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Abstract

Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest.
A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath
degrees of freedom. Usually, the bath parameters can not be obtained directly on the real axis, but have to be determined by an
ambiguous fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom of the AIM
are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by
unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site, and its
interacting Greens functions can be determined by ED. The other larger part is a non-interacting system containing all the remaining
bath sites. Finally, the full Green’s function of the AIM is calculated via coupling these two parts by cluster perturbation theory.
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1. Introduction

The single-orbital Anderson impurity model (AIM) [1] can
be represented exactly by an interacting site coupled to a bath
of infinitely many non-interacting sites. In approaches based
on exact diagonalization (ED), the number of sites in the inter-
acting system is restricted, and thus the bath needs to be trun-
cated [2; 3; 4]. This is a delicate step, as there is not an unique
procedure. Different ways are used, e.g., fits on the Matsubara
axis or continuous fraction expansions [3; 5; 6].

Therefore, various methods improving on ED have been pre-
sented in recent years, e.g., the variational exact diagonaliza-
tion [7], the distributional exact diagonalize [7] and methods
based on restricting the basis states [8; 9; 10; 11; 12]. An-
other way of going beyond ED is the use of cluster perturbation
theory (CPT) [13; 14; 15], i.e. the more advanced variational
cluster approximation (VCA) [16; 17; 18] as a solver for the
AIM [19; 20].

From now on, we assume a single-orbital AIM coupled to a
finite, but large bath of L − 1 non-interacting sites. The basic
idea of using CPT as an impurity solver is to separate the L-site
AIM into a cluster of size LC , which includes the impurity site
and LC−1 bath sites, and a non-interacting system consisting of
the remaining bath sites. In general, the non-interacting Green’s
function is specified by the Hamiltonian H0, that is a matrix in
orbital space of size L × L. For illustration purposes (see the
sketch in Fig. 1), we denote the upper left LC × LC block in
H0 as the interacting cluster, subsequently H0

C . The remaining,
lower (L − LC) × (L − LC) block describes the remainder of the
bath, subsequently H0

R. The inter-cluster coupling T consists of

Email address: aichhorn@tugraz.at (Markus Aichhorn)

the two off-diagonal blocks in H0 connecting H0
C and H0

R. The
onsite Hubbard interaction on the impurity site (index I) HU =

UnI,↑nI,↓ is now added to the cluster Hamiltonian, HC = H0
C +

HU . There are no interactions in the bath degrees of freedom,
hence H0

R remains unchanged.
In CPT both Hamiltonians (HC and H0

R) are solved exactly
for their single-particle Green’s functions GC(ω) and GR(ω).
Note that GR(ω) = G0

R(ω), as the remainder of the bath is a non-
interacting system. Subsequently the two systems are joined
to yield the single-particle Green’s function of the full system
G(ω) via the CPT relation [14]

G−1(ω) =

(
GC(ω) 0

0 GR(ω)

)−1

− T , (1)

which is exact in the case of a non-interacting system. In the
interacting case, the CPT relation is no longer exact, but a result
of perturbation theory in T . CPT approximates the self-energy
of the full system by the self-energy of the cluster. To obtain
the single-particle Green’s function of the interacting cluster,
we use the Lanczos procedure [21; 22].

In general, the non-interacting bath can always be trans-
formed to a tridiagonal representation via a Lanczos tridiago-
nalization, yielding a chain representation of the AIM. This rep-
resentation straight forwardly allows to define the separation of
the interacting cluster and the remainder of bath. However, the
situation is not so clear in other representations. Consider for
example the case of a star geometry, where all bath sites couple
once to the impurity site only. Incorporating just a random set
of these star sites into the interacting cluster will lead to a poor
discretization of the bath, and hence a poor self-energy.

