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Abstract

It has long been proposed that spin dressing could be employed to realize a highly ef-
fective helium-3 nuclear precession co-magnetometer for a neutron electric dipole moment
(nEDM) search. The proposal is to apply an intense, continuous, and far off-resonant os-
cillating magnetic field, called a dressing field, in such a way that the apparent Larmor
precession frequencies of the helium-3 and the neutron are modified. Under appropriate
conditions a desirable situation known as critical spin dressing (CSD) is anticipated: the
neutron and the helium-3 nucleus (or more generally, any two spin species) are expected to
behave as if they had the same gyromagnetic ratio and hence should precess at the same
rate in a static magnetic field.
Spin dressing has been studied in the context of the neutron, helium-3, and a variety of
other systems. Critical spin dressing, however, has not previously been demonstrated. In
this thesis I report the first experimental demonstration of pulsed CSD in which simultane-
ous spin dressing of 1H and 19F nuclei is achieved and studied. I also demonstrate that CSD
can be performed using variety of different dressing field waveforms, a consideration that
until now has received little or no attention. Examples of parameters studied include the
role of phase and amplitude modulation on spin dressing. Of particular note is a significant
improvement in reproducibility achieved by alternating the phase of successive cycles of the
dressing field waveform by π radians. Such innovations may prove useful in an eventual
nEDM search where demands on precession stability are anticipated to be extreme.
To enable my study of CSD I developed a simple and robust apparatus. The central inno-
vation was the first use of Magneto-Impedance (MI) sensors to detect weak magnetic fields
associated with the precession of nuclear magnetic moments. The thesis thus begins with
summaries of experiments to characterise and validate the use of MI sensors for ultra-low
field (ULF) nuclear magnetic resonance. I then describe a refined version of the ULF NMR
apparatus, and the manner in which it is used to investigate CSD.

Keywords: Critical spin dressing; Spin dressing; Nuclear magnetic resonance (NMR);
Ultra-low field NMR; Neutron electric dipole moment; 1H NMR; 19F NMR; Magneto-
Impedance sensor; Remote NMR.
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Chapter 1

Introduction

The history of searches for a non-zero neutron electric dipole moment (nEDM) is long [1].
It dates to the work of N. F. Ramsey and E. M. Purcell [2, 3] in the 1950s. Since then,
the sensitivity of experiments to this quantity has been improved by 6 orders of magnitude
[4]. Despite this enormous progress, all experiments to date are consistent with a value
of zero. They simply provide an experimental upper limit on the neutron electric dipole
moment. And, the sensitivity of current nEDM experiments are still far too low to be able
to resolve effects at the level at which the Standard Model (SM) predicts a non-zero value
for the nEDM. It seems quite likely that the search for a non-zero nEDM will continue for
some time. A starting point for this thesis might be to ask the questions “Why has the
possibility of a non-zero nEDM attracted so much attention?” and “How might a non-zero
nEDM change our understanding of the universe?”.

The universe that we live in exhibits a vast discrepancy between the amount of matter
and anti-matter it contains. It is thought that this “Baryon asymmetry” [5] happened in the
evolution of the early universe. In 1967, Sakharov proposed three criteria that any baryon-
generating interaction must satisfy to produce matter and anti-matter at different rates.
These criteria are Baryon number violation, Charge-Parity (CP ) symmetry and Charge
(C) symmetry violations, and the need for interactions to occur out of thermal equilibrium.
A CP transformation translates matter into anti-matter and vice versa. Although there is
some experimental evidence for CP violation [6, 7, 8], there is not enough to explain the
observed Baryon asymmetry [9]. So, new sources of CP violation are required to explaine
the observed Baryon asymmetry. Permanent EDMs of particles or nuclei, if they exist could
provide the missing link [10].

P and T (Time Reversal) violations can happen for a particle with electric dipole mo-
ment d and magnetic moment µ provided its ground state is not degenerate under P and T
transformation. Under a P transformation (inversion of coordinates) the direction of µ does
not change but the charge distribution of the particle, and consequently the orientation of
d, does. This results in different energy levels for the particle in the presence of magnetic

1



Physical system Laboratories Experimental limit Predicted value
location (e·cm) (e·cm)

Neutron ILL-Sussex-RAL |dn| < 2.9×10−26 [14] 10−31 [22]
Electron ACME Collaboration |de| < 8.7×10−29 [12] 10−40 [23]

Heavy Atom Univ. of |dHg| < 7.4×10−30 [17] 10−33 [24]
199Hg Washington

Table 1.1: A few experimental limits for EDMs. The predicted values are based on the
SM and are much smaller than the predictions of theories beyond the SM. For example
left-right symmetric, multi-Higgs or supersymmetry models predict nEDMs at the level
10−26 - 10−28 e·cm [25, 26, 27].

and electric fields and thus implies P violation. Additionally, under a T transformation,
the direction of µ changes while that of d does not. This implies violation of T symmetry
[11, 10]. Particle physicists are especially interested in T violations because if the laws of
physics are invariant under combined symmetry operations of C, P and T (CPT transfor-
mation) then T violation is equivalent to CP violation and could shed light on the Baryon
asymmetry in the universe.

1.1 Electric Dipole Moment of the Neutron

EDM experiments in laboratories around the world use different techniques and physical
systems in an effort to search for direct evidence of T violation. Examples of physical sys-
tems that are studied include charged particles (such as the electron [12]), neutral particles
(such as the neutron [13, 14, 4]), atoms with unpaired electrons (such as cesium [15] and
thallium [16]), heavy atoms (such as 199Hg [17]; 223Rn; 225Ra [18, 19]; 129Xe [20]) and heavy
molecules with unpaired electrons (such as YbF [21]). The current sensitivity of a few of
these experiments to an EDM are listed in Table (1.1).

The EDM experiment that is most directly relevant to this thesis is that of the neutron.1

A proposed nEDM experiment [28] using ultra-cold neutrons and 3He is planned to run at
Oak Ridge National Laboratory in 2023. It is supposed to reduce the current experimental
limit for the nEDM by two orders of magnitude [29]. The use of 3He in this experiment is
fundamental to the anticipated improvement. It will be used as a spin analyser to detect
and measure the phase of precessing neutrons. And it will be used as a reference or co-
magnetometer to keep track of or monitor fluctuations in the static magnetic field.

The Hamiltonian for a polarized neutron with magnetic moment µn = γnS, where

1Currently four main research groups are working on searches for the neutron EDM. They are located at
TRIUMF in Canada, Oak Ridge National Laboratory in the USA, the Paul Scherrer Institute in Switzerland
and a collaboration between the Institut Laue-Langevin in France and Sussex University and Rutherford
Appleton Laboratory in the UK.

2



γn is its gyromagnetic ratio and S is the spin vector, and electric dipole moment dn in an
external magnetic field B0 and electric field E is

H = −µn ·B0 − dn ·E. (1.1)

The only quantum number associated with the neutron to describe the neutron energy
states is its spin. So, it is anticipated that dn must be aligned with the spin direction
(parallel or anti-parallel). The angular Larmor precession frequencies of the neutron (ω±)
in the combined fields, when E is parallel (+) or anti-parallel (-) to B, are

ω± = γnB0 ±
2 dnE
~

. (1.2)

The experimental quantity that will be measured in the proposed nEDM experiment is the
angular precession frequency of the neutron relative to that of the 3He. This quantity is
given by:

ωrel± = ω± − ω3 (1.3)

= (γn − γ3)B0 ±
2dnE
~

(1.4)

where ω3 is the angular Larmor frequency of the 3He nucleus. Importantly, the 3He nucleus
is very well shielded by the closed s-shell configuration of the atoms’ electrons, and so it is
insensitive to changes in the electric field. The gyromagnetic ratios of the neutron [30] and
the 3He nucleus [31] are:

γn = − 1.83247172 × 108 (rad · s−1 · T−1) (1.5)

γ3 = − 2.03789410 × 108 (rad · s−1 · T−1) (1.6)

from which it can be seen that the gyromagnetic ratio of 3He is 11% larger in magnitude
than that of the neutron:

γ3 ' 1.11γn. (1.7)

If ωrel is measured in two configurations (E parallel/anti-parallel to B), dn can be inferred
from the difference in measured precession frequencies ωrel±,

|ωrel+ − ωrel−| =
4dnE
~

. (1.8)

However, if B0 changes in Eq. 1.4, it would give rise to an apparent EDM. For example, if
B0 changed by 1 pT between measurements of ωrel± then the relative precession frequency
of the neutron and the 3He nucleus changes by 10 nHz. This seemingly small change is
much larger than 0.7 nHz, the change in relative preccesion frequency one would expect if
dn ∼ 10−30 e·cm and an electric field of 74 kV/cm [32, 33] was applied to the neutron-
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3He mixture. In an ideal world one could eliminate sensitivity to static magnetic field
fluctuations by measuring the precession frequency of the neutron relative to a particle
with precisely the same gyromagnetic ratio. But, no such particle exists. Another solution
is to modify the gyromagnetic ratios of the neutron and the 3He nucleus so that they
precess about the static field at effective precession frequencies, and arrange to make these
two effective frequencies equal to one another. The process of modifying the effective or
apparent gyromagnetic ratios of these systems is known as spin dressing. And the process
of making the two gyromagnetic ratios equal is known as critical spin dressing (CSD).

1.2 Spin Dressing

The idea of modifying the gyromagnetic ratio of a spin system by applying time-dependant
magnetic fields might seem strange but the idea is well-established and dates to work done
in the 1960s by C. Cohen-Tannoudji and S. Haroche [34]. When a spin-1/2 particle simulta-
neously interacts with a weak static magnetic field and a strong but off-resonant oscillating
magnetic field, which is called the dressing field, then it precesses about the static field at
a time-averaged rate that is different than the Larmor precession frequency. It is this time-
averaged precession frequency that is meant when one talks about a modified, apparent, or
dressed precession frequency. This situation can be viewed as if the particle has a modified
or apparent gyromagnetic ratio. It is thus common to refer to the particle as a dressed
particle. One can certainly apply a dressing field to two spin species simultaneously, and
in principle it should be possible to tune the modified gyromagnetic ratios of the two to be
equal. This special condition is referred to as a CSD condition.

A number of spin dressing experiments directly relevant to the proposed search for an
electric dipole of the neutron have been performed. These include observations of dressed
neutron [35] and dressed 3He [36, 37, 38] precession. Moreover, a number of theoreti-
cal studies examining the possibility and potential of CSD have been undertaken [28, 39].
However, to date there has never been a direct experimental test of CSD. Motivated by
this, I have developed an apparatus and techniques that can be used to observe and explore
CSD. Rather than using ultra-cold neutrons and 3He as required for an nEDM search I
have chosen to work with liquid mixtures containing hydrogen (1H) and fluorine (19F) nu-
clei. The advantage is that the necessary samples are commercially available, inexpensive
and easy to incorporate into the CSD experiment. The gyromagnetic ratios of these nuclei
[40, 41, 42] are

γH = 2.67513 × 108 (rad · s−1 · T−1) (1.9)

γF = 2.51662 × 108 (rad · s−1 · T−1) (1.10)
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and the ratio of the two is not all that different from the ratio γ3/γn; that is

γH ' 1.063γF. (1.11)

1.3 Thesis Overview

This thesis is organized as follows. The theory of spin dressing and the CSD phenomenon
are introduced and described in Chapter 2. The perspective I take is that of a classical
model of spin precession to describe the evolution of a macroscopic nuclear magnetization
subjected to a weak static magnetic field and strong off-resonant oscillating magnetic field.
This model yields the average precession rate for an ensemble of dressed particles. I also
review the quantum model for the energy levels of a dressed particle which yields a modified
gyromagnetic ratio. The predictions of the two models are compared in different dressing
regimes.

In Chapter 3, I discuss some of the practical aspects and challenges of performing nuclear
magnetic resonance (NMR) experiments in µT-scale magnetic fields. I will refer to these
as ultra-low magnetic fields (ULF). In this chapter, I describe a relatively new solid state
magnetometer known as a magneto-impedance (MI) sensor. I have used MI sensors exten-
sively in my work and report their first-ever application to NMR. Details of the apparatus
and data used to validate the use of MI sensors in ULF NMR experiments are presented.

In Chapter 4, I describe simple spin dressing experiments performed on hydrogen nuclei
in water. These experiments were performed using a slightly modified version of the appa-
ratus described in Chapter 3. One of the interesting features of this work is that I am able
to explore spin dressing phenomena over a much wider range of parameter space than any
previous experiment. Another is that during the course of my investigations I observed the
unexpected generation of spin echoes in response to far off-resonant oscillating magnetic
fields. Chapter 4 also describes a classical model of spin precession that is used to assess
this echo formation phenomenon.

In Chapter 5, I describe a more versatile apparatus that enabled me to perform ULF
NMR on a broader range of spin species, rather than being forced to work solely with 1H
nuclei in water. The capability of this apparatus for detecting ULF NMR signals from one
and two spin species under different experimental conditions is discussed. The remainder
of the chapter is devoted to a description of the development of a composite tipping pulse
for two spin species. This composite pulse nominally produces a perfect π/2 rotation for
1H and 19F nuclear spins. Its purpose is to prepare a clean initial condition for a CSD
experiment, in which the 1H and 19F nuclear magnetizations are both in the transverse
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plane of the Bloch sphere (perpendicular to the static magnetic field).
In Chapter 6, I describe a series of CSD experiments performed on 1H and 19F. These

experiments include what I describe as conventional dressing field waveforms (in the sense
that their application has been anticipated) and unconventional waveforms. The latter may
offer certain advantages in potential applications to a nEDM search. To the best of my
knowledge the work described in Chapter 6 represents the first-ever observation of critical
spin dressing.

Finally, in Chapter 7, I conclude with a short summary highlighting and assessing the
major accomplishments of my work.

6



Chapter 2

Spin Dressing

The idea and principles of Spin Dressing were developed by C. Cohen-Tannoudji and S.
Haroche [34] during the 1960s and 1970s. They showed that the effective gyromagnetic
ratio of a particle in a weak static magnetic field can be modified when it is subjected
to a strong off-resonant oscillating magnetic field. In some experiments this interacting
(atom-photon) system is referred to as a "strongly driven" system [43]. Spin dressing has
been employed for a variety of applications including tuning interactions in ultra-cold gases
[44], quantum information processing [45] and protecting spin states from decoherence [46].
Moreover, it has been proposed as a valuable tool for facilitating a new search for the per-
manent electric dipole moment of neutron [28].

In the first part of this chapter I summarize the theory of spin dressing (SD) using
semi-classical and quantum models of nuclear spin precession. These models are then used
throughout the thesis to simulate the average precession rates for ensembles of nuclear spins
that interact with two magnetic fields simultaneously: a weak static field and an intense
off-resonant oscillating field called a dressing field. I will show how time-average precession
rates are modified by applying the dressing field. I will also show that the predictions of
simple simulations based on the two models are consistent when Larmor precession fre-
quencies are lower than the frequency of the applied dressing field. This is no longer true
when Larmor precession frequencies are higher than the frequency of the dressing field and
the amplitude of the static and the dressing fields are approximately equal. Under these
conditions the simple data analysis method that I used to extract time-average precession
rates from the semi-classical model of spin precession fails. One must either improve the
data analysis method I employed or rely on the predictions of the quantum model.

In the second part of the chapter I describe the phenomenon of critical spin dressing
(CSD), which plays a central role in my thesis. I describe the parameters that influence
CSD using both the semi-classical and quantum models. The various simulation results
presented here are then experimentally evaluated in the 4th and 6th chapters.
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2.1 Semi-Classical Model

A particle with spin angular momentum S has a magnetic moment

µ = γS (2.1)

where γ is its gyromagnetic ratio. According to the classical theory of electromagnetism, in
the presence of an arbitrary magnetic field B the particle experiences a torque µ×B(t),
and so the equation of motion for the angular momentum is given by:

dS
dt = µ×B(t). (2.2)

This expression describes the equation of motion for a fundamentally quantum mechanical
entity, but by summing over all magnetic moments in an ensemble of spins we can derive the
equation of motion for a macroscopic system. For an ensemble of N particles with magnetic
moment µ, the net magnetic moment per unit volume V is

M = 1
V

N∑
i=1
µi (2.3)

where M is called the magnetization. The equation of motion for M is given by:

dM
dt = γM×B(t). (2.4)

For a static magnetic fieldB0 =B0 ẑ and a linearly-polarized oscillating fieldBd= Bdcos(ωdt)x̂
(i.e. a dressing field) the classical equation of motion for the components of M are

dMx
dt = γMyB0

dMy
dt = γMzBdcos(ωdt)− γMxB0 (2.5)

dMz
dt = −γMyBdcos(ωdt)

where ωd = 2πfd is the angular dressing frequency, which can be smaller or larger than
the angular Larmor frequency ωL = γB0. Note that these are simply the Bloch equations
in the absence of relaxation processes [47]. These differential equations can be integrated
numerically given initial conditions for M. I have performed such calculations throughout
this thesis using code written in the Python programming language. At the core of this
calculation I use the integrate.odeint module from the Scipy library (an open source library
of scientific tools) to obtain Mx(t), My(t) and Mz(t). This module in turn uses LSODA
from the FORTRAN library odepack.

Equations 2.5 show that the dynamics or time-evolution of M depends on the values
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Figure 2.1: Simulated semi-classical trajectories of dressed (solid line) and undressed
(dashed line) macroscopic magnetizations M, for an ensemble of hydrogen nuclei on the
surface of the Bloch sphere. The parameter y is fixed at 0.1 while the parameter x is set to
(a) 0.2; (b) 1.0; (c) 2.4 and (d) 3.0 in the various panels. The average precession rate of the
dressed spin system can be positive (a-b), zero (c) and even negative (d) but it is always
smaller than the precession rate of the undressed spins. Simulation results were obtained
using fL = 100 Hz and fd = 1 kHz, and the trajectories are shown for a 4 ms evolution
period. M was initially directed along the positive x-axis.

of three experimental parameters: B0, Bd and ωd. A useful way of parameterizing different
regimes of behaviour is to introduce dimensionless parameters x and y defined such that

x = γBd
ωd

, y = γB0
ωd

. (2.6)

In other words, these dressing parameters characterize the intensity of the dressing field
(x) and the static field (y) in angular frequency units normalized to the applied dressing
field frequency. Wherever in this chapter I talk about calculations performed using specific
values of these dressing parameters, or any other parameter that involves the gyromagnetic
ratio γ, I obtained those results using the gyromagnetic ratio of 1H.

The numerical solution of Eq. 2.5 shows that for non-zero values of x, the time-average
rate at which M precesses about B0 implies an effective gyromagnetic ratio that is different
than that of the undressed spins. The dressed precession frequency f̄L can be lower or
higher than |fL| depending on the value of y. When y < 1, |f̄L| is always less than |fL| but
when y > 1, |f̄L| is usually higher than |fL|. Examples of classical trajectories for M in the
regimes y < 1 and y > 1 are shown in Figs. 2.1 and 2.2, respectively. These trajectories
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Figure 2.2: Simulated semi-classical trajectories of dressed (solid line) and undressed
(dashed line) macroscopic magnetizations M, for an ensemble of hydrogen nuclei, on the
surface of the Bloch sphere. The parameter y is fixed at 3.0 while the parameter x is set to
(a) 0.5; (b) 1.0; (c) 2.4 and (d) 6.0 in the various panels. In most cases (a, b, c) the average
precession rate f̄L of the dressed spins is positive and larger than that of the undressed
spins. The exception is case (d) for which f̄L < fL. Simulation results were obtained using
fL = 3 kHz and fd = 1 kHz, and trajectories are shown for a 0.5 ms evolution period. M
was initially directed along the positive x-axis.

are plotted as curves on the surface of the Bloch sphere, and represent the path followed
by the tip of the vector M(t) starting from the initial condition M|t=0 = M x̂.

When y < 1 the dressing field periodically drives M away from the equatorial plane.
This results in |f̄L| < |fL| as shown in Fig. 2.1. At some specific values of x (for example
at x = 2.4), f̄L is identically zero and M follows a closed quasi-circular path about a fixed
axis in the transverse plane. This situation can be viewed as a case in which the modified
gyromagnetic ratio is zero. At other values of x (for example at x = 3.0), the dressed spins
precess in the opposite sense relative to the undressed spins. This situation can be viewed
as one in which the modified gyromagnetic ratio is negative.

2.1.1 Calculation of the Average Precession Rate when y < 1

To calculate the average precession rate of the dressed spin system about B0 ẑ in the pres-
ence of a dressing field Bd(t) x̂, I plotted the Cartesian components of M(t) as a function
of time then fit a sinusoidal function to the x-component (parallel to the dressing field). I
will explain why the x-component of M is chosen. Three fit parameters, amplitude, fre-
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Figure 2.3: Simulation of Mx(t) and My(t) in the presence of a static field B0 ẑ and a
dressing field Bd cos(ωdt) x̂ for y = 0.1 (fL = 100 Hz, fd = 1 kHz). M was initially directed
along the positive y-axis. In each case results are shown for 60 ms. The sign of the modified
gyromagnetic ratio can be inferred from the phase of Mx(t): γ

′ > 0 at x = 0.0, 1.0, 1.8,
and 20; γ′ < 0 at x = 3.0; γ′ = 0 at x = 2.393.

quency and phase, were employed. However, an upper (1.1 M) and a lower limit (0.8 M)
were applied to the amplitude of the fit function. The fit window was fixed for all of the
calculations except when the period of the oscillation became very long. For this case the
fit window is increased so that a single period of the oscillation appears in the fit window.

Figure 2.3 shows simulation results obtained by integrating Eq. 2.5 to obtain Mx(t)
and My(t) with a Larmor frequency of fL = 100 Hz and fd = 1 kHz. Also, the boundary
condition M|t=0 = M ŷ was applied. This specific boundary condition let me extract the
sign of the modified gyromagnetic ratio from the initial phase of Mx. Both Mx and My

oscillate at an average precession rate f̄L combined with the dressing frequency fd. The x
and y components exhibit small and large amplitude oscillations at the dressing frequency
fd, respectively. These oscillations have little effect on the dynamics of the x component
and hence I chose Mx(t) to fit because it shows a simple waveform. As the value of x is
increased, the value of f̄L inferred from these simulations also changes, mirroring the an-
ticipated modification of the gyromagnetic ratio. In Fig. 2.3, at x = 2.393, M does not
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Figure 2.4: Summary of modified or apparent gyromagnetic ratio γ′ extracted from simula-
tions such as those shown in Fig. 2.3. The results have been normalized to γ, and are shown
for y = 0.2 (�); y = 0.4 (H); y = 0.6 (•); y = 0.8 (N). Calculations were performed using
the semi-classical model of spin precession for 1H nuclei with fL = 100 Hz and fd = 1 kHz.

show a clear low frequency oscillation. This means M does not precess about the static
field implying that the modified gyromagnetic ratio γ′ = 0. A situation similar to this case
is illustrated in Fig. 2.1-c.1 At x = 3.0 the initial phase of Mx(t) is changed from 0 to π
as one would expect for counter-clockwise rather than clockwise precession implying γ′ is
negative rather than positive. The situation similar to this case is pictured in Fig. 2.1-d.
Except for the case where x = 0, which corresponds to no dressing field, the full trajectory
of M clearly involves motions at higher frequencies. This structure has only a very minor
influence on the inferred time-average precession behaviour of M except for at y ' 1
where the amplitude of the ripples is larger and the simple sinusoidal approximation is not
reasonable. After extracting f̄L from fits to Mx(t) I obtained the modified or apparent
gyromagnetic ratio γ′ by assuming γ′/γ = f̄L/fL, being careful to account for the sense of
the precession in order to obtain the correct sign.

Figure 2.4 summarizes the apparent gyromagnetic ratio γ′ extracted from these simula-
tions as a function of x. These results reveal |γ′ | < γ for y < 1. The various curves shown
in Fig. 2.4 (corresponding to different values of y), are distinct when x is small but become
hard to distinguish from one another when x is large. In Chapter 4, I will show that my
spin dressing experiment can resolve differences between curves for γ′ at small x when y is
varied, in the regime y < 1.

1Note that in Figs. 2.1 and 2.2 M is initially directed along the x-axis instead of the y-axis. This is
simply for better graphical clarity.
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2.1.2 Calculation of the Average Precession Rate when y > 1

Figure 2.5: Simulation of Mx(t) and My(t) in the presence of a static field B0 ẑ and dressing
field Bdcos(ωdt) x̂, for y = 1.60. M was initially directed along the positive y-axis.

Figure 2.5 shows numerical solutions of Eq. 2.5 for Mx(t) and My(t) based on the semi-
classical model of spin precession. These results were obtained for a dressing parameter
y = 1.6 corresponding to fd = 800 Hz and fL = 500 Hz for 1H nuclei. At x = 1.0, 8.8 and
14.0, Mx(t) appears to oscillate at a single frequency, but at x = 2.4 and 3.4 the dynamics
of M are complex and it is not immediately obvious what the time-average precession looks
like. This illustrates that in the regime y > 1 the simple method that I have used to extract
f̄L, from the semi-classical results for M(t), does not work perfectly for all values of x.

Figure 2.6 shows results for normalized values of γ′ extracted from simulations with
y > 1. As above, γ′ is obtained simply by fitting a sinusoidal function to Mx(t) and thereby
extracting f̄L. Also shown in this plot, as a simple measure of the quality of these fits, is
the adjusted coefficient of determination (adjusted R-squared), which is equal to 1 for a
perfect fit. At high values of y the simple parameter extraction process works for a broad
range of x, while for y < 2 it is limited to small values of x. For example, at y = 8 it is
possible to continuously track γ′ up to x ' 7 while for y = 1.28 this is only possible up
to x ' 1. As a crude figure of merit, when x ' y the simplistic parameter extraction
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Figure 2.6: Summary of modified or apparent gyromagnetic ratio γ′ extracted from simu-
lations such as those shown in Fig. 2.5. The results (filled markers) have been normalized
to γ, as indicated by the scale displayed on the left vertical axis, and are shown for y > 1,
fd = 500 Hz and fL = yfd. Also shown is the adjusted coefficient of determination Adj-
R2 (unfilled markers), with the corresponding scale displayed on the right vertical axis,
obtained when a simple sinusoidal function A sin(2πf̄Lt + φ) is fit to Mx(t) to extract an
estimate of f̄L, where the amplitude of A is bounded to the range0.8M < A < 1.2M.

process fails because the magnitude of the static and time-dependent magnetic fields are
equal and make similar contributions to the dynamics of M.

2.2 Quantum Model

I next briefly review the quantum approach to this problem, following the work of Cohen-
Tannoudji [48] to describe the interaction of a spin-1/2 system with a weak static magnetic
field and a dressing field. The energy levels of a quantum spin-1/2 system in the presence
of a static magnetic field B0 are split by:

∆E = 2µB0 = ~γB0. (2.7)

Let us consider a situation where a dressing field is applied to this system at angular
frequency ωd resulting in a modified gyromagnetic ratio γ′ . In this case the separation of
the levels can be written ~γ′B0; or in terms of the dressing parameter y = γB0/ωd, it is

∆E/~ωd = y
γ
′

γ
. (2.8)
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So, if we know the energy levels we can determine the splitting and infer the modified
gyromagnetic ratio.

The energy levels of a particle with magnetic moment µ interacting with a static field
B0 and an intense off-resonant radio-frequency (RF) field Bd, can be obtained from the
appropriate Hamiltonian [48]:

H = H0 +Hrf . (2.9)

Here H0 represents the Hamiltonian for the particle in the static magnetic field and the
photons with angular frequency ωd associated with the dressing field. It is given by:

H0 = −µ ·B0 + ~ωda
†a (2.10)

where a and a† are the photon creation and annihilation operators. The second term in
Eq. 2.9, Hrf , represents the interaction between the particle and the RF field. If we consider
an atom with spin angular momentum S in the presence of a static field B0 aligned in the
z-direction, the first term of Eq. 2.10 becomes γB0Sz or ωLSz. The second term in Eq. 2.10
represents the number of photons with angular frequency ωd and energy ~ωd. In terms of
the Pauli matrix σz, Eq. 2.10 can be written

H0 = −~
2ωLσz + n~ωd (2.11)

where for reference the Pauli matrices are:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.12)

Note also for later reference that
σx = σ+ + σ−

2 (2.13)

where

σ+ =
(

0 2
0 0

)
, σ− =

(
0 0
2 0

)
. (2.14)

The interaction term in Eq. 2.9 is given by Hrf = µ ·Bd where Bd = Bdcos(ωdt)x̂. In the
quantized theory of fields this becomes [49]:

Bd = β√
k

(aeikx + a†e−ikx)x̂ (2.15)

where β is a constant and k is the wave number. If the wavelength of the RF field is very
much larger than the size of the particle, use of the dipole approximation (kx � 1) is
justified and Hrf becomes

Hrf = −λJx(a+ a†) (2.16)
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where λ is another constant that represents as the intensity of the dressing field and Jx is
the angular momentum, which in the case of a spin-1/2 system would be Sx = ~σx/2.
Using the fact that the quantum state describing the RF field is a coherent state [50], λ can
be determined. A coherent state |α〉 is the eigenstate of the annihilation operator a:

a|α〉 = α|α〉 (2.17)

where α satisfies
〈α|a†a|α〉 = n = α2 (2.18)

and n is the average number of photons in the field. Thus α = 1/
√
n. The expectation

value for Hrf should be equal to its classical value -γJxBd which results in

〈α|λ(a+ a†)|α〉 = γBd = ω (2.19)

2λα = ω. (2.20)

Thus the parameter λ can be determined: λ = ω/2
√
n.

