
Proof of Stake Blockchain: Performance and Scalability for
Groupware Communications

Jason Spasovski and Peter Eklund
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen, Denmark

jspa@itu.dk, petw@itu.dk

ABSTRACT
A blockchain is a distributed transaction ledger, a disruptive
technology that creates new possibilities for digital ecosys-
tems. The blockchain ecosystem maintains an immutable
transaction record to support many types of digital ser-
vices. This paper compares the performance and scalability
of a web-based groupware communication application using
both non-blockchain and blockchain technologies. Scalabil-
ity is measured where message load is synthesized over two
typical communication topologies. The first is 1 to n net-
work – a typical client-server or star-topology with a central
vertex (server) receiving all messages from the remaining
n − 1 vertices (clients). The second is a more naturally
occurring scale-free network topology, where multiple com-
munication hubs are distributed throughout the network.
System performance is tested with both blockchain and non-
blockchain solutions using multiple cloud computing config-
urations. We analyze the empirical results from each con-
figuration to identify the costs and overhead of blockchain
technology.

General Terms
Groupware communication, distributed ledger ecosystems,
blockchain, scale-free networks, distributed & cloud com-
puting.

1. INTRODUCTION
Security and scalability are chief concerns when provid-

ing data storage and communication solutions in a transac-
tional digital ecosystem. Recent security vulnerabilities ex-
posed in well-established companies, e.g. ebay 1 and Sony 2

1“eBay faces investigations over data breach”, BBC
News, May, 2014, see http://www.bbc.com/news/
technology-27539799
2 “Sony PlayStation suffers massive data breach”,
Reuters, April, 2011, see http://www.reuters.com/
article/us-sony-stoldendata-idUSTRE73P6WB20110426

demonstrate the consequences of security failures in com-
mercial communication software. The blockchain, or dis-
tributed ledger, is a way of decentralizing database control.
Likewise, the importance of scalability is particularly visible
in web-based applications, system performance is critical to
the growth of a user base [14].

Collaboration tools are on-line services used by large audi-
ences and are characterized by countless database changes,
with the addition of other special requirements, such as the
need for low response times and confidential data storage.
These requirements prove to be a challenge to both security
and scalability.

One such collaboration tool is the web application dallr 3.
The first author Spasovski (with Andreassen and Lyck) de-
veloped dallr to create a simple intuitive platform with a
flat learning curve to target small to medium sized compa-
nies. dallr is a groupware communication application that
provides the platform for our empirical comparison.

A major threat to any database are tampering attacks. In
such attacks the database is partly or completely controlled
by an unauthorized third party. Database tampering can be
performed in many ways, each reflecting the possible severity
of the attack, depending on the level of privileges held by
the adversary. As a concrete example, if an adversary were
to use SQL injection, they would most likely only be able to
tamper with the database with minimal privileges, whereas
if an adversary gains access to an administrator account, the
entire database could be deleted.

A common approach to deal with database tampering is
auditing [12], a collection of methods to verify the integrity
of the database by simple procedures such as inserted check-
sums. The main concern with auditing is that it does not
protect against an adversary gaining access to the adminis-
trator privileges. An alternative to deal with database tam-
pering is to use an immutable database, such as Datomic4.
Immutable databases lift the modify and delete functional-
ity, thus making them immutable by design and allow for
extreme scalability and performance.

The current trending method to deal with data tamper-
ing is by using a decentralized blockchain [15] – a distributed
cryptographic ledger. Blockchain is a distributed database
consisting of linked blocks that contain timestamped and
valid transactions. These blocks are linked using the hash

3J. Spasovski, A. Lyck, J. Andreassen. Collaboration with-
out a learning curve [Software], see http://www.dallr.com.
4 Pavlou, Kyriacos E., and Richard T. Snodgrass The fully
transactional, cloud-ready, distributed database. [Software],
see http://www.datomic.com/.

http://www.bbc.com/news/technology-27539799
http://www.bbc.com/news/technology-27539799
http://www.reuters.com/article/us-sony-stoldendata-idUSTRE73P6WB20110426
http://www.reuters.com/article/us-sony-stoldendata-idUSTRE73P6WB20110426
http://www.datomic.com/


of the previous block, creating a chain of blocks where each
block reinforces the integrity of its predecessor. Chaining
blocks in this cryptological manner prevents data stored in
the blocks – the blockchain – to be easily tampered. Decen-
tralization of the blockchain adds an extra layer of security
by distributing the blockchain over multiple decentralized
participating network nodes, each containing a copy of the
blockchain. In this way, the blockchain cannot be controlled
or exploited through a single point of attack on any single
node.