Any unitary transformation on the non-interacting bath de-
grees of freedom leaves the physics of the interacting AIM in-
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Figure 1: Splitting of the Hamiltonian H0 into an interacting cluster H0
C of LC =

6 sites, the remaining reservoir H0
R and the coupling of those two system T . In

the specific example of a particle-hole symmetric system the unitary updates
are performed in the space of negative energies (red) and equivalently in the
space of positive energies (blue). No non-zero matrix elements are generated
in the white blocks by the two-dimensional rotation matrices used in this work.
The diagonal blocks from top to bottom represent: 1) the impurity, 2) the zero
mode inside the cluster, 3) two negative modes inside the cluster, 4) two positive
modes inside the cluster, 5) the remaining negative modes in the reservoir and
6) the remaining positive modes in the reservoir.

variant. However, such a transformation will influence the self-
energy of the interacting cluster significantly, since it changes
the cluster Hamiltonian HC . Additionally, such transformations
will also alter the off-diagonal block T , rendering the result-
ing perturbation in some cases larger than in others. There
exist an infinite number of configurations which all describe
the non-interacting bath exactly and which are related via uni-
tary transformations. However, the CPT method itself suggests
which baths might be the best: Those which ”minimize” the
off-diagonal perturbative elements ||T ||. The key idea of this
work is to use unitary transformations to find those baths with
minimal ||T ||.

In the following, we outline a way to construct CPT-favorable
bath configurations in Sec. 2, and present results in Sec. 3 for a
L = 64 AIM in semicircular particle-hole symmetric bath.

2. Method

The general form of the non-interacting Hamiltonian for an
L-site AIM is

H0 = εIc
†

I cI +

L−1∑
i=0

(
tiIc
†

i cI + h.c.
)

+

L−1∑
i< j

(
ti jc
†

i c j + h.c.
)

(2)

where the impurity is denoted by the index I and the L − 1 bath
sites by i and j. We omit spin indices, which are summed over,
for clarity. To obtain H0 for an L-site system one can use a
star representation, where each bath site couples directly to the
impurity site. Then, the parameters of H0 can be determined
by a discretization of the non-interacting bath DOS into equally
spaced intervals. Each interval is represented by a delta peak,

where the energy positions of the delta peaks correspond to the
on-site energies and the hopping parameters are given by the
weights of the intervals. Of course, the higher the number of
bath sites the better the result of this discretization. In contrast
to a fit on the Matsubara axis, which is usually used in ED-like
approaches, the discretization on the real axis is a well defined
procedure in the sense that it does not rely on the choice of a
cost function.

As next step, we perform a unitary transformation R in the
bath only with ci = Riαdα and c†i = d†αR∗αi, where RR† = 11. The
transformed Hamiltonian reads

H′0 = εIc
†

I cI +

L−1∑
α=0

(
hαId†αcI + h.c.

)
+

L−1∑
α<β

(
hαβd†αdβ + h.c.

)
.

(3)

The parameters of the Hamiltonian transform like hαI =∑
i R∗αitiI and hαβ =

∑L−1
i, j R∗αiti jR jβ. Such a transformation leaves

the impurity state I and consequently εI invariant.
We define an “energy” of a certain bath configuration via the

2-norm of the off diagonal blocks T

E =
1

NT

L∑
i, j

|Ti j|
2 , (4)

where the number of elements in T is NT = LC ·(L−LC). Trans-
formations on the bath degrees of freedom included in the in-
teracting cluster do not influence the resulting self-energy. The
same is true for transformations in the remainder of the bath.
This imposes a constraint on the energy E, namely, it has to be
invariant with respect to such transformations, which is indeed
fulfilled by the 2-norm.

