
When Learning Meets RFIDs:
The Case of Activity Identification

by

Xiaoyi Fan

M.Sc., Simon Fraser University, 2015
B.Eng., Beijing University of Posts and Telecommunications, 2013

Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

c© Xiaoyi Fan 2018
SIMON FRASER UNIVERSITY

Spring 2018

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.



Approval

Name: Xiaoyi Fan

Degree: Doctor of Philosophy (Computing Science)

Title: When Learning Meets RFIDs:
The Case of Activity Identification

Examining Committee: Dr. Angelica Lim (chair)
Assistant Professor

Dr. Jiangchuan Liu
Senior Supervisor
Professor
School of Computing Science

Dr. Jiannan Wang
Supervisor
Assistant Professor
School of Computing Science

Dr. Martin Ester
Internal Examiner
Professor
School of Computing Science

Dr. Mo Li
External Examiner
Associate Professor
School of Computer Science and En-
gineering
Nanyang Technological University

Date Defended: 4 Apr 2018

ii



Abstract

Over the past decades have seen booming interests in human activity identification that
is widely used in a range of Internet-of-Things applications, such as healthcare and smart
homes. It has attracted significant attention from both academia and industry, with a
wide range of solutions based on cameras, radars, and/or various inertial sensors. They
generally require the object of identification to carry sensors/wireless transceivers, which
are not negligible in both size and weight, not to mention the constraints from the battery.
Radio frequency identification (RFID) is a promising technology that can overcome those
difficulties due to its low cost, small form size, and batterylessness, making it widely used
in a range of mobile applications.

The information offered by today’s RFID tags however are quite limited, and the typical
raw data (RSSI and phase angles) are not necessarily good indicators of human activities
(being either insensitive or unreliable as revealed by our realworld experiments). As such,
existing RFID-based activity identification solutions are far from being satisfactory. It is
also well known that the accuracy of the readings can be noticeably affected by multipath,
which unfortunately is inevitable in an indoor environment and is complicated with multiple
reference tags.

In this thesis, we first reviewed the literature and research challenges of multipath effects in
activity identification with RFIDs. Then we introduced three advanced RFID learing-based
activity identification frameworks, i.e., i2tag, TagFree and M2AI, for tag mobility profiling,
RFID-based device-free activity identification and tag-attached multi-object activity iden-
tification, respectively. Our extensive experiments further demonstrate their superiority on
activity identification in the multipath-rich environments.

Keywords: RFID; Internet-of-Things; Deep Learning; Activity Identification
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Chapter 1

Introduction

1.1 Overview

Over the past decades have seen booming interests in human activity identification that
is widely used in a range of Internet-of-Things applications, such as healthcare and smart
homes. Yet, sensor or device based solutions [1] require targets carrying sensors/wireless
devices that are often not negligible in both size and weight. Radio Frequency Identification
(RFID) is a promising technology that can overcome those difficulties, with the advantages
of low cost, small form size, and batterylessness, not to mention that RFID tags are able
to be read wirelessly and single RFID reader can operate thousands of tags at a time.
For example, IKEA Canada has completed a solution that enables shoppers to purchase
merchandise with the tap of a spoon that has a built-in tag, freeing shoppers from having
to push carts or carry baskets around the store1. Disney has built an RFID gaming system
that can sense when the player is moving objects attached with tags in near real time.

Yet, the information offered by today’s RFID tags are quite limited, and the typical
raw data, namely, received signal strength indicator (RSSI) and the phase angle, mostly
target stationary reading scenarios. As such, existing RFID-based activity identification
solutions are far from being satisfactory. It is well known that the RSSI readings almost
have no change with small human activities [1], e.g., shaking hands; and the phase angle,
though being sensitive to activities, is hardly a reliable indicator. Moreover, real word
multipath-rich environments bring more challenges for current RFID based activity iden-
tification approaches to be applied in reality. For example, a person is often occluded by
furniture and other persons, resulting in that the signals of tags may be deflected and take
multiple paths to arrive at the RFID reader. Therefore, the received raw signals are not
accurate enough to directly reflect the corresponding activity.

1IKEA Canada Engages Customers With RFID at Pop-up Store.
HTTP://www.rfidjournal.com/articles/view?14719
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We however argue that mutipath indeed brings rich information that can be explored to
identify human activities. Both the backscattered signal power and angle are highly related
to human activities, impacting multiple paths with different levels. If we can capture these
changing features of the path, the activities could be identified with high sensitivity. Yet,
identifying the relevant features can be very time-consuming and complicated, so for defin-
ing the rules for accurate classification of activities. Different from conventional solutions
that directly rely on the unreliable raw data, we develop a novel mechanism that jointly
considers both pseduospectrum [2] and periodogram [3], so as to take in raw multipath
signal mixtures and output carefully de-coupled angles and powers for different paths. We
gather massive angle and power information from multiple tags, and preprocess them to
extract key features. Yet another challenge is that due to the received signals are a dynam-
ic mixture of multi-path, the features of RFID-based activities are hard to be pre-selected
manually, and the rules for making correct estimations are hard to be pre-defined, either.

In this thesis, we note that machine learning, especially deep learning as a new generation
technique, can well accommodate this aforementioned challenge, and thus shed new light
into the problem for activity identification in a multipath-rich environment. We presented
three advanced RFID learing-based activity identification frameworks. In particular, we
first introduced i2tag, an intelligent mobility-aware activity identification system for RFID
tags in multipath-rich environments. Then we presented TagFree, the first RFID-based
device-free activity identification framework by analyzing the multipath signals. Third, we
presented the design of M2AI for the first time accommodates both multi-path and multi-
object for activity identification. We conducted extensive experiments to evaluate i2tag,
TagFree and M2AI in a multipath-rich environments and report significant performance
gains over a number of state-of-art feature based approaches. It is also worth noting that
our frameworks are readily deployable using off-the-shelf RFID readers (e.g., a single UHF
reader with a limited number of antennas) and allows reusing existing RFID readers for
indoor activity identification.

1.2 Thesis Contributions

The contributions of this thesis are summarized as follows:

• Many Radio Frequency Identification (RFID) applications, e.g., virtual shopping-cart
and tag-assisted gaming, involve sensing and recognizing tag mobility. Existing R-
FID localization methods however are mostly designed for static or slowly moving
targets (less than 0.3 m/s). More importantly, we observe that prior methods suffer
from serious performance degradation for detecting realworld moving tags in typical
indoor environments with multipath interference. We present i2tag, an intelligent
mobility-aware activity identification system for RFID tags in multipath-rich envi-
ronments, e.g., indoors. i2tag employs a supervised learning framework based on

2



our novel fine-grained mobility profile, which can quantify different levels of mobil-
ity. Unlike previous methods that mostly rely on phase measurement, i2tag takes
into account various measurements, including RSSI variance, packet loss rate, and
our novel relative-phase-based fingerprint. Additionally, we design a multiple dimen-
sional dynamic time warping based algorithm to robustly detect mobility and the
associated activities. We show that i2tag is readily deployable using off-the-shelf
RFID devices. A prototype has been implemented using a Thingmagic reader and
standard-compatible tags. Experimental results demonstrate its superiority in mobil-
ity detection and activity identification in various indoor environments.

• Human activity identification plays a critical role in many Internet-of-Things appli-
cations, which is typically achieved through attaching tracking devices, e.g., RFID
tags, to human bodies. The attachment can be inconvenient and considered intrusive.
A tag-free solution instead deploys stationary tags as references, and analyzes the
backscattered signals that could be affected by human activities in close proximity.
The information offered by today’s RFID tags however are quite limited, and the typ-
ical raw data (RSSI and phase angles) are not necessarily good indicators of human
activities (being either insensitive or unreliable as revealed by our realworld experi-
ments). As such, existing tag-based activity identification solutions are far from being
satisfactory, not to mention tag-free. It is also well known that the accuracy of the
readings can be noticeably affected by multipath, which unfortunately is inevitable in
an indoor environment and is complicated with multiple reference tags. We however
argue that multipath indeed brings rich information that can be explored to identify
fine-grained human activities. Our experiments suggest that both the backscattered
signal power and angle are correlated with human activities, impacting multiple paths
with different levels. We present TagFree, the first RFID-based device-free activity
identification system by analyzing the multipath signals. Different from conventional
solutions that directly rely on the unreliable raw data, TagFree gathers massive angle
information as spectrum frames from multiple tags, and preprocesses them to extrac-
t key features. It then analyzes their patterns through a deep learning framework.
Our TagFree is readily deployable using off-the-shelf RFID devices and a prototype
has been implemented using a commercial Impinj reader. Our extensive experiments
demonstrate the superiority of our TagFree on activity identification in multipath-rich
environments.