Blockchain has few benefits over traditional databases while
having multiple trade offs, therefore it is important that the
motivation for using a blockchain is worth the trade offs.
Our motivation for using a blockchain is primarily to pro-
tect against database tampering while other use cases could
be motivated by the decentralized blockchain’s ability to re-
move the need for a middle man to authorize transactions.

A large body of work [15, 10, 7] demonstrates that decen-
tralized blockchain allows for strong irrefutability and au-
ditable data storage. In most cases, when using a blockchain
to increase the security of a web application, the scalabil-
ity and performance of the application is significantly de-
creased [6]. This is due to the overhead of the different
consensus algorithms that secure the blockchain.

This paper is structured as follows. Section 2 presents a
survey of the basic theory behind blockchain, as well as de-
scribing some of the mechanisms used in implementations.
Section 3 presents the technologies and architecture used
and give details of the implementation of both blockchain
and non-blockchain versions of dallr. In Section 4, we
present the test scenarios and cloud environments used through-
out the tests. In Section 5 experimental results are presented
focusing particularly on response time and throughput. In
Section 6 we confront expectations with the experimental
findings, thereafter we analyze each of the results attained.
Lastly, in Section 7 we conclude with a brief summary of the
experimental results and analysis.

2. BLOCKCHAIN
Consensus algorithms are used within blockchains to en-

sure that the participating nodes in the distributed system
agree with the current state of the blockchain before each
new block is added [5]. Blockchain consensus algorithms are
Byzantine Fault Tolerant meaning no single machine can
succeed in being malicious against the distributed system
[9].

Bitcoin is the prime example of a cryptocurrency powered
blockchain that allows users to submit transactions without
the need for a central trusted organization; this is achieved
using a consensus algorithm called Proof of Work [10]. This
algorithm uses mining to prove consensus, which requires a
large amount of energy and therefore enforces slow transac-
tion times.

Proof of Stake is a more efficient alternative to Proof of
work where no mining is required to achieve consensus but
instead the next node to create a block is selected pro-
portional to its stake in the blockchain. The stake can
vary depending on how the blockchain has implemented its
proof. In cryptocurrency blockchains, the stake is normally
the number of coins a node holds. In non-cryptocurrency
blockchains alternative approaches such as voting are re-
quired as no stake exists by default.

Merkle trees are a common data structure for storing

blockchain data and implemented using an AVL tree, also
refereed to as a self balancing binary search tree. Merkle
trees have one main difference from normal tree-based data
structures: a value in the tree can always be verified by re-
hashing all the way from the selected node upwards to the
root of the tree, which will take O(log n) time. On every in-
sert the the trail of the inserted node is rehashed from where
the node is inserted all the way to the root node.

All blockchains fall into one of two categories, namely
Public or Private. Public-blockchains are those that allow
all users on the network to view the data you store, while
private blockchains hide all data stored on the blockchain be-
tween its permissioned participants. Private blockchains can
be either fully private or consortium blockchains. Read and
write permissions of a fully private blockchain are controlled
by a single organization, which can be viewed as a central-
ized database with added cryptographic security. Consor-
tium blockchains are where the read and write permissions
are distributed across a permissioned consortium which adds
the extra security of decentralization.

3. IMPLEMENTATION
Figs. 1 and 2 show User 1 sending a message to User 2.

Fig. 1 does not use a blockchain while in Fig. 2 a blockchain
is used.

Figure 1: Flow diagram of User 1 sending a message
to User 2 without a blockchain.

Figure 2: Flow diagram of User 1 sending a message
to User 2 with a blockchain.

The blockchain used in our implementation is the private
consortium blockchain named Tendermint5. Tendermint is

5http://tendermint.com version 0.9.

http://tendermint.com


a relatively lightweight blockchain solution since its consen-
sus method is proof of stake using a voting mechanism [2]
as opposed to the more computational expensive proof of
work [8].

Two different types of nodes exist in the tendermint
blockchain, namely validator nodes and non-validator nodes.
Validator nodes are part of the consortium which vote to
agree upon consensus while non-validator nodes are restricted
to reading and proposing transactions on the blockchain. All
nodes in the tendermint blockchain communicate over a per-
sistent encrypted TCP p2p gossip protocol.