With these observations, the full Hamiltonian for the interacting atom-photon system
is:

H = −~
2ωLσz + n~ωd −

~ω
4
√
n
σx(a+ a†). (2.21)

Alternatively, in terms of the dressing parameters x = ω
ωd

and y = ωL
ωd

, it is

H

~ωd
= −yσz2 + a†a− x

4
√
n
σx(a+ a†). (2.22)

In the absence of the static field (y = 0), or for a very weak static field (y � 1), we can
solve for the eigenstates of this Hamiltonian in the basis states |n, ξ±〉 = |n〉|ξ±〉 where |ξ±〉
represents the eigenstates of the Pauli matrix σx. This leads to:

H

~ωd
|n, ξ±〉 =

[
(a† + εx

4
√
n

)(a+ εx

4
√
n

)− x2

16n

]
|n, ξ±〉 (2.23)

where ε is the eigenvalue of σx. We can rewrite H in terms of the displacement operator D
which is unitary and thus satisfies DD† = D†D = 1. A further property of D is that

D

(
εx

4
√
n

)
a D†

(
εx

4
√
n

)
= (a+ εx

2
√
n

) (2.24)

D

(
εx

4
√
n

)
a† D†

(
εx

4
√
n

)
= (a† + εx

2
√
n

). (2.25)
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The eigenstates of H can then be defined as

|nε〉 = D

(
εx

4
√
n

)
|n〉. (2.26)

In the case where the static magnetic field is zero the eigenvalues of H are

H

~ωd
|nε, ξ±〉 = D

(
a†a− x2

16n

)
D† |nε, ξ±〉 (2.27)

= D

(
a†a− x2

16n

)
D†D |n, ξ±〉 (2.28)

= D

(
n− x2

16n

)
|n, ξ±〉 (2.29)

=
(
n− x2

16n

)
|nε, ξ±〉 (2.30)

E

~ωd
= n− x2

16n. (2.31)

Eq. 2.31 represents the diagonal matrix elements of the Hamiltonian H. It also shows that
irrespective of ε there is always two-fold degeneracy associated with states |n+, ξ+〉 and
|n−, ξ−〉.2 At this point if we add a weak static magnetic field to H as a perturbation, off
diagonal elements that couple |n±〉 together are generated and the degeneracy is removed,

H |nε, ξ±〉 =
(

n− x2

4n −y
2 〈n+|n−〉

−y
2 〈n−|n+〉 n− x2

4n

) (
|n+, ξ+〉
|n−, ξ−〉

)
. (2.32)

The effect of this coupling on the energy levels, provided n � 1, is proportional to the
zeroth-order Bessel function J0(x) [51].3 That is, the energy levels of the system consisting
of a spin in a weak magnetic field interacting with n photons becomes,

E

~ωd
= n− x2

4n ±
y

2J0(x). (2.33)

The influence of the static field appears in Eq. 2.33 as a perturbation that splits degenerate
levels. The term responsible for this splitting can be rewritten in terms of a modified or
apparent gyromagnetic ratio

γ
′ = γJ0(x). (2.34)

This equation reveals that the sign and the magnitude of γ′ are influenced by the dressing
parameter x, through the Bessel function J0(x). Figure 2.7 shows this function which is
quasi-periodic and clearly changes sign as x varied. The zeroes of J0(x) represent conditions

2Note that |n±, ξ±〉 = D
(
±x

4
√
n

)
|n, ξ±〉.

3For n � 1: 〈n+|(n− q)−〉 = Jq(x).
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Figure 2.7: Zeroth-order Bessel function J0(x). In the limit y � 1 (weak static field), the
normalized modified gyromagnetic ratio γ′/γ is equal to J0(x).

under which the modified gyromagnetic ratio is zero. The first 5 zeros of J0(x) occur at
x ' 2.40, 5.52, 8.65, 11.79 and 14.93.

Equation 2.33 and the solution presented above are valid for weak static magnetic fields
(y � 1). In general we can calculate the energy levels of this system for any values of y if
we know the matrix form of the Hamiltonian in terms of x and y. If we start from Eq. 2.22,
the matrix form of the Hamiltonian in the basis |n,±〉 is

...
|n− 1,−〉
|n− 1,+〉
|n,−〉
|n,+〉
|n+ 1,−〉
|n+ 1,+〉

...



(2.35)
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where |±〉 represents the eigenstates of σz. The diagonal elements of the Hamiltonian,
associated with the non-interacting terms, are given by n∓ y

2 or



. . .
n− 1 + y

2 0 0 0 0 0
0 n− 1− y

2 0 0 0 0
0 0 n+ y

2 0 0 0
0 0 0 n− y

2 0 0
0 0 0 0 n+ 1 + y

2 0
0 0 0 0 0 n+ 1− y

2
. . .



. (2.36)

As before, the coupling terms in Eq. 2.22 produce off-diagonal elements in the Hamiltonian.
These terms include the operators a, a†, σ− and σ+. The eigenvalue equations for these
operators acting on the eigenstates |n,±〉 are given by:

a |n,±〉 =
√
n |n− 1,±〉 (2.37)

a† |n,±〉 =
√
n+ 1 |n+ 1,±〉 (2.38)

σ± |n,±〉 = 2 |n,∓〉 (2.39)

and so:

σ±a |n,∓〉 = 2
√
n |n− 1,±〉 (2.40)

σ±a
† |n,∓〉 = 2

√
n+ 1 |n+ 1,±〉. (2.41)

When the coupling term in Eq. 2.22 is included, the matrix 2.36, becomes

H =



. . .
n− 1 + y

2 0 0 −x
4 0 0

0 n− 1− y
2 −x

4 0 0 0
0 −x

4 n+ y
2 0 0 −x

4
−x

4 0 0 n− y
2 −x

4 0
0 0 0 −x

4 n+ 1 + y
2 0

0 0 −x
4 0 0 n+ 1− y

2
. . .



. (2.42)

From the eigenvalues of this matrix, the energy levels of the full quantum system can be
calculated for arbitrary fields. In the discussion that follows I show how numerical solutions
for these eigenvalues are obtained for different dressing parameters x and y.

My solution for the eigenvalues of the infinite Hamiltonian matrix 2.42 were gener-
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Figure 2.8: Energy levels for the interacting atom-photon system. The static field is B0 ẑ
and the dressing field is Bdcos(ωdt) x̂. In each plot the parameter x is fixed and y is varied.
Avoided crossings are introduced as the amplitude Bd (and hence x) is increased. At x = 2.4,
corresponding to the first zero of the Bessel function J0(x), and for y � 1 the energies
of spin up/down states are degenerate. This situation corresponds to the case where the
modified gyromagnetic ratio γ′ is zero.

ated by first truncating the size of the problem to 300 basis vectors. I then used the
linalg.eigvals module of the open source Scipy library to calculate the eigenvalues of the
resulting 300 × 300 Hamiltonian matrix.

Figure 2.8 shows examples of the energy levels calculated in this manner, for a range
of dressing parameters x and y. In each plot, x is fixed and y is varied. When both of
the dressing parameters are zero, corresponding to the absence of any magnetic fields, the
system has two-fold degeneracy as one would expect for spin up and down states. This
degeneracy is split by applying the static field (y > 0). When the dressing field is also
turned on (i.e. x > 0), avoided crossings of the energy levels are introduced. For fixed
values of x these avoided-crossings only occur at small values of y. When the static field is
increased the levels start to cross again. Under very specific conditions, such as in the vicin-
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Figure 2.9: Simulated energy levels of the atom-photon system interacting with the static
field B0ẑ and the dressing field Bdcos(ωdt) x̂. In each plot y is fixed and x is varied.

ity of x = 2.4 (corresponding to the first zero of J0(x), the system again shows evidence
for degeneracy for small values of y (eventually, as y is increased, this degeneracy disap-
pears). This begs the question why should degeneracy occur when neither the static nor
the dynamic magnetic fields are zero? This phenomenon can be explained by introducing a
modified or apparent gyromagnetic ratio that depends on the dressing parameter x, as was
done in Eq. 2.2. In the semi-classical analogy to this situation, illustrated in Fig. 2.1-c, the
nuclear magnetization follows a closed trajectory about the axis defined by the direction
of Bd. Even though the static field is finite, the nuclear magnetization does not precess
around B0.

Figure 2.9 shows the calculated energy levels for various fixed values of y (rather than
x). That is, in each plot y is fixed and x is varied. When the dressing field is zero and
hence x = 0, the energy levels are split by the static field (y 6= 0), with the magnitude of
the splitting being equal to y. When the dressing field is turned on the separation becomes
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yγ
′
/γ rather than y. And as long as y � 1 it is equal to yJ0(x). Values for the modified

or apparent gyromagnetic ratio γ′/γ can be extracted from the separation of energy levels
at different values of x. In the following section the values extracted from this analogy are
compared to the equivalent results obtained from the semi-classical model.

2.3 Comparison of the Semi-Classical and Quantum Models

Figure 2.10: Comparison of normalized modified gyromagnetic ratios γ′/γ for y < 1, as
calculated from the semi-classical and quantum models.

The previous two sections outlined two different methods for calculating the modified
or apparent gyromagnetic ratio γ′ as a function of dressing parameters x and y. The first
approach, based on a semi-classical model of spin precession, involved tracking the average
precession rate of the transverse components of M about B0. The second approach, based
on a quantum model of energy levels, involved tracking the separation between adjacent
energy levels.

In the regime y < 1, both models yield identical results for γ′/γ. This equivalence
is shown in Fig. 2.10. I observed a maximum deviation of 0.001% between the results of
the two models for y = 0.2 and 0.4. This deviation increases to 0.02% for y = 0.6
and 0.8. However in the regime y > 1, agreement is only observed over a small range of
x, as is evident in Fig. 2.11. The issue is that the very simplistic analysis method used to
extract the time average precession frequency from the semi-classical trajectories fails at
approximately the point where x = y. One could perhaps improve on the analysis of the
semi-classical results by using Fourier Transforms to reveal all frequencies associated with
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Figure 2.11: Comparison of normalized modified gyromagnetic ratios γ′/γ for y > 1, as
calculated from the classical and quantum models.

the precession of M about B0.

2.4 Critical Spin Dressing

The discussion of spin dressing above focused on a single spin species, but this is not a
requirement. If a dressing field is applied to a mixture of two spin species, with different
gyromagnetic ratios, it is possible to generate conditions where both species end up precess-
ing about the static field at the same average precession rate. This phenomenon is called
critical spin dressing (CSD) and is anticipated as an important mode of operation for a
proposed experiment to search for the electric dipole moment of the neutron (nEDM) [28].
The goal of this proposed experiment is to study neutron spin precession in combined mag-
netic and electric fields. Rather than studying neutrons alone, 3He is added and is used as a
comagnetometer against which the neutron spin precession is referenced. The gyromagnetic
ratios of these two spin species differ by ∼ 11%. It is anticipated that important gains in
sensitivity can be realized by applying CSD to force the neutron and 3He nuclear spins to
precess at the same rate, in a given static magnetic field. In this thesis I use hydrogen and
fluorine nuclear spins (as proxies for neutrons and 3He) to investigate the phenomenon of
CSD.

The gyromagnetic ratios of 1H and 19F nuclear spins differ by 6% [40, 41]:
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γH = 267.513× 106(rad · s−1 · T−1) (2.43)

γF = 251.662× 106(rad · s−1 · T−1) (2.44)

α = γF
γH

= 0.94074. (2.45)

Under CSD conditions the modified gyromagnetic ratios of both are equal. That is γ′H = γ
′
F.

This occurs at critical values of x (i.e. xc) that can be calculated in the regime y � 1 as
follows. In this regime γ′ = γJ0(x). So, xc for a mixture of 1H and 19F can be inferred from

γH J0(γHB0
ωd

) = γF J0(γFB0
ωd

) (2.46)

or

J0(xc) = αJ0(αxc) (2.47)

where xc is γHB0
ωd

.
Graphically, the solution for Eq. 2.47 corresponds to the crossing points of γ′F and

γ
′
H as a function of the dressing parameter x. Figure 2.12-a shows the locations of these

crossing points for 1H and 19F nuclei in the limit y � 1. In terms of the normalized
relative difference between γ′H and γ′F which I define as

η
′(x) = γ

′
H − γ

′
F

γH
. (2.48)

Figure 2.12: The modified gyromagnetic ratio of 1H and 19F nuclei, normalized to the 1H
gyromagnetic ratio γH, predicted by perturbation theory in the regime y � 1, over (a) a
broad and (b) a narrow range of x. (c) Plot of η′(x) = γ

′
H−γ

′
F

γH
; zeros of η′(x) characterize

critical spin dressing conditions.
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Figure 2.13: Simulation of η′(x) for 1H and 19F in the regime 0 < y < 1.

CSD occurs when η′ is zero. Figure 2.12-c shows η′(x) for small values of x. Zero crossings
of this function represent CSD conditions. There are many such zero crossings but the first
one is the most practical as it requires the least intense dressing field and also because it is
less sensitive to variations in x than its neighbours. Table 2.1 summarizes the location of the
first few critical spin dressing points for 1H and 19F as well as the derivative dη′(x)/dx|x=xc

at these points.
Over the range 0 < y < 1, η′(x) behaves more or less the same as it does for y � 1.

However, there are small differences in xc and dη
′
/dx|x = xc as y is varied. Figure 2.13

shows the calculated behaviour of η′ for y = 0.2, 0.4, 0.6 and 0.8. As y increases, xc
decreases. For example, xc = 1.27 at y = 0.2 while xc = 0.82 at y = 0.8. Also as y
approaches one, η′(x) becomes more sensitive to variations in y (that is, to variations in
the static field). Table 2.2 shows relative changes in η′ at xc when the static field or y is
changed by 1%, for a system of 1H and 19F nuclei.

xc |dη′/dx|x=xc
1.29 0.075
4.20 0.096
7.37 0.123
10.58 0.145

Table 2.1: Locations of critical spin dressing points (xc = γHB0/ωd) and corresponding
sensitivities of η′ to variations in x (i.e., dη′/dx) at these points, for a mixture of 1H and
19F nuclei. It is assumed y � 1.
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y 0.2 0.4 0.6 0.8
xc 1.27 1.19 1.05 0.82

∆η′/η′xc 0.07% 0.25% 0.62% 1.5%

Table 2.2: Location of the first zero of η′ and the relative change in η′ when y is changed
by ±1%, for several values of y.

2.4.1 Effect of The Background Static Field on CSD

An important factor that influences γ′ and consequently η′ is the alignment of the static
field with the dressing field. This effect is observed in the experimental data for CSD. I
will refer to this effect in Ch. 6 where I demonstrate CSD. Nominally the two fields are
orthogonal. A misalignment between the static field and the dressing field introduces a
small projection of B0 onto the Bd axis. This effect can be ignored for most values of x,
but not when γ

′ ' 0. To obtain some insight into issues that arise when γ
′ ' 0 let

us use the quantum model, described in Sec. 2.2. Then I add the contribution of a weak
static field ∆B x̂, parallel to an existing dressing field, to the Hamiltonian. The resulting
Hamiltonian is similar to Eq. 2.22 but involves a new term γ ∆B σx/2ωd. The Hamiltonian
can now be written:

H

~ωd
− n = − y

2σz −
y

2κσx −
x

4
√
n
σx(a† + a) (2.49)

Figure 2.14: Energy levels at y = 0.4. The energies of the two states cross when κ = 0
(static and dressing fields orthogonal) but an avoided crossing emerges when a misalignment
is introduced (κ 6= 0).

26



Figure 2.15: Influence of field alignment in the vicinity of the first zero crossing of γ′H at
y = 0.4 on (left) the normalized apparent gyromagnetic ratio of 1H nuclei and on (right)
the difference of the normalized apparent gyromagnetic ratios of 1H and 19F nuclei. As
in Fig. 2.14, the various curves correspond to different degrees of field misalignment as
characterized by the parameter κ.

where κ = ∆B
B0

. The same method described in Sec. 2.2 can be used to numerically calculate
the energy levels of Eq. 2.49. Figure 2.14 shows part of the energy level diagram at y = 0.4
for different values of κ. Level crossing occurs at κ = 0 as it should but, as κ is increased an
avoided crossing emerges. This influences the time-average precession rate of nuclear spins
and consequently the value of γ′ . So, inferred values of γ′ under this condition deviate from
the prediction of the quantum model. The effect of this anti-crossing on γ′H and on η′(x) is
further demonstrated in Fig. 2.15.

2.4.2 Effect of an Imperfect π/2 Rotation on CSD

An experimental investigation of CSD is potentially sensitive to the initial condition for M.
The analysis earlier in this chapter assumed M was subjected to a π/2 rotation (placing
it in the equatorial plane of the Bloch sphere) immediately before the dressing field is
applied. However, a simple simultaneous π/2 rotation for two spin species with different
gyromagnetic ratios is not possible. A π/2 rotation for one of the two might leave the
magnetization for one species in the equatorial plane, but the magnetization of the other
will be left with a component along the static field. To investigate the effect of an imperfect
π/2 rotation on CSD, I used the semi-classical model of spin precession. The semi-classical
model is a time-dependent problem and the initial condition of M(t) can be varied, while the
quantum model is a time-independent problem. I chose 1H and 19F Larmor frequencies of
200 and 188 Hz, respectively and set the dressing field frequency fd to 500 Hz (corresponding
to y = 0.4). To start the simulation I assumed MH and MF were both initially aligned
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Figure 2.16: (Left )Demonstration of the effect of perfect and imperfect π/2 rotation pulses
on η

′(x). (Right) The deviation of η′ from η
′
90, where the former is calculated for an

imperfect π/2 rotation and latter for a perfect π/2 rotation.

with B0, and that a perfect π/2 rotation was then applied to the 1H nuclei. This results in
a rotation angle θ less than π/2 for the 19F. Figure 2.16 shows calculated results for η′ at
different 19F rotation angles (in practice, the 19F rotation angle is set by its gyromagnetic
ratio; the goal here was to examine sensitivity to this rotation angle.). Also shown in this
figure is the deviation of η′ from the case in which both spin species experience a perfect
π/2 rotation. For example consider a tipping pulse that rotates 1H by 90o and 19F by 85o.
This pulse leaves 8.7% of the initial MF aligned with B0. The value of η′ that one then
obtains deviates by up to 0.6% from the ideal case in which MH and MF are both initially
in the transverse plane. This deviation increases as the fraction of MF aligned with B0,
increases. Irrespective of the 19F rotation angle, η′ always crosses zero, indicating the point
at which CSD occurs.
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Chapter 3

Ultra-Low Field NMR of 1H Nuclei

In order to perform a critical spin dressing experiment in which two spin species are forced to
precess at the same average precession rate about a static fieldB0, an intense far off-resonant
oscillating magnetic field Bd(t) is required. This field, which is applied perpendicular to B0,
is referred to as a dressing field. The frequency fd and the amplitude Bd of the dressing field
are conveniently described in terms of the dimensionless dressing parameters x = γBd/2πfd

and y = γB0/2πfd, where B0 is the magnitude of the static field. If the dressing parameter
y is assumed to be very small (y � 1), as it is anticipated to be for a proposed search
for the electric dipole moment of the neutron [28], and if one is interested in exploring a
wide range of the dressing parameter x, such as from 0 to 40, then the desired limits on the
parameters fd, Bd and B0 are:

fL � fd (3.1)

Bd ≤ 40B0
y

(3.2)

where fL = γB0/2π is the Larmor precession frequency. The motivation for choosing a
wide operating range for x is that it opens the door to studying spin dressing (and critical
spin dressing) over a range of parameter space that to the best of my knowledge has not
previously been examined. Equations 3.1 and 3.2 result from choosing y � 1 and x ≤ 40
respectively. Once a decision about the magnitude of the static field B0 is made, the range
of dressing field parameters fd and Bd are defined by Eqs. 3.1 and 3.2.

In principle the value of B0 is arbitrary, but in practice it is strongly constrained by
the extreme values of x and y that one wants to explore. In general it is much easier from
a technical point of view to work at the smallest values of B0 possible. This statement is
reinforced by Table 3.1 which shows the nominal values of fd and Bd required to perform
a spin dressing experiment on an ensemble of hydrogen nuclei in a sample of water for a
given static field B0, a dressing parameter y of 0.1, and a dressing parameter x in the range
0 to 40.
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Static field Larmor Dressing Maximum dressing Current required
B0 frequency frequency field Bd to produce Bd

1 - 100 nT 0.04 - 4 Hz 0.4 - 40 Hz 0.4 - 40 µT 0.3 - 30 mA
1 - 100 µT 0.04 - 4 kHz 0.4 - 40 kHz 0.4 - 40 mT 0.3 - 30 A
1 - 100 mT 0.04 - 4 MHz 0.4 - 40 MHz 0.4 - 40 T 0.3 - 30 kA

Table 3.1: Nominal values of the static field (B0), 1H Larmor frequency (fL), dressing
field frequency (fd) and RMS dressing field amplitude (Bd) to achieve a dressing parameter
x = 40. The AC current required to drive a solenoidal coil with a winding density of 10 turns
per cm to generate Bd is shown in the last column on the right. The dressing parameter y
is assumed to be 0.1.

A competing concern is that the signal to noise ratio (SNR) in a conventional nuclear
magnetic resonance (NMR) experiment degrades as the static field is decreased. Two factors
cause this reduction: the thermal equilibrium nuclear spin magnetization produced by a
static field in the µT range is much smaller than it is in the mT or T ranges, as is the time
rate of change of the nuclear magnetization as it precesses.

In the high temperature limit the thermal equilibrium nuclear magnetization M is given
by:

M = ρ
γ2~2B0
4kBT

(3.3)

where ρ is the nuclear spin density, γ is the gyromagnetic ratio, kB is the Boltzmann
constant and T is the absolute temperature. The magnetization M in Eq. 3.3 scales linearly
with the static magnetic field, so by reducing the static field B0 the nuclear magnetization
M decreases as does the magnetic field BM associated with M. Ultimately it is BM (or the
time rate of change of BM) that is monitored in NMR experiments and so it is desirable to
make M as large as possible. To compensate for the fact that a weak static field is desired
in a dressing experiment, we can thermally pre-polarize the nuclear spin ensemble in a high
field region and then transfer the sample into an ultra-low-field region [52].

Conventional inductive detection coils are based on Faraday’s law. The emf that is
induced is equal to the time rate of change of the magnetic flux Φ. That is,

Vemf = − dΦ
dt

(3.4)

which in turn is proportional to the time rate of change of the transverse component of
the precessing nuclear magnetization Mxy(t). Since that precession occurs at the angular
Larmor frequency ωL = γB0, Vemf is proportional to the static field B0 for a fixed value
of Mxy. Again, operating in very weak magnetic fields implies that inductively detected
signals will be very weak. To address this issue we can use detectors that are sensitive to
the magnitude of the magnetic field BM associated with the precessing nuclear magnetiza-
tion M rather than the rate at which BM changes. One example of such a detector is a
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Magneto-Impedance sensor [53, 54], which is sensitive to the magnitude and polarity of the
magnetic field to which it is exposed.

In this chapter I will discuss how I have incorporated Magneto-Impedance sensors into
an apparatus for performing ultra-low-field NMR experiments. This represents the first
time that these solid state magnetometers have been used for NMR. Three examples of
NMR experiments are described, and are used to develop and evaluate methods that are
then used for spin dressing experiments later in the thesis. In this sense this chapter de-
scribes the experimental foundations upon which my spin dressing and critical spin dressing
experiments are based.

To begin I describe the characteristics of Magneto-Impedance sensors and the exper-
iments we designed and performed to detect alternating magnetic fields associated with
longitudinal and transverse nuclear magnetizations. These experiments include Adiabatic
Fast Passage (AFP), ULF NMR of spatially-modulated longitudinal nuclear magnetization
and pulsed ULF NMR on stationary samples. The same apparatus was used for all of
these experiments, with minor differences in detection circuits and applied magnetic fields.
Technical details specific to individual experiment are described separately.

The experiments described here and in subsequent chapters are classified as remote de-
tection NMR experiments [55]. The sample is first polarized in a high field region (1.5 T) and
then transferred quickly into a ULF region (∼4 µT) where some form of signal is detected.
In between, the sample magnetization M can be intentionally manipulated. For example,
in the AFP experiment described later in this chapter we encode a spatially-varying nuclear
magnetization pattern that is subsequently detected. Or, RF fields can be applied to the
sample once it arrives in the ULF region in order to manipulate M before detection. The
latter approach is also demonstrated in this chapter, and is then used in the spin dressing
experiment described in Chapter 4.

3.1 Magnetometer

Examples of magnetometers that have been used previously to detect ULF NMR signals in-
clude atomic magnetometers and Superconducting Quantum Interference Devices (SQUIDs)
[56, 57]. A good review article on using 87Rb atomic magnetometer for ULF NMR can be
found here [58]. SQUIDs must be operated at cryogenic temperatures1 and atomic magne-
tometers tend to be complex devices that are difficult to incorporate into other experiments.
In contrast, there are some solid-state magnetometers that are easy to use and which do
not require special operating conditions. A few that might be suitable for a spin dressing
experiment include Anisotropic-Magneto-Resistance (AMR) sensors [59], Flux-Gate mag-
netometers [60] and Magneto-Impedance sensors [54].

1High-TC SQUIDs are typically operated at 77 K and low-TC SQUIDs at . 4 K.
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Anisotropic Magneto Resistance (AMR) sensors are small2, inexpensive and have a dy-
namic range of about ±5 G. They can measure the magnitude and the polarity of DC
and AC magnetic fields and their response is proportional to the magnitude of the field
(B) rather than the time rate of change of the field (dB

dt ). They saturate at fields larger
than about 5 G, but can be reinitialized by applying a suitable set/reset recovery pulse.
But ultimately AMR sensors are quite insensitive. As an example, a popular AMR sensor
made by Honeywell (HMC1001) has a magnetic noise density of 18 pT/

√
Hz at 1 kHz and

30 pT/
√

Hz at 100 Hz and, provided it operates in feedback mode, it exhibits noise densities
of 12 pT/

√
Hz at 1 kHz and ∼20 pT/

√
Hz at 100 Hz [61].

Flux-Gate magnetometers [60] were first developed in the 1930s. They are inexpensive
and relatively sensitive. They are sensitive to the polarity and the magnitude of the field
and their response is proportional to the magnitude of the field. The magnetic noise density
they exhibit is very low (∼5 pT/

√
Hz at 1 Hz), but they are bulky [62] and their sensitive

area tends to be quite large (usually 5 ×2 cm2). Recently, miniature flux-gates have been
developed, but as their size shrinks they lose sensitivity. For example, micro-flux-gate sen-
sors with areas of a few mm2 have magnetic field noise densities of 5 nT/

√
Hz [63] at 10 Hz

and 70 nT/
√

Hz at 1 Hz [64].
Magneto-Impedance (MI) sensors were first developed in the 1990s. They have the ad-

vantage of being compact and relatively sensitive. They exhibit magnetic noise densities
of order ∼5 pT/

√
Hz at 10 Hz, which is comparable to flux-gate magnetometers and un-

shielded high-Tc SQUIDs [65]. And, it is predicted that their ultimate performance could
yet be significantly better [66]. MI sensors can measure both the polarity and the magnitude
of the field and their response is proportional to the magnitude of the field. The sensitive
area of MI sensors is typically 1 × 6 mm2, which is quite small.

After conducting a number of preliminary experiments with AMR sensors, I decided to
investigate MI sensors. In 2014 we obtained a prototype MI sensor that exhibited a factor of
ten lower noise density compared to AMR sensors. A decision was made to perform a series
of test experiments using these MI sensors, to evaluate their performance for an eventual
spin dressing experiment. These test experiments are the primary focus of this chapter.

3.1.1 Anisotropic-Magneto Resistance Sensor

AMR sensors are inexpensive and commercially available3 in one-, two- and three-axis
versions. They are functionally similar to a 4-element Wheatstone bridge in which the
resistance of all 4 branches depends on the orientation of magnetic domains within the re-
sistive material [67]. These resistive elements are made of nickel-iron deposited on a silicon

2A variety of AMR sensors have been developed. The most sensitive sensors have dimensions of order 1
× 4 × 9 mm3 but additional space is required for signal processing circuitry.

3A typical sensor, without signal processing circuitry currently costs about ∼ $25 CAD.
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Figure 3.1: DC response of an HMC1001 AMR sensor over a broad (left) and narrow (right)
range of applied magnetic field, when biased at 10 V with a gain of 12. The grey band which
is enlarged on the right shows the linear response region for the sensor. Beyond this regime
sensor sensitivity degrades.

wafer. Their operating range is ± 5 G. The most sensitive readily available AMR sensor
is the HMC1001 [61] manufactured by Honeywell. This is a single axis device and employs
a surface mount sensor with a nominal sensitivity of 3.2 (mV/G · Vb) where Vb is the DC
voltage applied across the bridge. Figure 3.1 shows an example of an AMR sensor response
to a DC magnetic field.