• RFID-based human activity identification has become a key component in today’s
Internet-of-Things applications. State-of-the-art solutions mostly focus on the simple
scenario with a single person in the open space. Extension to the more realistic real-
world scenarios with multiple persons however is non-trivial. Given the much richer
interactions among them, the backscattered signals will inevitably mixed, obscuring

3



the information of individual activities. This is further complicated with multi-path
in a common indoor environment. Though often considered harmful, the rich inter-
actions combined with multi-path indeed offer more observable data. After careful
processing the raw signals, critical information about the activities can be unveiled
through modern learning tools. We present M2AI, which for the first time accommo-
dates both multi-path and multi-object for activity identification. M2AI incorporates
a phase calibration mechanism to automatically eliminate the frequency hopping off-
sets, and a novel decoupling mechanism for the periodogram and pseduospectrum in
the raw signal mixture. The refined data are then fed into an advanced deep-learning
engine that integrates a Convolutional Neural Network and a Long Short Term Mem-
ory network, which examines both spatial and temporal information in realtime for
activity identification. Our M2AI is readily deployable using off-the-shelf RFID read-
ers. We have implemented an M2AI prototype with Impinj UHF passive tags and
a Speedway R420 reader. Experiments with multiple objects in a multipath-rich in-
door environments report an activity identification accuracy of 97%, a significant gain
(27%) over state-of-art solutions.

1.3 Thesis Organization

The remainder of the thesis is organized as follows:

• In Chapter. 2, we presented a literature review on activity identification with RFIDs
in both tag-attached and tag-free activity identification scenarios, where the former
directly attaches RFID tags to objects (e.g., human body), and the latter only puts
tags on fixed positions in the environment and thus makes objects tag-free.

• In Chapter. 3, we presented the architectural design of i2tag, an intelligent mobility-
aware activity identification system for RFID tags in multipath-rich environments.

• In Chapter. 4, we present TagFree, the first RFID-based device-free activity identifi-
cation system by analyzing the multipath signals.

• In Chapter. 5, we presented M2AI, the Multipath-aware Multi-object Activity Iden-
tification framework, which can identify multiple object activities in typical indoor
environments.

• In Chapter. 6, we conclude this thesis and discuss some future works..

4



Chapter 2

Activity Identification with RFIDs

Radio Frequency Identification (RFID) is a promising technology due to its low cost, small
form size, and batterylessness, making it widely used in a range of mobile applications,
including detection of human-object interaction [4], people/object tracking [5] and more
complex activity identification [6]. Figure. 2.1 illustrates two general scenarios for activity
identification with RFIDs. In tag-attached scenario, an RFID tag is attached to the human
body, and the activities are then captured by a tag reader [4] [6]. Tag-free scenario has
also been suggested [7]. Instead of attaching tags to human body, which sometimes can
be inconvenient and considered intrusive, multiple stationary tags are deployed in the en-
vironment as references, whose readings are expected to be affected by human activities in
close proximity. Through analyzing the backscattered signals from the reference tags, the
activities can then be identified. We next review literature for both scenarios in Table. 2.1.

2.1 Tag-attached Scenarios

2.1.1 Activity Identification Approaches

Tag-attached scenario is the most straightforward, as RFID tags are suitable to be attached
to objects due to its low cost, small for size, and batterylessness. Activity identification so-
lutions exploit the change of wireless signals incurred by the human’s actions. RF-IDraw [4]
can track human writing by tracking a passive RFID tag attached to his/her pen. Ding et
al. [6] developed FEMO that uses the frequency shifts of the movements to determine what
exercise a user is performing.

2.1.2 RFID Localization Techniques

Accurate RFID localization techniques that have successfully achieved centimeter or even
millimeter accuracy are often used to achieve the goal of activity identification. One possi-
bility is to utilize the RSSI of the tag, although RSSI values in backscatter communication

5
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Figure 2.1: Two general scenarios for activity identification with RFIDs

are insensitive to small body movement, and thus difficult to achieve high-precision iden-
tification. Making of using phase measurement for wireless localization techniques has
successfully achieved centimeter accuracy. We next illustrate the background of the RFID
localization techniques and provide a literature review for RSSI-based and Phase-based
approaches, as shown in Table. 2.2.

RSSI-based Approaches

Previous work on RF-based positioning primarily relied on RSSI information [1] [8] [9] [10]
[11]. The RF fingerprinting, pioneered by Radar [8], employed RSSI based fingerprinting
matching against a database to determine the indoor location. LANDMARC [9] introduced
the RF fingerprinting technique for localization with fixed location reference tags to help
location calibration. Vire [10] used imaginary reference tags, referred to as “virtual tags"
to achieve higher accuracy. Later several other improvements over RSSI fingerprinting
have been proposed, such as incorporating inertial sensor hints [1]. They typically deployed
reference tags on a monitoring region and then used RSSI values to locate a specific tag. The
major limitation of RSSI-based approaches is unreliable, since RSSI measured values are
highly sensitive to multipath effects, and thus difficult to achieve high-precision localization.

2.1.3 Phase-based Approaches

Phase reflects the distance that a wireless signal traverses in the physical world. There is
growing interest in using phase measurement for localization:
Distance ranging: One of the simplest approaches is to calculate the distance between
the transmitter and receiver based on received phase measurements. Here, we discuss only
some recent and relevant works. Li et al. [12] proposed a multi-frequency based ranging
method for passive RFID tag localization. Using phase measurement for distance ranging,
theoretically, could achieve high localization accuracy. Due to the multipath effects, the
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Solutions Categories Data Technical Improve-
ment

RF-IDraw [4] Gesture Identification RF phase employs multiple an-
tennas (8) to eliminate
this ambiguity

RFIPad [14] Handwriting Identification RSSI & RF phase transforms a tag plane
into a virtual touch
screen

FEMO [6] Activity Identification RF phase uses the frequency
shifts of the move-
ments

Li et al. [15] Activity Identification RSSI presents a deep learn-
ing architecture

TASA [7] Activity Identification RSSI deploys stationary
tags as references
for location-based
activity identification

APID [16] Activity Identification Signal energy uses energy changes of
backscatter signals

Table 2.1: Recent research on activity identification with RFIDs

phase measurement is not corresponding to the dominated path, and leads to high ranging
error. Liu et al. [13] presented an RFID localization scheme by using multiple antennas to
receive phase measurements from tags, where the hyperbolic positioning method is employed
to correlate phase measurements.
Holography: Holography is the science and practice of making holograms, which is in-
troduced to both the radar and acoustic community for target localization [25]. Miesen et
al. [17] employ holography to locate a moving tag on a transponder. It achieves an overall
accuracy of 7 cm. Parr et al. [18] exploited tag mobility and adopted Inverse Synthetic
Apertures Radar (ISAR) to generate hologram for tag localization and tracking. Tago-
ram [5] assumes that the tag movement velocity and its moving track is known in advance,
and leverages the tag mobility to construct a virtual antenna array and build a differential
augmented hologram using the phase values collected from the antennas. While it fails to
address the multipath issue, hence will likely experience practical problems indoors where
multipath reflections are prevalent and strong.
Angle-of-Arrival (AoA): Phased-based approaches use antenna arrays or simulated mul-
tiple antennas to extract the AoA from RF signals, which can achieve a positioning accuracy
on the order of tens of centimeters. AoA information is also employed specifically for R-
FID localization. Wang et al. proposed PinIt [19], which employed a moving antenna to
measure the multipath profiles of reference tags at known positions and locates the target
tag. PinIt [19] used synthetic aperture radar (SAR) with the moving antenna to extract
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Solutions Categories Data Technical Improvement
Radar [8] Tag-attached RSSI employed RSSI based fingerprinting to

determine the indoor location
LANDMARC [9] Tag-attached RSSI introduced the RF fingerprinting tech-

nique for localization with fixed location
reference tags

Vire [10] Tag-attached RSSI used imaginary reference tags
Zee [1] Tag-attached RSSI deployed reference tags on a monitoring

region and then used RSSI values to lo-
cate a specific tag

Li et al. [12] Tag-attached RF phase proposed a multi-frequency based rang-
ing method

