantly 

lesser computations. 

 

Figure 6. Inception layer with channel reduction [16, 19] 

The Inception network comprises of many such Inception layers, followed by fully connected 

layers and a softmax layer at the end for classification. 
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Figure 7. Inception CNN architecture [19] 

The Inception network uses softmax layers at intermediate stages to ensure that intermediate layers 

are also performing well at classifying the object. 

2.2.1.5 Residual Network (ResNet) [21] 

Ideally, a deeper neural network should perform more accurately, assuming training time and 

training resources are not constraints and there is sufficient data. However, it was observed that 

training deeper neural networks was difficult due to vanishing and exploding gradients. Gradient 

clipping can mitigate exploding gradients but vanishing gradients remained a major hindrance in 

training deep neural networks.  He et al., in 2015 [21] developed the ResNet architecture to train 

very deep neural networks. The key element of this architecture was a residual block. 
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Figure 8. ResNet block 

As shown in Fig. 8, in a residual block the L+2th layer receives the activation of the Lth layer in the 

network through a skip connection. The activation of Lth layer is added to the logits calculated 

from activation of L+1th layer. Activation function of the L+2th layer is then applied to this sum to 

obtain activation of the L+2th layer. If the weights in the L+1th layer vanish (approach towards 

zero), L+2th layer will still receive the Lth layer’s activation and continue to train. The argument 

presented is for weights but can be extended to gradients. Thus, ResNet architecture allowed 

training of very deep neural networks up to 101 layers. 
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Figure 9. Comparison of 34 layered normal CNN vs 34 layered ResNet architecture [21] 
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2.2.2 Object Detection 

2.2.2.1 Sliding Window Detection 

This model first trains a CNN to classify the objects to be detected.  

 

Figure 10. Data labelling for CNN classification 

As shown in Fig. 10 a CNN can be trained to classify images of a car, a pedestrian, a bike or 

background. While training the CNN, the images are cropped to fit the object exactly. This ensures 

accurate localization during detection.  

 

Figure 11. Sliding window object detection using CNN 
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As shown in Fig. 11, windows of different sizes, aspect ratios and strides are slid across the image 

and fed as input to the CNN individually. The CNN classifies the object in that window. The 

window’s bounding box is fine-tuned to obtain the bounding box for the object classified. By 

having a low stride and trying windows of various sizes, reasonable accuracy can be achieved. 

CNN’s are accurate as compared to linear machine learning classifiers but they are 

computationally expensive. Hence the sliding window framework is extremely expensive to 

achieve acceptable real time object detection. 

2.2.2.2 OverFeat [22] 

OverFeat designed by Sermanet et. al. [22] in 2013 was the first Deep Learning model that 

performed object detection using CNN efficiently. To reduce the computations in sliding window 

object detection, Overfeat modified the final layers of CNN into a convolutional layer. Consider a 

simple CNN that takes 14x14x3 image as input and classifies the 4 object classes as shown in Fig. 

12.  

 

Figure 12. CNN classifying 4 object classes [22, 16] 

 

Figure 13. OverFeat transformation of CNN classifying 4 objects [22, 16] 
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In Fig. 13, the CNN is transformed by OverFeat. The fully connected layers of 400 neurons are 

transformed into convolution layers of 1x1x400. Both the original and transformed layers have the 

same number of neuros but OverFeat transformation reduces computations in sliding window 

object detection significantly. 

Suppose an input image of size 16x16x3 is fed to a sliding window object detection model having 

a CNN accepting an input of size 14x14x3 as shown in Fig. 12. Four 14x14x3 windows starting at 

locations (0,0), (0,2), (2,0) and (2,2) are cropped from the image. Each of the cropped window is 

fed as input to the CNN whose output is 4x1 tensor (softmax) indicating class of the object in that 

window. This requires 4 passes through the CNN. 

 

 

Figure 14. Sliding window object detection in one pass of CNN using OverFeat [22] 

The same computations can be performed by OverFeat in one pass as shown in Fig. 14. The 

OverFeat model feeds the 16x16x3 image as input to the CNN. With the transformation of fully 

connected layers to convolutional layers the output is 2x2x4 instead of 4x1. The 1x1x4 tensor 

located at (0,0) highlighted by blue color in Fig. 14 is the output of the 14x14x3 input window 

starting at (0,0) (also highlighted by blue color in input). Similarly, the outputs for the 14x14x3 

windows starting at (0,2), (2,0) and (2,2) can be found in the output at (0,1), (1,0) and (1,1) 
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respectively. Thus, OverFeat performs classification for all the windows in one pass through the 

CNN. The improved efficiency made it possible to detect objects by sliding windows object 

detection utilizing CNNs. 

2.2.2.3 R-CNN 

One of the issues with sliding window object detection, even with convolutional implementation, 

was that it processed a lot of windows that did not contain objects. Girshick et al. [4] came up with 

the Region based Convolutional Neural Network (R-CNN) model. R-CNN’s salient feature was 

identifying regions with a high probability of containing an object before feeding them to a CNN. 

This approach achieved great object detection results on PASCAL VOC 2012 dataset and put deep 

learning on the map of object detection.   

 

  

Figure 15. R-CNN model [4] 

R-CNN consists of the following main activities: 

2.2.2.3.1 Region Proposal 

A region proposal algorithm scans the image to identify regions that have a high probability of 

containing an image. The most popular algorithm (also used in R-CNN) is selective search 
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algorithm [23]. R-CNN uses selective search to generate approximately 2000 proposals [4] called 

Regions of Interest (ROI) that have a high probability of containing an object.  