From a design perspective, a straight-forward method of
using a blockchain is to store all data in the blockchain.
Storing all data in a blockchain has one large drawback;
namely if all data stored on the blockchain is immutable,
consequently no data can ever be removed. This in turn
causes the blockchain to grow so large that it can become
impractical to store.

Growth of the blockchain is inevitable but the rate of
growth can easily be managed. All data in our implementa-
tion is stored in the document database MongoDB database6,
while only a hash of the data entries are saved in the blockchain.
The hashes saved in the blockchain are used as a checksum to
confirm the validity of the data stored in the database. This
method of maintaining all data in the database has some
vulnerabilities which are not addressed in this paper. For
each individual document retrieved from the database, the
blockchain is queried with the according hashes, thus con-
firming the validity the data retrieved from the database.
The blockchain validity of data is always sent to the user
alongside the data retrieved from the database.

In order for the application to communicate with the
blockchain validator nodes each application server runs a lo-
cal version of the blockchain. This local version is in a non-
validator node which is synchronized with the blockchain
and pushes new transactions to validator nodes, but is not
involved in consensus. We chose this design to allow the
validator nodes to focus on adding transactions with con-
sensus rather than responding to blockchain queries, which
would otherwise slow the consensus process. We adopted
an asynchronous approach when pushing new transactions
to the blockchain which allows users the ability to view
transactions before consensus is agreed upon by the val-
idators. When adding a new transaction a constant time
function is run on the local blockchain returning true if the
local blockchain verifies the transaction as valid. The local
blockchain node gossips with the blockchain validators and
– normally after a second – consensus will be agreed and the
new transaction will be added to the blockchain, hereafter
the user will receive confirmation that the transaction has
been validated [3].

4. TESTING

4.1 Testing Scenarios
The two testing scenarios have the primary goal of sim-

ulating a large number of users simultaneously communi-
cating via the application. The difference between the two
scenarios lies in the form in which communication between
the users is initiated. The first test uses a realistic messaging
pattern based on a scale-free network graph. Network theory

6https://www.mongodb.com

and its application have shown that communication in com-
munities in the real-world follow a scale-free communication
pattern [1]. The second test simulates a pathological client-
server scenario where a single node (server or authority) re-
ceives messages from the entire client-network. We run each
test scenario for a total of 60 seconds including a 10 second
ramp-up period in which all threads are started and here-
after run concurrently. The timeout limit for all requests is
20 seconds throughout all tests. Response time and through-
put are the chosen metrics, when testing both SendMes-

sage and RetrieveAllMessages functions. Both the non-
blockchain and blockchain implementations are tested for
each of the two testing scenarios.

Scale-Free Network Topology
We create the first testing scenario by applying network the-
ory, more specifically scale-free network theory to produce
scale-free networks. A graph is scale-free if the degree dis-
tribution of the neighbor list of its vertices is roughly power-
law. As a concrete example, the French instant messaging
community nioki [1] proved to be scale-free.

We use the Barabasi-Albert model to build our produce
power-law graphs. The Barabasi-Albert Model is described
by the formula:

pi =
ki∑
j kj

This formula states that the probability of a newly created
vertex being connected to vertex [i] is the degree of vertex [i]
divided by the sum of the degree of every individual remain-
ing vertex. 7.

Each user is represented as a vertex and a message sent
from one user to another is represented as an (undirected)
edge. A node with relatively high degree is denoted as a hub.
Illustration of hubs (marked by a black dot) can be seen in
in Fig. 3. A hub in scale-free network can be thought of as
role in an organization: hubs may represent the CEO of a
company, the vice-chancellor of a University or the faculties
manager of a building.

Figure 3: Random network vs Scale-free network

The test runs for 60 seconds in which it receives the num-
ber of users as input and creates that many threads (users)
that run in parallel. The Scale-Free Network graph is di-
vided over multiple files which are concurrently read by each
user, these files contain a single edge on each line. For each
line in the graph file, the user sends a message to the ac-
cording user using the SendMessage function. Thereafter
7We produce the scale-free network graphs using a Java im-
plementation of the Barabasi-Albert Model named graph-
stream http://graphstream-project.org/

https://www.mongodb.com
http://graphstream-project.org/


the user has a 10% chance to retrieve all messages using the
RetrieveAllMessage function, followed by a 300ms second
delay. If the graph file reaches the end it will wait for (users
× 2)ms before returning to the start of the file, this is done
to reduce the throughput of users with fewer edges.