3.1.2 Magneto-Impedance Sensor

Magneto-Impedance (MI) sensors are based on the MI effect in amorphous wires [53, 68, 69].
This effect involves changes in the electrical impedance of a magnetic wire that carries an
AC current, when the wire is subjected to an external magnetic field aligned with its axis,
as shown in Fig. 3.2. The AC current through the wire is typically low (in the range of
few mA) [70] and typically at frequencies in the range 1 - 100 MHz, although recently the
effect has been observed at much lower frequencies [71]. The wires that are employed are
usually very thin with diameters in the range 10 - 1000 µm. They are made of magnetic
materials such as FeSiB [72], CoSiB [73] and FeCoSiB [74] and are usually magnetized in
the circumferential direction to achieve the highest sensitivity. Based on the frequency at
which the AC current is driven through the wires, the sensors are classified as Magneto-
Impedance (MI) or Giant-Magneto-Impedance (GMI) sensors. In MI sensors the skin depth
δ is large relative to the diameter of the wire but in GMI sensors it is much smaller and the
AC currents flow near the surface of the wire [75, 76]. Recall that the skin depth δ for a
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Figure 3.2: The alternating flow of current I(t) through (or near the surface of) an amor-
phous magnetic wire generates a circumferential magnetization. The impedance Z of the
wire is strongly dependent on the component of the applied external magnetic field Hext
aligned with the direction of the current.

good conductor is given by:

δ =
√

2ρ
ωµ(Hext)

(3.5)

where ρ is the resistivity, ω is the angular frequency of the AC current, Hext is the applied
magnetic field, and µ is the magnetic permeability (which can depend on Hext). Maxwell’s
equations can be solved with the appropriate boundary conditions to relate the impedance
of the wire to δ [77, 78]. Since δ depends on µ, and µ in turn depends on the applied
magnetic field, the impedance of the wire ultimately depends on the external magnetic
field. For a cylindrical magnetic conductor of radius a the impedance Z is given by:

Z = 1
2RdckaJ0(ka)

J1(ka) (3.6)

where k = (1 − j)/δ, Rdc is the DC resistance of the wire, j =
√
−1, J0 and J1 are the

zeroth and first order Bessel functions, respectively.
MI and GMI sensors have many potential uses including detection of biomolecules [79],

non-destructive crack detection [80], target detection and process control [81], space and
aerospace research [81], electronic compasses and many other applications [82]. The work
described in this chapter adds a new application: NMR.

My work is conducted using a prototype MI sensor made by Aichi Micro Intelligent
Corp. (model MI-CB-1DJM-A). This device exhibits a noise density of 5 pT/

√
Hz at 10 Hz,

has a sensitivity of 5 V/µT, a sensitive area of 0.8×6 mm2, a dynamic range of ±30 µT
and a frequency response spanning 0.1 Hz - 10 kHz (set by high-and-low-pass filters). It is
encapsulated in a chip mounted to a board with ancillary electronics. The specific model I
used requires an external 1 MHz oscillator to produce the necessary AC current.

For the experiments described in this chapter I used two MI sensors arranged in a
gradiometer configuration to minimize the influence of environmental magnetic field fluctu-
ations, and to add the NMR signals detected by each sensor. Figure 3.3 shows the location
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Figure 3.3: A simple gradiometer arrangement involving two Magneto-Impedance sensors.
The difference between the outputs of the two sensors is fed into a phase sensitive detector,
to reject the common mode signal associated with magnetic fields from distance sources.
At the same time, the signal associated with the nearby magnetized source is enhanced.

Figure 3.4: (Left) Two MI sensors arranged in a gradiometer configuration (described in the
text) and mounted on a 3D printed sensor holder. (Right) MI sensor connection diagram.
The oscillator operates at 1 MHz and produces a square waveform with 50% duty cycle
and 0 - 5 V amplitude. The signal amplifier consists of a transformer and phase sensitive
detector.

of the sensitive part of the sensors relative to a magnetized object (NMR sample). This
configuration requires careful alignment of the sensors with one another. To accomplish this
I designed a 3D model of a support structure using AutoCAD drawing software, and then
generated the structure using a 3D printer. The final product and wiring configuration I
employed are shown in Fig. 3.4.

I measured the sensitivity of the MI sensors by placing them in a very uniform alternat-
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Figure 3.5: The response of the MI sensors to an alternating magnetic field B. (a) Shows the
response of two MI sensors to a 1 kHz alternating magnetic field. The equation of the best
fit lines are y = 2.666(2) + 0.9987(4) x for sensor 1 ((—)) and y = 2.691(1) + 0.9996(3) x
for sensor 2 (- -) where y is log10Vout and x is log10B. (b) Shows the relative frequency
response of the MI sensors.

ing magnetic field which was designed for Magnetic Resonance Imaging in very low magnetic
fields [83] and monitored their output with a Phase Sensitive Detector (PSD).4 The alter-
nating field was generated by a sine-φ-like current distribution involving five saddle-shaped
current elements mounted on a 98 cm long cylinder with a radius of 27 cm. The sensitiv-
ities that I measured were 4.68 ± 0.03 V/µT and 4.93 ± 0.03 V/µT, both of which were
constant over the frequency range 0.5 Hz - 5 kHz. Figure 3.5-a shows the linear response of
the sensors to an AC magnetic field at 1 kHz and Fig. 3.5-b shows the response at constant
drive amplitude as the frequency is varied. The influence of the high pass filter at 0.1 Hz
and the low pass filter at 10 kHz are evident.

To amplify the output of the sensors I used a low noise transformer-coupled preampli-
fier5 with an input noise density of 0.1 nV/

√
Hz. This transformer has a nominal gain of

4Stanford Research Systems model SR830 DSP
5Stanford Research Systems model SR554
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Figure 3.6: Response of the the two MI sensors to a localized oscillating magnetic source
measured relative to the output at 400 Hz where a maximum is observed. The sensor
outputs are amplified by a SRS 554 transformer, which contributes to the observed frequency
dependence.

500 between ∼100 Hz and ∼1 kHz. The gain falls off outside of this band. The maximum
gain I measured when the sensor outputs were connected to the differential mode of the
transformer was 480 at 400 Hz. Figure 3.6 shows the manner in which the transformer-
coupled response of the MI sensors to an AC magnetic field falls off at frequencies below
400 Hz. This response is measured relative to that observed at 400 Hz. A small 4-turn
coil with radius 5 mm was used to produce the AC magnetic field for this test. The coil
was placed at a distance of 25 mm from the sensors. Below approximately 0.2 Hz both the
sensor electronics and the transformer contribute to the frequency dependence of the re-
sponse. Between 0.2 and 100 Hz only the transformer contributes to the observed frequency
dependence. Over the range 100 - 400 Hz the response changes very little.

3.2 Adiabatic Fast Passage Experiment

As a test of the viability of using MI sensors to monitor nuclear magnetic resonance phe-
nomena, it was decided to use Adiabatic Fast Passage (AFP) methods [84] to imprint an
alternating longitudinal nuclear magnetization pattern on a stream of flowing water. The
MI sensors were then used to directly monitor the resulting magnetic field variations in the
vicinity of the stream. The situation we consider is one in which nuclear spins are initially
aligned with the local static magnetic field B0. However, because of motion (caused by the
flow of the water) and an intentionally applied linear magnetic field gradient, the local mag-
netic field experienced by nuclear spins is time dependent, that is, dB0/dt 6= 0. In particular
we choose dB0/dt < 0. If the spins are simultaneously exposed to an oscillating magnetic
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Figure 3.7: Classical picture of Adiabatic Fast Passage in a frame rotating at resonant
angular frequency ω. (Top) Schematic view of the orientation of the nuclear magnetization
M relative to the effective magnetic field Beff , (Bottom) components of Beff in the rotating
frame.

field BAFP perpendicular to the magnetic field, and resonant with the nuclear spins at some
particular location along the trajectory where B = Bres, an inversion can occur. That is,
the spins end up anti-aligned with B0. In a classical picture of spin dynamics, this inversion
occurs because the direction of the effective field Beff they experience (in a reference frame
rotating at angular frequency ω) rotates by 180o as the water passes through resonance.
This situation is shown in Fig. 3.7. In this picture the effective field is defined as:

Beff = (B0 −
ω

γ
) + BAFP (3.7)

where ω = γBres and B0 is a function of position. In two extreme cases, far above and below
resonance, we can ignore BAFP. Then the effective field is parallel (for far above resonance)
or anti-parallel (for far below resonance) with B0. And its magnitude is |B0 − ω/γ|. As
B0 changes between these two extreme values the direction of Beff begins to rotate. If the
rate of this rotation is slow enough the nuclear magnetization M, that precesses about Beff ,
can rotate simultaneously with Beff . Consequently a magnetization M that was initially
parallel to B0 ends up anti-parallel to B0.

For AFP to invert the nuclear magnetization M effectively, two conditions must be
satisfied. First, during precession of M about Beff the transverse component of M should
not decay quickly. So the first condition is given by:

1
T2
� γBeff . (3.8)
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The second condition involves the precession rate of the magnetization about Beff , which
needs to be much faster than the rotation rate of Beff . This condition is defined as:

dθ

dt
� ωeff (3.9)

where tan θ = BAFP
B0(t)−ω/γ and ωeff = γBeff . So dθ

dt is given by:

dθ

dt
= BAFP

B2
eff

dB0(t)
dt

(3.10)

and the second AFP condition is

BAFP
B2

eff

dB0(t)
dt

� γBeff . (3.11)

Equations 3.8 and 3.11 must be valid for all values of Beff . For example the minimum value
of Beff , in the vicinity of the resonance, is Beff = BAFP. Under these conditions Eqs. 3.8
and 3.11 are

1
T2

� γBAFP (3.12)

dB0(t)
dt

� γB2
AFP. (3.13)

Note that the rate at which B0 changes must be faster than T2. Together, Eqs. (3.12) and
(3.13) provide an upper and a lower limit on the time variation of B0

BAFP
T2

� dB0
dt

� γB2
AFP. (3.14)

It is also useful to note that the time variation of B0 can be written

dB0
dt

= v̄
dB0
dx

(3.15)

where v̄ is the average speed at which the magnetization M moves and dB0/dx is the local
gradient of B0.

3.2.1 Apparatus

In our apparatus, which is shown schematically in Fig. 3.8, a continuous flow of tap water
first passes through a 600 ml reservoir in which 1H nuclei are polarized to thermal equi-
librium in a 1.5 T magnetic field produced by a superconducting magnet. Thereafter, the
local static magnetic field B0 to which the water is exposed along its flow path decreases
monotonically, eventually reaching the µT regime. The water exits the polarizing magnet

39



Figure 3.8: Overview of the AFP experiment (not to scale). The approximate position of
the sensors relative to the cross section of the 3/8” PVC tube is shown in the inset at the
bottom right. The time dependence of the AFP modulation pattern is shown in the bottom
left.

40



through a 1
8 inch inner-diameter PVC tube aligned with a field line. Flow rates at average

linear speeds v̄ of up to 6 m/s are employed, giving rise to turbulent conditions. En route,
we modulate the nuclear magnetization M using AFP. As the local static field B0 decreases
a 78 kHz resonant oscillating magnetic field BAFP can be applied perpendicular to the tube
axis. If BAFP is applied, the 1H nuclear magnetization M undergoes an AFP inversion that
leaves it anti-parallel (rather than parallel) to B0. However if BAFP is not applied, then
M exits the AFP region in its initial orientation. Next, as B0 continues to decrease (and
facilitated by coils that produce a guide field), the flow is gradually reoriented so that it
ends up perpendicular to the orientation of B0 (which is produced by the fringe field of the
polarizing magnet, and thus varies as a function of position); Thereafter M is maintained
perpendicular (rather than parallel) to the tube axis. At the same time the flow enters a
region that is well-shielded from magnetic noise.

Finally, the tube diameter is abruptly increased to 3
8 of an inch, reducing v̄ by a factor of

9. The water then flows past two MI sensors arranged in a gradiometer configuration. The
sensitive axes of these sensors are aligned to respond to the magnetic field BM associated
with the component of M that is parallel (or anti-parallel) to B0. Further details regarding
each component of this apparatus are described in the following four subsections.

3.2.1.1 Flow Characteristics

The maximum water pressure available at the source is 56 psi which yields an outlet flow
rate of ∼45 ml/s and average linear speed of v̄ = 6 m/s. A solenoid valve was installed at
the inlet of the flow path to control the flow. The flow rate was measured by activating
the solenoid valve for a certain amount of time and then measuring the volume of water
exhausted. At the maximum flow rate the water spends ∼13 s inside the pre-polarization
reservoir in the superconducting magnet. This is considerably longer than the longitudinal
nuclear relaxation time T1, and so the 1H nuclei effectively reach thermal equilibrium (i.e.
they polarize). The total length of the flow path between the magnet and the sensors
is ∼4.2 m. The minimum travel time obtained with the maximum tap water pressure is
0.7 s. Under these conditions the water flow pattern is expected to be turbulent. Reynold’s
number [85] characterizes the strength of inertial forces to viscous forces. It is defined as,

Re = v̄DH

v (3.16)

where v̄ is the average speed of the fluid,DH is the hydraulic diameter of the tube and v is the
kinematic viscosity of the fluid. For the parameters of our experiment v = 1.004×10−6 m2/s,
v̄ = 5.8 m/s and DH = 3.17 mm (1

8 inch ID tube) the maximum Reynolds number we would
expect is 18.8 × 103. The critical Reynolds number for this geometry is of order ∼2100,
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and hence we expect the flow in our apparatus to be turbulent.

3.2.1.2 AFP and Guide Fields

The oscillating AFP field BAFP is produced by an 8 turn sine-φ coil [86] that is 25 cm long
and has a radius of 6.8 cm. It produces a field of 0.79 G per Ampere of applied current. This
field is alternately turned on and off at a modulation frequency fm . 50 Hz to periodically
change the direction of the nuclear magnetization. The spatial distribution of the amplitude
of BAFP and the local static magnetic field are shown in Fig. 3.9. For an AFP frequency
fAFP = 78 kHz, amplitude BAFP = 5 µT, local magnetic field gradient dB0/dt = 24 µT/cm
and T2 ∼ 0.7 s6 the AFP conditions given by Eq. 3.14 are satisfied.

A pair of 76 cm long trapezoidal coils were used to generate a guide field to maintain
the orientation of M perpendicular to the tube axis. The separation between these coils
varies from 5 to 9 cm as the tube, and hence the flow of water, enters the low field region
inside the magnetic shields (see Fig. 3.8). The strength of the magnetic field produced by
these coils correspondingly decreases.

Figure 3.9: Measured static (B0 ; •) and oscillating (BAFP; N) magnetic field profiles relative
to the center of the sine-φ coil. Note that an offset Bres corresponding to the magnetic field
required to produce a 1H Larmor frequency fL = 78 kHz has been subtracted from B0. The
average local magnetic field gradient inside the sine-φ coil is dB0/dx = 0.24(1) G/cm.
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Figure 3.10: Screening of AC magnetic fields provided by the aluminum and the high-
permeability shields. See text for details.

3.2.1.3 Passive Shielding

Three concentric cylindrical metal shields were used to isolate the sample and sensors from
external electromagnetic interference. The largest of these a 1.8 m long aluminium shield,
with a diameter of 76 cm and a wall thickness of 7 mm which provides effective Faraday
screening. The second shield is made of a high permeability metal. It is also 1.8 m long;
it has diameter of 70 cm and a wall thickness of 3 mm. In addition to enhancing Faraday
screening it also shunts static magnetic field lines (primarily from the polarizing magnetic
field) away from the low field region of the experiment. The smallest and innermost shield
is made of permalloy.7 It is 83 cm long, with a diameter of 26 cm and a wall thickness of
∼1 mm. It reduces the static magnetic field in the vicinity of the sensors by one order of
magnitude, and improves the field homogeneity.

The efficiency of the Faraday and magnetic screening provided by the shields are demon-
strated in Figs. 3.10 and 3.11. Figure 3.10 shows the attenuation of the rms amplitude of an
external alternating magnetic field at the center of the shields as the frequency is increased.
The external magnetic field was generated by 4 loops of copper wire wrapped around the
circumference of the aluminium shield. These loops were then driven by a function genera-
tor to create an alternating magnetic field parallel to the axis of the shields. The amplitude
of this field was then monitored using a MI sensor with its sensitive axis aligned with the
axis of the shields. I measured ∼50 dB attenuation at 200 Hz relative to 0.5 Hz. This corre-
sponds to the frequency at which most of the measurements reported in this chapter and in
the following chapters are performed. Also, Fig. 3.11 illustrates the suppression of the static

6This corresponds to the measured high field value of T1; see Fig. 3.17.
7Co-Netic AA stress annealed shield.
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Figure 3.11: Measured axial component of magnetic field along the axis of the metal shield,
relative to the center of the shields where the MI sensors are located (µT region). (N): with
high permeability shield only, (�): with high permeability and permalloy shields. Adding
the permalloy shield reduces the central field by one order of magnitude and makes it more
uniform. The spatial extent of the permalloy shield is shown in grey. The shields were
located 4 m away from a 1.5 T superconducting magnet with a 30 cm bore.

magnetic field by the shields. A gaussmeter8 was used to measure the axial component of
the longitudinal component of the static magnetic field inside the shield, revealing a 20 dB
attenuation of the static field at the location where the MI sensors reside.

3.2.2 Signal Detection Circuit

The outputs of the two sensors are fed into a differential input transformer9 coupled to a
Phase Sensitive Detector (PSD) as previously described.10 The physical orientation of the
two sensors (indicated by arrows aligned with their sensitive directions in Figs. 3.3 and 3.8)
is the same but their outputs are monitored in a differential mode. This provides common
mode rejection of magnetic field changes associated with distant sources (interference). At
the same time, signals associated with variations in the dipolar magnetic field associated
with the nuclear magnetization M reinforce one another. The output of the PSD can be
displayed, recorded and analysed by an oscilloscope11 or a digital multimeter.12 Typically
the latter was operated at 1 reading every 0.8 s. Ideally the data that are recorded corre-

8Group 3 gaussmeter model DTM-151 with a model MPT-231-7s hall probe.
9Stanford Research System model SR554

10Stanford Research Systems model SR830 DSP
11Tektronix model TDS 7054 Digital Phosphor Oscilloscope
12Hewlett Packard model 3457A
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Figure 3.12: Overview of AFP signal detection circuit. The nominal gain of the transformer
is 500 but it falls off below 100 Hz (see Fig. 3.6). This effect influences the overall gain in
the vicinity of the AFP modulation frequency. A Tecmag Apollo NMR Console is used as
the reference clock.

spond to a continuous alternation between the two magnetization states. That is, a square
wave at the AFP modulation frequency. The digital multimeter (DMM) output can be sent
to a computer using a GPIB connection and a Labview interface. The AFP field BAFP was
turned on and off using a function generator13 that produced a 100% amplitude-modulated
signal. The signal was then fed to a power amplifier14 that in turn drove the sine-φ coil. A
second function generator,15 phase-locked to the first, was used to produce the reference for
the PSD. Overall synchronization was accomplished using a Tecmag Apollo NMR console.
Figure 3.12 shows a block diagram of the AFP signal detection circuit.

3.2.3 AFP Experiments

AFP-modulated nuclear magnetization signals were generated and observed under a variety
of different conditions, and for a variety of purposes. A number of these experiments are
summarized in the following subsections. In general, the purpose of these experiments is to
explore and demonstrate the viability of using MI sensors for ULF NMR.

13Agilent 33250A 80 MHz
14Hewlett-Packard model 467A
15Standard Research Systems model DS345
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3.2.3.1 Signal-to-Noise Ratio

In the first version of this experiment I did not use magnetic shields or the low noise trans-
former. Instead I employed three orthogonal Helmholtz pairs to suppress the local magnetic
field (approximately 1 mT, associated with the polarizing magnet). This suppression is
needed to keep the MI sensors from saturating. In this configuration I observed modulated
sensor outputs at the AFP frequency that were resolved with a signal to noise ratio (SNR)
of 14 for an equivalent noise bandwidth (ENBW) of 1.25 mHz; see Figs. 3.13 and 3.14. I
also used a gradient coil aligned with the water tube axis to improve the homogeneity of
the static field. These coils were driven by HP 6002A power supplies operated in constant
current mode.

I improved the SNR of this experiment by one order of magnitude by introducing the
magnetic shields and the low noise transformer. Figure 3.13 shows the signal levels observed
when magnetized water flowed through the system, and when it was stationary (and hence
only noise was recorded). Figure 3.14 shows the corresponding signal-to-noise ratio. In both
cases data are plotted as a function of the equivalent noise bandwidth set by the PSD time
constant and the low pass filter roll off. In Fig. 3.14 the signal amplitude is independent
of bandwidth, as it should be. But the noise level is suppressed as the time constant is
increased. One undesirable consequence of using the magnetic shields is that the 1H nuclei

Figure 3.13: Effect of magnetic shields and transformer on AFP signal and noise level in
terms of PSD equivalent noise bandwidth. (�): AFP signal without shields or transformer,
(•): background noise without shields or transformer, observed when the water flow is
stopped, (N): AFP signal with shields and transformer, (H): background noise with shields
and transformer observed when the water flow is stopped. Data recorded with fm = 4 Hz,
fAFP = 78 kHz, PSD output low pass filtered with a 12 dB/octave roll off. Lines are meant
as guides for the eye.
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Figure 3.14: Signal-to-noise ratio observed in AFP experiments as a function of equivalent
noise bandwidth. Here fm = 4 Hz, fAFP = 78 kHz, and the PSD output was low pass
filtered with a 12 dB/octave roll off. (N): without magnetic shields, (�): with magnetic
shields.

must travel a distance ∼ 1.5 m longer to reach the MI sensors. This in turn reduces the
signal magnitude as is evident in Fig. 3.14.

3.2.3.2 AFP-modulated Signals

Figure 3.15 shows recordings of the magnetic field BM associated with the longitudinal
component of the AFP-modulated nuclear magnetization M. The modulation pattern is
a square waveform with a frequency fm of 4 Hz. Averaging improves the quality of the
data but is ultimately limited by fluctuations in the pressure of the water supply. The
signals exhibit a sinusoidal rather than square waveform for two reasons. First, whenever
we turn the AFP field on/off those nuclei that are already inside the AFP coil experience
a rotation somewhere between 0 and 180 degrees. This yields a smooth transition between
the parallel and anti-parallel states of the nuclear magnetization. Second, the boundaries
between regions with different magnetizations are mixed somewhat by the turbulent flow.
The same type of effects were observed in an earlier experiment [55] in which AMR sensors
were employed instead of MI sensors.

3.2.3.3 Frequency Response

Figure 3.16 shows the dependence of the detected signal on the AFP modulation frequency.
These data were recorded with an equivalent noise bandwidth of 41.7 mHz. The maximum
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Figure 3.15: AFP signals acquired at fm = 4 Hz when a ∼ 33 ml/s flow rate was employed.
Three examples are shown. The top panel shows a single shot acquisition. The middle
panel shows the effect of averaging over 10 repetitions of this experiment, and the bottom
panel shows the effect of averaging over 600 repetitions. The square modulation pattern
used to turn the AFP field on and off is also shown.

Figure 3.16: RMS field BM measured when AFP is used to periodically flip the orientation
of M relative to B0 (N; v̄ = 5.8 m/s), The noise observed when the water is stationary (�;
v̄ = 0 m/s) reflects the intrinsic noise density of the sensors.
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SNR ∼ 80 was obtained16 at a modulation frequency fm = 4 Hz. At low modulation rates
the magnitude of BM is independent of fm and is consistent with the field expected from
water polarized in a 0.3 T field. At higher rates it is attenuated because of (a) mixing
of water downstream of the abrupt flow expansion and (b) the spatial extent of the fields
produced by the AFP coil. We can define a threshold frequency ft associated with this
attenuation:

ft = v̄/4l (3.17)

where v̄ is the average speed of M and l is the spatial extent of the BAFP field. Equa-
tion 3.17 suggests that the shortest time for M to transit the entire profile of BAFP, should
be equal to one quarter of the modulation period. This ensures that over a distance l the
magnetization M is either fully parallel or anti-parallel to the static field. Modulation at
higher frequencies will lead to signal attenuation. Using parameters appropriate to my ex-
periment (l = 30 cm and v̄ = 5.8 m/s) yields ft = 5.6 Hz which compares favourably to the
value ft ∼ 4 Hz inferred from Fig. 3.16.

3.2.3.4 Longitudinal Nuclear Relaxation Time T1

The longitudinal nuclear relaxation time T1 is an important parameter in most NMR ex-
periments. One of the first things we did was to characterize an effective relaxation time
in connection with the fraction of nuclear magnetization that arrives in the ultra-low-field
region of the apparatus where NMR detection takes place. The AFP signal amplitude was
measured at different flow rates, corresponding to different transport times. An exponential

Figure 3.17: RMS AFP signal amplitude as a function of inverse flow rate. Approximately
25% of the initial nuclear magnetization arrives in the µT region where NMR detection
takes place. The slope of a straight line fit to these data implies an effective T1 = 0.70(6) s.

16A flow rate (∼46 ml/s) was employed in this measurement yielding a higher SNR compared to data in
Fig. 3.14 where the flow rate ∼33 ml/s was employed.
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decay was observed. At the maximum flow rate (46 ml/s), up to one-quarter of the nuclear
magnetization leaving the 1.5 T polarization magnet, reaches the ultra-low-field portion of
the apparatus after travelling a distance of 4.2 m. Figure 3.17 shows the RMS AFP signal
amplitude as a function of the inverse flow rate. By extrapolating the data to infinite flow
rate (or zero transport time) we can extract the amplitude of the AFP signal that would
be produced in a 1.5 T field. The slope of a straight line fit to these data yields an effective
nuclear relaxation time T1 = 0.70(6) s. Note that this experiment does not determine the
location(s) where, or mechanism by which, relaxation occurs.

3.2.3.5 Estimation of Anticipated AFP Signal Magnitude

A simple model of a magnetized cylindrical object can be used to estimate the order of
magnitude of the AFP signal. The field produced by this object is sensed by the two MI
sensors and corresponds to the magnetic field BM associated with the modulated nuclear
magnetization M. In this model an infinitely long cylinder aligned in the x direction is
filled with polarized water with a magnetic moment per unit volume M. Imagine that the
cylinder is sliced into many small disks with thickness dx. For each of these disks we assign
a point-like magnetic dipole moment dm at its center which in turn produces the magnetic
field dBdip at two points of interest (where the sensitive parts of the two MI sensors are
located). Ultimately, we can integrate over the volume of the cylinder to find BM.

The magnetic field produced by a small magnetic dipole moment dm is given by:

dBdip = µ0
4πr3 (3(dm · r̂)r̂− dm) (3.18)

where dm = MπR2dx, R is the radius of the cylinder, r is the distance between the dipole
moment dm and the sensor and r̂ is the unit vector associated with r. For the orientations
of dm and r̂ shown in Fig. 3.18, the total magnetic field BM at a sensor is:

BM =
∫
dBdip = µ0R

2M
4

∫ +∞

−∞

dx

(y2 + x2)3/2 = − µ0R
2

2y2 M (3.19)

where y is the shortest distance between the axis of the cylinder and the sensitive part of
the MI sensor. For an ensemble of nuclear spins with n± denoting the density of spins
parallel or anti-parallel to the polarizing field Bp the total nuclear magnetic moment per
unit volume M is given by:

M = (n+ − n−)µp (3.20)

where µp is the nuclear magnetic moment of a single 1H nucleus. The difference in the
number density of spins parallel and anti-parallel to the polarizing field is related to the
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Figure 3.18: Schematic showing relative positions and orientations of a small magnetic
dipole moment dm and two MI sensors (Not to scale).

polarization P of the nuclear spin ensemble which is:

P = n+ − n−
n+ + n−

= tanh(µpBp/kBT ) (3.21)

where T is the absolute temperature and n = n+ + n− is the total spin density of the
sample. At room temperature and Bp = 1.5 T the polarization is approximately µpBp/kBT .
Thus inside the polarizing magnet M = nµ2

pBp/kBT . Outside of the polarizing magnet
M decays exponentially with a time constant T1, as discussed in the previous subsection.
Combining these results the anticipated magnitude of the magnetic field Bdip associated
with M at the location of the MI sensors (BM1 and BM2) is given by:

BM = BM1 + BM2 = nµ0µ
2
p

R2Bp
2kBT

( 1
y2

1
+ 1
y2

2

)
e−t/T1 (3.22)

where y1 = 10 mm and y2 = 29 mm correspond to the shortest distances between the
two MI sensors and the tube axis, and t is the transport time from the polarizing magnet
to the vicinity of the MI sensors. For T1 = 0.7 s, t = 0.72 s and R ∼ 5 mm one expects
the sum of the fields detected by the sensors to be of order BM ∼ 300 pT, which is close
to the measured peak amplitude BM ∼ 350 pT observed in my AFP experiment.

3.3 Ultra-Low-Field NMR Experiments

In addition to the AFP experiment described above I performed two further ultra-low-
field (ULF) NMR experiments to test the viability of using MI sensors to monitor nuclear
magnetic resonance phenomena. These experiments are performed in static fields between
5 - 20 µT and involve the application of steady or pulsed oscillating magnetic fields to
manipulate the nuclear magnetization.
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3.3.1 Steady Flow of AFP-Modulated Water

In the first and simpler version of the two ULF NMR experiments I apply a continuous B1

field to the AFP-modulated flow of water. The amplitude of the resonant B1 field is ad-
justed to produce a π/2 rotation of the nuclear magnetization M as the water flows through
the B1 coil. Following this manipulation, M is perpendicular to the static field B0 and the
sensitive axis of the sensors, so the AFP signal amplitude drops to zero.