2.2.2.3.2 CNN extraction  

Each of the RoI is then fed to a CNN to extract features. 

2.2.2.3.3 Support Vector Machines (SVM) classifier 

A SVM classifier then operates on these CNN features to classify the object in the RoI. 

2.2.2.3.4 Bounding box regressors  

The model then uses bounding box regressors to refine the RoI’s bounding box. 

2.2.2.3.5 Limitations of R-CNN 

For each image, ~ 2000 RoI proposals were produced which were then fed to a CNN individually. 

Hence, R-CNN was very slow in detection and its test time per image was 50 seconds. [4]. 

2.2.2.4 Fast R-CNN 

Girshick et al. [24] continued to improve their model and Fast R-CNN was published in 2015.  The 

main bottleneck in R-CNN was, it fed each RoI to a CNN separately. Fast R-CNN uses a principle 

like OverFeat (Section 2.2.2.2) to pass all RoI’s in one pass to the CNN.  

 

Figure 16. Fast R-CNN model [24] 
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As shown in Fig. 16, Fast R-CNN feeds the entire image to the CNN once, and the generates the 

RoI’s from convolutional feature maps using selective search algorithm. This improved the test 

time per image by 25 times to 2 seconds [24]. 

2.2.2.5 Faster R-CNN 

Ren et al. (also co-authored by Girshick) [6] then proposed the Faster R-CNN model in 2017. 

Both R-CNN and Faster R-CNN used selective search as its region proposal method to generate 

RoI’s. Faster R-CNN eliminated the need for region proposal method. Instead it trained a neural 

network called Region Proposal Network (RPN) [6] to generate RoI’s. These proposals were 

then fed as an input to the RoI pooling layer. Rest of the architecture remained like Fast R-CNN. 

 

Figure 17. Faster R-CNN model [6] 

With this Faster R-CNN achieved a 250 times improvement over R-CNN and 10 times 

improvement over Fast R-CNN and the test time per image was reduced to 0.2 seconds. [6] 

2.2.2.6 You Only Look Once (YOLO) 

You only look once (YOLO) [7] brought a paradigm shift in object detection in 2016. It was the 

first model to frame object detection as a regression problem instead of a classification problem. 

We consider four object classes a car, a pedestrian, a bicycle and background as before. We first 
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explain localization using the principles of YOLO and then extrapolate it to object detection. The 

localization problem is, given an image of any of the four classes our CNN should be able to 

provide a class label and a bounding box for the object. Since the problem at hand is localization, 

the image will contain only one object situated near the center.  

The training data is labeled as below: 

• x – RGB pixel values 

• y – 8x1 tensor = (pc, bx, by, bw, bh, c1, c2, c3) 

o pc – Probability that there is an object. It is 1, if there is an object in the 

image and 0 for background 

o bx – ‘x’ coordinate of the center of the bounding box containing the object 

o by – ‘y’ coordinate of the center of the bounding box containing the object 

o bw – Width of the bounding box 

o bh – Height of the bounding box 

o ci – Probability of class i. It will be labelled 1 if the image contains an object 

of class i, where i = 1,2,3 in our case (since there are 4 classes including 

background) 

o bx, by, bw, bh are normalized between 0 and 1. The left most corner of the 

image is considered (0,0) and the right most (1,1) 

 

Figure 18. Object localization data labelling for car object class [16] 
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An image with a car as in Fig. 18, will have a ‘y’ label of (1, 0.5, 0.6, 0.5, 0.5, 1, 0, 0) assuming 

c1 corresponds to car. 

 

Figure 19. Object localization data labelling for background class (None) [16] 

On the other hand, a background image will be labeled as (0, None, None, None, None, None, 

None, None, None). As there is no object in this image we are only concerned with the first value. 

The CNN outputs an 8x1 tensor. The network can be trained using a mean squared error loss 

function and a gradient descent algorithm. Some models use maximum likelihood loss for the 

classification portion and mean squared error for localization (bounding box). 

 

 

Figure 20. YOLO data labelling of an input image 

To perform object detection YOLO first divides the image into a SxS grid. In the original 

publication, Redmon et al. [7] used a 7x7 grid. Many implementations of YOLO have used a 19x19 



CS 298 REPORT 32 
 

grid to achieve more accurate results while still maintaining its speed. For illustration, we will 

consider a 3x3 grid as shown in Fig. 20. The grid that contains the center of an object, is responsible 

for detecting that object. For e.g. grid 8 (highlighted yellow in Fig. 20) is responsible for detecting 

the car. For each grid an input of (x, y) is generated as shown earlier. For e.g. red grid (background) 

and yellow grid (car) in Fig. 20 are labelled as below: 

• Background grid (red) 

o x – RGB pixel values of the grid 

o y – (0, None, None, None, None, None, None, None, None) 

Note: ‘y’ has 8x1 dimensions as we have 4 classes including background 

• Car grid (yellow) 

o x – RGB pixel values of the grid 

o y – (1, bx, by, bw, bh, 1, 0, 0) 

§ bx, by, bw, bh – Define the bounding box coordinates with respect to 

grid 8 as defined earlier in this section 

§ Assuming car class is the first class 

YOLO first generates (x, y) input labelled data for each of the nine grids for an image and feeds it 

to a CNN. However instead of feeding them separately to the CNN, it does so by convolutional 

implementation of sliding window object detection as in OverFeat (Section 2.2.2.2). Thus, in one 

pass of an image to the CNN, YOLO generates output for all the nine grids. The CNN architecture 

of YOLO is as below: 
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Figure 21. YOLO CNN architecture [7] 

 
It is on the lines of a typical CNN architecture we discussed in Section 2.2.1.3. YOLO used mean 

squared loss function where classification and localization components are weighted differently. 