The key idea of this work is now to find an optimal bath con-
figuration for CPT by minimizing the energy functional Eq. (4).
Since the configuration space of Ti j is high dimensional, we
use a Monte Carlo procedure to find configurations with small
E. Initially we perform global updates in all dimensions with
random rotation matrices to obtain a randomized starting repre-
sentation of H0. Then, we move through the space of possible
H0 by proposing random local updates R. In general any uni-
tary update R = eiM , with M = M† would be allowed, but here
we restrict ourselves to two-dimensional rotation matrices for
the local updates

R =



1 0 . . . 0 0 . . . 0 . . . 0
0 1 . . . 0 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . 0
0 0 . . . cos (φ) 0 . . . − sin (φ) . . . 0
0 0 . . . 0 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . 0
0 0 . . . sin (φ) 0 . . . cos (φ) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . 0 . . . 1


A local update matrix R(x, y, φ) is drawn by choosing two

random integers x, y ∈ [1, L − 1] representing the plane of
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rotation and one rotation angle φ ∈ [0, 2π[. A new con-
figuration with energy E′ is accepted with probability p =

min
(
1, e−γ(E′−E)

)
. We use simulated annealing to obtain low

energy CPT bath configurations by increasing the parameter γ.
Although bath rotations leave the particle-hole symmetry in-

variant on the L-site H0, they destroy it on the LC-site cluster in
the interacting case. Therefore, as shown in Fig. 1, we split the
bath sites into an equal amount of positive (blue elements) and
negative energy (red elements) sites and one zero mode (green
0). Updates are performed simultaneously on the positive and
negative modes which leaves the whole bath, the bath in the
cluster as well as the remaining bath particle-hole invariant also
if the interaction is turned on. To avoid a Kramers-degenerate
ground state for particle-hole symmetric systems, clusters with
an even number of sites LC are chosen. This implies that one
bath site (the zero mode) is exactly located at zero energy. Zero
mode updates can not be achieved by two dimensional rota-
tions without breaking particle-hole symmetry of the cluster,
but would rather require special unitary transformations involv-
ing at least three bath sites. For the proof of concept, we refrain
from updating the zero mode, i.e. the green elements in Fig. 1
do not change, and note that the zero mode coupling is deter-
mined by the initial discretization of the system. Although this
restrictes the space of trial bath representations, we leave the
zero mode updates for future works.

Next to E as defined in Eq. 4, which reflects the magnitude of
the perturbation, we evaluate the influence of the CPT trunca-
tion by comparing the non-interacting single-particle impurity
Green’s function of the full system GI

0(ω) to the one consider-
ing only the sites in the cluster GI

0,C(ω). The resulting quantity

χ2
C =

∫
dω

∣∣∣GI
0(ω + iη) −GI

0,C(ω + iη)
∣∣∣2 , (5)

reflects the ability of the Lc cluster sites to represent the bath
degrees of freedom. A-priori a positive correlation of E and χ2

C
is not ensured but expected. We emphazise that χ2

C is not used
in the algorithm, but only serves as a measurement to asses the
quality of the bath optimization. To evaluate Eq. 5 we use a
numerical broadening of η = 0.02 eV.

3. Results

Here we discuss a single interacting impurity in a particle-
hole symmetric semi-circular bath with a half-bandwidth of
1 eV. For the bath optimization we use a discretized system
with a total number of L = 64 sites and an interacting cluster of
LC = 10. The interacting cluster includes the impurity site, one
zero mode and five additional positive and negative bath sites
each. The discretized DOS is shown in the top graph of Fig. 4
(blue line).

Fig. 2 shows that smaller perturbative elements E correlate
positively with smaller χ2

C , indicating a better representation of
the non-interacting bath by the sites contained in the interacting
cluster. We compare intermediate bath configurations (black
crosses) to the random initial configuration (orange star), a star

representation by choosing ten sites at random to enter the inter-
acting cluster (cyan triangle) and the 10-site chain representa-
tion (green circle). Note that the chain representation hosts only
one perturbative matrix element, which is however large. In all
cases one finds a higher χ2