1 to n Topology
We now describe the second testing scenario, namely 1 to n
(or star graph). By forcing all users to send their messages
to a single user (User 1), we replicate a very heavy load being
put onto a single user – as may occur in DoS or DDoS attack.
By comparing the load on the heavily loaded user with the
remaining users on both implementations, we emphasize the
blockchain’s ability to handle centralized stress.

Similarly to the previous case, the test runs for 60 sec-
onds. In that timeframe, the test takes the number of users
as input and creates that many threads (users) that run in
parallel. Each user concurrently sends a message to User 1
using the SendMessage function, followed by 300ms delay.
Hereafter the user has a 10% chance to retrieve all mes-
sages using the RetrieveAllMessage function, followed by
a 300ms second delay.

4.2 Testing Environment
As seen in Figure 4 all requests are sent using 10 slave

testing machines controlled by the Master testing machine.
Each slave testing machine concurrently sends requests to
the Application Load balancer which distributes the requests
across all the application servers. The blockchain imple-
mentation will run a local blockchain that is used to com-
municate and keep in sync with the validator blockchains.
A single database server is shared between all application
servers.

Testing Machines
The tests8 run up to 800 concurrent users for over a minute,
thus testing on a single machine will break the tests as the
JVM garbage collector (GC) is likely to run mid test and
pollute the test results 9. All tests are distributed over 10
slave test machines. All test machines are hosted on the
Azure cloud within the same subnet and the master machine
is controlled via remote desktop.

Each slave test machine is an Azure D13 instance running
with 8 Intel Xeon E5-2660 2.2 GHz Cores and 56GB RAM
running Debian version 8.7. The master test machine runs
on a smaller D3 instance, as less resources are required to
control the slaves. The resources of the testing machines are
monitored throughout all tests to ensure they do not cause
inconsistent test results.

Blockchain Validator Nodes
Throughout our tests the 10 blockchain validator nodes are
spread over three different geographic regions (Amsterdam,
London and Frankfurt) on the Digital Ocean cloud. By do-
ing so we attempt to replicate a real-world scenario where

8We ran the tests using Apache JMeter, see http://jmeter.
apache.org
9The min and max heap of the JVM is set to be 52GB and
the young generation (Eden) of the heap to be as large as
possible to ensure the GC does not pollute the results. A
major GC won’t trigger until Eden starts to get full. The
verbose gc setting was used throughout all tests to output
all garbage collection information.

Figure 4: Overview of testing environment.

the blockchain nodes would be distributed between a con-
sortium of organizations. The validator nodes are hosted on
dual core virtual machines with 2GB of RAM, SSD storage
and running Ubuntu version 14.04. In addition, we moni-
tored the CPU and RAM usage to ensure that the servers
hosting the blockchains are appropriately provisioned.

Buchman [3] ran detailed tests on tendermint which showed
that adding more validators both lowers the throughput and
increases the latency. Buchman first ran 64 validators and
reached a throughput of 4,000 transactions per second with
latencies of 2 seconds, and then 8 validators with 9,000 trans-
actions per second and latencies of 1.5 seconds. The reason
for the high latencies in his tests is due to the high spread of
locations of the testing validators. Due to the asynchronous
architecture of our application, our tests are not affected by
validator latencies. It follows that changing the number of
validators does not directly affect our test results but could
affect the overall user experience.

http://jmeter.apache.org
http://jmeter.apache.org


Cloud Computing Configurations
The Microsoft Azure cloud computing service is used for all
tests to host both the application, test and database servers
instances. The number of instances that run the application
and local blockchain are the only factors that change within
the testing environment. Throughout all tests we use a sin-
gle Azure G4 instance to run our database which has a 16
core Intel Xeon E5 v3 2.0 GHz processor,224GB of RAM
and SSD storage.

The Azure scale set is used to scale the application servers
using replica instances which run the dallr application,
alongside a local version of the blockchain (only if the blockchain
implementation is being tested) 10.

The Azure scale set uses D3 instances that have 4 In-
tel Xeon E5-2660 2.2 GHz cores and 13GB of ram and use
SSD hard drives. The D3 instance was chosen because the
application and local blockchain would not run adequately
on the smaller D1 or D2 instances due to lack of hardware
provision.