It used mini batch momentum gradient descent algorithm for training with a weight decay. 

One of the issues faced by YOLO model was that it could give rise to multiple detections of the 

same object, thereby increasing the false positive rate (The definition and calculation of false 

positives is explained in detail in Section 4). For e.g. in our example in Fig. 20, grids 7,9,5 could 

also detect the car assuming its center lies in them. For illustration purposes the image was only 

divided into 3x3 grid and hence the grid size is large. For practical applications, the image is 

divided into higher number of grids to achieve more localization accuracy. However, this makes 

it possible that adjacent grids can detect the same object. YOLO uses non-max suppression to 

identify the best bounding box for each object and remove duplicate detections of the same object. 

Due to its simple pipeline, YOLO can be trained efficiently to achieve high speed. YOLO achieved 

a mean Average Precision (mAP) of 63.4% as compared to Faster R-CNN VGG-16 model’s mAP 

of 73.2% on the PASCAL VOC datasets 2007 and 2012 combined. However, YOLO’s detection 
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time was much faster and it could process 45 frames per second (fps) as compared to Faster R-

CNN VGG-16 model’s detection time of 7 (fps). 

2.2.2.6.1 Limitations of YOLO 

One grid can detect only one object. Hence if two small objects have their centers in the same grid, 

YOLO will miss one of them. To mitigate this limitation a 19x19 grid is used to reduce the 

probability of two objects having their centers in the same grid. Still it remained a limitation of 

YOLO version 1. 

2.2.2.7 YOLO 9000 (version 2) [8] 

YOLO version 2 was named as YOLO 9000 [8] and published in 2017. It improved on several 

features of YOLO version 1. The most significant improvement was the use of anchor boxes to 

improve the limitation mentioned above. It used anchor boxes to detect multiple objects having 

their centers in the same grid. YOLO9000 achieved a mAP of 73.4% on PASCAL VOC 

2007+2012 dataset at 67 fps at 544x544 image resolution [8]. This is slightly less than Faster R-

CNN’s mAP of 78.8% on PASCAL VOC 2007 and 75.9% on VOC 2012[6]. However, YOLO 

9000 is much faster than Faster R-CNN during detection. 

2.2.2.8 Single Shot Multibox Detector (SSD) 

SSD was inspired by YOLO and bears a lot of resemblance with it. Convolutional layers reduce 

spatial dimension and resolution. Hence, YOLO could detect only relatively large objects. SSD 

used output of each of the convolutional layers for object detection to overcome this limitation.  

This improved the mAP to 74.3% [9] over PASCAL VOC 2007 and 2012 datasets while 

maintaining high speed of detection. 
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Figure 22. SSD CNN architecture [9] 
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3 Dataset 

For this research, we used the Caltech-UCSD Birds 200-2011(CUB-200-2011) [12] dataset.  CUB-

200-2011 is an image dataset of 200 categories of bird species: 

• No. of object classes: 200 

• No. of images: 11,788 

o Train images: 5,994 

o Test images: 5,794 

• Images are annotated with bounding boxes 

The bird species closely resemble each other. The dataset was created to research on fine-grained 

image classification and object detection. 

We carved out a validation set from the training set as below: 

• Train images: 5,394 

• Validation images: 600 

• Test images: 5,794 

The validation set is used to tune hyper parameters. 
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4 Evaluation Metric 

For this section, we use the following acronyms: 

• TP - True Positive 

• TN - True Negative 

• FP - False Positive 

• FN - False Negative 

Some of the challenges in evaluating object detection are: 

1. Accuracy = (TP+TN) /(TP+FP+TN+FN) may be difficult to define as an image may contain 

objects of multiple classes. In sliding window object detection algorithms, many windows may 

only contain background(negatives) making accuracy a biased measure. 

2. Along with evaluating classification, localization needs to be evaluated. 

Before defining an appropriate measure, we consider some commonly used terms in evaluation. 

• Precision = TP/(TP+FP): It is the ratio of true positives to the model predicting a 

positive outcome. 

• Recall = TP/(TP+FN): Recall indicates ratio of actual positive occurrences 

correctly predicted by the model. 

• Intersection over Union (IoU): Localization is the second key component of object 

detection. Along with predicting the class of the object in the image, we are also 

concerned with how accurately the network predicts the bounding box around the 

object. 

IoU = (Area of overlap between predicted box and ground truth box) / (Area of 

union of predicted box and ground truth box) 
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Figure 23. Intersection over Union (IoU) [25] 

We now try to gain an understanding of mean average precision (mAP). Firstly, we need to define 

what is meant by a positive detection for object detection. When the model predicts an object, if 

its confidence score is above a threshold and bounding box has an IoU greater than the IoU 

threshold, it is considered a positive detection. The default value for confidence score threshold 

and IoU threshold is 0.5. If the predicted class matches the ground truth class it is considered a 

true positive else it is considered as a false positive. An object detection model could detect 

multiple boxes for one object. Only the first detection (detection with the highest confidence score) 

is considered as true positive while the remaining are considered as false positives. For e.g. if the 

model predicts five positive detections for an object in the image, only the first detection is 

considered as a true positive while remaining ones are considered as false positives.  