Liu et al. [13] Tag-attached RF phase presented an RFID localization scheme
by using multiple antennas

Miesen et al. [17] Tag-attached RF phase employed holography to locate a moving
tag

Parr et al. [18] Tag-attached RF phase adopted Inverse Synthetic Apertures
Radar (ISAR) to generate hologram for
tag localization and tracking

PinIt [19] Tag-attached RF phase employed a moving antenna to measure
the multipath profiles of reference tags

STPP [20] Tag-attached RF phase moves the mobile RFID reader with one
directional antenna to acquire the spatial
order of tags

Yang et al. [21] Tag-attached RF phase proposed a hybrid method for object
tracking using noisy passive RFID read-
ings

Tagoram [5] Tag-attached RF phase leveraged the tag mobility to construct a
virtual antenna array

D-Watch [22] Tag-free RF phase utilized both the direct path and the re-
flection paths to track targets

Twins [23] Tag-free RF phase utilized the coupling effect among passive
tags

Tadar [24] Tag-free RF phase attached a group of RFID tags on the
outer wall and utilized the signals reflect-
ed off moving objects

Table 2.2: Related work on RFID localization

the multipath profiles for each tag and leverages the reference tags to locate the target
tag. PinIt is not appropriate in our mobile context because the fast-changing environment
violates the tag’s multipath profile at every moment, even the movement is very small.
STPP [20] was proposed to move the mobile RFID reader with one directional antenna to
acquire the spatial order of tags without localizing them. Either the tags or the mobile
RIFD reader has to move at a constant velocity, while the other kind of device should keep

8



stationary. Yang et al. [21] proposed a hybrid probability model which combines PF with
Weighted Centroid Localization (WCL) to achieve high accuracy and low computational
cost, but there existed some limitations on the velocity.

2.2 Tag-free Scenarios

The tag-attached approach requires the target to be attached with a tag capable of emitting
or reflecting RF signals. This, however, makes the approach not applicable in some scenar-
ios. For example, in intruder detection, the targets will deliberately discard any device that
can be tracked. In elderly care, senior people are usually reluctant to hold mobile devices,
wear wearables or be attached with RFID tags. These real-life scenarios motive the needs
of tag-free activity identification which does not require any device to be attached to the
target. Thus, tag-free activity identification has attracted extensive research interests.

In a tag-free configuration with stationary RFID tags being deployed in the environment
as references, e.g., on the walls or on the furniture, the communication link established with
fixed readers can be disturbed by human activities in close proximity, hence changing RSSI
or phase readings as well. Towards this direction, TASA [7] was proposed to rely on RSSI
fingerprints, where reference tags are deployed in a regular way on a monitoring region
and training data are generated during the training phase by requiring a person to act in
different locations. In the testing phase, resulting RSSI is mapped to the closest fingerprint
to identify the status of the person. Such fingerprint-based methods, however, need a
large amount of human efforts to acquire and update the fingerprint database. Changes in
the environment, such as the movements of furniture, will change the fingerprints, causing
mismatches between the database and the new measurements.

Later, Angle of Arrival (AoA) based schemes became popular with the opportunity of
multiple antennas attached to a single RFID reader. The Angle of Arrival (AoA) of an
RF source is computed by comparing the phases of the received signals at antennas. AoA
estimation is widely used in RF-based positioning given the different propagation distances
to different antennas, and serves as a foundation for activity identification. Tadar [24]
presented a system for tracking moving object through walls and behind closed doors using
COTS RFID readers and tags. Tadar demands a special RFID reader with a large number
of tag arrays, which limits their application in some scenarios. D-Watch [22] efficiently
utilized both the direct path and the reflection paths to identify the angle information of
the target. Twins [23] leveraged the coupling effect caused by interference among passive
tags to detect a single moving subject. APID [16] was proposed to detect arm reaching
by analyzing backscatter signals from a passive RFID tag. RFIPad [14] transformed a
tag plane into a virtual touch screen by anylzing the induced disturbance of RF signals.
However, AoA based schemes may still suffer similar performance degradation when facing
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the challenges from the multipath-rich environment [26], as will be further summarized in
the next subsection.

2.3 Summary

It is easy to see that although RFID-based activity identification solutions can be cat-
egorized into tag-attached and tag-free approaches, where the core technologies and the
corresponding challenges are actually similar. For example, in real world indoor scenarios,
the received raw RFID signals are the dynamic mixture of many signals from multiple paths,
which, as indicated in previous research work [15], may not be accurate enough to be im-
mediately applied to activity identification. Recently, learning-based technique has become
a very active research area for general activity understanding. Li et al. [15] proposed to
directly apply a deep learning approach on collected coarse-grained RSSI readings to range
about the tag for activity identification.

Our frameworks well complement these works by demonstrating the necessity and ben-
efits of appropriate data preprocessing on mixed multi-path signals and further proposing
a deep learning architecture that can take full advantage of this and maximize the per-
formance gain. In particular, we therefore propose to gather massive angle and power
information from multiple tags, and preprocess them for key feature extractions. As the
features of RFID-based activities are hard to be pre-selected manually, and the rules for
making correct estimations are hard to be pre-defined, we further propose a deep-learning
architecture to well handle such dynamics and provide an activity identification framework
in a multipath-rich environment.
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Chapter 3

RFID Mobility through Intelligent
Profiling

3.1 Introduction

The past few years have seen booming interest in human activity identification that pro-
vides a range of Internet-of-Things applications, such as healthcare and smart homes [27].
Traditional solutions mainly use radars [28], cameras [29], and various inertial sensors [30].
Yet, sensor or device based radar solutions require targets carrying sensors/wireless devices
that are often not negligible in both size and weight. While camera-based and device-free
radar-based systems have freed this limitation, they suffer poor performance in accurately
identifying multiple objects, especially under Non-Line-of-Sight (NLoS) scenarios. Radio
Frequency Identification (RFID) is a promising technology that can overcome those diffi-
culties due to its low cost, small form size, and batterylessness, making it widely used in
a range of mobile applications. For example, IKEA Canada has completed a solution that
enables shoppers to purchase merchandise with the tap of a spoon that has a built-in tag,
freeing shoppers from having to push carts or carry baskets around the store1. Disney has
built an RFID gaming system that can sense when the player is moving or touching objects
attached with tags in near real time [31].

The mobility of targets is an essential and important metric to differentiate various hu-
man activities [32] [6], e.g., sitting and walking. Yet, the granularity of mobility quantified
in existing solutions is not adequate. For example, [32] [33] can only distinguish static
and mobile objects , while [6] [4] deal with targets moving at similar speed. Therefore,
quantifying the intensity of mobility that is closely related to typical indoor activities is not
well addressed yet. One may think of making use of the RFID localization techniques that
have successfully achieved centimeter or even millimeter accuracy for mobility detection.

1IKEA Canada Engages Customers With RFID at Pop-up Store.
HTTP://www.rfidjournal.com/articles/view?14719
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Unfortunately, while such advanced solutions as RF-IDraw [4] and Tagoram [5] achieve
high accuracy through exploring antenna arrays, their performance degrades heavily for in-
door environments with multipath. Intuitively, their phase measurement, a core operation,
can be remarkably affected by multipath, invalidating the key assumption [34] that the
Angle-of-Arrival of the direct path is related to the measurement phase difference between
antennas, especially in Non-Line-of-Sight (NLoS) cases. Other localization solutions rely-
ing on predeployed reference tags [19] [20] generally require the tagged objects to be static
or with limited the moving velocities (i.e., 0.17-0.3 m/s), which is not even applicable for
walking (1∼1.4 m/s) and running (5∼7 m/s). Mobility may also be estimated through the
doppler effect [6]. Yet it works with only static communication environments and will again
become unstable in fast-changing indoor environments with dynamic multipath, random
signal/thermal noise, and varying antenna orientations. Empirically, we show that prior
schemes suffer from serious performance degradation for detecting realworld moving tags in
typical indoor environments, since using a single parameter for mobility detection is ineffec-
tive in multipath scenarios. Our observations motivate us to adopt a profile-based mobility
detection that utilizes multiple parameters in tag readings, which is detailed in Section 3.2.