The tests are started initially with one instance and a
gradually increasing load until the test results show aver-
age response times of over a second. After these average
response times of over a second appear the number of in-
stances is doubled and the tests are restarted and run until
an average response time of over a second appears again.
This process is be repeated until an average response time
of over 1 second appears on 8 test instances. Both implemen-
tations are tested on the four cloud configurations consisting
of 1, 2, 4 and 8 instances.

5. EXPERIMENTAL RESULTS
This section presents experimental results in the form of

line graphs focusing on response time and throughput. Ram-
say et. al [13] noted negative user behavior with response
times of 200ms or higher. Throughout all our results we fo-
cus on maintaining a response time of less than 200ms, and
decide not to display results over 350ms averaged.

In Section 5.1 we present experimental results measur-
ing response time over various cloud configurations. In Sec-
tion 5.2 we present experimental results measuring through-
put on a single cloud instance. Lastly, in Section 5.3 we
present experimental results measuring response time of heavy
stress loads through a single user.

5.1 Response Time
This section contains line graphs comparing the two im-

plementations (blockchain and non-blockchain) in terms of
different user loads using the scale-free network and 1 to n
test scenarios. The two messaging functions tested in each
testing scenario are the RetrieveAllMessages function and
the SendMessage. These two functions combined with the
two implementations give four different combinations to test.
The metric to measure scalability in this section is the Av-
erage response time over a minute.

5.2 Throughput
This section focuses on one of the two messaging func-

tions RetrieveAllMessages and SendMessage while com-
bining the blockchain implementation & non-blockchain im-
plementation with the scale-free testing scenario & 1 to n

10All instances on the Azure scale set are running the latest
stable release of Debian version 8.7.

Figure 5: Scale-Free Network Test: compares Re-

trieveAllMessages against SendMessage for both im-
plementations on a single D3 (4 Core 13GB RAM)
instance

Figure 6: 1 to n Test: compares RetrieveAllMes-

sages against SendMessage on both implementations
(blockchain & non-blockchain) on a single D3 (4
Core 13GB RAM) instance

testing scenario to give four different testing combinations
for each line graph. The metric used to measure scalability
in this section is the average transactions per second over a
minute.

5.3 User 1 vs User n
In this section User 1 represents the heavily loaded user

that receives all messages in the 1 to n test scenario while
User n represents each of the remaining n − 1 users. The
users in this test are represented as a rooted tree where each
user is a node and each edge is a message sent. The user
receiving all messages is the the root node of the rooted tree
and all the remaining users are the leaf nodes. In this section
we will use the terminology of a root node to represent User
1 and a leaf node to represent the remaining n − 1 users.
This test compares the average response times of the Re-

trieveAllMessages function being called on the blockchain
and non-blockchain implementations. This test proves how
the two implementations handle the stress of a single heavily
loaded user.



Figure 7: Scale-Free Network Test: compares Re-

trieveAllMessages against SendMessage on both imple-
mentations (blockchain & non-blockchain) on 2 x D3
(4 Core 13GB RAM) instances

Figure 8: 1 to n Test: compares RetrieveAllMes-

sages against SendMessage on both implementations
(blockchain & non-blockchain) on 2 x D3 (4 Core
13GB RAM) instances

6. ANALYSIS

6.1 Expectations
We anticipated that the function RetrieveAllMessages

would be the bottleneck on the blockchain implementation.
This is due to the large number of queries the blockchain per-
forms within the function. The blockchain data is stored us-
ing merkle tree data structure, and thus it takes O(log n) [3]
time to search a block containing n transactions. The func-
tion RetrieveAllMessages retrieves all the users messages
(m) from the database, and then queries the blockchain on
each of them. This implies a running time of O(m log n)
added to the database query.

The send message function performs a single insertion to
the database, as well as a single call to the function Insert-

ToBlockchain, the latter being a constant time operation [3].
Due to the asynchronous nature of how the implementation
adds messages to the blockchain, we expected the sending
of messages to perform well. Insertion to the database is ex-
pected to be much slower than querying due to write locks

Figure 9: Scale-Free Network Test: compares Re-

trieveAllMessages against SendMessage on both imple-
mentations (blockchain & non-blockchain) on four x
D3 (4 Core 13GB RAM) instances

Figure 10: 1 to n Test: compares RetrieveAllMes-

sages against SendMessage on both implementations
(blockchain & non-blockchain) on four x D3 (4 Core
13GB RAM) instances

on the database but these locks [11].
We did not expect to return consistent results due to un-

predictable network traffic on the azure cloud that can cause
unexpected response times with inconsistent latencies. Evi-
dence of unpredictable network traffic on the azure cloud is
visible in [4] where the latencies throughout the tests ran-
domly double over a testing period of 45 seconds.