Precision and recall values vary depending on the threshold of confidence score (pc in Section 

2.2.2.6) and IoU. For e.g. if we set the confidence score threshold at 0.5 we may get a certain 

number of positive detections, while if we increase the confidence threshold to 0.9 the number of 

positive detections will decrease. Changing the IoU threshold for detection also affects the 

precision and recall values. As we relax the confidence score and IoU threshold, the number of 

true positives will increase at the expense of including many more false positives. This reduces the 

precision. At the same time, the number of false negatives will reduce and hence recall increases. 

Similarly increasing the confidence and IoU threshold will increase the precision while reducing 
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recall. This is the precision recall tradeoff for a given IoU threshold. We fix the IoU at its default 

value 0.5 and calculate the precision recall value for every class by varying the confidence 

threshold. For e.g. the precision recall curve for car class in our continued example at IoU of 0.5 

may be as below: 

 

Figure 24. Sample precision vs recall curve for a specific IoU threshold [26] 

Based on the precision recall curve, we calculate the Average Precision(AP) as the mean precision 

at equally spaced recall values. In this research, we have considered PASCAL mAP@0.5 metric 

that calculates AP across eleven equally spaced recall values given by Recalli = [0, 0.1, 0.2, …, 

1.0].  

Average Precision (AP) = (1/11) * åi Precision(Recalli) 

The mAP for a class is calculated by taking the mean of the AP for that class over all the test 

images. The mAP for the entire dataset is calculated by taking the mean over all the classes. As 

the mAP was calculated at an IoU of 0.5 it is denoted as mAP@0.5. 

  



CS 298 REPORT 40 
 

5 Proposed Approach 

Fine-grained object detection aims at training general purpose object detection models for fine-

grained datasets. All the object detection models surveyed in the Related Works (section 2) are 

trained on COCO [10] or PASCAL VOC [11] datasets. These datasets have common objects from 

real life for e.g. a car, a pedestrian, a bike that are relatively easier to differentiate from each other.  

5.1 Baseline approach 

Turner et al. [13] in 2016 trained Fast R-CNN network on the CUB-200 dataset for fine-grained 

object detection. Turner et al.  used keypoint density region proposal algorithm instead of selective 

search algorithm to generate RoI’s.  Remaining architecture of Fast R-CNN network was the same. 

This algorithm tries to identify areas within the image with a high density of keypoints. The success 

of this algorithm depends on the premise that areas which are dense in keypoints are most likely 

to contain objects. Let us first comprehend what keypoints and density of keypoints mean in this 

context. To identify keypoints, the algorithm generates Scale-Invariant Feature Transform (SIFT) 

features [13]. SIFT features identify points with a large change in gradient and these are referred 

to as keypoints. Consider an image with mean ‘µ’ and standard deviation ‘s’ keypoints in an area 

of size ‘s’. Given a region ‘r’ of the same size ‘s’ in the image, having ‘x’ keypoints,   the density 

for region ‘r’ is: 

Density of keypoints for ‘r’ = (x-µ)/s 

The keypoint density region proposal algorithm [13] is defined as below: 

KDRP (image, regionsNeeded) → outputRegions  

1. keypointCoordinates ← SIFT-like feature generation(image)  

2. keypointMean ← mean(numberOfKeypoints([256 uniform regions of 

keypointCoordinates])  
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3. keypointStdDev ← stdDev(numberOfKeypoints([256 uniform regions of 

keypointCoordinates])  

4. lengthOutput ← 0  

5. RoI ← [ ]  

6. while (lengthOutput < regionsNeeded)  

a. r ← generateRandomRegion(image)  

b. densityPercentile ← percentile(zScore(numberOfKeypoints(r), keypointMean, 

keypointStdValue))  

c. if binomialTrialSuccess(densityPercentile)  

d. then RoI ← RoI + r  

7. return outputRegions  

The algorithm slides a square window with a uniform stride over the image to calculate the mean 

and standard deviation of keypoints (steps 1-3). Then in step 6, it repeatedly and stochastically 

generates a region ‘r’ (not necessarily a square) and examines if its keypoint density is within a 

certain threshold percentile of the mean and standard deviation. Regions within the threshold 

density are candidates for becoming a RoI. A candidate is then binomially sampled to determine 

whether it should be a RoI. The number of regions to be generated in RoI can be specified. The 

remaining pipeline of Fast R-CNN was maintained as it is in this approach. The algorithm used 

momentum mini-batch gradient descent with learning rate decay. Key parameters of the training 

are as below: 

• Base learning rate of .01, decreasing by a factor of 10 every 500,000 iterations 

• Momentum term 0.9, batch size 
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The model trained for 5,000,000 iterations and achieved a mAP of 66.24% on the CUB-200-2011 

dataset with a detection time of 1 second on a test image. 

5.2 Project approach  

In this research, we aimed to improve the mAP of fine-grained object detection on CUB-200-2011 

dataset. We trained models for fine-grained object detection on CUB-200-2011 using both the 

state-of-art paradigms in object detection i.e. region proposal (R-CNN family) and regression 

based (SSD). 