In this chapter, we present i2tag, a mobility-aware activity identification system for
RFID tags through intelligent profiling, which works robustly in multipath-rich indoor en-
vironments. i2tag constantly generalizes a huge amount of fine-grained mobility, which
further enables us to utilize a supervised learning framework for activity identification as
shown in Figure. 3.1. At a high level, it goes through the following major steps:

• Preprocessing stage. we employ a novel fine-grained mobility profile to quantify
different levels of mobility, which seamlessly integrates RSSI variance and packet loss
rate, as well as a relative-phase-based fingerprint. The latter is highly effective in dis-
tinguishing tag mobility in complicated indoor environments with random signal noise
and multipath. By comparing the measured mobility profile against known reference
mobility profiles, we detect the tag velocity through a Multiple Dimensional Dynamic
Time Warping (MDDTW) [35] algorithm. We classify tag mobility into multiple cat-
egories based on the estimated velocity; for instance, stationary, micro-mobility, and
macro-mobility.2 In this stage, we split tag mobility profile Pi = {p1

i , p
2
i , ...} into seg-

ments in equal window size τ as {p1
i ,p2

i , ...}, which will be transferred into a mobility
vector as vi = {ν1

i , ν
2
i , ...}, where mobility vector as an underpinning unit is applied

in a multiclass support vector machine (SVM) [37].

• Training stage. Each tag mobility profile Pi is represented by a corresponding
mobility vector vi, then we can distinguish different kinds of activities, e.g., sitting,
exercising, walking, and running. To be specific, Vtrain in training samples with

2Zhou et al. [36] proposed a random mobility model for the different mobile situations, e.g., the user may
slowly move the tag although he/she is stationary or his/her movement is confined within a small area.
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Figure 3.1: Our supervised learning framework for mobility detection and activity identifi-
cation
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corresponding labels will be trained to build the mapping σ from the feature xi of
mobility vector vi to activity label yi.

• Prediction stage. We perform activity recognition in a supervised learning way.
For each mobility vector vi ∈ Vtest, we determine whether the feature xi of mobility
vector is concentrated in certain activities, then label it via σ to achieve corresponding
yi.

i2tag is readily deployable using off-the-shelf RFID readers3 (a single UHF reader with
a limited number of antennas) and allows reusing existing RFID readers for indoor activity
identification. We have implemented a prototype of i2tag using a Thingmagic reader and
Impinj tags, and have conduct extensive experiments in indoor environments. The results
demonstrate that, with i2tag, a single RFID reader with two connected antennas can
accurately distinguish the tag velocity, classify the fine-grained mobility and four categories
of activities, with an average detection rate up to 96%.

The rest of the chapter is organized as follows. Section 3.2 illustrates the motivation
of our work. Section 3.3 provides our detailed observations on the moving tags properties,
then presents activity identification to efficiently solve the problem. Section 3.4 shows the
details of implementations. Section 3.5 discusses the performance evaluation results on our
approach.

3.2 Why Single Parameter Doesn’t Work

3.2.1 Phase Difference as a Single Value

The limited programming interface posed by commercial tag readers4 provides only RSSI
and phase values. Yet RSSIs are not reliable for location inference, especially for indoor
environments, where multipath effects are dominant [38]. On the other hand, the phase
value is a relatively reliable choice for deriving statues of location and mobility. Intuitively,
accurate RFID localization can realize tag mobility detection. The tag mobility can be
distinguished by the angular velocity, depending on the spatial angle θ as well as the phase
difference ∆φ [6] [4] [39], as shown in Figure. 3.2(a). In this figure, one can calculate the
spatial angle θ by comparing the phases of the received signals at multiple antennas. The
phase φ of an RF signal rotates by 2π for every λ (wavelength) distance the signal travels.
Let ds,i and ds,j denote the distances from the source s, to the two antennas respectively,
and φi and φj are the phases of the received signal that we measure at the two antennas.
The phase difference between the received signals at the two antennas, ∆φj,i = φj − φi,
relates to the difference in their distances from the source, ∆dj,i = ds,j − ds,i, as follows:

3It is worth noting that the limited programming interface posed by commercial tag readers provides
only RSSI and phase values. As such, advanced algorithms for powerful wireless devices are not necessarily
applicable here.

4ThingMagic M6e RFID reader module. http://www.thingmagic.com/embedded-rfid-readers
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∆dj,i
λ

= ∆φj,i
2π + k (3.1)

where k can be any integer in [−D
λ −

∆φj,i
2π , Dλ −

∆φj,i
2π ] and D is the distance between two

antennas as Figure. 3.2 shows.
However, we find that the above intuition is true only when the multipath effect is

negligible. As seen from Figure. 3.2(b), if the signal arrives at each antenna via two paths,
the overall phases received at the two antennas become φ∗i and φ∗j . Let si and sj denote
the signals along direct path from source s to antenna i and j. Let s′i and s′j denote the
signals along second path from source s to antenna i and j. Let α denote the amplitude of
s. Let αi, αj ,α′i and α′j represent the propagation attenuation at the path ds,i, ds,j , d′s,i and
d′s,j . The overall amplitude received at the two antennas become α∗i and α∗j . We assume the
source s is far from antennas, therefore ds,i = ds,j = d, and have the following equations:

si = α · αi · ejφi (3.2)

sj = α · αj · ejφj (3.3)

where φi = φ0 + d
λ · 2π and φj = φ0 + ( dλ + Dcosθ

λ ) · 2π.

s∗i = α · α∗i · ejφ
∗
i = α · αi · ejφi + α · α′i · ejφ

′
i (3.4)

s∗j = α · α∗j · e
jφ∗j = α · αj · ejφj + α · α′j · e

jφ′j (3.5)

where φ′i = φ0 + d′s,i
λ · 2π, φ

′
j = φ0 + (d

′
s,j

λ + Dcosθ
λ ) · 2π, φ∗i = 2 · φ0 + d

λ + d′s,i
λ and φ∗j =

2 · φ0 + d
λ + d′s,j

λ + 2 · Dcosθλ . For instance, we assume φ0 = 0, λ = 0.33m, α = 1, α′i = 0.6,
α′j = 0.7, αi = 0.8, αj = 0.9, θ = π

4 ,d = 3.3m, d′s,i = 3.5m,D = 0.165m and d′s,j = 4m.
Then s∗i = 0.33 − 0.37i = 0.496e−0.8425j and s∗j = 0.1325 + 0.5404i = 0.5564e1.3304j , hence
φ∗i = −0.8425 and φ∗j = 1.3304. Since φi = 0 and φj = 2.2217, we have φi 6= φ∗i and φj 6= φ∗j .
Obviously, the new phase difference under this simple multipath scenario is not equal (nor
a good approximation) to the original phase difference, i.e., ∆φj,i 6= ∆φ∗j,i. Hence, these
approaches are ineffective in multipath-rich indoor environments.

To verify the above hypothesis, we conduct a series of indoor experiments using off-
the-shelf tags and the reader by varying positions (spatial angle θ), distances, and tag
orientations. The frequency hopping affects phase-angle measurements even for a stationary
tag, and thus we fix the channel on the 910 MHz. The results are plotted in Figure. 3.3(a)-
(c), which show that the measured phase differences are unreliable, even there exist some
experimental results matched with the theoretical benchmark. (i). In Figure. 3.3(a), the
red dashed line is the numerical benchmark and the purple dots represent the measured
phase difference values ∆φ in the experiments. We place the stationary tag at a distance 2m
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d = 2m
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(c) Tag orientation, spatial angle θ = 90◦, distance
d = 2m

Figure 3.3: Empirical results of existing methods that use the phase difference as a single
value
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facing to the polarized antennas at different spatial angle θ. it shows the phase differences
are not acceptable. We observe that there are significant offsets between the measured
phase difference values and the theoretical benchmark; (ii). In Figure. 3.3(b), we put the
tag with spatial angle θ = 90◦ at different distances. The result demonstrates that the
distances have no influences on the phase errors, where the significant phase errors exist at
any distances; (iii). In Figure. 3.3(c), the tag orientation is defined as the angle between
the reader antenna’s polarization direction and the tag’s antenna. It shows that the tag
orientation also introduces the phase errors. Therefore, these measured phase errors as well
as random signal noises exist anytime, making phased-based localization ineffective and
unreliable. Even worse, a stationary RFID tag can be confused with a tag moving at a high
velocity.