6.2 Response Time
It is visible from Figures 5 to 12 that the results scale lin-

early until they reach their threshold, and then have a seem-
ingly exponential rate of growth. This is due to the time outs
that occur when the implementation can no longer handle
the load. In most tests, the majority of reliable results are
those under 200ms on average. From these figures it is clear
that the scalability of both implementations is linear. As
concrete example, in figures 5 and 11 a single instance of
RetrieveAllMessages has a threshold of 50 users, whereas
8 instances can handle 400.

We also find that the non-blockchain implementation can



Figure 11: Scale-Free Network Test: compares Re-

trieveAllMessages against SendMessage on both imple-
mentations (blockchain & non-blockchain) on eight
x D3 (4 Core 13GB RAM) instances

Figure 12: 1 to n Test: compares RetrieveAllMes-

sages against SendMessage on both implementations
(blockchain & non-blockchain) on eight x D3 (4 Core
13GB RAM) instances

handle 4 to 8 times the load as the blockchain implemen-
tation before reaching its threshold, while the blockchain
implementation incur a penalty of multiplicative 2 to 4 on
the response time. Figures 5 6 7 8 9 10 11 12 also show
that the function SendMessage in the blockchain implemen-
tation keeps pace with the non-blockchain implementation.
This is due to the asynchronous non-blocking design pattern
choice that our application follows. The SendMessage func-
tion does not wait until each message is validated and added
to the blockchain before returning.

We can also conclude that the RetrieveAllMessages func-
tion on the blockchain implementation has a harder time
coping with the same user load on the 1 to N test scenario
as the scale-free network test scenario. All querying of the
blockchain occurs through the local blockchain which can-
not handle the heavy load directed on a single user in the 1
to n test scenario.

6.3 Throughput
Figures 13 and 14 imply that the non-blockchain imple-

Figure 13: Comparing the SendMessage function on
both tests (Scale-Free & 1 to n) and implementa-
tions (blockchain & non-blockchain) on a single D3
(4 Core 13GB RAM) instance

Figure 14: Comparing the RetrieveAllMessages func-
tion on both tests (Scale-Free & 1 to n) and im-
plementations (blockchain & non-blockchain) on a
single D3 (4 Core 13GB RAM) instance

mentation has linear throughput growth throughout all tests
while the blockchain implementation grows linearly until a
threshold is reached. The throughput is throttled on both
functions of the blockchain implementation due to the Re-

trieveAllMessages function timing out. The testing soft-
ware is built to run on threads which disallow the test to
continue until the time out is finished. As seen in figures 5
and 6 the response time of the RetrieveAllMessages func-
tion starts increasing dramatically from 100 users onwards
which is where the linear growth of the throughput stops.

It is valid to note that the transactions per second on the
RetrieveAllMessages is a scaled down representation of the
actual reads that occur on the blockchain. As a specific
example, when testing with 100 users on the user 1 to n test
scenario from Figure 14, user 1 queries the blockchain over
10000 times each time the RetrieveAllMessages function is
called within the last 10 seconds of this test.

The scale-free test scenario has an extra delay of (2n)
MS (where n is the number of users), which the 1 to n test



Figure 15: Comparing the RetrieveAllMessages func-
tion on the root node against the leaf nodes on both
implementations (blockchain & non-blockchain) on
a 2 x D3 (4 Core 13GB RAM) instances

scenario does not 11. The additional delay slightly lowers the
throughput of the scale-free test scenario, which is visible in
Figures 13 and 14.

6.4 User 1 vs User N
In Figure 15, a blockchain root node has a polynomial rate

of growth while the non-blockchain root node seems to be
constant. This type of behavior was expected after analyzing
the running time of the RetrieveAllMessages function on
the blockchain implementation in Section 6.1. Figure 15
shows that the leaf nodes are almost identical regardless
of the implementation. This proves that blockchains are
capable of keeping up with non-blockchain solutions given
they are not under heavy load.