3.3.1.1 Apparatus

The same apparatus was used as described in section 3.2.1 and shown in Fig. 3.8. The
only new feature was that I placed a small RF coil in the ULF region of the apparatus,
10 cm upstream from the MI sensors. This coil enabled me to apply a continuous B1 field
perpendicular to the tube axis and to B0. It is driven by a synchronized function generator.

Figure 3.19 shows the ULF region of the apparatus, including the MI sensors, the B1

coil, the flow expansion and the coils that produce the guide field. The AFP-modulated nu-
clear magnetization M that enters the µT region, where the RF B1 coil and the MI sensors
reside, is aligned perpendicular to the flow direction (rather than parallel or anti-parallel).
The frequency of B1 is tuned to values in the range 200 - 800 Hz, and its amplitude is set
to rotate the nuclear magnetization M by 90 degrees as 1H nuclei pass through resonance
at the Larmor frequency fL. The B1 coil can nominally be placed at any point along the
flow path but must be kept far enough away from the MI sensors to avoid obscuring NMR
signals. Note that the stray field produced by the B1 coil is orthogonal to the sensors.
In detail, the B1 coil is actively-screened to further suppress stray fields. The B1 field is
generated by two pairs of coils in a rectangular Helmholtz configuration. I call these the

Figure 3.19: Overview of the µT region of the ULF NMR apparatus as configured to study
the steady flow of AFP-modulated nuclear magnetization M. The B1 field is resonant with
the nuclear spins as they pass through the B1 coil. (Not to scale).
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Figure 3.20: Amplitude of the B1 field relative to its maximum value at the center of the
coils. The field outside the coils is strongly suppressed by active shielding and enables us
to generate B1 fields continuously without influencing the functionality of the MI sensors.

main and the active shielding coils. The main Helmholtz pair has 8 turns, each with an
area of 2 × 2 cm2, and a separation distance of 2 cm. The active shielding coil has 4 turns,
each with an area of 2 × 4 cm2, and a separation distance of 2 cm. Both pairs of coils
carry the same current but in opposite senses. The dimensions and the number of turns
are chosen so that the total magnetic dipole moment of the combination is zero and conse-
quently the stray magnetic field is suppressed at a distance far from the coils (e.g. where
the MI sensors reside). This minimizes cross talk between the B1 field and the MI sensors
and restricts the B1 field profile to a well defined region so that it does not influence the
nuclear magnetizations when it is in the vicinity of the sensors.

Figure. 3.20 shows the results of a calculation of the relative magnitude of B1 with and
without active shielding. This calculation was performed using the BiotSavart magnetic
field modelling software package [87], and shows that active shielding attenuates the mag-
nitude of B1 at the location of the MI sensors by a factor of 30.

3.3.1.2 Signal Detection Circuit

Figure 3.21 shows the signal detection circuit used for studying AFP-modulated nuclear
magnetization. As before, the two MI sensors have the same orientation and their outputs
are fed into the transformer and phase sensitive detector (PSD) in a differential mode. This
rejects the common mode magnetic fields associated with distant sources while adding those
associated with the nuclear magnetization in the nearby tube. I monitor the in-phase (X)
and out-of-phase (Y) components of the PSD output relative to a reference oscillator, which
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Figure 3.21: Magnetization encoding and signal detection circuit for studying a steady flow
of AFP-modulated nuclear magnetization. BAFP is modulated at fm =4 Hz and the B1
field is a continuous sine wave at a frequency in the range 200 - 800 Hz.

is set at the nominal Larmor frequency of 1H nuclei, through the DMM. To simplify signal
analysis I tune the phase of the PSD reference signal so that the signal associated with the
detected AFP modulated magnetization signal is in-phase with the reference.

Three function generators are shown in Fig. 3.21. They are used, (a) to produce a
78 kHz AFP field modulated at 4 Hz, (b) to generate the reference oscilator signal for the
PSD at the Larmor frequency and (c) to generate a B1 field at frequencies in the range
200 - 800 Hz. All three are synchronized to a 10 MHz clock signal from a Tecmag Apollo
NMR console.

3.3.1.3 Results

Figure 3.22 shows data from a ULF NMR experiment in which signals generated by AFP-
modulated nuclear magnetization are monitored at different flow rates while a continuous B1

field at frequency f is applied. This was accomplished by subjecting the MI sensor output
to synchronous detection at the AFP modulation rate fm = 4 Hz. The amplitude of the B1

field was adjusted to produce π/2 rotations on resonance, as water flowed through the B1

coil. The frequency f was then varied to reveal the resonance profile. The duration of the
tipping pulse in this experiment, and hence the Full Width at Half Maximum (FWHM) of
the resonance, is set by two factors: (a) the average velocity v̄ or time-of-flight for 1H nuclei
through the B1 field region and (b) turbulent mixing of the flowing water. The FWHM of
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Figure 3.22: 1H NMR resonance profiles at 20 µT revealed by applying a B1 field at fre-
quency f (in the vicinity of the Larmor frequency fL = 0.8 kHz) to the AFP-modulated
flow of water: fm = 4 Hz with ENBW = 41.6 mHz; the flow rates (average velocity v̄)
from top to bottom are 15.3 ml/s (1.9 m/s), 18.8 ml/s (2.4 m/s), 28.9 ml/s (3.7 m/s) and
46.0 ml/s (5.9 m/s).
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Figure 3.23: Measured Full Width at Half Maximum (FWHM) of ULF NMR profiles ob-
tained from flowing AFP-modulated water, as a function of flow speed v̄. Measurements
were performed in two tubes with different diameters: 1/8” (�) and 3/16” (N). Straight lines
have been fit to the data yielding (—): 46.5(3.0) v̄ + 2.3(1.4); (—): 33.9(0.5) v̄ + 0.1(5.4).

the resonance profiles shown in Fig. 3.22 are obtained by fitting a Gaussian model function
to the data. The relationship between FWHM and the average water velocity as it passes
through the B1 coil is shown in Fig. 3.23. Data are presented for different flow rates and
for two different tube diameters (1/8” and 3/16” ID). Both of these parameters influence
the Reynolds number of the flow. Clearly the FWHM increases as v̄ increases, while at any
given average velocity the FWHM is larger, by a factor of 1.5 associated with the ratio in
diameters, in the bigger tube.

It would be interesting to follow this behaviour to lower Reynolds numbers, but in the
current implementation of this experiment we are limited by T1 relaxation and the stability
of the flow rate. The former effect is evident in Fig. 3.22; the signal to noise ratio of data
acquired at low flow rates (corresponding to long transport times) is lower than at high flow
rates. Recall that the longitudinal magnetization decays with a time constant T1 ' 0.7 s.

3.3.2 Pulsed NMR

In the second version of the two ULF NMR experiments I used to test the viability of using
MI sensors to monitor nuclear magnetic resonance phenomena, the AFP field is eliminated
and instead we work with stationary samples. Water is allowed to flow through the system
long enough (typically a few seconds) to transport polarized 1H nuclei from the polarizing
magnet to the ULF region. The water flow is then stopped by activating two solenoid valves.
This brings the sample to rest, at which point a π/2 tipping pulse is applied to nuclear mag-
netization M. Finally a free induction decay (FID) signal produced by the precession of 1H
nuclei spins in the static magnetic field is detected and recorded. This experiment represents
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Figure 3.24: Side view of coils and the water-filled tube in the ULF region of the apparatus.
The water is stationary (not moving) and the nuclear magnetization is initially aligned with
the static field B0. When a tipping pulse is applied M is rotated into the transverse plane
and precesses about B0. This is shown schematically in the diagram (Not to scale).

a critical step towards the spin dressing experiments described later in the thesis. The most
important distinction between this experiment and those described previously, is that we
now directly monitor the Larmor precession of the transverse nuclear magnetization rather
than simply looking at modulated longitudinal magnetization patterns.

3.3.2.1 Apparatus

Figure 3.24 shows the ULF region of the apparatus, as configured for direct detection of
the magnetic fields associated with Larmor precession. Unlike the case in Sec. 3.3.1 the
AFP field was not used. The static field B0 was reconfigured to be more uniform, to obtain
longer spin coherence times. Additionally, a coil intended to generate a linear gradient Gz

17

in B0 along the z-axis to further improve field homogeneity was added. Finally a coil was
added to generate B1 fields along the y-axis in order to be able to perform pulsed NMR.

The B1 field is generated by a pair of circular Helmholtz coils. Each coil has two turns,
with a diameter of 17 cm. They are separated by 8 cm. A function generator18 was used
to drive the B1 coils and create tipping pulses. The current amplitude was set to generate
a π/2 rotation in 10 ms; hence the duration of a π/2 rotation corresponds to two periods
of Larmor precession (or two cycles of the B1 waveform). A pair of rectangular Helmholtz
coils was used to generate the static field B0. Each coil has 9 turns and was wrapped on
a former with dimensions 40 cm×12 cm. The two coils were separated by 8 cm. A DC
power supply19 was used to control the currents used to produce B0 and Gz. The coils that
produce the linear field gradient Gz in the direction of the static field were generated by

17dBz/dz
18Stanford Research Systems model DS345.
19Agilent model E3631A
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Figure 3.25: Overview of pulsed ULF NMR signal detection circuit. A Tecmag Apollo NMR
console is used to control the sequence of events. A cross section of the tube containing the
nuclear magnetization M, and indicating the position and orientation of the MI sensors, is
shown.

two rectangular loops of wire that were wrapped on the static field coil former.
To start and stop water flow at appropriate times, two solenoid valves were employed.

These were ASCO "normally-closed" solenoid valves. One valve was inserted at the water
source (before the polarizing magnet) and the other was inserted at the outlet, downstream
from the MI sensors. Both valves were controlled via relays driven by TTL pulses from a
Tecmag Apollo NMR Console.

3.3.2.2 Signal Detection Circuit

The signal detection circuit employed for this experiment is shown in Fig. 3.25. A Tecmag
Apollo NMR console is used to synchronize devices, and to initiate and control events. A
key difference with respect to the previously described experiments is that data aquisition
is now controlled by a sequence of pulses, rather than being run continuously. The func-
tion generator used to drive the B1 coil (an Agilent 33250A 80 MHz arbitrary waveform
generator) is programed to apply a synchronized train of pulses. I accomplished this using
the Agilent Waveform Editor to produce Carr-Purcell-Meiboom-Gill (CPMG) tipping pulse
trains [88, 89].

3.3.2.3 Results

Figure 3.26 summarizes the pulse sequences used for CPMG spin echo and FID experiments.
These experiments are initiated by opening the two solenoid valves. Un-polarized 1H nuclei
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Figure 3.26: The sequence of events for a pulsed ULF NMR experiment in which the free
induction decay of 1H nuclei is observed. For the CPMG variant of this experiment, the
π/2 tipping pulse is followed by a series of π pulses as shown at the bottom of the figure.

Figure 3.27: Signal amplitude and T∗2 relaxation time for stationary samples, having arrived
at average speeds of 3.0 m/s (�), 3.7 m/s (•), 4.5 m/s (N) and 5.9 m/s (H), and after delay
times as indicated. Lines are drawn as guides for the eye.

are flushed from the system and are replaced by polarized 1H nuclei. The valves remain

59



Figure 3.28: Single shot 1H free induction decay signal and corresponding Fourier transform
(inset). The Larmor frequency fL = 200 Hz, the transverse relaxation time inferred from
the FID is T∗2 = 0.31 s and the Full Width at Half Maximum of the resonance is ∼2 Hz.
Small spikes in the Fourier transform are associated with the 3rd and 4th harmonics of 60 Hz
noise.

Figure 3.29: 1H CPMG spin echo train at 4.7 µT. The vertical spikes separated by 100 ms
are caused by the response of the MI sensors to the π pulses. The revivals between the π
pulses are the echoes. Inset: Expanded view of the first 10 spin echoes.

open for a time ≥ 3 s and are then closed.20 A delay is then imposed to allow eddies in
20After closing the valves the 3

8” PVC tube becomes inflated slightly. This elastic deformation can
influence eddies in the water. To minimize this effect I replaced the 3

8” PVC tube with the same size copper
tube. The only region in which the 3

8 " PVC tube is used after the flow expansion point is the first 25 cm
length.
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the water to decay. Next a π/2 tipping pulse is applied to rotate the nuclear magnetization
M into the transverse plane, at which point the free induction decay of M is monitored by
two MI sensors arranged in a gradiometer configuration. If desired, a coherent series of π
pulses is applied to generate a CPMG spin echo train. A linear field gradient is typically
applied during CPMG sequences, to shorten the spin-dephasing time. I employed a 10 ms
π/2 pulse followed by 50 consecutive π pulses with duration 20 ms and zero initial phase
for each pulse. Echoes thus form at τ = 50 ms after each π pulse.

The average speed v̄ of M and the delay after stopping the water flow need to be chosen
appropriately because they influence the transverse relaxation time and the signal-to-noise
(SNR) of the FID signals. To find optimum values I conducted a search, varying the water
source pressure and delay time. Then I measured the transverse relaxation time and the
magnitude of FID signals. Figure 3.27 shows the time constant T∗2 for the FID decay as
a function of water speed and delay. Higher speeds yield higher signal amplitudes because
depolarization is less of an issue, but the trade off is that the FIDs die off faster because of
mixing that occurs as eddy currents in the water persist.

I chose to operate with a water source pressure of 30 psi yielding an average flow speed
of v̄ = 3.8 m/s, and a 0.7 s delay time. Under these conditions, up to 6% of the nuclear mag-
netization leaving the 1.5 T polarization magnet reaches the ULF portion of the apparatus.
Figure 3.28 shows an example of a single shot 1H FID at 4.7 µT (recorded with an equiva-
lent noise bandwidth of 41.6 Hz) exhibiting an SNR ∼ 4. Because of the inhomogeneity in
B0, the FID signal decays on a time-scale of T∗2 = 0.31 s. For an exponential FID signal the
corresponding Fourier transform is a Lorentzian function. And the Lorentzian Full Width
at Half Maximum (FWHM) of the resonance is 1/πT2. This implies a FWHM ∼ 1 Hz in
my experiment.

Figure 3.29 shows data from a CPMG experiment. The MI sensors recover very quickly
after the π pulses are applied enabling us to see the spin echo pattern. Since the nuclear
magnetization is periodically refocused the influence of field inhomogeneity on T∗2 is elim-
inated and a much longer decay time T2CPMG = 1.68 ± 0.05 s is observed. This value is
less than that observed in pure water (typically 3-4 s) because of impurities [90].21

3.4 Conclusion

The work discussed in this chapter shows that MI sensors can be used for ULF NMR,
and thus represent a new experimental tool. The remainder of this thesis will focus on a
specific application, but the potential of these sensors is much broader. For example, one
could combine MI sensors with hyper-polarization methods as a powerful tool for j-coupling

21As an example, the clear PVC tubes used in the apparatus turn green over time, indicating copper
oxidation.
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spectroscopy [91], relaxometry [92, 93] and diffusometry [94]. MI sensors could also be
integrated with microfluidic techniques to study flow patterns and average velocities, or to
monitor the time evolution of the concentration of molecules in reactions without having
tracers [95] such as fluorescent dyes that may influence the physical and chemical properties
of the solvent [96].

In the next chapter I will describe a series of spin dressing experiments performed us-
ing MI sensors. The apparatus and techniques are a simple extension of the experiments
described above.
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Chapter 4

Spin Dressing Experiments

In this chapter I describe a simple, practical and robust method to explore 1H nuclear spin
dressing phenomena over a wide range of parameters. The use of Magneto-Impedance (MI)
sensors for direct detection of the magnetic fields of precessing nuclei is a key element of
the experiment. I will also report the observation of spin echo formation in response to the
application of finite-duration dressing field pulses. A simple classical model of spin preces-
sion is used to explain and model this unanticipated effect.

The apparatus and the method of analysis that I describe in this chapter to observe
spin dressing phenomena, only works for one spin species (1H nuclei of water). In subse-
quent chapters (5 and 6) I will describe a refined version of the apparatus and introduce an
improved method of analysis to explore spin dressing phenomena for other spin species.

4.1 Apparatus

The apparatus used to perform spin dressing experiments is the same as that described in
Chapter 3 (Sec. 3.3.2) except it also includes a new coil to generate the dressing field Bd.
A diagram showing the ULF portion of the apparatus is shown in Fig. 4.1.

As before, two solenoid valves are used to control the flow of polarized 1H nuclei from
the 1.5 T region to the µT region. These valves are installed at the inlet and outlet of
the flow path. When the valves are open, tap water flows through the system at a steady
rate of ∼40 ml/s and pushes the polarized nuclei from a 600 ml reservoir towards a well-
shielded area where a pair of MI sensors reside. The water exits the polarizing magnet
through a 1

8 inch inner-diameter PVC tube aligned with the local static field B0, which
decreases monotonically. As B0 decreases the flow is gradually reoriented so that it ends
up perpendicular to B0 (which is produced by the fringe field of the polarizing magnet
and thus varies as a function of position). Thereafter the 1H nuclear magnetization M is
perpendicular to the tube axis (rather than parallel to it). Finally the tube’s inner diam-
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Figure 4.1: Overview of ultra-low-field region of the spin dressing apparatus. Nuclear spins
in the centre of the apparatus are rotated into the transverse plane and then subjected
to a dressing field that causes M to oscillate about the equatorial plane. This behaviour
is shown schematically in the figure. Active shielding is employed to minimize screening
currents in the magnetic shields.

eter is abruptly increased to 3
8 inch just before it flows past two MI sensors arranged in a

gradiometer configuration. This expansion is employed to increase the magnitude of the
magnetic field BM sensed by MI sensors. Recall that BM is the field associated with the
precessing nuclear magnetization M. Theoretically, the field BM, due to an infinitly long
cylinder with magnetization M perpendicular to its axis varies as the square of R/r [97],
where r is the distance from the axis of the cylinder and R is the diameter of the cylinder.
Thus the expansion (in tube diameter) from 1

8 to 3
8 inch results in a one order of magnitude

increase in BM at a given distance r.
Once polarized 1H nuclear spins arrive at the sensors the solenoid valves are simul-

taneously closed to stop the flow. After a short time delay, to allow eddy currents in the
water to subside, the resonant oscillating magnetic field B1, which is aligned with the axis
of the tube, is applied to rotate M into the transverse plane, and nuclear spin precession
is observed at the Larmor frequency f L using the MI sensors. Next, during the FID and
after a time period τ has elapsed, a strong off-resonant oscillating magnetic field Bd (the
dressing field) is applied along the axis of the tube for a time period ∆t. During ∆t, the 1H
nuclei acquire a modified gyromagnetic ratio | γ′ |< γ that can be measured by monitoring
the phase of M that is accumulated while the dressing field is applied. The time period
between the application of B1 and Bd is chosen so that Bd always starts with a well-defined
phase relationship with respect to B1. This phase relationship is established coherency is
employed for all spin dressing and critical spin dressing experiments reported in this chap-
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Figure 4.2: Sequence of events in a spin dressing experiment (Not to scale). TNMR software
running on a TecMag Apollo NMR console was used to set the time and duration of each
event.

ter and Ch. 6. Furthermore, a cosine waveform is employed for the applied dressing field.1

Figure 4.2 shows the sequence of events in this measurement. The sequence is initiated by
closing the solenoid valves.

4.1.1 Signal Detection Circuit

Figure 4.3 summarizes the various electronic components used to observe and record spin
dressing phenomena. The sensor outputs are amplified by a low noise transformer and then
fed into a phase sensitive detector (PSD). The output of the PSD can then be displayed on
an oscilloscope or recorded as a computer data file using a Labview program. Three function
generators were used to act as an oscillator for the PSD, to drive the B1 coil and to drive
the Bd coil. The latter devices must be arbitrary waveform generators. I used a Stanford
Research Systems model DS345 and Agilent model 33250A, which can be programmed using
Arbitrary Waveform Composer (AWC) and Agilent Waveform Editor software, respectively.
All of the function generators are synchronized to a 10 MHz reference clock generated by
a Tecmag Apollo NMR Console. The entire experimental sequence is fixed to an integer
number of periods of the reference oscillator, to simplify coherent superposition of FID
responses when data are averaged. The duration and time of each event is set by TNMR
software, running on the NMR console.

The output of the function generator that drives the Bd coil is fed to an audio power

1In preliminary experiments a sine waveform was employed and a discrepancy between observations and
simulated data (based on the quantum model that was described in Ch. 2) was observed. No discrepancy
was observed when a cosine waveform was employed.
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Figure 4.3: Block diagram of circuit used to observe and record spin dressing phenomena.
Event sequences are coordinated by TTL logic pulses generated by a Tecmag Apollo NMR
console running TNMR Software.

amplifier2 in order to generate an oscillating magnetic field that is much stronger than B0.
Several precautions related to the use of this audio amplifier are noted below:

• Any small DC current offset associated with the amplifier must be avoided, to avoid
introducing a static magnetic field in the wrong direction. I used a summing amplifier
to add an adjustable DC offset to the input of the audio amplifier, to ensure that the
DC component of the output could be set to zero. I also inserted high power noise
gates3 on the output of the amplifier to keep noise from being fed to the experiment
when the amplifier was in a quiescent state.

• Direct monitoring of the audio amplifier output current tends to influenceBd and adds
60-cycle noise. An optically-isolated current monitor circuit, as shown in Fig. 4.5, was
used to measure the current delivered to the dressing field coil with good success.

• Maximum power transfer for this amplifier (∼1.5 kW at 1 kHz) occurs for a load
impedance of 3 - 4 Ω. I inserted a 10 Ω (20 watt) load in series with the Bd coil to
bring down the maximum available power to ∼ 700 W at 1 kHz. Since the load was
only rated for a fraction of the amplifier power, it was important to avoid driving a
continuous high-amplitude current with the amplifier. Otherwise the load and coils
would be damaged.

2Crown M-600 amplifier with a frequency response spanning DC - 20 kHz.
3Two back-to-back pairs of Diodes Incorporated model 10A05 diodes, which can handle 10 A of contin-

uous current.
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4.1.2 Dressing Field Design

The dressing field Bd(t) is generated by running currents through two coaxial solenoids.
I refer to the inner coil as the main coil and the outer coil as an active shield [86]. The
coils have different diameters and numbers of turns but carry the same current (in opposite
senses). The active shield coil minimizes eddy currents in the permalloy shield during and
after generation of the dressing field Bd. It is designed such that the total magnetic moment
of the pair of current-carrying coils is zero. To achieve this, for coaxial coils labelled by
indices 1 and 2 we have

N1R
2
1 = N2R

2
2 (4.1)

where N is the number of turns and R is the radius of each coil. For a finite length solenoid
the field produced at the center of the coil is

Bin = µ0N I√
l2 + 4R2

(4.2)

where l is the length of coil. The field produced at the center of the two concentric solenoids
is thus given by

Bin = µ0I

 N1√
l2 + 4R2

1

− N2√
l2 + 4R2

2

 . (4.3)

I used Eq. 4.1 to choose the appropriate dimensions for the dressing field coils. I chose
R1 = 8.5 cm, N1 = 75 turns and R2 = 10.6 cm, N2 = 48 turns for the main and the active
shielding coils, respectively. Both of the coils are l = 20 cm long. The winding density of
the main coil is uniform but the winding density of the active shielding coil is only semi-
uniform. It consists of 45 turns which are distributed uniformly and 9 extra turns. I refer
to these as compensation loops. The current through 6 of these loops is in the same sense
as in the active shielding coil while the current through the other 3 loops is in the opposite
sense. Physically the combination of the active shielding and compensation loops amounts
to 54 turns. But, the combination is equivalent to a net 48 turns carrying current in the
same direction. The positions and senses of the current through the compensation loops
are chosen by trial and error so that: the magnetic moment of the active shielding coil is
the same as that of the main coil and the total magnetic field outside of the coils is as small
as possible for a given current. Table 4.1 summarizes the location of compensation loops
relative to the center of the dressing coils as well as the sense of the current they carry.
Also Table 4.2 lists characteristics of the dressing coils.

I also used the BiotSavart software package [87] to model the field produced by both
coils, both inside and outside. Figure 4.4 shows the calculated relative amplitude profile of
the dressing field along various transverse and longitudinal axes. The active shield and com-
pensation loops reduce the axial component of Bd on the permalloy shield (radius 13 cm)
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Position (cm) 0 ±1.2 ±9.0 ±11.0 ±12.6
Current Direction + - + - -

Table 4.1: Relative location and current through compensation loops. Current through
the main coil is assumed to be positive (+) while that through the active shielding coil is
negative (-). Positions are measured relative to the center of the coils.

R (cm) N l (cm) L (µH) R (Ω)
Main coil 8.5 75 20 577.8(1) 1.452(1)

Active shield coil 10.5 45 20 325.1(1) 1.173(1)

Table 4.2: Dressing coil characteristics. Radius (R), number of turns (N), length (l),
inductance (L) and DC resistance (R) of the dressing coils. The resistance and inductance
were measured using a Stanford Research Systems model SR720 LCR meter.

Figure 4.4: Calculated relative dressing field amplitude along various axes illustrating the
influence of active shielding. Transverse and longitudinal profiles for the axial component
(z direction) of dressing field are plotted on the top and bottom respectively. The former
is calculated at z = 0 and the latter at r = 13 cm where the wall of the permalloy shield
is located. All curves are referenced to the field at the midpoint of the main coil.

by a factor 40 and at the centre of the dressing coil by a factor of 2.5.
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Figure 4.5: Optically-isolated current monitor circuit. Current flow through the shunt
resistor is buffered amplified and then passed through a bipolar optical-isolation stage. The
back-to-back diodes act as noise gates.

Bd vs. Id (Experiment) B∗d = -0.14(1) + 1.590(6) I∗∗d
Bd vs. Id (Simulation†) Bd = 1.57 Id
Bd vs. Id (Simple theory‡) Bd = 1.52 Id

Table 4.3: Calibration of dressing field Bd against current flow Id through the dressing field
coil. ∗ Measured in Gauss; ∗∗ Measured for Id > 0.5 A; † Using the BiotSavart software
package; ‡ Using Eq. 4.3.

4.1.3 Dressing Field Calibration

I used a Group 3 gaussmeter4 to measure Bd and thus calibrate the dressing parameter x in
terms of the current used to generate the dressing field. Recall that x = γBd/ωd. In detail,
there are three steps to the calibration procedure. First, the AC gain of the gaussmeter
(which responds to fields over the range 8 Hz - 3 kHz) is calibrated against very high
accuracy DC mode readings acquired using the same device. This was accomplished using
magnetic fields generated by a reference coil, employing identical measured AC and DC
currents. Next, the response of the optically-isolated current monitoring circuit to current
flow through a shunt resistor in the audio amplifier was characterized; see Fig. 4.5. Finally,
the optocoupler output was calibrated against measured AC dressing field amplitudes. Once
these calibrations are combined and accounted for the AC magnetic (dressing) fields inferred
from the current monitor output agree with expectations based on geometry at the 1% level.
Table 4.3 summarizes the relationship between Bd and Id obtained from the calibration,
from the Biotsavart field modelling software, and from Eq. 4.3. Figure 4.6 shows Bd at low
currents. The non-linearity in this regime comes from the optocoupler and the noise gate
diodes.

4Digital Teslameter model DTM-151 with miniature high sensitivity Hall probe model MPT-231. Tes-
lameter zero drift: ±(1 µT + 0.0003% of full-scale)/oC max.
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Figure 4.6: Measured RMS dressing field Bd in terms of the current passing through the
dressing field coil Id. The data are fit by a 4th order polynomial function (- . -) over the
entire current range, and by a linear function (—) for Id > 0.5 A.

4.2 Data Analysis Method

In the spin dressing experiment I monitor the average precession rate f̄L of the dressed
nuclear spins to infer their modified gyromagnetic ratio γ′ . The experimental data that I
use is the free-induction-decay (FID) signal of a precessing nuclear magnetization M whose
precession rate changes whenever the dressing field is applied. In my experiment these
signals are sensed by the MI sensors. But, upon application of the dressing field pulse the
sensors saturate.5 Thus a direct measurement of the average precession rate from FID data
during the dressing field pulse is not feasible. However, the phase of the FID signal before
and after application of the dressing field pulse can be used to reveal f̄L. When the dressing
field pulse is applied, the precession rate of M changes. In turn this influences the phase of
the FID signal. This results in a phase lag or lead in the FID signal depending on whether
f̄L is less than or greater than the normal precession rate. In my experiment I measure
these phase variations in the FID signals.