C with respect to the final result of
the optimization (blue cross). Of course, due to the optimiza-
tion the number of elements in T grows, but their magnitude
becomes tiny as compared to the chain or the star representa-
tion.
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Figure 2: Correlation of the cost function χ2
C and the Monte Carlo energy E at

intermediate steps of the optimization procedure (black crosses). χ2
C measures

the quality of the representation of the non-interacting full system by the cluster
only. We show in addition the random starting point (orange star), the optimized
representation (blue cross), the respective values of a chain representation cut
after 10 sites (green circle) and an arbitrary selected 10-site star (cyan triangle).
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Figure 3: Matsubara self-energy for the AIM with a particle-hole symmetric
semi-circular bath DOS. The self-energy of the optimized 10-site cluster (full
lines) compared to the ED self-energy of a fitted 10-site system (dash-dotted
lines) and a CT-HYB result using the continuous bath DOS (dashed lines). The
self-energy is shown for interaction values of U = 2, 3, 4 and 5 eV.

To further asses the quality of the optimization scheme we
calculate the CPT self-energy of the resulting system on the
Matsubara axis for different values of U and compare it to the
exact CTHYB result, and to a self-energy obtained with a plain
ED calculation for a truncated system with 10 sites (see Fig. 3).
The TRIQS library [23] and the TRIQS/CTHYB solver [24]
are used to obtain the Matsubara self-energy for the AIM at
in inverse temperature of β = 100 eV−1. For the ED calcula-
tion we perform a fit of G0 (iω) on the Matsubara axis to obtain
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Figure 4: Spectral function A(ω) of the AIM with a particle-hole symmetric
semi-circular bath DOS. The CPT interacting spectral function A(ω) of the op-
timized system of size L = 64 and LC = 10 (blue) is compared to the ED result
for a 10-site system (orange) at interactions U = 0, 1, 2 and 3 eV. A numerical
broadening of η = 0.02 eV was used to calculate the spectral function.

the bath parameters of a 10-sites system in chain representation
GI

0,ED(iωn) by minimizing the cost function

χ2
ED =

∑
n

Wn

∣∣∣GI
0(iωn)−1 −GI

0,ED(iωn)−1
∣∣∣2 . (6)

We employ the simplex search method by Lagarias et al. [25]
and impose particle-hole symmetry to reduce the number of fit
parameters. A Matsubara grid with 1024 points at a fictitious
temperature corresponding to β = 100 eV−1 is used. The ED
solver itself is used at zero-temperature. The cost function Eq. 6
is a heuristic choice and can also take various other forms, e.g.
with a different definition of the distance or a different weight
Wn [5; 6]. This leads to an ad-hoc determination of the bath
parameters and introduces some ambiguity to the solution of
the AIM. In this work we set Wn = 1/ωn.

In Fig. 4 we show the spectral function A(ω) of the full
optimized system (L = 64) for interaction values of U =

0, 1, 2, and 3 eV, and compare it to the spectral function of the
10-site ED system. The graph for U = 0 eV shows that the CPT
result is, up to the influence of the discretization, exact for non-
interacting systems. As expected the ED results show strong
finite size effects. CPT can improve on the ED result also for
finite interaction values.

4. Conclusion

In this work we introduced a bath optimization scheme for
the Anderson impurity model. Using unitary transformations

in the bath degrees of freedom, we minimize the coupling be-
tween a small cluster containing the impurity site with the in-
teractions, and the remaining sites of the bath. These transfor-
mations leaves the impurity DOS of the non-interacting bath
invariant. In general, the proposed scheme is useful for all
CPT-based methods when parts of the entire system are non-
interacting, but it does in principle also provide a guideline to
construct finite-size representations of hybridization functions
as needed, e.g., in the framework of dynamical mean-field the-
ory. For a large enough number of bath sites, the initial AIM
can be obtained directly on the real axis, and thus, an ambigu-
ous fit on the Matsubara axis can be avoided. The computa-
tional cost of CPT is similar to exact diagonalization (ED). In
this work we have presented a proof of concept, but anticipated
to explore the bath optimization scheme also for multi-orbital
impurity models.
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