3.2.2 Phase Differences as a Vector

From the above, we know that the phase difference ∆φj,i as the single parameter is ineffective
in multipath scenarios. We observe that if we stack the phase differences across a small time
interval into a vector, then this vector can be a good indicator of different mobility. To see
how this works, we first broadly classify tag mobility into three categories. If the tag is static,
it is in the stationary status, as Figure. 3.4(a) shows. For the mobile situation, the user may
slowly move the tag although he/she is stationary or his/her movement is confined within a
small area, e.g., the user may make a telephone call, and a little movement of her head may
displace her smartphone. We call that the tag is under micro-mobility in Figure. 3.4(b) if
it is moving but its location is confined within a small area. Otherwise, tag mobility may
also cause the tag to change its location as its user walks from one location to another. In
such scenarios as Figure. 3.4(c), we classify the tag to be under macro-mobility.

We run three experiments to analyze each kind of mobility in multipath environments.
First, we place a stationary tag at a fixed location. Second, for micro-mobility tag, we
picked up the tag and moved it around within a meter of its location. Lastly, for evaluating
macro-mobility tag, we walked around with the tag in our hand. Figure. 3.4(a) depicts the
phase difference for the three categories of tags in 6 seconds. In Figure. 3.4(a), the reader
received the signals from a stationary tag, where the phase difference distribution keeps
relatively stable. Both the micro-mobility tag with velocity 0.1 m/s in Figure. 3.4(b) and
macro-mobility tag with velocity 0.5 m/s in Figure. 3.4(c) return the phase values, where we
clearly see that the variance of the phase differences from the macro-mobility tag increases
much faster than those of the micro-mobility tag.

We shall explore more details of the relative phase fingerprint in the next section. To
detect the tag mobility, we propose a concept of relative phase fingerprint, which denotes
the Bhattacharyya distance [40] of the phase difference distribution between two intervals.
For illustration, we extract the phase difference distribution at 5 s and 6 s; as can be seen,
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Figure 3.4: Our observation that the phase difference vector can be a good indicator for
different levels of mobility.
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ti time i
τ window size
T number of periods
∆φtji phase difference for tag i at time tj
ψi phase difference density at time i
ϕi phase difference histogram at time i
rji RSSI variance of tag i at time j
sji relative phased-based fingerprint of tag i at time j
eji packet loss rate during of tag i at time j
pji measured mobility profile of tag i at time j
pki mobility profile segment of tag i
Pi mobility profile for tag i
P a set of tag profile {P1,P2, ...}
D distance matrix
L warping path
CL total cost of warping path
vi mobility vector for tag i
νji mobility status
fi mobility feature
yi activity label
ci activity cluster

Table 3.1: Summary of notations

the stationary tag has much more similarity of phase difference distribution between the
two seconds.

3.3 System Design

This section starts from the design of our mobility profile. Then we have shown how to use
this profile to effectively detect mobility. Finally, we showcase an accurate indoor activity
identification system that builds on our mobility detection scheme.

3.3.1 Mobility Profile

Before we proceed with the detailed solutions for the individual modules of i2tag, we first
summarize the key notations in Tab. 3.1. The read operation of a commercial UHF RFID
reader contains the metadata, namelymeasured mobility profile, about how, where and when
the tag was read. The measured mobility profile for each tag read is as follows: antenna ID,
read count, timestamp, frequency, phase, and RSSI. We utilize the RSSI, phase and read
count for detecting tag mobility.
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RSSI

One possibility is to utilize the RSSI of the tag, although RSSI values in backscatter com-
munication are not sensitive with the mobility of tags. To provide empirical evidence of the
above claim, we measure the RSSI values on ten channels from 910-915 MHz. In our exper-
iments, we found that RSSI is quite stable in stationary scenarios. Yet RSSI is susceptible
to any changes in the environment. Often, the RSSI variance under environmental mobility
is higher than the observed variation in device mobility.

Figure. 3.5 shows the velocity and corresponding RSSI when the tag is stationary or of
other mobility. When the tag is close to the RFID reader, RSSI values are naturally high;
yet there are few differences between the stationary tag and moving tags. Therefore, RSSI
values cannot be immediately applied in the mobility detection. Fortunately, we observe
that the significant differences in RSSI variance between the stationary and moving tags,
where we normalize the RSSI variance value between 0 and 1. Although there are multipath
in the indoor environment, the RSSI variances of static tags keep relatively stable. There
is a significant difference between stationary and moving tags, where the RSSI variances
change frequently due to the changing tag position and multipath. Figure. 3.6 shows the
RSSI variance at the different tag velocity, where we use normalized standard deviation to
represent the RSSI variance, which is range from 0 to 1. Clearly, the RSSI variance can be
used to distinguish between stationary and mobility scenarios, where the RSSI variance of
velocity 0 m/sec is close to 0.21 and the RSSI variance of velocity 0.2 m/sec jumps to 0.35.
The error bars are high for the moving tags; therefore it is difficult to distinguish between
micro-mobility and macro-mobility using the RSSI variance.

Packet Loss Rate

Packet loss rate, another important metric in backscatter systems, is the percentage of the
maximum number of times that the tag was read during a fixed interval, e.g., one second.
Intuitively, mobility and packet loss rate are strongly correlated, since mobility often leads
to fast-changing channels.

Hence, the measured packet loss rate can be a dependable indicator of dynamic channel
quality. Intuitively, we can use the difference in the loss rates to infer how the tag changes in
location or mobility velocities. The experimental results support this hypothesis as shown in
Figure. 3.7, which clearly shows that it is straightforward to distinguish between the mobile
and stationary case since they have the vastly different packet loss rates. Thus, the packet
loss rate is a unique feature of backscatter communication, which involves complementary
information about path loss and multipath effects. However, there are still large overlaps
between different classes of mobility. Since the loss rate is measured from each of received
packets, the moving operation makes the packet loss rate of RFID tag increases rapidly.
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Figure 3.7: Packet loss rate of mobility profile

As such, even if it is possible to use loss rate to distinguish between stationary and macro-
mobility, it cannot reliably distinguish between different classes of device mobility.

Relative Phase Fingerprint

We have demonstrated that the measured phase cannot be applied to mobility detection in
multipath-free environments. Here, we propose a concept of relative phase fingerprint to
represent the similarity of phase difference distributions.

Instead of directly using the phase differences, we use histogram formulation to represent
the distribution of phase differences at a short interval. The reader antennas receive a set
of consecutive signals from the moving tag, where we can capture a set of phase differences
ψi = {∆φtji ,∆φ

tj+1
i , ...} between two antennas. Let ψi be the phase difference density of the

moving tag, which is discretized into m-bins with the function ϕi = h(ψi). The histogram
ϕi is produced by assigning phase differences ψi = {∆φtji ,∆φ

tj+1
i , ...} to the corresponding

bin.
The estimated state of tag mobility is updated at each time step by incorporating the

new observations. Our measurement of the distance between the two phase distributions
ϕi and ϕj is based on the Bhattacharyya coefficient [40]. Considering discrete densities
such as our phase difference histograms ϕi = {ϕ1

i , ϕ
2
i , ..., ϕ

m
i } and ϕj = {ϕ1

j , ϕ
2
j , ..., ϕ

m
j }, the

coefficient is defined as
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Figure 3.8: Relative phase fingerprint of mobility profile

ρ(ϕi, ϕj) =
m∑
u=1

√
ϕui ϕ

u
j (3.6)

where m is the number of bins. The larger ρ is, the more similar the distributions are. For
two identical normalized histograms we obtain ρ = 1, indicating a perfect match. We define
the distance between two distributions as

d =
√

1− ρ(ϕi, ϕj) (3.7)

where d is also called the Bhattacharyya distance [40]. We use this d to quantify the
similarity of relative phase fingerprints.