I recorded FID signals before and after applying a finite-duration dressing fieldBd = Bd

cos(ωdt) x̂ and determined the change in phase that occurred because of the modified

5The sensitive axes of the MI sensors are supposed to be perpendicular to Bd. However, if they are not
then any small projection of Bd on the sensitive axis of a sensor can potentially cause it to saturate.
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Figure 4.7: Semi-classical trajectories of dressed (–) and undressed spins (- -), on the surface
of the Bloch sphere, under conditions where the spin dressing parameters y = 0.1 and
x = 1.0. The incremental phase ∆θ corresponds to the angle between M and M′ , the time
averaged magnetization vectors for undressed and dressed spins, respectively. The difference
arises from the application of the dressing field.

gyromagnetic ratio γ′ that was temporarily acquired by the 1H nuclei. If ω and ω′ denote
the angular Larmor frequencies of undressed and dressed spins in a static field B0 ẑ, then
the incremental phase change incurred as a result of applying Bd for a time ∆t is

∆θ = (ω′ − ω)∆t

= B0(γ′ − γ)∆t. (4.4)

Figure 4.7 illustrates a phase lag graphically, on the Bloch sphere, for spin dressing condi-
tions where y < 1. In terms of the frequency fL, N cycles of a dressing field Bd applied
at frequency fd yields

∆θ = 2πNfL
fd

(γ
′

γ
− 1), (4.5)

or in terms of the dressing parameters x and y

∆θ = 2πNy [J0(x)− 1] , (4.6)

as long as y � 1. Otherwise a numerical solution for γ′/γ (instead of the zeroth-order
Bessel function) must be employed as described in Ch. 2. The maximum absolute value of
the right hand side of Eq. 4.6 is 2.8πNy which occurs when J0(x) assumes its lowest value,
which is -0.40. As long as N is small, ∆θ is less than 2π and a measurement of ∆θ is direct
and unambiguous for any values of x. If the maximum value of ∆θ exceeds 2π then a series
of measurements of ∆θ for values of x less than the value in which we are interested is
needed. In this way we can count the number of complete rotations in phase and get the
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Figure 4.8: Example of FID data from a 1H spin dressing experiment at y = 0.4 and
x = 12.17 with fL = 200 Hz and fd = 500 Hz. A 20 ms dressing field pulse was applied.
The various traces correspond to the (—) real part of the signal, the (—) imaginary part
of the signal, the (—) phase of the signal and the (—) dressing pulse waveform. The phase
of the signal is plotted in degrees as indicated on the right axis. The phase of the signal,
before and after the dressing field pulse, is fit with two linear functions with the same slope.
The difference between intercepts of the fit lines (θ1 and θ2) represents the phase lag ∆θ.
The transient signals due to application of the dressing field pulse are shown in the grey
area.

correct value of γ′ .
Figure 4.8 shows complex FID data referenced to a 200 Hz local oscillator. The

phase of the signal clearly changes after a 20 ms dressing field pulse is applied at 500 Hz,
corresponding to a 10 cycle-long Bd waveform. Provided the Larmor frequency is very close
to the local oscillator, then the phase lag ∆θ can be calculated by fitting the FID phase
data with two linear functions6

θbefore = αt+ β1 (4.7)

θafter = αt+ β2 (4.8)

where θbefore and θafter are the FID phase before and after the dressing field pulse, respec-
tively. The fit functions must have the same slope but can acquire different intercepts. The
difference between the intercepts,

∆θ = β2 − β1 (4.9)

6Note that the linear phase drift evident in Fig. 4.8 simply reflects a 0.48 Hz frequency offset between
the Larmor frequency and the local oscillator.
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which is in units of Volts, represents ∆θ. I map this value for ∆θ into units of degrees and
use Eq. 4.5 to calculate γ′/γ. For all of the data presented in this chapter I used this data
analysis protocol. The method is simple, quick and practical. However, it only works for
one spin species.

A more sophisticated approach is to offset the local oscillator from the Larmor frequency.
Then the real and imaginary FID signals behave like damped sinusoids. These signals can be
fit with model damped sinusoidal functions. The phase of the signals can then be extracted
from the fitting parameters. And consequently one can calculate the phase lag ∆θ. This
approach to data analysis is more complex than the linear fit function method described
above. However, it works for two or any number of spin species that are simultaneously
dressed. I will demonstrate this method of analysis in Chapter 6 when I discuss critical spin
dressing of 1H and 19F.

4.3 Results

In the following subsections, I demonstrate first the results of spin dressing experiments on
1H nuclei in two different regimes: y <1 and y >1. Recall that y = γB0/ωd. These results
are compared with simulated values obtained from the quantum model that I described in
Ch. 2. Second, the observation of spin echo formation in response to an off-resonant dressing
field is investigated. Note that all data presented in this chapter are obtained for 1H nuclei
of water. So all references to γ, γ′ or Larmor frequency fL correspond to values for 1H nuclei.

4.3.1 Spin Dressing Experiment: y < 1

In the regime y < 1, and therefore |γ′/γ| < 1, the phase shift ∆θ is always negative (i.e. it
is a phase lag). This is consistent with the experimental data for γ′/γ at y = 0.4 shown in
Fig. 4.9. These data were acquired at B0 = 4.69 µT (corresponding to f L = 200 Hz) with a
dressing frequency f d = 500 Hz and variable dressing field amplitudes up to Bd = 470 µT.
They were acquired with an equivalent noise bandwidth of 27 Hz. They prompt two ob-
servations. First, they are generally consistent with expectations based on perturbation
theory, as outlined in Ch. 2 section 2. That is γ′/γ = J0(x). Second, this measurement
probes a much broader range of the dressing parameter x than has been explored previously
[37, 38, 36].

If the dressing parameter y is increased, so that it approaches y = 1, measured values of
γ
′
/γ deviate from J0(x). This deviation is only significant for small values of x. Figure 4.10

shows two additional measurements of γ′/γ as a function of x, for y = 0.2 and y = 0.8.
These measurements were performed with fd = 1 kHz, at fL = 200 Hz (for y = 0.2)
and fL = 800 Hz (for y = 0.8). The dressing field pulse was 10 ms long for y = 0.2

73



Figure 4.9: Measured modified 1H Gyromagnetic ratio (•) for dressing parameters
y = fL/fd = 0.4 and 0<x<40. Note that γ′/γ is expected to be equal to the zeroth-order
Bessel function J0(x) in the limit y � 1 (—).

Figure 4.10: Modified 1H Gyromagnetic ratio as measured with fd = 1 kHz and fL = 200 Hz
(N) and fL = 800 Hz (•); also shown are semi-classical simulations for y = 0.2 (dashed
line) and y = 0.8 (solid line). As expected, no significant difference was observed between
results at y = 0.2 and the zeroth-order Bessel function J0(x) expected for y � 1 (short
dashed line).

and 3 ms long for y = 0.8. The ability of this experiment to resolve variations in γ′/γ for
different values of y is indicative of its potential, and plays an important role in our later
exploration of critical spin dressing at small values of x.

4.3.2 Spin Dressing Experiment: y > 1

I performed a series of measurements in the regime y > 1 to explore γ′ , and in many sit-
uations I observed discrepancies between experiment and simulations7 particularly at large
values of x. However, at small values of x the experiment and simulation are consistent.
Figure 4.11 shows data for γ′/γ at y = 1.28 and y = 2.0 (corresponding to fd = 500 Hz

7Obtained from the quantum model described in Ch. 2 Sec. 2.
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Figure 4.11: Modified gyromagnetic ratio as measured with fd = 500 Hz and fL = 640 Hz
(-•-, y = 1.28, 2-cycle pulse duration) and fL = 1 kHz (-N-, y = 2.0, 1-cycle pulse duration).
In both cases the experimental data are compared with simulations that are obtained from
the quantum model as described in chapter 2. Dashed lines are merely a guide for the eye.

and fL = 640 Hz and fL = 1 kHz). The dressing field pulse durations for these experi-
ments were 2-cycles long (for y = 1.28) and 1-cycle long (for y = 2.0). Surprisingly, in
most of these experiments I observed the formation of echoes in FID signals. This unan-
ticipated observation complicates determination of the phase shift and hence the modified
gyromagnetic ratio. But, it is an intriguing observation in of itself, and is explored in the
next section.

It is interesting to note that in previous studies of spin dressing [38], data for γ′/γ were
only reported up to x = 0.5, 1.0, 1.5, 2.75 and 4.5 for y = 1.10, 1.5, 2.5, 4.5 and 7.5, re-
spectively. One might ask why in Ref. [38] no experimental data are reported at high values
of x? Was the discrepancy that I observed in my experiments at y > 1 also observed there?

4.3.3 Off-Resonant Spin Echo

Spin echoes were discovered by Erwin Hahn [98] in 1950 and later developed by Herman
Carr and Edward Purcell [88]. In a conventional spin echo a dephased transverse compo-
nent of the nuclear magnetization is inverted by a single π pulse (or a train of π pulses)
following an initial on-resonant π/2 pulse. This results in a revival of the transverse nuclear
magnetization that is called a spin echo. There are numerous versions of spin echo pulse
sequences [99, 100], all of which involve applying on-resonant π pulses. In this subsection,
I demonstrate spin echo formation in response to far off-resonant dressing field pulses.
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4.3.3.1 Observation

Figure 4.12: Magnitude of FID signals at y = 7.14 for different dressing parameters x.
The FID signals are recorded following a π/2 tipping pulse applied at time t = 0. A
single cycle dressing pulse duration is applied at t = 120 ms after the tipping pulse and a
strong revival of the transverse magnetization (an echo) is observed at t ∼ 215 ms in the
vicinity of x ∼ 15. The transient signals associated with application of the dressing pulse
is indicated by an arrow.

During investigations of γ′/γ for y > 1, I observed FID signals that did not decay at
anticipated rates, and which showed evidence of echo formation. The observation of echoes,
or a revival of the transverse nuclear magnetization, during spin dressing experiments seems
counter-intuitive because the pulsed dressing fields are applied at frequencies far away from
resonance. At first I thought that the effect might be caused by imperfect or misaligned
dressing fields or even by eddy currents in the water. But, as I acquired more data I started
to see that they formed in a quasi periodic pattern in terms of the dressing parameter x.
Moreover, I performed two measurements that convinced me the off-resonant echo forma-
tions are due to a real and systematic effect. First, I observed that the echo peaks were
not suppressed by signal averaging. Second, echo trains, analogous to those generated in
CPMG experiments, can be generated when a train of off-resonant dressing pulses are ap-
plied. Data associated with these two observations are discussed below.

Figure 4.12 shows the magnitude of FID signals at y = 7.14 for different values of x,
revealing very clear revivals of the transverse nuclear magnetization. Each trace represents
the average of four acquisitions. In this particular set of experiments, the Larmor frequency
was fL = 4 kHz, and the dressing field frequency was fd = 560 Hz. Figure 4.13 shows
data illustrating the formation of an echo train in response to repeated applications of a
far off-resonant dressing field pulse that was selected to produce large revivals. The 2.0 s
decay time inferred from these data is similar to that observed when a conventional pulse
train composed of on-resonant π pulses is employed.
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Figure 4.13: Echo train generated by applying 5 cycle-long dressing field pulses with x= 1.93
and y = 2.0 (fL = 1 kHz; fd = 500 Hz) every 200 ms. The peak echo amplitude decays
with a time constant comparable to that observed when a CPMG echo train is generated.

Now let us discuss the parameters than can influence off-resonant echo formation. As I
observed, the duration of the dressing field and dressing parameter y can strongly affect echo
formation. To demonstrate the contribution of these two parameters we need a parameter
to quantify echo formation. To quantify the revival of transverse nuclear magnetization I
introduce a figure of merit χ defined such that

χ = A(x)
A0

(4.10)

Figure 4.14: Figure of merit χ at y = 2.0 (fd = 500 Hz and fL = 1 kHz) for 2 ms (top) and
4 ms (bottom) dressing field pulses. The longer pulse results in stronger and more frequent
echoes. Lines are drawn as a guide for the eye.
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Figure 4.15: Figure of merit χ for fixed dressing field pulse duration at different values of y
acquired with fd = 500 Hz and fL = 1.0 kHz (top); fL = 1.6 kHz (middle); fL = 2.5 kHz
(bottom). Dashed lines are merely a guide for the eye.

where A(x) is the area under the FID signal after a dressing field pulse characterized by the
dressing parameter x and A0 is the corresponding area when x = 0. Thus χ > 1 reflects
a revival of the transverse nuclear magnetization while χ < 1 reflects a suppression. The
latter can arise when the dressing field pulse transfers transverse nuclear magnetization to
the longitudinal axis of the Bloch sphere.

Figure 4.14 shows an example of the figure of merit χ in terms of x for y = 2 and for
two different dressing field pulse durations, acquired with fL = 1 kHz and fd = 500 Hz.
The peaks that are evident represent conditions where echoes form. Varying the duration
of the dressing field pulse influences the pattern that is observed. Figure 4.15 shows data
for χ at different values of y following a single-cycle dressing field pulse at fd = 500 Hz.
The pattern of echoes is stronger and more clearly resolved at y = 5 than it is at y = 2.

4.3.3.2 Classical Model of Spin Precession and Off-Resonant Echo

In an attempt to gain some insight into the formation of echoes in response to pulsed
dressing fields, I developed a simple classical model of spin precession in the presence of a
linear field gradient. I assumed that the phases of spins precessing in the transverse plane
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are initially distributed uniformly, such that

φi = ±2π(1− i

N
) (4.11)

where 2N + 1 is the total number of spins considered. I further assumed that the Larmor
precession frequencies of the spin with initial phase φ = 0 is fL. These initial conditions are
intended to represent the transverse nuclear magnetization "long after" the initial π/2 pulse
in my experiments. With these simple initial conditions, I then integrated the equations of
motion (Bloch equations [101]):

dMx

dt
= γMyB0 −

Mx

T2
,

dMy

dt
= γMzBd(t)− γMxB0 −

My

T2
,

dMz

dt
= −γMyBd(t)− Mz

T1
(4.12)

where T1 and T2 are the usual longitudinal and transverse relaxation times, respectively.
The time t runs from 0 to t2. I assumed at t = 0 the nuclear spins have the phase
distribution given by Eq. 4.11 because of the linear field gradient Gz ẑ. For times after
t = 0, the magnetic field in which spin precession takes place is

(B0 + Gz) ẑ + Bd cos(2πfdt) x̂ 0 ≤ t ≤ t1
(B0 + Gz) ẑ t1 ≤ t ≤ t2. (4.13)

Equations 4.12 were numerically integrated8 using integrate.odeint module from the open
source Scipy library of scientific tools, which uses the LSODA9 module from the FORTRAN
library odepack.10 By solving the differential equations in Eq. 4.12 for 2N + 1 discrete
spins11 and summing, the total magnetization in x-y plane is simply

Mx =
2N+1∑
i=1

Mix

My =
2N+1∑
i=1

Miy

Mxy(t) =
√

M2
x + M2

y. (4.14)

8Employing T1 = 2 s and T2 = 0.1 s.
9Ordinary differential equation solver for stiff or non-stiff systems.

10Ordinary differential equation package.
11I employed N = 10.
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Figure 4.16: Experimental and simulated figure of merit χ observed following a single-cycle
dressing field pulse at y = 2.0 (fL = 1 kHz; fd = 500 Hz; (-•-) experiment, y = 3.2
(fL = 1.6 kHz; fd = 500 Hz; (-N-) experiment, y = 5.0 (fL = 2.5 kHz; fd = 500 Hz;
(-H-) experiment and y = 8.0 (fL = 4 kHz; fd = 500 Hz; (-�-) experiment. The simulated
values are shown by a solid line. Dashed lines are drawn as a guide for the eye.

The figure of merit χ defined by Eq. 4.10 can then be calculated from this model as

χ =
∫ t
t1

Mxy(t)dt |Bd 6=0∫ t
t1

Mxy(t)dt |Bd=0
. (4.15)

Now we can compare the simulated results for χ with experimental data. Figure 4.16 shows
a comparison between the figure of merit χ obtained from experiments and from the simple
model described above. The model does a remarkable job predicting the height and position
of the echoes given the crude approximations upon which it is based. It is noteworthy that
good correspondence between experimental and simulated echo locations is observed up to
x = 35 as is shown in Fig. 4.17 where a single cycle-long duration pulse was applied at
y = 7.14 (fL = 4 kHz; fd = 560 Hz).
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Figure 4.17: Experimental and simulated figure of merit χ following a single-cycle dressing
field pulse at y = 7.14 (fL = 4 kHz; fd = 560 Hz); -•- experiment; – simulation. Dashed
lines are merely a guide for the eye.

4.3.3.3 Phase Space for Echo Formation

So far we have investigated echo formation at a few discrete values of y. Further insight into
the echo formation process can be obtained by generating a phase space plot, in terms of
the parameters x and y. Figure 4.18 shows a contour plot of simulated figures of merit χ at
fd = 500 Hz for dressing field pulses of duration 1/4, 1/2, 1 and 2 cycles. Each plot is made
of 2375 simulated values of χ at a resolution of 0.4 in x and y. The echo formation process
clearly depends on the length of the dressing field pulse. Echoes occur at high values of y
over the full range of x, while at small y they only form at small values of x. In Ch. 6, in
which I report the observation of critical spin dressing, contour plots such as these will be
employed to choose appropriate parameters for x and y, so as to avoid echo formation.

One can describe off-resonant spin echo formation in terms of multiphoton processes,
which are also called multiphoton excitations or resonances. These proceses have been
widely studied in atomic and molecular physics [102], quantum information [103, 104] and
condensed matter physics [105, 106]. Furthermore, this phenomena has been examined in
NMR [107, 108] and electron paramagnetic resonance (EPR) experiments [109]. Multipho-
ton excitations in a two-level quantum system can happen if the sum of the energies of
absorbed photons is equal to the difference between energy levels. And it usually happens
when the system is subjected to a sufficiently strong oscillating magnetic field (RF field)
[110]. Depending on the orientation of the oscillating field relative to the static field, odd
or even [111] numbers of photons can be absorbed by the system.

Echo formation due to an off-resonant RF pulse or, in my experiments, a dressing field
pulse has a simple application in NMR spectroscopy. If the dressing field frequency is out
of the bandwidth of a NMR receiver, then one can use off-resonant dressing pulses instead
of on-resonant π pulses to bypass the dead-time of a NMR receiver [112].12 In addition,

12The receiver dead-time is the time following a tipping pulse during which NMR signals can not be
monitored by conventional inductive coils, due to RF ring-down in the detector circuit.
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Figure 4.18: Contour plots of simulated figure of merit χ, corresponding to the echo forma-
tion, as a function of x and y following dressing field pulses of duration 1/4, 1/2, 1 and 2
cycles, applied at fd = 500 Hz. Echoes are more often observed in red regions, and never
occur in blue areas. The quasi periodic dependence of echoes on the parameters x and y is
observed in the experiments.

multiphoton excitations can be controlled through pulse shape optimization [113] which has
potential applications to quantum information, where un-desirable effects of multi-photon
processes must be avoided. This is analogous to the phase-modulated dressing field pulses
that I employed in critical spin dressing experiments, and will discuss in more detail in
Ch. 6 Sec. 3.

A full explanation of the echo formation described in this chapter is a bit off topic, as
far as my primary goal is concerned. I have only explored this phenomena to know how my
spin dressing experiment might be influenced by spin echo formation.
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4.4 Conclusion

The experiments described in this chapter demonstrate a simple, practical and robust
method for exploring spin dressing phenomena over a wide range of experimental parame-
ters. A key innovation underpinning their success is the use of magneto-impedance sensors
for direct detection of the magnetic fields of precessing nuclei. A simple data analysis
method based on the phase of FID signals was developed. The method can be used to ex-
tract useful information about the average precession rate and the modified gyromagnetic
ratio of dressed nuclear spins. This method only works for one spin species.

The spin dressing experiments demonstrated in this chapter yielded promising results,
and pave the way toward the critical spin dressing experiments described in Ch. 6.

83



Chapter 5

Spin Dressing Revisited

In this chapter I introduce a new apparatus that I developed to advance the experiments
described in Ch. 4. This apparatus offers several advantages, but in particular it does not
rely on the flow of water (or other liquid), and is readily adapted to multi-nuclear NMR
experiments. I will describe this apparatus and illustrate its operation using samples con-
taining 1H and 19F nuclei. It will then be used in Ch. 6 to observe and study critical spin
dressing.

The previous two chapters were focused on a ULF NMR apparatus that intrinsically
relied on the flow of polarized water. An alternate approach is needed to accomodate other
spin species. To this end, I develloped a pneumatic sample transfer system to transport a cell
containing a sample between a polarizing magnet and the ULF region where experiments
are performed. Pneumatic and mechanical sample-transfer systems have been employed
previously for high and low field NMR experiments [52, 114], including relaxometery ex-
periments [115, 116] in which polarization and measurement regions are spatially separated.

5.1 Modified ULF NMR Apparatus

The experiments described in this chapter are performed using an apparatus in which sam-
ples are first thermally polarized in a high field region (1.5 T) and then transferred to a
well-shielded region with µT-scale fields. A magnetic fieldB1 is then applied on-resonance to
rotate the nuclear magnetizationM into the transverse plane, at which point spin precession
about B0 is monitored by a pair of magneto-impedance sensors arranged in a gradiometer
configuration. The sensitive axes of the MI sensors are perpendicular to both B1 and B0.
The sample is confined to a 15 ml Nalgene bottle (or a cylindrical Teflon cell) which is
transported pneumatically between the high and ultra-low field regions inside a 2.0 m-long
PVC tube.1 As before, pulsed dressing fields Bd are applied to periodically drive M away

1Schedule 40.
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from the equatorial plane of the Bloch sphere, and thereby modify the apparent gyromag-
netic ratio of nuclear spins. The field Bd is aligned parallel to B1 and perpendicular to
both B0 and the sensitive axis of the MI sensors.

5.1.1 Sample Transfer System (STS)

Figure 5.1 illustrates the sample transfer system (STS), which uses high pressure air to
transport the sample cell from the high field region to the ULF region. The transport time
is 0.3 s with an average speed of v̄ = 6.5 m/s, when 90 psi of air pressure is applied. The
STS returns the cell back to the high field region at an average speed of 1 m/s. There are
four main components of the STS that will be described in detail below: solenoid valves,
transfer line, cell stopper and a monitor window.

Solenoid valves (SV) are used to control the flow of high pressure air through the STS.
I used four ASCO normally-closed solenoid valves, two of which control the inlet for high
pressure air and two of which control exhaust ports. The cell moves from the high field
region to the ULF region when the SV 1 and 3 are open, and SV 2 and 4 are closed. When
SV 1 and 3 are closed, and SV 2 and 4 are open, the cell returns to the high field region.
All of the SVs are controlled by 2 sets of 2-channel relay modules which are triggered by
5 V TTL logic pulses generated by a Tecmag NMR console.

The STS transfer line is made from a schedule 40 PVC tube, and can tolerate up to
400 psi of pressure. The tube has an inner diameter of 25.7(2) mm, a wall thickness of
3.9(1) mm and a total length of 3.5 m. The distance travelled by the cell as it moves be-

Figure 5.1: Schematic of sample transfer system (STS). Flow of high pressure air is controled
by four solenoid valves (SV). When SV-1 and SV-3 are open, and SV-2 and SV-4 are closed,
the cell moves from position A (high field region) to position B (ultra-low field region). To
return the cell to position A, SV-1 and SV-3 are closed, and SV-2 and SV-4 are opened
(Not to scale).
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tween the high field region and the low field region where the MI sensors reside is 2 m. The
first 20 cm of the transfer line, in the high field region, is made of a copper tube with an ID
of 25.6(1) mm and a wall thickness of 1.7(1) mm. The copper tube is used for convenience,
because it was easier to install a clear window through which the position and the status of
the sample cell can be monitored after each manipulation.

The cell stopper is a 1.5 m-long Nalgene tube with an ID of 5/8" and an OD of 7/8"
that is placed inside the transfer line between the end where SV-3 and SV-4 are installed
and the location where the MI sensors reside. This long PVC tube was chosen to dampen
and transfer the recoil force, generated by the high speed sample cell, to the end of the STS
line. This stopper is used to bring the high speed cell to rest when it reaches the µT region.
A 3 cm long length of Nalgene tubing is placed at the other end of the transfer line, in the
high field region where SV-1 and SV-2 are located, to stop the cell when it returns to the
polarization station.

A rectangular window (1 cm × 3 cm) made of plexiglas is embedded in the copper
segment of the transfer line at the high field end to (a) check the position of the cell each
time it returns to the polarization station and to (b) inspect the cell for leaks. In an earlier
version of the STS, I used a plexiglas tube for this purpose but it was not strong enough
to withstand the necessary stresses, and was susceptible to damage due to chemical leaks
(such as exposure to acetone samples).

To measure the speed of the cell, as it moves from the high field region to the ULF
region, I used the scheme summarized in Fig. 5.2 which makes use of inductive sensors. I
mounted a magnetic cube (2.7 mm on a side; weight 0.2 g) on the cap of a Nalgene sample

Figure 5.2: Apparatus used to measure the velocity and transport time for the cell (Not
to scale). The small magnet attached to the cap of the cell induces an emf across the
inductive coils as the cell passes by. These emfs appear as bipolar spikes on the oscilloscope.
The dashed signal line indicates the TTL logic pulse used to trigger SV-1, SV-3, and the
oscilloscope. The solid signal line indicates the TTL logic pulse used to trigger SV-2 and
SV-4, and consequently to return the cell back to the high field region.
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Figure 5.3: (a-c): Induced voltage Vemf across the six inductive pick up coils, which are
connected in parallel. Spikes reveal the time at which the cell passes each coil. The high
pressure air pulse is applied in the grey regions. (d): Location of the cell relative to the
polarizing station as a function of time for different high pressure pulse durations 0.21 s (N);
0.3 s (•) and 0.4 s (�); Four averages were employed.

cell. This magnet produces a field of ∼3 mT at a distance of 4 mm the surface of either
pole. I then wound 6 circular coils with an OD of 6 cm, comprising 100 turns each. These
6 coils are connected in parallel, so that the emf across any one coil appears across all six.
The sample transfer tube was arranged to pass through these sensor coils. The change in
magnetic flux passing through the coil as the magnet passes by induces a voltage Vemf that
is then amplified by a low noise pre-amplifier2 and fed to an oscilloscope.3 The oscilloscope
is triggered as SV 1 and 3 are opened (and SV 2 and 4 are closed) and the high pressure air
pushes the sample cell towards the µT region. Figure 5.3 shows experimental timing data
acquired using this system.

As the cell passes through one of the pick up coils the magnet induces an emf Vemf

which appears as a bipolar spike on the oscilloscope. The position of the coils and the time
at which spikes appear can be used to determine the average velocity v̄ of the cell. Over
the first 80 cm of its travel the average speed v̄ of the cell is ∼12 m/s but for the rest of
its trajectory it is ∼4 m/s. The duration of the high pressure air pulses is chosen to ensure
the cell reaches the stopper but does not suffer a violent collision causing it to rebound
(and hence to stop far away from the MI sensors). Figure 5.3-b shows that after a 0.3 s
high pressure air pulse plus a delay time of 0.1 s no further spikes appear. This means the

2Stanford Research Systems low noise pre-amplifier model SR560.
3Tektronix model TDS 7054 Digital Phosphor Oscilloscope
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cell does not move any more. And this combination of pulse duration and delay time is
sufficient to bring the cell to rest in the correct location. Note that the experimental and
geometric parameters such as the pressure of the pulse, ID of the STS line, OD of the cell,
tube adaptors used in STS line, weight of the cell and sample and friction between the STS
line and the cell wall can influence the pulse duration and the delay time.

5.1.2 Polarizing Magnet

An electromagnet4 driven by a Varian Model 6004 regulated current power supply, was used
to thermally polarize samples. The electromagnet and the power supply are water-cooled.
The two magnet coils are connected in parallel to yield a smaller total resistance and permit
higher currents for a given supply voltage. The power supply is operated at a current of
80 A, corresponding to 40 A through either coil. Under these conditions the temperature
on the surface of the coils reaches a steady temperature ∼45oC after ∼20 min.

The pole faces of the magnet are 18 cm in diameter and were initially 9 cm apart. Two
truncated cones fabricated from mild-steel were manufactured and installed on the pole
faces to concentrate flux and make the gap as small as possible. The diameters of the base
and top of the truncated cone were 18 cm and 6.5 cm, respectively. After installation of
these flux concentrators the gap was 3.3 cm. The geometry of the modified poles guides
the magnetic field lines to a smaller volume and hence creates a stronger field in that re-

Figure 5.4: Magnetic field produced by the electromagnet between two flat cylindrical
poles (H; 9 cm separation; 18 cm diameter), and between two truncated cones (N; 3.3 cm
separation; 6.5 cm diameter). At high fields the mild steel used for the flux concentrators
begins to saturate and the field is no longer a linear function of current. Empirical fit
functions are shown on the plot.

4Walker Scientific Model L-75BF (50 A; 100 V DC)
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gion. Figure 5.4 shows the magnetic field strength between the poles before and after this
modification. The flux concentrators increased the magnetic field by a factor of 3.7. As the
magnetic field increases the mild-steel from which the truncated cones are manufactured
shows evidence of a non-linear response.

5.1.3 Magnetic Fields for ULF NMR

Five different sets of coils are used to generate magnetic fields for the ULF NMR apparatus.
These include a conventional field B1, a dressing field Bd, a static field B0, gradient fields
G, and a guide field. The coils used to produce B1 and Bd are the same as those described
in Ch. 4 but the remaining coils were designed specifically for the ULF NMR apparatus
described in this chapter.

To produce a uniform field B0 that is perpendicular to the transfer tube axis, I used a
60 cm long, 8 rung sine-φ coil [86] wound on the outer surface of a PVC tube with an OD
of 5.5 inches. The conductors used for this coil were made from copper tape with a width
of 5.92(1) mm and a thickness of 0.1 mm. The surface current distribution for a sine-φ coil
is:

I(φ) ∼
4N∑
i=1

δ(φ− φi) (5.1)

where 4N is the total number of current carrying conductors and so each quadrant of the
coil has N wires. The angle φi in one quadrant of the coil satisfies

φi = arccos(1− 2i− 1
2N ). (5.2)

The currents are then distributed symmetrically at ±φi and ±(180o−φi). For a sine-φ coil
with 8 rungs, the angles φi are: 20.4o, 35.7o, 46.6o, 55.8o, 64.1o, 71.8o, 79.2o and 86.5o.