7. CONCLUSION
We have shown that the blockchain implementation scales

linearly as the number of instances is increased, until we
reach the throughput threshold mentioned in Section 6.3.
We learned also from Section 6.2 that using the tendermint
blockchain incurs a 4-8 multiplicative factor on scalability,
and a multiplicative factor of 2-4 on the average response
times. These two findings imply that high throughput and
low response times can still be achieved if enough servers are
deployed. For well-established companies concerned with
transaction immutability and ledger security, paying 4 to 8
times more for cloud computing costs is unlikely to be any
concern. We have also shown in Section 6.4 that blockchains
perform particularly poorly when handling heavy traffic load
through single users. This implies that such solutions are
more vulnerable to cyber-attacks such as denial of service.
In future work we will be measuring the performance and
scalability of a other proof of stake blockchain implementa-
tions.

8. ACKNOWLEDGEMENT
This research was supported by the European Blockchain

Center http://www.ebccenter.eu

11This delay is described in Section 4.1.

9. REFERENCES
[1] Albert-László Barabási, Réka Albert, and Hawoong

Jeong. Mean-field theory for scale-free random
networks. Physica A: Statistical Mechanics and its
Applications, 272(1):173–187, 1999.

[2] Jörg Becker, Dominic Breuker, Tobias Heide, Justus
Holler, Hans Peter Rauer, and Rainer Böhme. Can we
afford integrity by proof-of-work? scenarios inspired by
the bitcoin currency. In The Economics of Information
Security and Privacy, pages 135–156. Springer, 2013.

[3] Ethan Buchman. Tendermint: Byzantine Fault
Tolerance in the Age of Blockchains. PhD thesis, 2016.

[4] Atusa Mohammadian Casper Frimodt,
Maya Nordhild. Implementing scalability and security
features for the first development cycles of a web
application. http: // spasovski. dk/ wp-content/
uploads/ 2017/ 06/ Implementing% 20scalability%

20and% 20security% 20features. pdf , 2016.

[5] Konstantinos Christidis and Michael Devetsikiotis.
Blockchains and smart contracts for the internet of
things. IEEE Access, 4:2292–2303, 2016.

[6] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu,
Beng Chin Ooi, and Kian-Lee Tan. BLOCKBENCH:
A framework for analyzing private blockchains. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1085–1100, 2017.

[7] Justin Fisher and Maxwell Henry Sanchez.
Authentication and verification of digital data
utilizing blockchain technology, u.s. patent application
no. 15/083,238., 2016.

[8] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer
crypto-currency with proof-of-stake.
https: // archive. org/ details/ PPCoinPaper , 2012.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[10] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. https: // bitcoin. org/ bitcoin. pdf ,
2008.

[11] Suyog S Nyati, Shivanand Pawar, and Rajesh Ingle.
Performance evaluation of unstructured nosql data
over distributed framework. In Advances in
Computing, Communications and Informatics
(ICACCI), 2013 International Conference on, pages
1623–1627. IEEE, 2013.

[12] Kyriacos E. Pavlou and Richard T. Snodgrass.
Forensic analysis of database tampering. Transactions
on Database Systems (TODS), 33(4), 2008.

[13] Judith Ramsay, Alessandro Barbesi, and Jenny
Preece. A psychological investigation of long retrieval
times on the world wide web. Interacting with
computers, 10(1):77–86, 1998.

[14] Matei Ripeanu, Ian T. Foster, and Adriana Iamnitchi.
Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for
system design. CoRR, cs.DC/0209028, 2002.

[15] Guy Zyskind, Oz Nathan, and Alex Pentland.
Decentralizing privacy: Using blockchain to protect
personal data. 2015 IEEE Security and Privacy
Workshops, pages 180–184, 2015.

http://www.ebccenter.eu
http://spasovski.dk/wp-content/uploads/2017/06/Implementing%20scalability%20and%20security%20features.pdf
http://spasovski.dk/wp-content/uploads/2017/06/Implementing%20scalability%20and%20security%20features.pdf
http://spasovski.dk/wp-content/uploads/2017/06/Implementing%20scalability%20and%20security%20features.pdf
https://archive.org/details/PPCoinPaper
https://bitcoin.org/bitcoin.pdf

	Introduction
	Blockchain
	Implementation
	Testing
	Testing Scenarios
	Testing Environment

	Experimental Results
	Response Time
	Throughput
	User 1 vs User n

	Analysis
	Expectations
	Response Time
	Throughput
	User 1 vs User N

	Conclusion
	Acknowledgement
	References