Figure. 3.8 illustrates that the Bhattacharyya distance of the relative phase-based finger-
print can be used to detect the tag velocity. For slow velocity, the Bhattacharyya distance
stays low due to the stable environment and slow changes of the phase differences. The
Bhattacharyya distance increases once the tag keeps moving. Furthermore, we found that
the similarity of fast moving tag (0.4-0.5 m/s) increases faster than slowly moving tag (0.2-
0.3 m/s). This happens because a slowly moving tag typically affects only a few multipath
components, whereas if the tag itself is moving, all the multipath components will be af-
fected. Therefore, the RFID signal experiences faster variation under macro-mobility than
under micro-mobility for the relative phase-based fingerprint.
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3.3.2 Mobility Detection

In this section, we introduce an approach to determine mobility statuses of tags. The mo-
bility profile is constantly changing over time with the tag rotation and change of locations.
Note that the mobility profile patterns are similar for the same mobility at different rounds
but distinctive for different mobility. That said, a particular mobility can be identified by
comparing against known profiles.

During the period T of interval length τ , we have the mobility profile set Pi of RFID tag i
with RSSI variance Ri = {r1

i , r
2
i , ..., r

T
i }, relative phase-based fingerprint Si = {s1

i , s
2
i , ..., s

T
i }

and the packet loss rates E = {e1
i , e

2
i , ..., e

T
i }. We have mobility profile pi = {ri, si, li} in

interval ti and mobility profile Pi as follows:

Pi = {p1
i , p

2
i , ..., p

τ
i ,︸ ︷︷ ︸

1st seg

pτ+1
i , ..., p2τ

i ,︸ ︷︷ ︸
2nd seg

..., p
(k−1)τ+1
i , ..., pkτi ,︸ ︷︷ ︸

kth seg

...} (3.8)

where τ is the windows size of segments. Let mobility profile segment pi
k represent the kth

segment in the mobility profile Pi.
i2tag detects the tag mobility based on the distance with the multiple dimensional

vectors, i.e., the RSSI variance, packet loss rates and relative phase-based fingerprint. To
perform multidimensional sequence alignment, i2tag employs Multi-Dimensional Dynamic
Time Warping [35] to compute the similarity between two mobility profiles. On one hand,
MDDTW compares two mobility profiles with different lengths. On the other hand, MD-
DTW automatically compresses or stretches a sequence to minimize the distance between
two sequences, thus focusing on the shape similarity rather than the absolute values.

We capture the mobility profile based on the tag velocity as the reference P = {P1,P2, ...}.
Then we use the Multiple Dimensional Dynamic Time Warping (MDDTW) technique to
match the reference mobility profile against the measured mobility profile. It naturally
compensates for the shifts among different mobility profiles caused by varying tag moving
velocities. The input of the MDDTW algorithm consists of a reference mobility profile Pi of
length N and a measured mobility profile P ′j of length M . MDDTW first constructs a dis-
tance matrix DM×N where each element Duv is defined as the Euclidean distance between
element pui and pvj :

Duv = pui − p′
v
j = ||rui − r′

v
j ||+ ||sui − s′

v
j ||+ ||eui − e′

v
j || (3.9)

where pui and p′
v
j are the uth and vth elements of the mobility profiles Pi and P ′j , respectively.

The MDDTW algorithm find a warping path L(Pi,P ′j) = {l1, l2, .., lk} such that the total
cost CL(Pi,P ′j) of the warping path is minimized:

arg min
L
CL(Pi,P ′j) =

k∑
i=1
Dli (3.10)
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ALGORITHM 1: Mobility detection
Input: reference mobility profile set P, and measured mobility profile set P′

Output: a set of mobility vector {vi}
for each P ′

i ∈ P′ do
Mobility vector vi = ∅;
j = 0;
νj

i = 0;
for each p′j

i ∈ P ′
i do

Cost = +∞;
for each Pk ∈ P do

Ctmp = CL(p′j
i ,Pk);

if Ctmp < Cost then
Cost = Ctmp;
νj

i = k;
end

end
j += 1;

end
mobility vector vi = {vi, ν

j
i };

end
Return a set of mobility vector {vi};

where li = (x, y) ∈ [1 : M ] × [1 : N ]. Then the measured mobility profile P ′i is classified
into different mobility based on the reference mobility profile set P. Algorithm. 1 shows
the workflow to calculate the mobility vector vi = {ν1

i , ν
2
i , ...} for each RFID tag mobility

profile P ′i, which contains a sequence of mobility status.

3.3.3 Understanding the Activities

In the preprocessing stage, we first set a window size τ to split the tag mobility profile Pi
into profile segments {p1

i ,p2
i , ...} as illustrated in Figure.3.1. For each profile segment pji ,

we treat it as the basic unit and extract its mobility status νji for labeling. In this section,
we will introduce the multiclass SVMs on recognizing and labeling the activities based on
the tag mobility vector vi. For each mobility vector vi, we could simply calculate mobility
frequency and denote it as feature fi that means the mobility percentage.

When all preparatory steps are done, we can identify the activities in mobility profile Pi.
We assume that there are multiple categories of activities in one specific mobility profile.
Specifically, if we have a semantically concentrating profile, for the mobility frequencies,
they may have higher variances and lower information entropy. We accordingly formulate
the concentrating rating γ as follow:

γ =
∑k
i (fi − f̄)∑

q−q log(q) (3.11)
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in which q is the normalized form of f , i.e., qi = fi∑
j
fj

(fi 6= 0), and
∑

q−q log(q) here is in-

deed the entropy of q. Then, mobility profile segments {ptsj , ...,p
te
j } with their concentrating

ratings larger then a threshold will be recognized as an activity segment xi =< ts, te, fi >,
where ts,te indicates the time range of slide, fi means the comment frequency on the mo-
bility.

Note that the threshold here is set dynamically in different mobility profiles. We can
calculate a series of ratings for the slides and then find the max and min. The threshold is
set as α×min+(1−α)×max, (0 ≤ α ≤ 1), where α is called pass rate and the sensitiveness
of α will also be discussed in experimental part.

The set of activity segment xi =< ts, te, fi > are now obtained, and we label each feature
xi with our preset activity label yi in a supervised way. We investigate the use of kernel
functions to transform the mobility space into a feature space amenable to the Support
Vector Machine (SVM) learning methods [37]. SVMs work well in many learning situations
since they generalize to unseen data, where the machine is defined by a subset of the training
points (i.e., support vectors). In the basic binary classification, SVMs find a hyperplane that
provides a maximal separation between two classes. This optimal hyperplane is orthogonal
to the shortest line connecting the two classes in their dimensional space, where SVMs
maximize the minimal margin. Additional data points, i.e., noises, do not affect the final
solution unless they redefine the margin. Therefore, SVMs are amenable to continuous,
adaptive on-line learning in activity identification. Multiclass SVMs [37] solves the problem
of classifying instances into the more than two classes.

We start with the supervised case. Assume we are given labeled training examples
(x1, y1), ..., (xn, yn), where each example is assigned a label from a fixed finite set yi ∈
{1, ..., k}, where k is the total number of categories of activities. Here, we need to extend our
feature functions σ(x, y) to include the y-labels explicitly, which provides a separate weight
vector wk for each class k. Once a complete weight vector has been learned, subsequent test
examples x are classified according to y∗ = arg maxy w>σ(x, y). The dominant multi-class
training procedure for SVMs is formulated as:

w = minw,ξ
β
2 ||w||

2 + ξ>e

s.t. w>(σ(xi, yi)− σ(xi, k)) ≥ δ(yi, k)− ξi,∀i,k
(3.12)

where δ(yi, k) = 1(yi 6=k), and w is the multi-class analog of the inverse squared margin. When
we get the classifier, every activity segment xi can be labeled with a human understandable
activity lable yi. In our case, multiclass SVMs [37] are chosen to perform robust and efficient
multi-classfication.
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(a) ThingMagic M6e RFID reader (b) Various RFID tags

(c) Laird Indoor RFID antennas (d) iRobot Create Programmable Robot

Figure 3.9: Commercial UHF RFID devices used in experiments

3.4 System Implementation

In this section, we describe the key implementation details that are not covered in the previ-
ous sections. Our implementation is entirely done based on a commercial reader and requires
no modifications to tags. Note that we only highlight the key components here since any
real-world activity recognition system requires enormous efforts on implementations [41].
Hardware Settings: Although our system design works with most of the off-the-shelf com-
mercial readers, our prototype implementation uses a Thingmagic reader over other readers
(e.g., ImpinJ reader), which have been extensively used in the previous research [19] [20] [6].
The Thingmagic reader works well for mobile applications. For example, the dimensions
of a Thingmagic Nano-RFID reader module are 22 × 26 × 3.0 mm 5, whereas those of an
ImpinJ reader R420 are 190.5 × 175.3 × 30.5 mm. Additionally, the ImpinJ reader can
report phase readings ranging from to 0◦ to 360◦. In contrast, our ThingMagic M6e 4-port
UHF RFID reader(69 × 43 × 7.5 mm) shown in Figure. 3.9(a), is only able to return phas-

5Note that the ThingMagic (http://www.thingmagic.com) offers the smallest embedded UHF RFID
reader modules.
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es ranging from 0◦ to 180◦, which causes ambiguity. Fortunately, our system design does
not require accurate phase difference measurement which is necessary for existing method-
s [19] [20]. As i2tag relies on relative phase differences, such ambiguity poses negligible
influence.