The magnitude of B0 at the center of the coil was both calculated and measured
as a function of the current with and without considering the effect of magnetic shields.
Calculations were performed using the BiotSavart software package. Measurements were

Calculated Experiment (Hall probe) Experiment (NMR)
B0(G) 0.758 I 0.786(8) I Not available

(Without shield)
B0(G) Not available 0.900(5) I 0.898(2) I

(With shield)

Table 5.1: Experimental and calculated field-current calibration factors for the sine-φ coil.
The range of currents employed in the measurements was 0.2 - 1 A for the Hall probe
and 10 - 200 mA for NMR experiments. The latter range yields 1H Larmor precession
frequencies . 1 kHz. Calculations were performed using the BiotSavart software package.
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performed using a gaussmeter5 and ULF NMR spin precession techniques. Table 5.1 com-
pares the results of these three different determinations. A relatively large discrepancy
was observed between measurements performed using the gaussmeter with and without the
magnetic shields. This is due to the shield surrounding the sine-φ coil. It can be shown,
using boundary conditions for the equivalent magnetostatic problem [97], that the normal
component of the magnetic field lines produced by the sine-φ coil, near the surface of the
high permeability shield, are much stronger than the tangential component. One can re-
move the shield and add image currents to satisfy these boundary conditions. The direction
of the image currents must be the same as the current through the sine-φ coil, but with
different magnitude and distribution. This results in a weaker field between the coil and
the shield. However, it increases the field inside the coil.

Two sets of guide field coils are used to keep the quantization axis perpendicular to the
transfer tube as polarized nuclei travel from the fringe fields of the polarizing magnet to the
ULF region. The first set consists of a pair of rectangular coils with 10 turns each. These
coils are 96 cm × 7 cm, and are separated by 9 cm. Typically, 1 A of current passes through
the coils. The second set also consists of a pair of rectangular coils with 10 turns each. They
are 40 cm × 12 cm, and are separated by 8 cm. Approximately half of the length of these
coils are located inside the permalloy shield. Figure 5.5 shows the arrangement of the guide
field coils.

Three sets of coils producing linear magnetic field gradients Gx, Gy and Gz are
employed to improve the homogeniety of the static field B0. These gradient coils are wound
on the same PVC tube as the B0 coil, and are aligned with B0 which defines the z direction.
Figure 5.6 shows the current distributions for each of the gradient coils and Table 5.2 shows
calculated results for the field gradients that are generated at the center of the coils where
the sample cell is stopped. In these results the effect of magnetic shields is not considered.
So the results only give an order of magnitude indication of the strength of the field gradi-
ents.

Figure 5.5: Guide field coil arrangement (Not to scale). The direction of the local static
field is indicated by red arrows.

5GMW model DTM-151 Digital Teslameter with model MPT-231 miniature high sensitivity Hall probe.
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Coil label Gx Gy Gz
Field gradient (µT/cm) 2.4 1.82 1.51

Table 5.2: Strength of the field gradient coils, calculated using the BiotSavart software
package, at their midpoint where the cell is positioned for NMR experiments when 0.1 A
current flows through the coils. The effect of magnetic shields that surrounded the coils is
not considered.

Figure 5.6: Current distributions for the coils used to generate the linear gradients Gx, Gy
and Gz.

As will be seen later, it will be useful to momentarily apply magnetic field gradients
to dephase the transverse component of the nuclear magnetization. An important consid-
eration is that this “crusher gradient” will saturate the MI sensors if it has a component
parallel to the sensitive axis of the detector. In the ULF NMR apparatus described here the
sensitive axis of the MI sensors is along the x-axis. All three of the field gradient coil sets
produce a small magnetic field Bx along the x-axis but, for a given current, the coil produc-
ing Gy generates a much smaller Bx than the other two, by 2 orders of magnitude. Hence,
a crusher gradient will typically be generated using y-directed field gradients. Figure 5.7
shows calculated results for the Bx component of the fields, produced by the gradient coils,
obtained using the BiotSavart software package.

5.1.4 Relative Position of the Sample and the Sensor

Two MI sensors in a gradiometer configuration were used to monitor NMR spin precession
signals. This requires that the alignment of the sensors be set precisely. I designed a 3D
model of a fixture to hold the sensors and then fabricated it using a 3D printer in the SFU
machine shop. See Fig. 5.8 for details. The body of the sensor holder is in the form of a
semi-cylinder designed to fit into the coil used to generate the static field B0, and which
has an ID of 5". When the MI sensors are installed in this holder their sensitive volumes
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Figure 5.7: Contour plots showing calculated values of Bx produced by the three gradient
coils. This is the component of the magnetic field parallel to the sensitive axis of the MI
sensors. Results are shown for the case where 100 mA of current pass through the coils.
The field Bx produced by the y-gradient coil is 100 times weaker than that produced by the
other two. The positions and sensitive directions of the MI sensors relative to the center of
the coils are identified on the contour plot for Gy, in the bottom panel.

are located at radii of 18.8 mm and 25.4 mm from the axis of the sine-φ coil.
Figure 5.8 illustrates the relative locations of the sensors, the sample transfer tube and

the cell. A 2 mm gap exists between the outer wall of the sample transfer tube and the
surface of the closest MI sensor. This gap is needed to protect against possible mechanical
vibration of the STS during sample transfers. Taking into account this gap, the position of
the MI sensors, the wall thickness of the PVC tube (3.9 mm) and the geometry of the cell
(ID∼23 mm), the distance between the closest nuclear spins in the sample and the sensitive
volume of the MI sensor is approximately 7.3 mm.

A simple model can be used to estimate the anticipated magnetic field produced by
polarized nuclei in the sample at the location of the MI sensors. For an infinitely long
cylinder that is uniformly magnetized in the transverse direction, the magnetic field BM
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Figure 5.8: (Left): Cross section of the sample cell, STS tube, sensor holder and B0 sine-φ
coil (Not to scale). The sensitive axis of the MI sensors are identified by arrows. (Right): 3D
printed sensor holder, the two MI sensors and their associated circuitry, after installation.

associated with M can be written

BM(ρ, φ) = µ0MR2

2ρ2 (cosφ ρ̂+ sinφ φ̂) (5.3)

where ρ > R is the radial distance from the axis, R is the radius of the cylinder and the
use of cylindrical coordinates is implied. The magnitude of this field at radius ρ is

BM(ρ) = µ0M
2

(
R

ρ

)2
. (5.4)

I experimentally confirmed the dependency of BM, in Eq. 5.4, on R2. Figure 5.9 shows
experimental data for BM in terms of 2R. Data were obtained from ULF NMR experiments
performed on 1H nuclei of water.6 The water sample was placed inside 3 cm long cylindrical
cells with various IDs and a fixed OD∼ 25 mm. The cells were machined to produce different
IDs. The y-axis in Fig. 5.9 shows the peak amplitude of the field BM associated with a
precessing 1H nuclear magnetization M. BM was monitored using two MI sensors, arranged
in a gradiometer configuration. The locations of the sensitive axes of the sensors, relative to
the axis of the sample transfer tube, were fixed at ρ1 = 18.8(2) mm and ρ2 = 25.5(2) mm.
BM was measured for the cells with different ID. It turned out that BM is quadratic in ID
(or R) for ID . 17 mm. For ID & 17 mm BM seems to be linear rather than quadratic.
However, the data in this range are not sufficient to make a definitive conclusion. Let us
assume BM varies linearly at large IDs and extrapolate to the location of the MI sensor
closest to the sample transfer tube. This yields an estimate for BM corresponding to a cell
with infinitely thin walls so that the MI sensor is as close as possible to the sample. This
value of BM is ∼ 60% higher than the values that I can currently measure. One could design

6The experiments will be explained in detail in Section 5.2.
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Figure 5.9: Experimental data (points) for the magnetic field BM as inferred from the
amplitude of free induction decay signals from 1H nuclei in water inside a cylindrical cell
with the specified inner diameters. Data were obtained from ultra-low field NMR at a 1H
Larmor frequency of 200 Hz. The ID (25.8 mm) and OD (33.6 mm) of the sample transfer
tube and the location of the closest MI sensor (37.6 mm) are indicated by vertical lines.
The solid curve is a fit function that is quadratic in the the ID of the cell. The dashed line
is used to extrapolate data at large ID values.

an apparatus with optimum dimensions to detect higher signals.7

5.1.5 Samples and Cells

My goal is to study samples containing 1H and 19F nuclei, and to incorporate them into
a critical spin dressing experiment. As sources of 1H nuclei I used three samples: water
(deionized), acetone and pentane. As the source of 19F nuclei I used hexafluorobenzene
(HFB) which is an organic aromatic compound. It is simply a derivative of benzene in
which the hydrogen atoms have been replaced with fluorine. That is, it is a Halogenated-
Hydrocarbon. Table 5.3 summarizes the general properties of these compounds.8

I used two types of plastic cells to carry samples between the high and ultra-low field
regions. They are made from high-density Polyethylene (HDPE) and Teflon.9 Figure 5.10
shows photographs of both types of cells as well as drawings of their cross sections.

HDPE cells are light,10 impact resistant, inexpensive and commercially available. I em-

7Optimum dimensions imply a larger cell ID, thinner sample transfer tube wall and MI sensors placed
closer to the sample transfer tube.

8All of the samples except the deionized water were obtained from Sigma Aldrich. The acetone and
hexafluorobenzene are ≥99.5% NMR grade and the pentane is 98% Reagent grade.

9Glass-filled Polytetrafluoroethylene (PTFE).
10The mass of the bottle without the cap is 5.3 gr.
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Name Formula Density Molar mass Boiling Point Relaxation Time
(kg/m3) (g/mol) (oC) T2 (s)

Water∗ H2O 1000 18 100 1-3
Acetone C3H6O 791 58.08 56 14
Pentane C5H12 626 72.45 36.1 10.5
HFB C6F6 1612 186.06 80.1 19

Table 5.3: General properties of samples used for ULF NMR. Values for T2 (except water)
are extracted from [52].

Figure 5.10: Plastic cells used in ULF NMR experiments. (Left) Flame-sealed 15 ml HDPE
Nalgene bottle; (Right) custom-machined 12 ml Teflon bottle made from glass-filled Poly-
tetrafluoroethylene.

ployed 15 ml Nalgene HDPE bottles manufactured by Nalge Nunc International. These
bottles have an OD of 24.8 mm and a wall thickness of 1 mm. Their caps are made of
Polypropylene (PP), which is not impact resistant and cracks easily. To address this issue
I removed the cap and used a torch to heat and deform the top part of the cell, leaving a
small hole through which the sample could be poured or injected into the cell. This hole
was made as narrow as possible and was then either sealed using epoxy11 (after injecting
the sample) or it was sealed using a flame. As a note of caution HDPE bottles are not
recommended for use with acetone and HFB for storage times longer than a few days.

The Teflon cell and its cap are more expensive because they were custom-machined
from raw material. After machining the cell and the cap together they are ∼10 times more

11I used Devcon Epoxy Model No. 14250, intended for general use.
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massive than the HDPE cell.12 The volume of this cell is 12 ml, its OD is 25.5 mm and its
wall thickness is 2 mm. It is resistant against impact and chemically resistant to acetone
and Pentane. It can be also used with HFB, however HFB softens the thin walls of the cell
after one day. As a result I had to remove the HFB from the cell at the end of every day.
In this mode of operation I was able to use the same cell over and over again.

5.2 ULF NMR Results

The sequence of events shown in Fig. 5.11 are those used to perform a basic ULF NMR
experiment. Once the sample reaches a thermally polarized state in the high field region,
the cell is transferred to the experimental region by opening solenoid valves SV1 and SV3
(while SV2 and SV4 are closed) for 0.3 s. After an additional 0.1 s delay (to let the cell come
to rest after hitting the cell stopper), a B1 tipping pulse is applied to rotate the nuclear
magnetization into the transverse plane. The tipping pulse usually consists of two-cycles of
an oscillating magnetic field B1 applied on-resonance (or close to resonance) at a frequency
of 200 Hz. Next the free induction decay (FID) of the precessing nuclear magnetization is
monitored by the MI sensors. Their output is fed into the low noise transformer and from
there into a phase sensitive detector (PSD). The real and imaginary components of the FID
(as measured relative to a local oscillator usually at 160 Hz) are displayed and recorded
by the oscilloscope. The acquisition time is typically 1-2 sec. Afterwards the cell is trans-
ferred back to the high field region by opening SV2 and SV4 (while SV1 and SV3 are closed).

Figure 5.11: Sequence of events in a ULF NMR experiment in which the sample is shuttled
between high and ultra-low field regions. Not to scale.
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Figure 5.12: Measurements (�) of the static magnetic field B0 inferred from proton Larmor
precession frequencies as a function of current through the sine-φ coil. At low currents the
data level off because of background fields in the transverse direction. This residual can be
suppressed by applying a small DC field in the y direction (H). (Solid line): fit function
B0(I) =

√
530(30) + (89.8(2)I)2 , where I is in units of mA and B0 is in nT.

5.2.1 ULF NMR: One Spin Species

The static magnetic field B0 can be inferred from the Larmor precession frequency fL of
1H nuclei in deionized water. Figure 5.12 shows an example of such a measurement as a
function of the current passing through the sine-φ coil. At low currents B0 is independent
of the current. This is attributed to background fields (i.e. from other sources) that are
perpendicular to B0.13 The data are well fit by an exponential function combined with a
linear function, from which I infer a background field of 530 nT in a transverse direction.
When a DC current is applied to the B1 coil (generating a magnetic field in the y direction)
the total background field can be reduced to 300 nT. From the linear part of the graph in
Fig. 5.12 I extracted a calibration of B0 in terms of a current of 0.898(2) G/A.

I explored the dependence of the ULF NMR signal-to-noise ratio (SNR) on experimental
parameters such as the Larmor frequency and the polarizing field as well as the influence
of signal averaging. These studies are briefly summarized below. A SNR of order ∼4.5
was observed for a single shot FID acquisitions using 1H nuclei in deionized water, at Lar-

12The cell and the cap together have a mass of 50.1 gr.
13These fields also have a component parallel to B0. This component was cancelled by reversing the

current through the B0 coil.
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Figure 5.13: Real part of single shot FID signals (left column) and their Fourier transforms
(right column) in different magnetic fields (and hence Larmor frequencies). Experiments
performed using 1H nuclei in deionized water, prepolarized at 1.6 T. A bandwidth of 83 Hz
was used for signal acquisition. The local oscillator frequency was 44 Hz (top panels),
100 Hz (middle panels) and 200 Hz (bottom panels).

mor frequencies in the range of 100 - 200 Hz.14 This SNR is a bit higher than the value
SNR ∼ 3.7 that was reported in Ch. 3 for the pulsed NMR measurement. This is a result
of the shorter transfer time and the larger volume of polarized sample near the sensors.
Figure 5.13 shows experimental recordings of FIDs and their Fourier transforms (FT) at
different Larmor frequencies. The decrease in signal magnitude at low fL is due in part
to the frequency dependence of the transformer gain. An additional contribution to this
decrease comes from the orientation of the residual background magnetic field relative to
the field produced by the sine-φ coil. At low fL the background field is comparable in mag-
nitude to B0 and thus changes the axis about which the nuclear magnetization M precesses.
This reduces the projection of BM, the magnetic field associated with M, on the sensitive
axis of the MI sensors and thereby reduces the apparent FID amplitude.

Signal averaging can be used to increase SNR. I obtained a SNR in order of ∼18.5 when
16 sequential FIDs were averaged (employing deionized water at fL = 191 Hz). Figure 5.14

14To measure the SNR I divided the peak amplitude of the FT (at the Larmor frequency) by the highest
amplitude of the FT associated with noise. The latter is dominated by noise at the 4th harmonic of 60 Hz.
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Figure 5.14: Fourier transform of 1H FID signals at fL = 191.60 Hz. Deionized water was
used as a sample. (top panel) single shot; (middle panel): 4 averages and (bottom panel):
16 averages. A pre-polarization field of 1.6 T and a signal detection bandwidth of 83 Hz
were employed.

illustrates the suppression of noise in the FT as the number of averages is increased.
Another parameter that can influence SNR is the polarization field Bp. Figure 5.15 sum-

marizes the observed relationship between SNR and Bp using deionized water at fL = 191 Hz.
The FTs of FID signals at Bp = 1.6, 0.77 and 0.09 T are also shown. Two features are note-
worthy. First, at low polarizing fields the SNR increases in proportion to Bp, but then
eventually starts to saturate. Second, quite reasonable SNRs of order ∼20 are observed
at Bp = 0.09 T. This is remarkably low, but still higher than the SNR reported in Ch. 3
Sec. 3.2, and suggests that one might be able to polarize samples in situ, rather than in a
separate polarization region.

Spin dephasing times T∗2 of deionized water, acetone, HFB and pentane were measured,
and the results are summarized in Table 5.4. All of the observed values lie in the range
0.2 - 0.6 s. Factors that contribute to the decay time T∗2 of the FID envelope include dipolar
interactions with paramagnetic Oxygen molecules dissolved in samples and spin dephasing
caused by field inhomogeniety. The effect of the latter can be removed using a Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence to periodically refocus the magnetization [88, 89].
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Figure 5.15: (Left): Effect of polarizing field Bp on the amplitude of FID signals, (right):
Fourier transforms of FID signals at Bp = 0.09 T (top-right); 0.77 T (middle-right) and
1.59 T (bottom-right). Data were recorded at fL = 191.60 Hz with a bandwidth of 83 Hz;
Four averages were employed.

Deionized water Acetone HFB Pentane
T∗2 (s) 0.52(2) 0.56(2) 0.25(3) 0.57(1)

Table 5.4: Spin dephasing times T∗2 in seconds.

The CPMG sequence I employed started with a 1-cycle π/2 rotation (at 200 Hz) followed by
a train of 2-cycle π rotations separated by 40 ms. I was able to measure T2CPMG = 3.2± 0.2 s
for the deionized water. This value is higher, by a factor 2, than the value T2CPMG = 1.68 s
that I reported in Ch. 3 using tap water. It shows how the spin dephasing time can be
improved by purifying the sample. I also employed the CPMG sequence on acetone, HFB
and pentane, and measured values of T2CPMG between 1.5 and 2 s. These are much lower
than the T2 relaxation times listed in Table 5.3, for samples that have been degassed.15

Hence, the quality of the NMR signals in my experiment could be significantly improved if
the sample materials were degassed, flamed sealed in glass cells and then placed inside an
appropriate sample carrier. The carrier would be needed to protect the glass cells against
mechanical impacts exerted on the cell as it is shuttled back and forth. This is part of a
plan to upgrade the current apparatus, but is not reported in my thesis.

15Through 5 freeze-thaw cycles under vacuum.
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Figure 5.16: Real part (solid line) and magnitude (dashed line) of FID signals acquired from
samples containing 19F and 1H nuclei. From top to bottom the samples consist of a) 4.0 ml
of HFB and 8.0 ml of pentane (top); b) 5.6 ml of HFB and 9.6 ml of acetone (middle) and
c) 6.0 ml of HFB and 9.6 ml of water (bottom). Fourier transforms are shown in the insets.
Data recorded at B0 = 4.7 µT and a bandwidth of 83 Hz. Each FID is averaged 4 times.

5.2.2 ULF NMR: Two Spin Species

Mixtures of HFB & acetone, HFB & pentane and HFB & water were used as sources of
1H and 19F nuclei, to investigate the detection of ULF NMR signals from two spin species
simultaneously. Acetone and pentane are miscible in HFB but water is not. Therefore
a HFB & water mixture might not be appropriate for use in a critical spin dressing ex-
periment if the goal is to work with homogeneous samples. Figure 5.16 shows FID data
acquired from all three mixtures. Double peaks, corresponding to the two different nuclear
precession frequencies are evident. The higher frequency peak is from the 1H nuclei.

The signals shown in Fig. 5.16 correspond to the oscillating magnetic fieldBM =BH +BF

associated with the precessing nuclear magnetization M = MH + MF, where the subscripts
H and F denote contributions from 1H and 19F nuclei, respectively. A 10 ms tipping pulse
at 200 Hz is used to initiate these FIDs. This pulse is spectrally broad. Its FWHM is
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Sample Ratio of 19F/1H Ratio of FID Ratio of FT
nuclei amplitudes peak areas

(Stoichiometry) (Experiment) (Experiment)
HFB/Water 0.29 0.24 0.23
HFB/Acetone 0.37 0.43 0.43
HFB/Pentane 0.25 0.17 0.20

Table 5.5: Comparison of the relative number of 1H and 19F nuclei in each sample with
the ratio of FID amplitudes and FT peak areas. Each peak area in the final column is
calculated between frequencies fL ± FWHM.

approximately 1.2/τ , where τ is the pulse duration, which is of order 120 Hz in this case.16

As a result, both MH and MF are rotated by approximately the same angle. The frequency
of the tipping pulse is chosen so that it is resonant with the 1H in the field B0, and its
amplitude is chosen so as to produce a 90o rotation for the 1H nuclei. This places MH in
the equatorial plane of the Bloch sphere but leaves MF with a small residual component
along B0. I will return to this later in this chapter and discuss a method to rotate both
MH and MF into the equatorial plane.

FID data from all three mixtures are well fit by the sum of two exponentially decaying
sinusoids. The ratio of the number of 19F and 1H nuclei in the sample can then be inferred
from the relative amplitude of the two components. Alternatively this ratio can be inferred
from the relative areas of the two peaks in the Fourier transform. Table 5.5 shows the
relative number of 1H and 19F spins in the sample determined from stoichiometry, from the
ratio of the two signal components extracted from fits to the FIDs, and from the areas of
the FTs. The stoichiometric determination is given by:

NF
NH

= MH ρF VF ζF
MF ρH VH ζH

(5.6)

where M i is the molar mass, ρi is the density, Vi is the volume of each substance employed
and ζi is the number of unpaired nuclear spins contributed by each molecule.

The Larmor frequencies of 1H (fLH) and 19F (fLF) nuclei, for each measurement, can
be extracted from these data with typical precisions of 2 mHz and 7 mHz, respectively.
The difference between these precisions is due to the relative number of nuclear spins em-
ployed. Accurate measurements of Larmor frequencies are often required in physics, as is
the case for searches for the neutron electric dipole moment [118], the developement of sen-

16The Fourier transform of a square pulse of duration τ

Πτ (t) =
{

1, |t| ≤ τ/2
0, |t| > τ/2 (5.5)

is H(f) = τsinc(πτf) with FWHM = 1.2067/τ [117].
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Figure 5.17: Characterization of the extent to which 1H-19F precession frequencies track
one another as the static field is modulated between 4.731 and 4.722 µT. Also shown is
the inferred ratio α = γF/γH, which is robust against field variations, as desired for co-
magnetometry. The data corresponding α is distributed about the ratio of literature values
of γH and γF [42], which is identified by dashed line α = 0.94077. Uncertainty in B0 was
1 nT and data recorded at bandwidth of 83 Hz.

sitive gyroscopes [119], studies of spin-gravity coupling [120] and tests of Lorentz and CPT
violation [121]. A limiting factor in such experiments is the inevitable fluctuation of the
static magnetic field about which the nuclear spin precesses. One method to combat these
fluctuations is to use a second nuclear spin species as a comagnetometer against which the
precession of the first nuclear spin can be compared. For example, in a sample containing
1H and 19F nuclei, either one could be used to monitor the precession rate of the other.
To investigate this concept I intentionally modulated the amplitude of the static magnetic
field B0 and attempted to determine how precisely the precession of the two nuclear spins
tracked one another. The left-hand side of Fig. 5.17 shows fLH and fLF as inferred from a
series of FIDs generated as the static magnetic field is alternated between nominal values
of 4.731 and 4.722 µT. This represents a 0.1% variation in B0 and hence fL. The right-
hand side of Fig. 5.17 then shows the inferred ratio of the two gyromagnetic ratios γF/γH.
Recall that this ratio is defined as α, see Eq. 2.41. There is no obvious indication that
the experimentally determined ratio α is modulated. These data yield an average value
of α = 0.94070(8) which is consistent with the value α = 0.94077(3) inferred from pre-
vious measurements of γF and γH [52, 42]. These data also help to inform the accuracy
and reproducibility of Larmor frequency measurements obtained with our apparatus. For
example, when the static field was set to B0 = 4.731 µT I measured the average values
f̄LH = 199.840(10) and f̄LF = 187.997(9) and when the field was set to B0 = 4.722 µT
I measured f̄LH = 199.490(11) and f̄LF = 187.656(11). The uncertainty associated with
these measurements is approximately 10 mHz for both nuclear spins. This is higher than
the uncertainty associated with a single Larmor frequency measurement as discussed at the
beginning of this section. This difference is primarily due to the drift in the measured Lar-
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mor frequency that is caused by drift in the static field. Over the 4 hour time period during
which the data in Fig. 5.17 were obtained, I observed a 36(4) mHz/h change in fLH and
a 33(4) mHz/h change in fLF. These drifts in frequencies are equivalent to a ∼0.25 nT/h
drift in B0.

As a side note, the effect of chemical shifts, associated with the chemical compounds
used in my co-magnetometery experiment, can influence the determination of the ratio of
the gyromagnetic ratios of two spin species. In my experiment the measured value of α in
terms of the actual value of α = (γF/γH)actual is

αmeasured =
(
γF
γH

)
measured

= 1 + δF
1 + δH

(
γF
γH

)
actual

(5.7)

(5.8)

where δF and δH are the chemical shifts of the 19F in HFB and 1H in acetone, respectively.
Chemical shifts are usually expressed in parts per million (ppm). Up to the first order of
approximation one can find the relation between the measured and actual values of α,

αmeasured ≈ (1 + δF − δH) α. (5.9)

Note that these chemical shifts must be measured relative to the individual 19F and 1H
nuclear spins rather than relative to conventional reference compounds.

5.3 Tuning π/2 Rotations

Uniform and precise tipping pulses are often desirable in NMR, particularly when trains
of tipping pulses are employed and errors are allowed to accumulate. Examples include
spin echo sequences [89], magnetic resonance imaging (MRI) [122] and the use of NMR in
quantum computing [123, 124]. They are also potentially important in setting the initial
conditions for pulsed critical spin dressing experiments, so as to ensure that all of the nu-
clear magnetization is initially in the equatorial plane of the Bloch sphere. An important
diagnostic in these applications is to find the amplitude and waveform of the B1 field cor-
responding to a π/2 rotation, for one- and multi- spin species. I used a method related
to the optimum π/2 rotation pulses for experiments involving one and two spin species to
investigate effects related to the use of linearly polarized B1 fields.

As a matter of convenience, most NMR experiments are performed using linearly po-
larized B1 fields. These fields can be decomposed into the sum of two circularly polarized
counter-rotating fields. One of these two (e.g. the clockwise polarized field) is typically
tuned close to resonance while the other (e.g. counter clockwise polarized field) is then
by necessity off resonance. In high field NMR, in a reference frame rotating at the Lar-
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mor frequency, the effect of the off-resonant component can be ignored in a first order
approximation and the linearly polarized B1 can be treated as a circularly polarized field of
amplitude B1/2. This is called the Rotating Wave Approximation (RWA) [47]. However in
a system subjected to strong driving field the RWA breaks down and the off resonant com-
ponent of the B1 field can perturb spin dynamics [125]. This is known as the Bloch-Siegert
effect [126, 127, 128]. In my ULF NMR experiments, and in particular when I tried to set
accurate π/2 rotations, I observed effects that can be attributed to the Bloch-Siegert effect.

5.3.1 Method

A finite duration linearly-polarized oscillating magnetic field B1 = B1 sin(ωt) x̂ is used
as the default tipping pulse in my ULF NMR experiment. The angular frequency of the
tipping pulse is tuned to the angular Larmor frequency of the 1H nuclei and its amplitude
B1 is chosen to produce a π/2 rotation for the 1H nuclei. The amplitude that generates
this rotation is determined using a sequence of two tipping pulses separated by a time τ
as summarized in Fig. 5.18. The first pulse in this sequence rotates the magnetization M,
initially directed along B0, by an angle θ. Immediately afterward a pulsed magnetic field
gradient is applied to de-phase the transverse component of M as quickly as possible. The
second tipping pulse then rotates the remaining magnetization M, which is parallel to B0,
by an angle that is close to π/2. Note that in situations where this method is applied to
samples that are hyperpolarized or in a non-equilibrium state the longitudinal component
of M decays continuously with a time constant T1. However, in conventional high field
NMR, where samples are initially in thermal equilibrium, the longitudinal component of M
relaxes toward a larger thermal equilibrium magnetization with time constant T1.

The time interval between the two pulses should ideally be much shorter than the lon-
gitudinal spin relaxation time T1 and must be longer than several spin dephasing time

Figure 5.18: Pulse sequence used to find the amplitude of a B1 field required to produce
a π/2 rotation. The gradient de-phases the precessing magnetization before the second
tipping pulse is applied.
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constants T∗2 to ensure that the transverse magnetization from the first FID does not con-
tribute to the amplitude of the second FID. This sets constraints on the strength of the
pulsed magnetic field gradient between the two tipping pulses. The current used to gener-
ate this gradient is controlled by a solid state relay. The orientation Gy of the gradient is
chosen so that it does not saturate the MI sensors as discussed in Sec. 5.1.3.17

I monitor the amplitude Aθ and the phase Φθ of the second FID while varying the am-
plitude of the first pulse, and hence θ. For convenience, Aθ is normalized to a reference
amplitude A0 obtained by setting the amplitude of the first pulse to zero. This normalized
amplitude characterizes the fraction of the initial nuclear magnetization that is left along z
by the first pulse. The condition for a π/2 rotation is obtained when Aθ = 0 and simulta-
neously Φθ changes by π.