For region proposal methods, Faster R-CNN models were trained as they ~10 times faster in 

detection than the Fast R-CNN models [6]. For regression based models, we trained SSD models. 

This necessitated building an object detection pipeline that could enable training of different types 

of models without any code changes. To accomplish this, we used TensorFlow’s object detection 

framework. TensorFlow [27] is an open source machine learning framework based on dataflow 

graphs. The graph nodes represent mathematical operations and graph edges represent 

multidimensional data arrays known as tensors. TensorFlow’s Object Detection framework [28] is 

built on top of TensorFlow. 
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5.2.1 Implementation pipeline 

 

 

 

Figure 25. Implementation pipeline for fine-grained object detection using TensorFlow object detection 

TensorFlow requires the data to be in the ‘tfrecord’ format. The tfrecord format enables 

splitting, creating batches, shuffling data and providing a uniform format across network 

architectures and systems. CUB-200-2011 dataset provided the image labels and their bounding 

boxes in text files. These were converted into a tfrecord.  

The original dataset comprised of only train and test data. The train data was split into train 

and validation set as mentioned in Section 3. Then the train, validation and test splits were 

converted into three separate tfrecord files. 

One of the key design principles was to develop a model independent implementation 

pipeline. This would enable us to train all the models using the same pipeline. Hence the train and 

test scripts were independent of the model. The model configuration containing the network 

architecture, training parameters like batch size, initialization, training data path, test data path, 

and other parameters were specified using a config file. The config file for a Faster R-CNN model 

is as below: 
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model { 

  faster_rcnn { 

    num_classes: 200 

    image_resizer { 

      fixed_shape_resizer { 

        height: 500 

        width: 500 

      } 

    } 

    feature_extractor { 

      type: 'faster_rcnn_inception_v2' 

      first_stage_features_stride: 16 

    } 

    first_stage_anchor_generator { 

      grid_anchor_generator { 

        scales: [0.25, 0.5, 1.0, 2.0] 

        aspect_ratios: [0.5, 1.0, 2.0] 

        height_stride: 16 

        width_stride: 16 

      } 

    } 

    first_stage_box_predictor_conv_hyperparams { 

      op: CONV 

      regularizer { 

        l2_regularizer { 

          weight: 0.01 

        } 

      } 

      initializer { 
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        truncated_normal_initializer { 

          stddev: 0.01 

        } 

      } 

    } 

    first_stage_nms_score_threshold: 0.0 

    first_stage_nms_iou_threshold: 0.7 

    first_stage_max_proposals: 300 

    first_stage_localization_loss_weight: 2.0 

    first_stage_objectness_loss_weight: 1.0 

    initial_crop_size: 14 

    maxpool_kernel_size: 2 

    maxpool_stride: 2 

    second_stage_box_predictor { 

      mask_rcnn_box_predictor { 

        use_dropout: false 

        dropout_keep_probability: 1.0 

        fc_hyperparams { 

          op: FC 

          regularizer { 

            l2_regularizer { 

              weight: 0.0 

            } 

          } 

          initializer { 

            variance_scaling_initializer { 

              factor: 1.0 

              uniform: true 

              mode: FAN_AVG 
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            } 

          } 

        } 

      } 

    } 

    second_stage_post_processing { 

      batch_non_max_suppression { 

        score_threshold: 0.0 

        iou_threshold: 0.6 

        max_detections_per_class: 100 

        max_total_detections: 300 

      } 

      score_converter: SOFTMAX 

    } 

    second_stage_localization_loss_weight: 2.0 

    second_stage_classification_loss_weight: 1.0 

  } 

} 

train_config: { 

  batch_size: 16 

  optimizer { 

        adam_optimizer: { 

            learning_rate { 

            exponential_decay_learning_rate: 

{initial_learning_rate:0.00001} 

            } 

        } 

    } 

  gradient_clipping_by_norm: 10.0 
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  fine_tune_checkpoint: 

"faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt" 

  from_detection_checkpoint: true 

  batch_queue_capacity:200 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

    random_crop_pad_image{ 

    } 

    rgb_to_gray { 

    } 

    random_black_patches { 

    } 

  } 

} 

 

train_input_reader: { 

  tf_record_input_reader { 

    input_path: path to train tfrecord 

  } 

  label_map_path: path to label 

} 

eval_config: { 

  num_examples: 600 

} 

eval_input_reader: { 

  tf_record_input_reader { 

    input_path: path to validation tf record 

  } 
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  label_map_path: path to labels 

  shuffle: false 

  num_readers: 1 

} 

Multiple models were then trained. To monitor the convergence of models and tune 

hyperparameters we used the validation set. 

 

Figure 26. Monitoring validation performance on TensorBoard while training 

While a model was being trained on the train tfrecord data, its mAP was evaluated at regular 

intervals on the validation tfrecord as shown in Fig. 27. Also, the model weights were stored at 

regular intervals as checkpoints. This mechanism allowed us to determine if the model was 

overfitting and select the best trained model from the available checkpoints. We tested our three 

best trained models on the entire test dataset at the end. The technologies used in developing the 

pipeline are: 

• Language: Python 3.6 

• TensorFlow v1.5 

• TensorFlow Object Detection prerequisites [28] 

o Protobuf 2.6 
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o Python-tk 

o Pillow 1.0 

o lxml 

o tf Slim 

o Jupyter notebook 

o Matplotlib 

o TensorFlow 

o Cython 

o cocoapi 

• TensorFlow Object Detection 

• Anaconda virtual environment 

• GitHub 

Salient features of the implementation pipeline: 

• It could train different types of models using the same codebase. Both SSD and Faster R-

CNN were trained using the same codebase. 