Another important setting is the distance of two antennas. We connect our ThingMagic
M6e reader to the two Laird Indoor RFID Antennas6, of which the dimensions are 259 ×
259 × 33 mm. Theoretically, the antenna separation D should be spaced by λ/2, which
effectively reduces the ambiguity caused by the high-resolution grating lobes [4]. Due to
the available frequencies of RFID, the typical wavelength λ is 0.32786 m ( suppose f = 915
MHz). Therefore, it is impossible to set D to be smaller than λ/2 (i.e., 0.16 m). In our
implementation, we set D as multiples of λ/2, D = 2·λ/2, which equals to 0.33 m. Although
this setting unavoidably introduces ambiguity in phase measurement, unlike RF-IDraw [4]
that employs multiple antennas (8) to eliminate this ambiguity, we solve this problem using
relative phase differences with only two antennas.

We examine various UHF RFID tags as shown in Figure. 3.9(b), where those different
tags have similar performance with phase differences up to 5◦. Therefore, we only report
the results of a representative type, i.e., Impinj UHF RFID tags, in the rest of this chapter.
In our lab, we run the client on a Lenovo laptop (ThinkPad T560), equipped with an Intel
Core i5-6200U Dual 2.3/2.8GHz CPU and 8 GB 1333 MHz DDR3 RAM. The server runs
on a state-of-the-art Dell desktop (OPTIPLEX 7010), each equipped with an Intel Core
i7-3770 3.4 GHz quad-core CPU, 8 GB 1333 MHz DDR3 RAM, and a 1 Gbits/sec Network
Interface Card (NIC).
Software Settings: The system employs a typical client-server architecture. The process-
es on clients adopt LLRP protocol [42] to communicate with the reader, and continuously
collect the tag readings. The backend module of i2tag on the server allows mobile clients
to submit the streaming of tag readings, where we store the training results in the MySQL
database and execute our algorithms to detect the tag mobility and identify the activity.
The Multi-Dimensional Dynamic Time Warping is implemented by C++ language and the
multiclass SVMs are implemented based on the Scikit-learn library [43] and LIBSVM [44].
The client is implemented using Java and Mercury API7. i2tag requires the reader contin-
uously collect tag readings for the further analysis, while using a loop to execute the tag
reading operation in a duration leads an excessive delay. Therefore, we utilize the asyn-
chronous reading method startReading(), which returns immediately a sequence of RFID
reads to the calling thread, then the calling thread uploads the tag readings to the server.
Mobility and Activity Detection: Our experiments include two parts: the mobility
detection and activity identification. In the mobility detection, the ground-truth of RFID
tag velocity is important for the quality of training set in mobility detection, which also

6Laird S9028PCR/S8658PCR (RHCP) INDOOR RFID ANTENNA. HTTP://rfid.atlasrfidstore.com/
7Mercury API Programmer’s Guide. www.thingmagic.com/
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incurs high overhead. Then we employ a carrier attached an Impinj UHF RFID tag as
shown in Figure. 3.9(d). The carrier is an iRobot Create programmable robot8, of which we
can accurately control moving directions and velocities. The robot runs with two powered
wheels, while a third passive caster wheel maintains balance. The wheels are controlled
independently with a maximum velocity of 500 mm/s. We program the iRobot moving
back and forth along a line at a constant velocity. Alternatively, the robot may move
along a circle, yet the velocity is uncontrollable and difficult to measure. We examine the
effectiveness of tag mobility detection with different forwarding velocities ranging 0.0 m/s
to 0.5 m/s. If the velocity is smaller than 0.1 m/s, the tag would be deemed stationary.
For velocities ranging from 0.1 m/s to 0.4 m/s, we classify them as micro-mobility, whereas
velocities that are greater than 0.4 m/s are deemed as macro-mobility.

In the activity identification, we invite ten volunteers and each volunteer 9 is attached
to an Impinj UHF tag on one’s hand. The volunteers stand 2-5 meters away from the
reader antennas in our experiments10. To conduct a comprehensive evaluation, we test four
typical indoor activities, i.e., sitting, exercising, walking and running. In each activity case,
the RFID reader continuously queries RFID readings for ten minutes. Then we evaluate
the accuracy of activity identification and further explore mobility distributions for the
four categories of activities. Furthermore, the volunteers conduct several different kinds of
activities in one duration. They are used to evaluate the robustness of i2tag for identifying
randomly changing activities.

3.5 Evaluation

We conduct experiments in a typical office, which is a multipath-rich environment. We
evaluate the performance of i2tag in terms of accuracy, effectiveness, and overhead.

3.5.1 Mobility Accuracy

Figure. 3.10 shows the result of fine-grained mobility detection accuracy with respect to
carrier velocities varying from 0.0 m/s to 0.5 m/s. In particular, Figure. 3.10(a) plots
the performance of i2tag with different sample intervals. The accuracy is low for short
sampling intervals, because the phase differences may not be stable even under stationary
status. Figure. 3.10(b) illustrates that the larger the detection window size is, the greater the
accuracy achieves. But the large detection windows size will delay the mobility detection.
In this work, we identify three broad categories of tag mobility based on velocities.

Then we further evaluate the accuracy of mobility detection. The performance of de-
tecting mobility depends on the sampling period in Figure. 3.11(a). The accuracy is low for

8iRobot Create Open Interface (OI) Specification. HTTP://www.irobot.com/
9Note that those volunteers are varied in age, gender, height, and weight.

10The commercial RFID reader’s range limits the range of our current prototype. Beyond 5 meters, the
RFID tag cannot harvest enough energy to wake up.
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Figure 3.10: Accuracy of fine-grained mobility detection with respect to carrier velocities
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Figure 3.11: Accuracy of mobility detection under various conditions
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short sampling period because the RFID signal of the stationary tag may change very quick-
ly under multipath effects. We use a sampling period of 750 ms in the rest of our evaluation,
yielding a median accuracy of 96%. The larger detection window size make the accuracy
higher for the moving tag in Figure. 3.11(b). Meanwhile, large detection windows will delay
the macro-mobility detection. Nonetheless, we find that a detection window of 8 yields a
satisfactory accuracy of 98%, and hence we use this setting in the rest of experiments.

We next evaluate the robustness of i2tag with two citations, i.e., tag orientation and
distance. Impact of orientation: The tag orientation is defined as the angle between the
reader antenna’s polarization direction and the tag’s antenna. To understand the effect of
tag orientation, we conduct 6 experiments on the fixed frequency, 915 MHz. To measure its
influence on the detection accuracy, we adjust the orientation from 0◦ to 360◦. As expected,
the result remains at the same level. Impact of distance: We evaluate the accuracy with
varying distances from 1 m to 3 m. i2tag does not exhibit clear correlation with the
distance. Therefore, the distance is not a crucial factor affecting the accuracy. Especially,
a mean error distance of 5 mm can be obtained, when placing the antenna at a distance of
0.3 m. In fact, it is more reasonable to model the antenna as a point locating at its centroid
when it keeps far away from the tag.