5.3.2 Deviation From Rotating Wave Approximation

Figure 5.19 shows data from the experiment described above. The normalized FID ampli-
tude Aθ/A0 is interpreted as the normalized fraction of Mz left along B0 by the first tipping
pulse. That pulse consisted of either one or two cycles of a sine or a cosine waveform applied
on resonance for 1H nuclei at 200 Hz. The corresponding field B0 = 4.7 µT. Also shown
are simulation results for both linearly and circularly polarized B1 fields. In each case the
amplitude of B1 (which is varied) is normalized to the experimentally determined amplitude
that produces a π/2 rotation.

The comparisons made in Fig. 5.19 clearly illustrate the inadequacy of the RWA for
the experimental conditions considered here. That is, they demonstrate the role played by
the counter-rotating component of the B1 field in nuclear magnetization dynamics. The
simulation results, presented here and corresponding to a linearly polarized B1 field, are
based on the assumption that the B1 field is uniform. Any inhomogeniety in B1 produces
different rotation angles in different parts of the sample. Consequently the measured net
rotation of M would be slightly different from that which is predicted by the simulation.
Figure 5.20 shows data and simulations analogous to those in Fig. 5.19, for one-, two- and
four-cycle sine waveforms at 200 Hz. Note in this case the absolute value of B1 is given.
From this plot one sees that significant deviations between the models (or between the data
and predictions that rely on the RWA) begin to appear when B1 ' B0 ' 5 µT.
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Figure 5.19: Illustration of the experimental B1 field calibration: data (points) and sim-
ulation (curves) for residual 1H nuclear magnetization MzH left along B0 following a one
(panels a and b) or two cycle (panels c and d) tipping pulse applied on resonance at 200 Hz.
Results are shown for sine (panels a and c) and cosine waveforms (panels b and d). Calcu-
lations are shown for linearly polarized (solid lines) and circularly polarized (dash-dot lines)
B1 fields. Data acquired for 1H nuclei on resonance at 200 Hz.

5.3.3 Conventional Tipping Pulses: Two Spin Species

A problem arises when two or more different spin species (with different gyromagnetic
ratios) are present in a sample. In this case it is not possible to simultaneously generate a
π/2 rotation for all nuclei using a conventional tipping pulse. Some fraction of the nuclear
magnetization must be left parallel or anti-parallel to B0. This has implications for critical
spin dressing experiments (CSD), because imperfections in the dressing field will tend to
mix longitudinal and transverse components of the magnetization over time. This issue is
addressed further in the next section, using composite tipping pulses. First, however, some
of the implications of using conventional tipping pulses to set the initial conditions for a
spin dressing experiment are examined in greater detail.

17A 12 V automotive battery (LC-RA1212P1), voltage regulator (LT 1962EMS8) and programmable
current source (LT 3092EST) were used to drive the current for the gradient field Gy. Pulsed gradients were
then controlled by a fast solid state relay (CT137 60V - 200 mA).
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Figure 5.20: Fraction of initial 1H nuclear magnetization left along B0 following a resonant
tipping pulse consisting of one- (top), two- (middle), or four-cycles (bottom) of a 200 Hz sine
waveform. When B1 is comparable to B0 model calculations based on the RWA (dash-dot
line) fail. Much better agreement is observed between data (points) and simulations (solid
line) when the full B1 field is considered.

Consider two different spin species initially aligned with the static field B0 and then
subjected to a conventional tipping pulse. In the case of 1H and 19F, if the tipping pulse
produces a π/2 rotation for 1H it will leave a fraction of the 19F magnetization MF along
B0 simply because γF < γH. If the RWA is employed, then the amplitude Br1 of the right

Figure 5.21: Magnetic fields experienced by 1H (left) and 19F (right) nuclei in a frame rotat-
ing at the 1H Larmor frequency γHB0, in the presence of a right hand rotating component
of a circularly polarized tipping pulse Br1 applied at the same frequency. The 19F nuclei
precess about an effective magnetic field Beff that makes an angle β with respect to the
x′-y′ plane. When the tipping pulse produces a π/2 rotation for the 1H nuclei it leaves a
residual 19F nuclear magnetization MzF parallel to the static field B0.
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hand rotating component of a circularly polarized B1 field that produces a π/2 rotation for
1H when applied on resonance is:

Br
1 = π

2γH∆t (5.10)

where ∆t is the pulse duration, which I will assume consists of an integer number N of
periods of the hydrogen Larmor resonance frequency fLH. If the B1 field is linearly polarized,
then its amplitude is 2Br

1. In the reference frame of the co-rotating component of B1, the
fluorine nuclei see an effective magnetic field Beff that has contributions from both B0 and
B1 as shown in Fig. 5.21.

It can be shown that the angle β between Beff and the equatorial plane satisfies [129]:

tanβ = 4N1− α
α

(5.11)

where α = γF/γH ∼ 0.94 is the ratio of the 19F and 1H gyromagnetic ratios. Moreover,
the normalized residual magnetization MzF of the 19F nuclei left along B0 is given by:

MzF = sin2β + cos2β sin(π2 − φ) (5.12)

where φ is the angle by which MF rotates around Beff :

φ = απ

2cosβ (5.13)

= 2παN

√
1

16N2 +
(1− α

α

)2
. (5.14)

Figure 5.22 shows examples of classical trajectories for MH(t) and MF(t) on the Bloch

Figure 5.22: Classical trajectories of 1H and 19F nuclear magnetizations during the applica-
tion of one- (left), two- (middle) and four-periods (right) of a circularly polarized magnetic
field resonant with the 1H nuclei at 200 Hz. In each cases the amplitude of B1 is set to give
a π/2 rotation for the 1H nuclei.
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1 cyc 2 cyc 3 cyc 4 cyc 5 cyc 6 cyc 10 cyc
Circularly polarized 10.4 % 13.5% 18.7% 25.4% 33.4% 42.3% 77.5%

Linearly polarized sin(ωt) 3.8% 7.5% 12.8% 20.2% 28.7% 38.4% 75.9%
Linearly polarized cos(ωt) 15.3% 18.1% 23.1% 29.5% 37.0% 45% 78.7%

Table 5.6: Calculated residual 19F nuclear magnetization, left along B0 when the 1H nuclear
magnetization is subjected to a π/2 rotation. Results for various waveforms and polariza-
tions are shown. The duration of each pulse is given in terms of the number of cycles or
periods of the 200 Hz B1 waveform, which is applied at resonance for the 1H nuclei. The
results are obtained from a numerical solution of the Bloch equations.

sphere when they are subjected to circularly polarized B1 fields at 200 Hz, as obtained from
numerical integration of the Bloch equations. For a 1H Larmor frequency fLH = 200 Hz
and a tipping pulse duration of two 1H Larmor periods the residual 19F magnetization
aligned with B0 is 13.56% of the initial magnetization. The tipping pulse thus corresponds
to a 82.3o rotation for 19F rather than π/2. This estimate ignores the contribution of the
counter-rotating component of B1. If the same computation is performed by direct nu-
merical integration of the Bloch equations for infinite T1 and T2 the residual 19F nuclear
magnetization left along B0 is 8.4% for a sine waveform and 18.4% for a cosine waveform.
Table 5.6 shows further simulation results for the normalized residual magnetization MzF

when the tipping pulse duration is N/fLH. In each case the amplitude B1 of the linearly
polarized field produces a π/2 rotation for 1H.

I measured MzH and MzF, in response to the application of linearly polarized tipping
pulses using the method outlined in Sec. 5.3.1. The results are in good agreement with
model calculations for sine and cosine waveforms. Figure 5.23 shows data acquired when
2 cycles of a linearly polarized tipping pulse was applied at frequency of 200 Hz, and the am-
plitude B1 was set to produce a π/2 rotation for 1H. The data in Fig. 5.23 were acquired in
two experimental runs; one with deionized water and the other with HFB.18 When MzH = 0
I inferred 7 ± 2 % and 13 ± 2 % for MzF when sine and cosine waveforms were employed,
respectively. Note that the zero-crossings for MzH and MzF were obtained by fitting the
experimental data with an empirical 4th-order polynomial function. The use of higher and
lower order polynomial functions had little effect on the inferred residual MzF. A sinusoidal
fit function also yields very similar results.

5.3.3.1 Composite Tipping Pulse

Composite pulses, which are made up of continous conventional RF pulses, were invented by
M. H. Levitt during the 1980s [130]. They have been used widely in NMR for population
inversion [131], broadband spin excitation [132], compensation of RF pulse length errors

18This was done to increase SNR.
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[133], nuclear quadrapole spectroscopy [134], quantum computing experiments to minimize
systematic errors [135, 136, 137] and also in interferometry with ultra-cold atoms [138].
Their relevance to my experiments is that a composite pulse can be used to rotate both the

Figure 5.23: Experimental demonstration of the influence of linearly polarized tipping pulses
on 1H and 19F nuclei, initially aligned with B0. Two periods of 200 Hz sine (left) and cosine
(right) waveforms are applied on-resonance for the 1H nuclei. Curves are empirical 4th order
polynomial fit functions and are used to infer the fraction of the 19F magnetization that is
left along B0.

Figure 5.24: (Left) Classical trajectory of 1H (solid line) and 19F (dashed line) nuclear
magnetization when a linearly polarized composite pulse consisting of one cycle of the
waveform B1 sin(ωt) and three cycles of the waveform B1 cos(ωt + θ) with θ = 175o is
applied at the 1H Larmor frequency (200 Hz). The projections of MH and MF on B0 are
also shown as a function of time.
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Figure 5.25: Experimental data demonstrating of the effect of the relative phase shift θ of
the second tipping pulse in a composite pulse on the rotation of 1H and 19F nuclear spins.
The composite pulse is made up of 1 and 3 cycles of on-resonance oscillations at 200 Hz.
(a) θ = 158o; (b) θ = 178o and (c) θ = 190o. Curves are empirical 3rd-order polynomial fit
functions.

1H and 19F nuclear spins into the transverse plane.
There are three experimental parameters associated with conventional tipping pulses

that can in principle be adjusted to generate π/2 rotations for two spin species. These
parameters are (a) the duration of the tipping pulses, (b) the relative phase θ of pulses and
(c) the frequency of pulses. We restrict solutions to a composite pulse that is made of two
successive tipping pulses, in which the amplitude of the tipping pulse remains constant and
in which there is no time delay between the pulses. We further restrict solutions to cases
where the frequency of both pulses is on resonance for the 1H nuclei and the duration of
each pulse is an integral number of Larmor periods for the 1H nuclei. All that remains
then is the relative phase angle θ and the duration of each pulse. Still, this is sufficient to
obtain the desired results. Table 5.7 shows a few examples of conditions that rotate both
the 1H and the 19F nuclei into the transverse plane as obtained from numerical searches
through the available phase space for a semi-classical model of spin precession. In this model
nuclear magnetization of two spin species are initially along B0ẑ and a linearly polarized
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N1 N2 B1 duration B1 θ f fLH MzH MzF
(cycle) (cycle) (cycle) (µT) (degrees) (Hz) (Hz) (%) (%)

1 0.264 1 2.349 307.5 200 200 -0.091 0.004
1 3.686 1 2.349 252.5 200 200 -0.140 -0.007
1 3.058 1 2.349 100.0 200 200 -0.160 -0.001
1 3.082 1 2.349 277.5 200 200 0.030 -0.14
1 2.076 1 2.349 22.5 200 200 0.083 -0.135
1 3.895 1 2.349 87.5 200 200 0.189 -0.091
1 1.268 2 1.174 325.0 200 200 -0.083 -0.076
1 2.944 2 1.174 175.0 200 200 -0.559 0.015
1 3.000 2 1.174 175.5 200 200 -1.401 -1.110
1 2.371 3 0.783 312.5 200 200 0.005 0.280
1 3.960 3 0.783 180.0 200 200 -0.250 0.046
1 3.557 4 0.587 295.0 200 200 0.293 -0.018
1 4.423 1 2.208 302.5 188 200 -0.079 -0.020
1 0.234 1 2.208 325.0 188 200 -0.078 -0.075
1 2.599 1 2.208 92.5 188 200 0.095 -0.066
1 2.139 1 2.208 67.5 188 200 -0.002 0.165
1 3.025 1 2.208 282.5 188 200 -0.315 0.016

Table 5.7: Examples of parameters, obtained from simulations of classical spin precession,
for linearly polarized composite tipping pulses that simultaneously rotate 1H and 19F nuclear
spins into the transverse plane. B1 has a sine waveform and is linearly polarized. Note the
resolution on θ is 2.5o and that B1 duration refers to the number of oscillation cycles at the
tipping pulse frequency f .

B1 is applied along x̂ direction. B0 is 4.7 µT. Figure 5.24 shows classical trajectories of
the nuclear magnetizations MH and MF for one of the examples listed in Table 5.7. Also
shown is a plot of the two nuclear magnetizations as a function of time.

An experimental search for a composite pulse analogous to the one shown in Fig. 5.24
was conducted. Figure 5.25 shows data for Mz as a function of B1, for three different phase
angles θ. The desired effect (rotation of the spins of both species into the transverse plane)
is observed at θ = 190o rather than at 175o as was anticipated. The discrepancy may be
due to inhomogeniety in B1 or the fact that B1 is not perfectly orthogonal to B0, because
B0 includes contributions from background fields orthogonal to the sine-φ coil. However,
the goal of putting MH and MF into the transverse plane, is achieved.

The composite tipping pulse described here will be used in future critical spin dressing
experiments. In this thesis I only demonstrate critical spin dressing experiments that were
initiated by conventional tipping pulses.
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Chapter 6

Critical Spin Dressing Experiment

Critical spin dressing (CSD) has been proposed as an experimental technique that could
enhance sensitivity in a planned search for the neutron electric dipole moment (nEDM) [28].
Despite this, CSD has not been demonstrated and experimentally evaluated. In this chapter
I bring together the various experimental techniques described in Chs. 2-5 and perform a
pulsed CSD experiment on 1H and 19F nuclei. To the best of my knowledge this represents
the first experimental demonstration of CSD. I start with a method to analyse and interpret
FID data acquired during pulsed CSD experiments. Next, I present experimental results
demonstrating CSD. Results are presented both for conventional dressing field waveforms
(in the sense that their use has been proposed and modelled) as well as what I will call
unconventional waveforms. By this I simply mean that I have introduced innovations that
may prove advantageous in future work. Finally I examine the influence of variations in the
dressing field amplitude on CSD.

The data reported in this chapter were all acquired using a mixture of acetone (as a
source of 1H) and hexafluorobenzene (as a source of 19F). Recall that the gyromagnetic ratio
of 1H is 6% larger than that of 19F. This should be compared to the gyromagnetic ratio
of 3He which is 11% larger than the gyromagnetic ratio of the neutron. Hence the 1H-19F
system provides a reasonable proxy to simulate and study aspects of the critical dressing
problem that may be relevant to the n-3He system.

Throughout this chapter I will compare experimental data for the CSD parameter η′

with predictions based on theory and simulation, as described in Ch. 2. The simulations
use a classical model of spin precession to predict modified gyromagnetic ratios γ′H and γ′F
at any desired value of y < 1. The theoretical prediction is only valid for y � 1 and is
based on the analytic expressions γ′H = γH J0(xH) and γ′F = αγF J0(αxH), where xH is the
dressing parameter x associated with 1H nuclear spins and α = γF/γH.
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Figure 6.1: Approximate arrangement of components and fields during spin dressing exper-
iments (Not to scale). See Fig. 5.1 for a more detailed depiction.

6.1 Overview the Experiment

A mixture of hexafluorobenzene (C6F6) and acetone (C3H6O) is pre-polarized in a 1.5 T
field and then transported pneumatically into an experimental volume with µT-scale fields.
A π/2 pulse is applied to initiate nuclear spin precession at 1H Larmor frequencies fLH

of the order 200 Hz. The corresponding 19F Larmor frequency is of the order 188 Hz.
The ensuing oscillating magnetic field BM associated with the precessing magnetization
M = MH + MF is then directly monitored using magneto-impedance sensors arranged in
a gradiometer configuration. Note that the tipping pulse used in all experiments presented
in this chapter is a conventional tipping pulse based on a sine waveform.

To accomplish spin dressing, we apply an intense far off-resonant oscillating magnetic
field Bd (the dressing field) at frequency fd for a time ∆t. This periodically drives M away
from the equatorial plane of the Bloch sphere and reduces the net rate at which nuclear spin
precession about the static field B0 occurs. Under critical dressing conditions both species
precess at the same effective rate, and hence acquire the same modified gyromagnetic ratios
γ
′
H = γ

′
F. The orientations of the various magnetic fields involved in the CSD experiment,

and schematic (i.e. simplified) cartoons of nuclear spin trajectories on the Bloch sphere in
response to the dressing field are shown in Fig. 6.1.

6.1.1 Data Analysis

The NMR data from which values of γ′H and γ′F are extracted typically consist of a super-
position of two exponentially decaying sinusoids at the 1H and 19F NMR Larmor precession
frequencies fLH and fLF. These frequencies are measured relative to a local oscillator that is
used as the reference frequency fref for the phase sensitive detector (PSD). For most of the
CSD experiments reported in this chapter I chose fLH = 200 Hz (and hence fLF = 188 Hz)
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and fref = 160 Hz. Note that if fref = fLH, the PSD output for the corresponding nucleus
is an unmodulated exponentially decaying signal from which it is difficult to accurately ex-
tract phase information. By setting fref far enough away from fL a reasonable modulation
of FID signals is observed and extraction of phase (by fitting model equations to the data)
is simplified. There is a trade off in this process between the accuracy to which phases can
be extracted and the amplitude of the signals. The latter decreases as fref is displaced from
fLH because of the finite bandwidth of the PSD through which FID signals are passed.

Two FID signals are recorded in these experiments: one before and one after applying
the dressing field Bd. As pointed out in Ch. 4, the total duration of the recorded FID
signal, before application of the dressing pulse, plus the duration of the tipping pulse is
chosen so that the dressing field always starts with a well-defined phase relationship with
respect to the tipping pulse. Each FID is complex, with real and imaginary (or in-phase
and quadrature) components as measured with respect to the local oscillator. In total there
are four components to each CSD dataset that need to be modelled or fit by exponentially
decaying sinusoids. An example of one such experimental recording is shown in Fig. 6.2.
The model equation used to extract information from these data is:

f(t) = AH e−t/T∗2H cos(ωHt + θH) + AF e−t/T∗2F cos(ωFt + θF) (6.1)

where T∗2H and T∗2F are spin dephasing times, ωH = 2πfLH and ωF = 2πfLF are angular
frequencies, θH and θF are initial phases, and AH and AF are initial signal amplitudes.
Note that by “initial” I mean that all phases and amplitudes in these fit functions are
extrapolated back to t = 0, even for the case of fits to data after the dressing field pulse.

Figure 6.2: FID recording acquired from a mixture of hexafluorobenzene and acetone rel-
ative to a 160 Hz reference oscillator. The grey band indicates the period during which a
1 kHz/20 cycle duration dressing field characterized by (1H) dressing parameters xH = 1.05
and yH = 0.4 is applied (and during which the Magneto-Impedance sensor response is satu-
rated). The data were recorded at fLH = 200 Hz, fF = 188 Hz and with a PSD bandwidth
of 125 Hz. The real (solid-line) and imaginary (short-dash line) components of the signal
are both shown. Data like this are used to extract modified gyromagnetic ratios γ′H and γ′F.
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For each recording consisting of two FIDs there are 32 fit parameters that need to be
determined. However, only 14 of these parameters are independent: ωF, ωH, AH, AF, T∗2H,
T∗2F and the 8 initial phases: θH,Re,b, θH,Im,b, θH,Re,a, θH,Im,a, θF,Re,b, θF,Im,b, θF,Re,a and
θF,Im,a. The indices b, a, Re and Im denote “before” and “after” the dressing field and the
“real” and “imaginary” components of the FID signal, respectively.

The phases of the two components of the FID signals before and after the dressing field
pulse are: θH,b, θH,a, θF,b and θF,a, where:

θH,a = tan−1(cos(θH,Re,a)/ cos(θH,Im,a)) (6.2)

θH,b = tan−1(cos(θH,Re,b)/ cos(θH,Im,b)) (6.3)

θF,a = tan−1(cos(θF,Re,a)/ cos(θF,Im,a)) (6.4)

θF,b = tan−1(cos(θF,Re,b)/ cos(θF,Im,b)). (6.5)

The phase changes accumulated by the two species that can be directly attributed to the
dressing field are:

∆θH = θH,a − θH,b (6.6)

= 2πyN
(
γ
′
H
γH
− 1

)
(6.7)

and

∆θF = θF,a − θF,b (6.8)

= 2πyN
(
γ
′
F
γH
− γF
γH

)
, (6.9)

where y = fLH/fd, and the latter forms of the two equations make use of the dressing
field conditions outlined in Sec. 4.2. Note that ∆θH and ∆θF do not include the phase
accumulated due to normal Larmor precession, because all phases in the fit functions are
referenced to time t = 0. The difference between the phase changes caused by the dressing
field is then

∆θHF(x, y) = ∆θH −∆θF

= 2πyN
[(

γ
′
H − γ

′
F

γH

)
−
(
γH − γF
γH

)]
. (6.10)

Let us call the first and second terms inside the square brackets of Eq. 6.10 η′(x) and η,
respectively. Note that η′ is a function of the 1H dressing parameter x = xH = γHBd/ωd
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Figure 6.3: Semi-classical trajectories of 1H (black) and 19F (red) nuclear spins during
dressing field pulses (yH = 0.1; ∆t = 82.5 ms; fLH = 100 Hz; fd = 1 kHz). Left:
Dressing field amplitude detuned from critical conditions (xH = 1.000; xF = 0.940).
Over time, the two trajectories diverge. Right: Critically dressed nuclear spin precession
(xH = 1.286; xF = 1.208); the two trajectories never diverge. In both cases nuclear
magnetizations are initially in phase before application of the dressing field Bd.

and y = yH = γHB0/ωd.1 Making use of Eq. 6.10, it can be written

η
′(x, y) = η + ∆θHF(x, y)

2πyN . (6.11)

In the absence of spin dressing (i.e. x = 0), ∆θHF is zero because ∆θH and ∆θF

are both individually equal to zero. Equivalently, ∆θHF is zero because η′ is equal to
η = 0.05923. In general when a dressing field is applied, ∆θHF is non-zero. In the special
case where CSD conditions are generated, η′(x, y) is zero. Thus η′ is a useful parameter for
characterizing CSD. Each time this function passes through zero as x and y are varied crit-
ical spin dressing conditions are obtained and the two species precess at the same average
rate. In the experiments presented in this chapter I keep y fixed and vary x to reveal CSD.

Two sets of simulated semi-classical spin trajectories are shown in Fig. 6.3. In one case
the dressing conditions are slightly detuned from CSD and the time average rates at which
MH and MF precess about B0 are different. In the other case (CSD) the two nuclear mag-
netization vectors precess at the same time average rate.

6.1.2 Uncertainties

In this subsection I estimate the precision to which η′ can be determined using my apparatus.
In this estimate I ignore effects that an imperfect dressing field may have on η′ . Such effects

1For the remainder of this chapter I will drop the subscripts on xH and yH, and simply refer to them as
x and y.
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Average value Standard Deviation
η 0.05930 ± 0.00008
∆θH 0o ± 5o
∆θF -6o ± 8o
∆θHF 6o ± 13o

Table 6.1: Means and standard deviations of parameters inferred from fits to 15 transients
acquired without a dressing field (x = 0).

might be caused by asymmetry in the current circuit, geometry, homogeniety or alignment
of Bd.

The various fit parameters such as the induced phase changes are influenced by the
signal-to-noise ratio (SNR) of the data. The higher the SNR, the lower the fit uncertainty.
To estimate a lower bound or minimum achievable uncertainty for η′ I eliminated the
dressing field pulse and recorded 15 FID signals. These signals were recorded at different
times over a 2 hours period to account for drift that might occur in experimental parameters.
Each transient was analysed using the fit function Eq. 6.1 to infer phases ∆θH, ∆θF and
∆θHF, as well as the parameter η specified in Eqs. 6.6 - 6.10. The average coefficient of
determination R2 which characterizes goodness of fit was 0.977. The means and standard
deviations of the various parameters are listed in Table 6.1. The standard deviations can
be used to calculate an uncertainty for η′

δη
′(x, y) = δη + δ∆θHF(x, y)

2πyN . (6.12)

For example, for a N = 20 cycle-long dressing field pulse at fd = 500 Hz and with
fLH = 200 Hz the estimated uncertainty in η′ , based on data from Table 6.1, is δη′ =± 0.0046
which in turn corresponds to a ± 0.96 Hz uncertainty in the inferred difference in modified
1H and 19F Larmor frequencies.

6.2 Observation of CSD: Conventional Waveform

Figure 6.4 summarizes the outcome of a series of 1H and 19F spin dressing experiments
performed in the vicinity of critical dressing. Normalized apparent gyromagnetic ratios
γ
′/γH and the parameter η′ are plotted as a function of the dressing parameter x, for two

different values of y. The parameter η′ measures the deviation between normalized γ′H and
γ
′
F, and thus passes through zero at CSD. In detail, the dressing field pulses consisted of 20

complete cycles of a cosine waveform at fd = 500 Hz or fd = 1 kHz; hence they were either
40 ms or 20 ms long in duration. The static magnetic field was B0 = 4.69 µT corresponding
to fLH = 200 Hz, and 1H dressing parameters yH = 0.4 and 0.2, respectively.2 The time at

2The corresponding 19F dressing parameters are yF = 0.376 and 0.188.
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Figure 6.4: Outcomes of spin dressing experiments on 1H and 19F as characterized by
normalized apparent gyromagnetic ratios γ′/γH and the parameter η′ = (γ′H − γ

′
F)/γH.

Experiments were performed in a static field B0 = 4.69 µT, corresponding to a 1H Larmor
frequency fLH = 200 Hz. A 20-cycle dressing field pulse was applied at frequencies fd = 500
Hz (left) and fd = 1 kHz (right) corresponding to dressing parameters yH = 0.4 and yH = 0.2,
respectively. Also shown are curves representing expectations from theory (solid curve), see
Eq. 6.15, and the simulation (dashed curve).

which the dressing field pulse is initiated is set to t = 260 ms,3 which is equivalent to 52 and
48.9 1H and 19F Larmor periods, respectively. In an ideal case this time would be an integer
number of Larmor periods for both species. Thus the dressing field always starts with a
fixed phase relationship with respect to the precessing magnetization. The experimental
data displayed in Fig. 6.4 represent the averages of 5 and 7 repetitions for yH = 0.2 and 0.4,
respectively. The error bars represent the standard deviations of the observed distributions.
Also shown in this figure are predictions for η′ from theory and simulations. Recall from
Sec. 2.2 that the quantum model predicts that in the regime y � 1, where the static field
B0 is much weaker than the dressing field Bd, the apparent gyromagnetic ratios of 1H and

3t = 0 corresponds to the time at which the tipping pulse is initiated.
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19F and the corresponding values of η′ become

γ
′
H = γHJ0(xH), (6.13)

γ
′
F = γFJ0(xF), (6.14)

η
′ = J0(xH) − αJ0(αxH) (6.15)

where α = γF/γH, xH = γHBd/ωd and xF = γFBd/ωd. The simulation results shown
in this figure were described in Sec. 2.1 and are based on a semi-classical model of spin
precession.

The quality of data for yH = 0.4 is worse than that at yH = 0.2. I believe this is be-
cause of the generation of spin dressing echoes as discussed in Ch. 4. These are more likely
to occur for y & 0.3. This is illustrated in Fig. 6.5, which shows contours of simulated
echo amplitudes as a function of x and y (see Sec. 4.3.2.3). In this phase space plot echoes
happen more often in bright regions. Thus at y = 0.4, echoes are expected for 1 . x . 3
but at y = 0.2 they are absent. The formation of echoes is not accounted for in the simple
fit procedure outlined in Sec. 6.1.1, and so the spin precession phases extracted at y = 0.4
are more likely to be perturbed by this effect than those extracted at y = 0.2. This is
consistent with the observation that better agreement with theory is observed at y = 0.2
than it is at y = 0.4 in Fig. 6.4.

At y = 0.2, the data agree with the simulation and theory except for outliers in the
range 2 < x < 2.5. In this range the modified gyromagnetic ratios γ′H and γ

′
F are both

small. Hence the average precession rates about B0 are very low. Under these conditions,
if B0 and Bd are not orthogonal, an avoided crossing of energy levels is induced and the
accumulated phases acquired by the 1H and 19F are influenced. This effect was discussed

Figure 6.5: Contour plot of simulated echo amplitudes, as described in Sec. 4.3.2.3. Results
shown for a 20 cycle cosine waveform dressing field applied at fd = 500 Hz. Echoes are less
likely to occur in the blue regions.
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in Sec. 2.4.1. It is not captured in the simulation results presented in Fig. 6.4 .