• Transfer learning could be easily employed. 

• Time to initiate training of a new model was reduced significantly as opposed to developing 

each model individually. 

• Multiple models could be trained easily, constrained only by system resources. 

• Models could be monitored for underfitting and overfitting. This enabled efficient 

utilization of computation resources as deep learning is extremely resource (computation) 

and time intensive. 
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5.2.2 Models trained 

Training deep neural networks on a dataset as large as CUB-200-2011can take several days. 

Transfer learning was used to train existing COCO based object detection models on CUB-200-

2011. We began with training SSD Mobilenet [29] models as they have the lowest depth and took 

least training time. Based on the results, we identified the techniques that were crucial to training 

general purpose object detection models for fine-grained object detection. We used our learnings 

to train deeper SSD models - SSD Inception [29], to obtain more accurate results. SSD Inception 

models use the SSD architecture and replace a normal convolutional layer with an Inception 

convolutional layer. The details of Inception layer are explained later in Section 2.2.1.4. This 

helped us corroborate and adapt our findings from SSD Mobilenet. We then proceeded to train 

Faster R-CNN Inception models within a restricted scope dictated by our findings from training 

SSD models. Finally, we experimented by training substantially deep Faster ResNet 101 models 

[29], which have 101 layers and use ResNet architecture [21]. Some of the key techniques used by 

this research are highlighted in the following sections. 

5.2.2.1 Transfer Learning 

Instead of training a model from scratch, the training time can be reduced by initializing the 

weights of our model with that of an already trained model solving a problem similar to the one 

under consideration. In this way, the new model can incorporate the learnings of the already trained 

model. Transfer learning is used to significantly reduce the training time in many cases.  This 

research used models trained on the COCO dataset [29], that contains many more object classes 

than a bird. However, with transfer learning our models can utilize learnings from COCO models 

like identifying vertical edges, differentiating objects from background etc. that will be common 

in general purpose as well as fine-grained object detection. 
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5.2.2.2 Data Augmentation 

Data augmentation creates more diverse data. With data augmentation, we can learn to identify the 

object of interest in varying sizes, lighting conditions, at different areas of the image etc. Also, as 

the object classes are very similar in nature, data augmentation forces the model to learn features 

beyond what is obvious in the normal dataset, which can be useful in differentiating similar object 

classes. During each training iteration, every data augmentation technique specified in the config 

file is either applied with a probability of 0.5 or the image is used as it is without any augmentation.  

The following data augmentation techniques [30] were used in the research: 

1. Random horizontal flip – It prevents the model from assuming that a feature is present 

in only a certain area of the image. Instead it helps the model focus on the relation 

between features. Most of the bird images are top down and hence the beak is present 

in the upper half of the image. As a result, the model may fail to detect the object in the 

below image. 

 

Figure 27. Black footed albatross from CUB-200-2011 with beak in lower right half [12] 

2. Random crop image with padding – Random cropping makes the model better in 

differentiating the object from the background. Padding is used as the CNN expects a 

fixed size input. Random cropping also helps the model learn different parts of an 

object better. 
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3. Random RGB to Gray – Many of the object classes (birds) have one dominant color 

but also have additional colors.  

        

Figure 28. Object class with primary color as red and secondary color as pastel green 

In Fig. 25 cardinal class has red color as the dominant color but occasionally it may 

also have the pastel green color as shown. Random RGB to Gray transformation 

influences the CNN to learn finer features of the bird and not just depend on the color. 

This helps in detecting even the secondary colored images of the bird.  

4. Random black patches – Random black patches introduce limited noise during the 

training process that makes the model more stable and robust. For e.g. If the beak of 

the bird was covered with a black patch the model will learn to detect the object despite 

the beak not being visible. During testing if the beak is not clear in one of the images, 

the model can still detect the object. 

5. Random distort color – Random color distortions can provide better results in cases 

where one object class can have more than one color. As most of the classes in our 

dataset had more than one color, random distort color was used as a data augmentation 

technique. 

6. Random adjust saturation – It modifies the intensity of colors in the image and helps 

the model learn the object across different color intensities. 
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7. Random adjust brightness- Random adjust brightness can improve the model to detect 

objects in different lighting conditions. 

8. Random adjust contrast – Random adjust contrast was used in a similar way to random 

adjust brightness. 

We used a systematic approach in applying the data augmentation techniques. Random horizontal 

flipping and random cropping with padding are unbiased towards the remaining six techniques. 

Hence, they were combined with the other data augmentation techniques. We researched on three 

separate themes for data augmentation: 

• Transform color to gray: In this theme, we used random RGB to gray and random black 

patches. Color and brightness variations were not used in these cases. The idea was to see 

the effect of color to gray transformation on the performance of the model. 

• Color variations: In this theme, we considered the model’s performance by varying colors 

in the image. For this we used random distort color and random adjust saturation. 

• Brightness variations: In this theme, we varied the lighting conditions of the image by using 

random adjust brightness and random adjust contrast. 

5.2.2.3 Adam Optimization [31] 

The models discussed in related works and the baseline approach used gradient descent with 

momentum. Recent research has made breakthroughs in optimization algorithms for deep learning. 