6.3 Observation of CSD: Unconventional Waveforms

The dressing field waveform employed in the previous section is not unique, although it is the
only waveform that has been considered so far in the context of 3He co-magnetometry for a

Figure 6.6: Outcomes of 1H and 19F spin dressing experiments as characterized by nor-
malized apparent gyromagnetic ratios γ′/γH and the parameter η′ defined in Eq. 6.11.
Experiments were performed in a static field B0 = 4.69 µT, corresponding to a 1H Lar-
mor frequency fLH = 200 Hz. A 20-cycle dressing field pulse was applied at frequencies
fd = 500 Hz corresponding to dressing parameters yH = 0.4. Unlike the analogous experi-
ment summarized in Fig. 6.4 a phase-modulated dressing field waveform is employed. Also
shown are curves representing expectations from theory (solid; y ≈ 0; see Eq. 6.15; no
phase modulation), a simulation without modulation (dashed, y = 0.4) and a simula-
tion with modulation (dashed-dot, y = 0.4). Error bars represent standard deviations of
observations for 4 repetitions.
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neutron electric dipole moment search.4 Here I show examples of spin dressing experiments
in which the phase and the amplitude of the dressing field are modulated. I refer to these
as unconventional waveforms although for at least one of the two examples there are good
reasons to anticipate that it ought to be more robust than the conventional waveform. In
the first example of an unconventional waveform the time dependence of Bd(t) is given by:

Bd(t) = Bd cos(2πfdt + φ) ŷ (6.16)

where the phase φ is modulated between zero and π in alternate cycles. The motivation
for this alternation is to minimize the accumulation of phase errors caused by potential
asymmetries in the dressing field and thereby attempt to minimize potential undesired
mixing of transverse and longitudinal components of the magnetization. Such schemes
are common in NMR pulse sequences. When 20 cycles of this waveform are applied to
1H and 19F at fd = 500 Hz in a field B0 = 4.7 µT where the 1H Larmor frequency is
fLH = 200 Hz, one finds that the first CSD point is located at xH = 0.98 rather than
xH = 1.29 as was the case in Fig. 6.4. Figure 6.6 shows data for spin dressing experiments
performed with this phase modulated dressing field. Also shown are predictions from the
y � 1 theory (see Eq. 6.15) and the simulation. The y � 1 prediction from theory does
not account for phase modulation and is simply shown for reference. Simulation results
obtained from a semi-classical model of spin precession are shown with and without phase
modulation. The experimental data and error bars represent the averages and standard
deviations of 4 replicates of the experiment. Compared to data acquired without phase
modulation (Fig. 6.4), the data in Fig. 6.6 exhibit less scatter and are more reproducible.
It is informative to look at the phase space for spin dressing echo formation shown in
Fig. 6.7, and to compare it to Fig. 6.5. At yH = 0.4, the likelihood of echo formation, and
consequently the likelihood of the phase measurement being perturbed, is much less when
the phase-modulated waveform is employed.

As a second example of an unconventional dressing field waveform, data were acquired
using an amplitude-modulated field:

Bd(t) = Bd cos(2πfmt) cos(2πfdt + φ) ŷ, (6.17)

where the fm is the modulation frequency. Additionally the phase of alternate cycles of
the dressing field is modulated between 0 and π as in the previous example. The phase
modulation is employed to minimize the accumulation of phase errors. In principle fm could
be set to any value, but in running various simulations I realized the limit fd � fm might
be of interest because the sensitivity of η′ to variations in xc (i.e. dη

′
/dx|x = xc) seems to

4In the final stages of preparing my thesis I learned about simulations performed by E. Webb at Caltech,
in which other dressing waveforms are considered [139]

123



Figure 6.7: Contour plot of simulated echo amplitudes for the 500 Hz phase-modulated
dressing field used to generate the data in Fig. 6.6. Echoes are less likely to occur in the
blue regions.

be about ∼37% smaller than it is without amplitude and phase modulation.5 As one would
expect in this limit the power spectrum of this waveform is dominated by contributions
in the vicinity of fm, not fd. Clearly there is no longer a unique dressing parameter x in
this case, but a reasonable estimate for the sake of comparison is to adopt the definition
x = γHB0/2πfm.

Figure 6.8 shows data for η′ as a function of x defined in this manner, for an experiment
in which fd = 500 Hz, fm = 5 kHz and fL = 200 Hz. Also shown are predictions of
the theory and simulation. In the case of the y � 1 theory η′ is obtained from Eq. 6.15
when the standard dressing field waveform Bd cos (2πfmt) ŷ is employed. In other words,
no modulation is included, and the result is for reference only. In the case of the simula-
tion, η′ is obtained using a semi-classical model of spin precession in which the dressing
field waveform in Eq. 6.17 is used. The CSD point is observed at xc = 1.71 rather than
xc = 1.29 as expected from the y � 1 theory for a standard dressing field waveform.
From this plot, it is indeed evident that the critical dressing condition is less sensitive to
variations in x than it would be without amplitude modulation.

The example of CSD summarized in this section opens a window to searching for new
dressing field waveforms that simultaneously minimize the accumulated errors and sensi-
tivity of η′ to variation in experimental parameters. Such efforts may help to increase the
sensitivity of the planned nEDM experiment [28].
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Figure 6.8: Outcomes of spin dressing experiments on 1H and 19F as characterized by the
parameter η′ defined in Eq. 6.11. Experiments were performed in a static field B0 = 4.69 µT,
corresponding to a 1H Larmor frequency fLH = 200 Hz. An 8-cycle dressing field pulse was
applied at frequency fd = 500 Hz corresponding to a dressing parameter yH = 0.4. Unlike the
analogous experiment summarized in Fig. 6.4, a phase-and amplitude-modulated dressing
field waveform is employed. The phase is periodically modulated between 0 and π and
the amplitude is modulated at frequency fm = 5 kHz. Also shown are curves representing
expectations from the y � 1 theory without modulation (solid, y ≈ 0) and the simulation
with modulation (dashed, y = 0.4).

6.4 Effect of Variations in x on CSD

From an experimental perspective, understanding the sensitivity of CSD conditions to vari-
ations in the dressing parameter x is important. Figure 6.9 shows the results of one such

Figure 6.9: Effect of varying the spin dressing parameter x in the vicinity of critical dressing
at xc = 1.23. The parameter y was fixed at 0.2 while x was alternated between 1.11 and
1.35 (white region) and 1.11 and 1.29 (grey region). In detail the dressing field consisted
of 10 cycles of a waveform at fd = 1 kHz. Top panel: undressed Larmor frequencies (fL).
Middle panel: time-average Larmor frequencies (f̄L). Bottom panel: the difference between
the 1H and 19F time-average Larmor frequencies. This difference is nominally zero at the
critical dressing point.

5The data in Figs. 6.4 (for y = 0.2), 6.6 and 6.8 yield values of 0.08, 0.06 and 0.05 for dη
′
/dx|x = xc

respectively.
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study, performed in the vicinity of critical dressing at y = 0.2 and x = xH = 1.23.
To examine the effect of variations in x I fixed the parameter y by holding the static field
B0 and the dressing frequency fd constant and then alternated the amplitude Bd of the
dressing field between the values 31.6 µT and 26 µT, corresponding to an alternation of
x by ±0.12 about the critical dressing point xc = xH = 1.23. Simultaneously I monitored
the precession rates and phases of the undressed 1H and 19F nuclei before and after the
dressing field pulse, and inferred their time-average precession rates, f̄LH and f̄LF, during
the dressing field pulse.

If x is fixed at xc then γ
′
H = γ

′
F and consequently f̄LH = f̄LF. However, when x is

alternated about xc,6 f̄LH > f̄LF for x < xc and f̄LH < f̄LF for x > xc. See Fig. 2.12-b.
So, the sign of the difference f̄LH − f̄LF should alternate as x alternates. This results in a
modulation of f̄LH − f̄LF that is evident in Fig. 6.9. These data also help to inform the
accuracy, precision, and the reproducibility of f̄L. For example, at x = 1.11 I measured
f̄LH and f̄LF nine times over a four hour period and obtained <f̄LH> = 144.66 ± 2.13 Hz
and <f̄LF> = 140.98 ± 2.91 Hz.7

Note that the dressing field pulse applied here is spectrally broad. For an N cycle-long
dressing field pulse at frequency fd the FWHM of the pulse is approximately ∆fd ' 1.2 fd/N.
In this case ∆fd ' 120 Hz. Consequently, the parameter

x = γB0

2π(fd ± ∆fd
2 )
' x0

(
1∓ ∆fd

2fd

)
(6.18)

spans a range distributed about its central value x0 = γBd
ωd

with a full width ∆x = x01.2/N,
up to the first order of approximation. For a 10 cycle-long dressing field pulse this width is
12% of x0. I believe that if one wants to control the state of the precessing 1H-19F system
more accurately, longer dressing field pulses would need to be employed. This in turn will
reduce the spectral width of x.

6More precisely, at the lowest critical dressing point, where the first crossing between γ
′
H(x)/γH and

γ
′
F(x)/γH occurs.

7The uncertainties reported here represent the standard deviations.
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Chapter 7

Conclusion

This thesis presents an experimental demonstration of the critical spin dressing (CSD) phe-
nomenon for two spin species: hydrogen 1H and fluorine 19F. My work is motivated by a
proposed search for the neutron electric dipole moment (nEDM) [28] using ultra-cold neu-
trons (UCN) and 3He, which is planned to run at the Spallation Neutron Source (SNS) at
Oak Ridge National Laboratory. Observation of a non-zero nEDM would represent evidence
for CP symmetry violation and could shed light on the matter anti-matter asymmetry in
the universe.

A crucial part of the SNS experiment, in one mode of operation, involves application
of a strong far off-resonant oscillating magnetic field, called a dressing field. This dressing
field can be used to modify and control the apparent Larmor precession rate of the UCN
and 3He in a static magnetic field. Under particular conditions, known as CSD, it should be
possible to force UCN and 3He to precess at the same effective rate. The central goal of my
thesis was to generate the necessary conditions and to observe CSD experimentally. Rather
than using UCN and 3He which would require using sophisticated apparatus I used 1H and
19F nuclear spins, both of which are easy to incorporate into an appropriate ultra-low field
NMR experiment. The combination of 1H and 19F is a reasonable proxy for experimental
simulations of UCN and 3He because the gyromagnetic ratios of the former differ by 6%
while those of the latter differ by 11%. While there are close analogies between aspects of
my experiment and the planned CSD experiment at the SNS in connection with the nEDM
search, there are also differences. Perhaps one of the most important differences is that my
experiment involves pulsed application of a dressing field while the SNS experiment will
ultimately involve a continuous dressing field.

The spin dressing (SD) technique was developed during the 1960s and 1970s by C. Cohen-
Tannoudji and S. Haroche [34]. They showed that the gyromagnetic ratio of a particle γ,
and consequently its time average precession rate in a weak static field B0, can be modified
when it is subjected to a strong off-resonant oscillating magnetic field Bd(t). The sign and
magnitude of the modified gyromagnetic ratio γ′ is a function of the intensity and frequency
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of the dressing field. Theoretically it is possible, but prior to my work it had not yet been
demonstrated, that a dressing field can force two spin species with different gyromagnetic
ratios to precess about B0 at the same average precession rate. This is the concept of
CSD. The frequency, fd, and the amplitude, Bd, of the dressing field are described in terms
of two dimensionless dressing parameters x = γBd/2πfd and y = γB0/2πfd. Here x
characterizes the intensity of the dressing field and y represents the ratio of the Larmor
frequency to the dressing frequency. For the proposed search for the electric dipole moment
of the neutron [28] CSD will be performed in the regime y � 1. In general, and from a
technical point of view, to perform CSD in this regime, it is much easier to employ a weak
magnetic field B0, of order a few µT than it is to employ a strong field.

One challenge that is faced in the µT range of magnetic fields is that the thermal equilib-
rium nuclear magnetization and hence the signal-to-noise ratio (SNR) in a NMR experiment
is small. Additionally the Larmor precession frequency and hence the time rate of change
of the nuclear magnetization M is very low. As a result conventional inductive detection
coils are a poor choice for attempting to detect NMR signals. To address these challenges
I used remote NMR techniques [55] and Magneto-Impedance (MI) sensors. The use of MI
sensors for detecting nuclear precession signals is a key element of my SD and CSD experi-
ments. These sensors exhibit a noise density of 5 pT/

√
Hz at 10 Hz, which is comparable to

that of unshielded high-Tc Superconducting Quantum Interference Devices (SQUIDs). The
most important advantage of MI sensors over SQUIDs or atomic magnetometers is that MI
sensors operate at room temperature and do not require any sophisticated environmental
or experimental conditions. This enabled me to design a very simple and robust NMR
experiment to observe CSD phenomena.

I first evaluated the capabilities of MI sensors for the detection of NMR signals in a
number of different ultra-low field (ULF) NMR experiments. I then used MI sensors to
perform SD experiments on 1H nuclei in water. The promising results obtained from these
experiments convinced me to incorporate MI sensors into a CSD experiment.

When MI sensors are subjected to large magnetic fields, such as the dressing field in a
SD experiment, they become saturated. Hence, I was not able to directly monitor the time
average precession rate f̄L of nuclear spins in SD or CSD experiments. I thus developed a
simple method to infer f̄L by examining the phase of precessing nuclear spins before and
after application of a dressing field. Using this phase accumulation method I was able to
demonstrate CSD for a conventional dressing field waveform, as was shown in Fig. 6.4.
However, the quality of the data in that demonstration was not at all impressive. In a
standard CSD experiment, as it is usually envisaged, the RF field (dressing field) is applied
continuously. But this places heavy demands on the frequency, stability, and accuracy of
applied fields. Typically, in NMR, one uses phase-cycling techniques to compensate for the
accumulation of errors. A classic example is the use of phase alternation methods in the
CPMG sequence [140] for observing spin echo trains. Motivated by this I alternated the
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phase of applied dressing fields periodically between 0 and π and observed a significant
improvement in the quality of CSD data, as was shown in Fig. 6.6.

Additionally, I used the apparatus I developed to investigate the role of initial condi-
tions in CSD experiments as set by the π/2 pulse. Here I was interested in simultaneously
putting the 1H and 19F nuclear magnetizations, MH and MF, both of which are initially
along B0, into the transverse plane before applying the dressing field. It is impossible to
rotate both nuclear magnetizations by π/2 using conventional tipping pulses. However, it is
possible to do this using composite tipping pulses. The composite tipping pulses I developed
to simultaneously rotate MH and MF into the transverse plane comprise two conventional
tipping pulses with the same amplitudes and frequencies, but with different durations and
phases.

Below I briefly summarize the contents of this thesis, chapter by chapter.

Chapter 1 introduces the background and motivation to search for permanent electric
dipole moments of particles. It then outlines a proposed search for the neutron electric
dipole moment or nEDM [28] using the phenomenon of CSD. The phenomenon has not
been demonstrated, despite the fact that it lies on the critical path for a planned nEDM
experiment, in one mode of operation. This experiment is currently planned to come on-line
at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) in 2023. The moti-
vation for my thesis was to develop the tools and apparatus to demonstrate and study CSD.

Chapter 2 reviews the theory needed to understand an ensemble of spin-1/2 particles
interacting with a static magnetic field and an intense far off-resonant oscillating magnetic
field. In this system one finds that the time average precession rate of the nuclear magneti-
zation differs from the usual Larmor precession frequency. This precession can be described
in terms of an apparent or modified gyromagnetic ratio γ′ . Two models are introduced (a
semi-classical and a quantum model) and are used to calculate γ′ in two different regimes
characterized by the dimensionless parameter y. These models are eventually compared
with experimental data for SD and CSD in Chapters 4 and 6. The semi-classical model is
based on a simple determination of the time average precession rate of the nuclear mag-
netization M(t), obtained by numerical integration of the Bloch equations. The quantum
model, which has been described previously [34, 48, 38] involves calculation of energy level
differences in a system of interacting spins and photons. I show how the predictions of
the two models are consistent when y < 1, but not when y > 1. This discrepancy is
a consequence of a limitation in the method I used to extract the time-average precession
rate from the semi-classical model of spin precession.

In the second part of Chapter 2, I describe the phenomenon of CSD in the regime y < 1
using both the quantum and semi-classical models. I focus on parameters that influence
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CSD, including parameters such as the π/2 tipping pulse that sets the initial condition for
a subsequent CSD experiment, as well as imperfections such as misalignment of the static
and dressing fields.

Chapter 3 introduces the use of Magneto-Impedance (MI) sensors for detecting ultra-
low field (ULF) NMR signals. MI sensors play a critical role in the apparatus I developed
to monitor the average precession rates of dressed nuclear spins. Hence their suitability
for detecting NMR signals was first evaluated before incorporating them into later SD and
CSD experiments. The chapter begins with a description of the characteristics of MI sen-
sors and then describes a series of NMR experiments I designed and performed to assess
their capability for detecting longitudinal and transverse nuclear magnetizations. These
experiments include Adiabatic Fast Passage (AFP), ULF NMR of spatially-modulated lon-
gitudinal nuclear magnetizations, and pulsed ULF NMR. This represents the first time that
this kind of solid state magnetometer has been used for NMR. The same apparatus is used
for all three of these experiments, with minor differences in applied magnetic fields and
detection circuits. All three are classified as remote NMR experiments in which the sample
is pre-polarized far away from the region of the apparatus in which signal detection occurs.

In the first experiment I imprinted an alternating longitudinal nuclear magnetization
pattern on a stream of flowing water, in which the 1H nuclei were first thermally pre-
polarized in a 1.5 T magnetic field. The magnetization pattern was produced by turning
an AFP field on and off at a modulation frequency fm. When the AFP field is on, the 1H
nuclear magnetization M is adiabatically inverted and becomes anti-parallel to the local
static field B0. And when the AFP field is off, M remains parallel to B0. The magnetic
field BM associated with this alternating magnetization pattern was then directly monitored
using MI sensors placed close to the stream of flowing water. Data were acquired over the
range 0.2 Hz ≤ fm ≤ 30 Hz. When an equivalent noise bandwidth (ENBW) of 41.7 mHz
was employed, a maximum SNR of order 80 was obtained with a modulation frequency
fm = 4 Hz.

In the second experiment, a steady flow of AFP-modulated water was subjected to a
continuous on-resonant tipping field B1 applied in a static magnetic field ∼20 µT. When
B1 is applied close to resonance, the orientation of the nuclear magnetization can be ma-
nipulated. This in turn influences the signal monitored by the MI sensors and results in a
resonance profile. The width of the resonance depends on the average speed of the water
flowing through the B1 coil.

Finally in the third experiment, which was a pulsed ULF NMR experiment, the MI
sensors were used to monitor the magnetic field associated with the transverse component
(rather than the longitudinal component) of a precessing 1H nuclear magnetization. The
experiment was typically performed in a static magnetic field of 4.7 µT. When an ENBW of
41.6 Hz was employed a SNR of order 10 was achieved for a single shot measurement. The
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MI sensors were also tested with a train of tipping pulses applied to periodically refocus the
nuclear magnetization. The sensors recovered from saturation very quickly, on a time scale
of a few ms, and spin echoes were successfully observed after each π pulse.

The promising results obtained from the experiments described in Chapter 3 suggest
potential applications of MI sensors to ULF NMR spectroscopy. Their primary advantage
over other types of magnetometers is the simplicity with which they can be incorporated
into an apparatus.

Chapter 4 is dedicated to descriptions of pulsed SD experiments in which the modified
gyromagnetic ratio γ′ of 1H nuclei of water is measured over a broad range of experimental
parameters. The apparatus used to perform these experiments is the same as that described
for the pulsed NMR experiments in Chapter 3, with the addition of an actively-shielded
coil to produce an intense far off-resonant oscillating magnetic field Bd perpendicular to
B0. Typical operating conditions for experiments performed in the regime y < 1 include
B0 = 4.7 µT (yielding a 1H Larmor frequency of 200 Hz) and Bd . 500 µT applied at
500 Hz. A simple data analysis protocol for determining the phase accumulated by the
precessing nuclear magnetization while the dressing field is applied is then used to infer γ′ .

This apparatus was used to investigate spin dressing at y = 0.4 and 0 < x < 40.
This is much broader range of the parameter x than has been explored previously. The
normalized modified 1H gyromagnetic ratio 1H observed in these experiments is consistent
with the perturbation theory prediction γ′ = γJ0(x) where J0(x) is the zeroth-order Bessel
function. As y approaches 1 from below, minor deviations from the y = 0 behaviour (i.e.
J0(x)) were observed at small values of x, consistent with simulation results obtained us-
ing both the semi-classical model of spin precession and the quantum model described in
Chapter 2.

In the regime y > 1, experimental data for γ′/γ for 1H nuclei in water were consistent
with predictions of the quantum model for small values of x, but not at large values of x.
This is consistent with previous reports of SD [38] in which data for γ′/γ were only given
at small values of x.

Chapter 4 also presents results for an unexpected revival of nuclear magnetization (or
spin echo formation) in FID signals in response to the application of off-resonant dressing
field pulses. This echo formation occurs more frequently in the regime y > 1 and less fre-
quently in the regime y < 1. It strongly influences the interpretation of the accumulated
phase of dressed nuclear spins and consequently influences determination of γ′/γ. A simple
semi-classical model of spin precession was introduced in this chapter; it can predict echo
formation as a function of the parameters x and y. This echo formation can also be ex-
plained in terms of a multi-photon absorption process [109]. In this picture an odd number
of photons at far off-resonant frequencies can be absorbed by spin-1/2 particles. And, in
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the presence of a static magnetic field gradient this results in echo formation.

Chapter 5 introduces a new apparatus that I developed to perform NMR experiments
on multi-nuclear spin species. The apparatus does not rely on the flow of a liquid sample
(water) through the polarization and measurement regions. Instead, it uses a pneumatic
sample transfer system to transport a cell containing the sample, between a 1.5 T polariza-
tion station and the ULF NMR region. Once again MI sensors are used for signal detection
to monitor NMR FID signals. The operation of the apparatus is illustrated for samples
containing either one or two spin species.

The new apparatus is capable of monitoring 1H Larmor precession over frequencies
fL ≥ 30 Hz. Most of the NMR experiments I report are performed in the range fL = 100 -
200 Hz. In this range samples comprising 1H nuclei in deionized water thermally pre-
polarized to 1.5 T yield signals with SNR ∼ 4.5 for single shot FID acquisitions with an
ENBW of 83 Hz. After averaging 16 sequential FIDs the observed SNR is of order 18.5.

To investigate the simultaneous detection of ULF NMR signals from two spin species,
a miscible mixture of hexafluorobenzene (source of 19F nuclei) and acetone (source of 1H
nuclei) was employed. The FID signals obtained from this mixture at B0 = 4.7 µT clearly
involve two exponentially decaying sinusoids corresponding to two independently precess-
ing nuclear magnetizations: MH and MF, for 1H and 19F respectively. Fourier transforms
of these signals reveal double peaks, corresponding to the two different nuclear precession
frequencies.

When two nuclear spin species precess about a static magnetic field, one species can
be used as a reference against which the precession of the other is monitored. This is the
basis of co-magnetometery, which has applications to precision measurements in fundamen-
tal physics. In Chapter 5, co-magnetometery in a 1H-19F mixture is illustrated, and the
average value of the ratio of the two gyromagnetic ratios was experimentally determined to
be γF/γH = 0.94070(9). This is consistent with the ratio γF/γH = 0.94077(3) inferred
from previous measurements [52].

Chapter 5 also discusses issues related to initial conditions in CSD experiments. In par-
ticular the initial conditions established by conventional tipping pulses are explored. The
goal is to rotate the nuclear magnetizations of two spin species from an initial alignment
parallel to B0, into the transverse plane of the Bloch sphere. This in turn should yield
a well defined and clean initial condition for a subsequent CSD experiment. It is shown
that under the conditions employed for my experiments, when the magnitude of the tipping
pulse B1 is larger than B0, one can not ignore the counter-rotating component of B1. That
is, the rotating wave approximation (RWA) breaks down. As a result the tipping angle
does not vary sinusoidally as a function of the amplitude of the tipping pulse. Moreover
one measures different rotation angles when different tipping pulse waveforms are applied.
It is impossible to rotate the nuclear magnetizations of two spin species precisely by π/2
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using only conventional tipping pulses whether the RWA is valid or not. A simple solution
is to achieve rotation using composite tipping pulses. These are successive conventional
tipping pulses with different frequencies, amplitudes, durations and relative phases. One
example of a composite pulse was investigated for use as a tipping pulse for 1H and 19F and
simultaneous π/2 rotations were observed with an accuracy of ∼ 20 mrad.

Chapter 6 is devoted to critical spin dressing. It discusses the data analysis method
used to infer modified gyromagnetic ratios of nuclear spins involved in CSD experiments.
This method is an extension of the data analysis technique introduced in Chapter 4 and
employed for SD experiments on 1H nuclei in water. This method, and the apparatus de-
scribed in Chapter 5, are then used to demonstrate CSD when a standard dressing field
waveform is employed, as well as when modulated dressing field waveforms are employed.
In the first case (standard waveform) the 1H Larmor frequency was fLH = 200 Hz; 20-
cycle dressing pulses were applied at frequencies fd = 500 Hz and 1 kHz corresponding
to dressing parameters y = 0.4 and 0.2, respectively. It was observed that the quality of
the data acquired at y = 0.2 was better than at y = 0.4. A simple approach to improv-
ing the quality of data in the latter case was then demonstrated. It involves periodically
alternating the phase of the dressing field waveform between 0 and π. This is a very com-
mon thing to do in NMR experiments to suppress the accumulation of phase errors. These
errors can be caused by factors such as asymmetries in geometry, current supply circuitry
or the alignment of the oscillating field with respect to the static field. This initiative was
successful and a big improvement in the quality of CSD data was observed. In another
experiment performed at fLH = 200 Hz and fd = 500 Hz the phase and amplitude of the
dressing field were simultaneously modulated. The phase was alternated between 0 and π
and the amplitude was modulated at 5 kHz. This unconventional dressing field waveform
suppressed sensitivity of the CSD conditions to variations in the parameter x by 37 %.

In summary, this thesis presents the first experimental demonstration of critical spin
dressing. The demonstration is a pulsed CSD experiment in which 1H and 19F nuclear
spins are forced to precess at the same time-averaged precession rate. It also describes the
various experimental tools and analytical methods that I designed, developed and evaluated
in order to carry out a demonstration of CSD.

In terms of experimental tools, I developed a simple and robust apparatus to monitor
ULF NMR signals from multi-nuclear spin species. The most innovative part of this appa-
ratus was the use of Magneto-Impedance sensors to monitor NMR signals. The capabilities
of these sensors were evaluated in a series of NMR and SD experiments.

In terms of analytical tools, I used a technique that involved measuring the phase of
nuclear precession signals before and after application of a dressing field pulse in order to
infer the phase accumulated during the pulse. This enabled me to determine the average
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precession rates of dressed spins even though the MI sensors were saturated while the dress-
ing field was applied.

In terms of future directions, it is worth reiterating a number of suggestions that were
made in the body of the thesis. These fall into three categories. First, this thesis has
demonstrated the use of MI sensors for NMR, in the ultra-low field limit. One could
imagine exploring similar applications of these sensors to experiments involving j-coupling
spectroscopy, NMR relaxometry or diffusometry. It would be particularly interesting (and
potentially advantageous) to integrate MI sensor technology with microfluidic chip technol-
ogy in order to attempt to make progress in the field of solution NMR spectroscopy.

Second, the experiments I have reported in this thesis suggest that there is both a poten-
tial need and capability to explore and better understand nuclear magnetization dynamics
in a dressed system with y > 1 and x ' y. As noted in Ch. 4 discrepancies between
experimental observations and the predictions of the two simulation models (quantum and
semi-classical) were observed in this regime. At the moment the origin and explanation for
this inconsistency is unknown.

Third, with a demonstration of CSD having been accomplished it would be natural to
upgrade the apparatus to improve the quality of data and further explore CSD. In this
regard there are at least four specific lines of inquiry that could yield significant improve-
ments.

First, I think it would be highly advantageous to develop methods that would permit
the use of degassed samples. It has been demonstrated [52] that NMR relaxation times in
excess of 10 s can be realized by degassing acetone and HFB. Long relaxation times would
in turn allow one to perform dressing experiments over much longer time periods. Another
improvement that could be addressed is to locate and eliminate a source of 60 cycle noise
and associated 4th harmonics in my apparatus. This was the dominant source of noise
during my CSD experiments. One might be able to boost the SNR in similar experiments
by up to two orders of magnitude if this noise was removed. There would also be an ad-
vantage to demagnetizing the shields. This would allow one to perform CSD experiments
at lower Larmor frequencies, and would eliminate the static field gradient that is believed
to be caused by the innermost shield.

Second, it would almost certainly be useful to explore the effect of different initial π/2
tipping pulses on CSD. It would similarly be useful to explore the effects of variations of
varying the magnetic fields B0 and Bd on CSD in greater detail. Note that to reveal the
effects of these parameters a reasonably high SNR is desirable and so one would want to
start by implementing the technical improvements listed above.

Third, as I demonstrated in Ch. 6, unconventional dressing waveforms can yield signifi-
cant improvements in CSD experiments. In the final stages of preparing my thesis I learned
about simulations in which other dressing waveforms have been considered [139]. It would
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be both very interesting and potentially valuable to explore these proposed waveforms ex-
perimentally using the apparatus described in Ch. 5, as well as to investigate other possible
dressing waveforms.

Fourth, one could attempt to adjust the relative orientation of the MI sensors and Bd

in my apparatus so that the sensors are not saturated during application of dressing pulses.
This might enable one to monitor the modified precession frequency of nuclear magnetic
moments directly, and ultimately attempt to demonstrate continuous rather than pulsed
CSD.

“Everything should be made as simple as possible,
but not simpler.”
—Albert Einstein
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