Adam optimization combines Momentum and RMSProp [32] optimization algorithms, and is 

known to yield faster training convergence than Momentum in most cases [31]. Hence, we utilize 

Adam optimization algorithm for training our models.  
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5.2.2.4 Dropout Regularization [33] 

Another suggested best practice for deep learning in recent years is Dropout Regularization [33]. 

Dropout as the name suggests ignores (‘drops out’) randomly selected neurons during an iteration’s 

forward pass while training. Their contribution of activation to downstream neurons is nullified 

during that iteration. For each iteration, the set of neurons that are ignored are randomly chosen as 

per a probability. This research used a keep probability of 0.8 (thus dropout probability was 0.2) 

for all the models trained during research. 

5.2.2.5 Network architectures 

This research used Inception and ResNet architectures for the CNN in object detection models. 

Inception architecture has yielded better results than a conventional CNN in many applications. 

ResNet architecture allows to train deeper networks. This enables us to train a more accurate and 

deeper CNN. 
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6 Experiments and Results 

We trained the following COCO models [29] on the CUB-200-2011 dataset. For easier 

representation of results their names have been shortened as below: 

• ssd_mobilenet_v1_coco: ssd_mobile 

• ssd_inception_v2_coco: ssd_inception 

• faster_rcnn_inception_v2_coco: faster_rcnn_inc 

• faster_rcnn_resnet101_coco: faster_rcnn_res 

• faster_rcnn_resnet101_coco_low_proposal: faster_rcnn_res_low_prop 

 

No. Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB 

to 

Gray 

Black 

Patches 

Dist. 

Color 

Adj.       

Sat. 

Adj. 

Bright. 

Adj. 

Contr. 

Valid.   

mAP 

1 ssd_mobile 32 RMSProp 0 0 0 0 0 0 0 0 52.2 

2 ssd_mobile 64 RMSProp 0 0 0 0 0 0 0 0 55.8 

3 ssd_mobile 64 Adam 0 0 0 0 0 0 0 0 57.2 

Table 1. Validation results for SSD Mobilenet models traiend on CUB-200-2011 dataset without data 
augmentation 

Table 1. indicates the validation results for SSD Mobilenet models trained on CUB-200-2011. The 

data augmentation transformation outlined in Section 5.2.2.2 were used and names have been 

shortened for display purposes. A ‘0’ in a data augmentation option indicates that the data 

augmentation technique was not used, while a ‘1’ indicates the technique was used. Valid. mAP 

refers to the mAP achieved on validation dataset. 

As shown in Table 1, SSD Mobilenet models were trained without any data augmentation. Adam 

optimizer and batch size of 64 gave the best results. These hyperparameters were maintained in 

subsequent experiments for SSD Mobilenet.   
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No. Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB to 

Gray 

Black 

Patches 

Dist. 

Color 

Adj.       

Sat. 

Adj. 

Bright. 

Adj. 

Contr. 

Valid.   

mAP 

4 ssd_mobile 64 Adam 1 1 0 0 0 0 0 0 60.8 

5 ssd_mobile 64 Adam 1 1 1 1 0 0 0 0 64.8 

6 ssd_mobile 64 Adam 1 1 0 0 1 1 0 0 53.8 

7 ssd_mobile 64 Adam 1 1 0 0 0 0 1 1 60.7 

Table 2. Validation results for SSD Mobilenet models trained on CUB-200-2011 dataset with data 
augmentation 

Random horizontal flipping and random cropping image, increased the mAP to 60.8% on the 

validation dataset. As already highlighted, random horizontal flipping helped the model to detect 

the object in different positions. Random cropping image improves the model’s capabilities in 

differentiating the object from background. We then probed along the three themes of data 

augmentation as explained earlier: 

• RGB to gray 

• Color variations 

• Brightness variations 

Random horizontal flipping and random cropping image are unbiased towards all the three themes 

and hence were continued during training these three models. Most of the birds had one dominant 

color and one or two secondary colors. Random RGB to gray augmentation enhanced the model’s 

capability to detect the bird in its secondary colors. Random RGB to gray along with random black 

patches improved the validation mAP by 4 percentage points. Data augmentations using color and 

saturation distortions performed poorly. One possible reason for poor performance of color 

variation technique could be that this data augmentation technique could introduce some color 
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variations during training which the model may not encounter during testing at all (as each bird 

has at most three colors). Color distortions in fact reduced the model’s performance as compared 

to without any data augmentation. Contrast and brightness adjustments yielded neutral results and 

needed further probing in subsequent models. 

No. Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB to 

Gray 

Black 

Patches 

Dist. 

Color 

Adj.       

Sat. 

Adj. 

Bright. 

Adj. 

Contr. 

Valid.   

mAP 

8 ssd_inception 64 Adam 1 1 0 0 0 0 0 0 69.4 

9 ssd_inception 64 Adam 1 1 1 1 0 0 0 0 70.7 

10 ssd_inception 64 Adam 1 1 0 0 1 1 0 0 57.9 

11 ssd_inception 64 Adam 1 1 0 0 0 0 1 1 69.6 

Table 3. Validation results for SSD Inception models trained on CUB-200-2011 dataset with data 
augmentation 

We then trained, SSD inception models on the same data augmentation techniques and found 

Random RGB to gray with random black patches along with random horizontal flipping and 

random cropping of image performed the best. Also, the effects from color and saturation 

distortions were poor again. Hence while training the much deeper faster R-CNN models we did 

not use color and saturation distortions. 

Mod. 

# Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB to 

Gray 

Black 

Patches 

Adj. 

Bright. 

Adj. 

Contr. 

Valid.   

mAP 

12 faster_rcnn_inc 16 Adam 0 0 0 0 0 0 67.7 

13 faster_rcnn_inc 16 Adam 1 1 0 0 0 0 75.2 

14 faster_rcnn_inc 16 Adam 1 1 1 1 0 0 75.6 

15 faster_rcnn_inc 16 Adam 1 1 0 0 1 1 70.4 

Table 4. Validation results for Faster R-CNN Inception models trained on CUB-200-2011 dataset with 
data augmentation 
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Faster R-CNN model generally provides more accurate predictions by trading off speed with 

accuracy as compared to SSD. Faster R-CNN model combined with Inception CNN architecture 

gave a significant improvement in mAP.  Subsequently we could use data augmentation to improve 

the model’s performance. Random RGB to gray combined with random black patches and random 

horizontal flipping with random cropping of image outperformed other data augmentation 

techniques giving a mAP of 75.6% on the validation set after training for 200,000 steps. All the 

inception models were trained for ~200,000 steps. The models started overfitting around 220,000 

steps and gave best results in the range of 190,000 – 210,000. Constrained by computation and 

GPU resources, Faster R-CNN Inception models could only be tested for a maximum batch size 

of 16 at which we observed better training convergence as compared to batch size of 8 and 1.  

Mod. 

# Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB to 

Gray 

Black 

Patches 

Adj. 

Bright. 

Adj. 

Contr. 

Valid.   

mAP 

16 faster_rcnn_res 1 Adam 1 1 0 0 0 0 44.8 

17 faster_rcnn_res 1 Adam 1 1 1 1 0 0 41.2 

18 faster_rcnn_res_low_prop 1 Adam 1 1 0 0 0 0 47.1 

19 faster_rcnn_res_low_prop 1 Adam 1 1 1 1 0 0 50.1 

Table 5. Validation results for Faster R-CNN ResNet models trained on CUB-200-2011 dataset with data 
augmentation 

ResNet’s are significantly deeper than a normal Inception network. In this research, we trained 

101 layer ResNet architecture for Faster R-CNN models. Ideally, they should have performed 

better than other networks. However, the Faster R-CNN models did not converge even after 

training for ~4,000,000 steps at a batch size of 1. Mobilenet and inception architectures (for both 

SSD and Faster R-CNN) had performed poorly with a batch size of 1. One of the plausible reasons 

could be the constraint of batch size 1. The poor performance of the ResNet models could also be 
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due to inadequate data for training such deeper network or our inability to tune hyperparameters 

for such a deep network. 

The top 3 models were tested on the entire test dataset. 

Mod. # Model 

Batch 

Size Optimizer 

Hor.       

Flip 

Crop 

Img. 

RGB to 

Gray 

Black 

Patches 

Valid.   

mAP 

Test      

mAP 

1 faster_rcnn_inc 16 Adam 1 1 1 1 75.6 71.5 

2 faster_rcnn_inc 16 Adam 1 1 0 0 75.2 70.8 

3 ssd_inception 64 Adam 1 1 1 1 70.7 65.9 

Table 6. Test results for top 3 models (validation mAP) trained on CUB-200-2011 dataset 

Faster R-CNN Inception model with random horizontal flipping, random cropping image, random 

RGB to gray and random black patches performed the best and gave a mAP of 71.5% on the test 

dataset.  

Object detection times for TensorFlow implementation of Faster R-CNN and SSD [29] are:  

Model Detection time (ms) 

ssd_mobilenet_v1_coco 30 

ssd_inception_v2_coco 42 

faster_rcnn_inception_v2_coco 58 

faster_rcnn_resnet101_coco 106 

faster_rcnn_resnet101_lowproposals_coco 82 

Table 7. Detection time for object detection models 

Faster R-CNN Inception takes ~42 ms for detection. 

Model mAP 

KDRP Fast R-CNN (baseline) 66.24 

faster_rcnn_inception_v2_coco with data augmentation (our model) 71.5 

Table 8. Research achievement (mAP) vs baseline 
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To the best of our knowledge, the research achieved an improvement of more than 5 percentage 

points in fine-grained object detection on CUB 200-2011 dataset attaining a mAP of 71.5%. 

7 Conclusion 

The paper proposed deep learning models for fine-grained object detection. We trained Faster R-

CNN object detection model with Inception architecture on the CUB-200-2011 dataset to achieve 

a mAP of 71.5%. To the best of our knowledge this represents the best mAP on CUB-200-2011 

dataset. In addition to accomplishing the best results on CUB-200-2011, we explained our 

approach and experiments that could provide insights into fine-grained object detection. To reduce 

training time, we used transfer learning to retrain COCO object detection models for fine-grained 

object detection on CUB-200-2011 dataset. One of the key discernments from our experiments 

was that data augmentation could improve accuracy of fine-grained object detection. We also 

implemented an object detection pipeline using TensorFlow’s object detection framework that 

could enable training of different models without changes in source code. We experimented with 

8 data augmentation techniques. Future research could experiment on effectiveness of other data 

augmentation techniques for fine-grained object detection. Training deeper networks like Faster 

R-CNN ResNet 101 COCO with higher batch size could be explored to achieve better results. 
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