3.5.2 Activities and Mobility

Tab. 3.2 shows the results of activity recognition for a single tag. Each row denotes the
actual activity performed and each column represents the activity recognized by i2tag.
Each element in the matrix represents the percentage of activities in the row, which is
recognized as the activity in the column. As shown in the table, the average accuracy is
83.15% for four activities. This shows that we can extract rich information about the tag
mobility and activities. The result clearly shows that i2tag achieves a high and stable
activity recognition performance, due to its efficient mobility detection and robust activity
cluster algorithms. The average accuracy of identifying activities is 83.15%, where the slow
activity identification have the accuracy up to 94.62%. The above results show that i2tag

can distinguish a set of activities with high accuracy.
To understand the effect of multiple activities in one sequence of tag readings, we conduct

four experiments, where there are two kinds of activities operating in order. In each exper-
iment, an activity is performed for 5 minutes. i2tag can clearly distinguish those activities
based on the tag mobility distribution as shown in Tab. 3.3. We further have a detailed
look at these experiments as shown in Figure. 3.12. Figure. 3.12(a) shows that walking and
running have no stationary status, where activity has approximately 90% macro-mobility
and walking only has 25% macro-activity. Figure. 3.12(b) illustrate the high percentage of
stationary and micro-mobility represents the activity is in a small area. Figure. 3.12(c) illus-
trates the same kind of activity that has the similar percentage of stationary and mobility
status, where two volunteers just walked and did some daily routines. Figure. 3.12(d) shows
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Identified activities percentage (%)
Sitting Exercising Walking Running

Sitting 94.62 5.38 0 0
Exercising 12.50 87.50 0 0
Walking 0 15.00 75.00 10.00
Running 0 0 24.44 75.56

Table 3.2: Activity identification of single RFID tag

Identified activities percentage (%)
Sitting Exercising Walking Running

Walking 0 0 70 30
Running 0 0 10 90
Sitting 96 4 0 0
Exercising 0 80 20 0
Exercising 10 78 12 0
Exercising 8 82 10 0
Exercising 0 85 15 0
Walking 0 0 90 10

Table 3.3: Activity identification of two RFID tags

that micro-mobility and macro-mobility are effective to distinguish different intensities of
mobility.

3.5.3 Realtime Performance

Window size
Intervals (ms) 4 6 8 10 12 14

200 0.025 0.032 0.036 0.041 0.050 0.054
350 0.022 0.021 0.025 0.029 0.033 0.037
500 0.018 0.018 0.021 0.024 0.031 0.031
750 0.017 0.018 0.021 0.023 0.028 0.031
1000 0.018 0.018 0.021 0.024 0.025 0.031

Table 3.4: Computation Complexity

i2tag provides online mobility-detection and activity identification, where the statistical
information is displayed in Tab. 3.4. i2tag takes an incremental process to generate the
relative phase-based fingerprint. After receiving a successful response from the reader, i2tag

produces intermediate tag features and superimposes them to the Multiple-dimensional
Dynamic Timing Warping processing. The read time is the interval during which the
reader interrogates two consecutive rounds of reading. It is an upper bound which should
be taken for producing an intermediate result. The median read time is 33 ms, and any
computation exceeding this bound might affect the real-time performance. Theoretically,
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Figure 3.12: Activities and mobility pattern

the fast implementation of Multiple Dimensional Dynamic Timing Warping (MDDTW)
provides optimal or near-optimal alignments with an O(n) time and memory complexity.
It shows that i2tag achieves a recognition latency of 30 ms on average. Therefore, we can
conclude that i2tag can provide real-time activity identification results.
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Chapter 4

TagFree Activity Identification
with RFIDs

4.1 Introduction

With the widespread deployment of Internet-of-Things, human activity identification has
become a key service in many IoT applications, such as healthcare and smart homes [27]. It
has received significant attention from both academia and industry, with diverse solutions
based on radars [28], cameras [29], inertial sensors [30], etc. Among them, RFID (Radio
Frequency Identification) is of particular interest given its low cost, light weight, small foot-
print, and batteryless-operation. There have been pioneer studies on tag-based solutions for
human activity identification [20] [4] [6]. That is, an RFID tag is attached to the human
body, and the activities are then captured by a tag reader. Recently, tag-free solutions have
also been suggested [7] [45]. Instead of attaching tags to human bodies, which sometimes
can be inconvenient and considered intrusive, multiple stationary tags are deployed as ref-
erences, whose readings are expected to be affected by human activities in close proximity.
Through analyzing the backscattered signals from the reference tags, the activities can then
be identified.

The information offered by today’s RFID tags are quite limited, and the typical raw
data, namely, received signal strength indicator (RSSI) and the phase angle, mostly target
stationary reading scenarios. As such, existing tag-based activity identification solutions
are far from being satisfactory, not to mention tag-free. Our realworld experiments have
shown that the RSSI readings almost have no change with small human activities, e.g.,
shaking hands; The phase angle, though being sensitive to activities, is hardly a reliable
indicator. It is also well known that the accuracy of the readings can be noticeably affected
by multipath, which unfortunately is inevitable in an indoor environment.

In this paper, we however argue that mutipath indeed brings rich information that can be
explored to identify human activities. Our experiments suggest that both the backscattered
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signal power and angle are highly related to human activities, impacting multiple paths with
different levels. In a tag-free configuration with multiple reference tags, if we can capture
these changing features of the paths, the activities could be identified with high sensitivity.

Inspired by these observations, we present TagFree, the first RFID-based device-free
activity identification system by analyzing the multipath signals. Identifying the relevant
features can be very time-consuming and complicated, so for defining the rules for accurate
classification of activities. Different from conventional solutions that directly rely on the
unreliable raw data, TagFree gathers massive angle information as spectrum frames from
multiple tags, and preprocesses them to extract key features. It then analyzes their patterns
through supervised learning. In particular, a deep learning framework with both Convo-
lutional Neural Network (CNN) [46] and Long Short Term Memory (LSTM) network [47]
is applied for common activity identification, which also scales up well to identify complex
high-level activities (e.g., hour-long, day-long or more).

We conduct extensive experiments to evaluate our TagFree in multipath-rich environ-
ments and report significant performance gains over different state-of-art feature-based solu-
tions. With an alert mechanism, TagFree can be customized as a monitor for senior patients
in healthcare facilities, e.g., identifying dangerous events such as falling down on floors. Al-
so, we envision that our TagFree can further facilitate various smart home applications, e.g.,
activity-based temperature adjustment in homes or exercise assistant equipment in gyms.
It is also worth noting that TagFree is readily deployable using off-the-shelf RFID readers
(a single UHF reader with a limited number of antennas) and allows reuse of existing RFID
readers for indoor activity identification.

The rest of the paper is organized as follows. Section 4.2 presents the challenges in tag-
free activity identification, and Section 4.3 illustrates the basic idea of our work. Section 4.4
provides our data pre-processing scheme on dealing with frequency hopping and de-coupling
multipath signals, and then Section 4.5 presents our deep learning approach for activity
identification. Section 4.6 discusses the implementation details. The performance evaluation
results on our approach are presented in Section 4.7.

4.2 Raw RSSI or Phase? Challenges for Tag-free Activity
Identification

Today’s commercial tag readers have very limited programming interfaces, which, through
the standard Low Level Reader Protocol (LLRP)1, report such low-level raw data as the
received signal strength indicator (RSSI) and the phase angle only. The raw RSSI and phase
data have been widely used for tag-based RFID applications. In a tag-free configuration
with stationary RFID tags being deployed as references, e.g., on walls or furniture, the
communication link established with fixed readers can be disturbed by human activities in

1Thingmagic M6e reader.http://www.thingmagic.com/
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Figure 4.1: The limitation of RSSI and RF phase
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Figure 4.2: Spectrum for no-activity

close proximity, hence changing the RSSI or phase readings as well. For instance, TASA [7]
measures the RSSI changes of signals received by the readers to infer human movement.
Unfortunately, the activity information inferred from the raw RSSI can be quite unreliable
and inaccurate for small movement. We have conducted an indoor experiment using off-
the-shelf tags placed at a distance of 1 m facing polarized antennas. When shaking hands in
front of the tag with different speeds (zero or no-activity, once per 1 sec, and once per 2 sec),
we would expect the RSSI or phase readings be affected. Yet as shown in Figure. 4.1 (a),
we observe an almost constant RSSI value, i.e., RSSI is insensitive to such small activities
as handshaking. In contrast, the phase readings in Figure. 4.1 (b) do change when hands
shake, which has the potentials to be explored.

It is worth noting that our experiments have fixed the channel on the 908.25 MHz. The
U.S. government regulation requires frequency hopping to be enabled for RFID readers, with
which the effectiveness of phase measurement can be noticeably affected [48] [15]. The phase
measurement is affected by multipath, which is inevitable in an indoor environment [4] [5].
As can be seen from Figure. 4.1 (b), with multipath, the changes in phase are often arbitrary,
and the readings for “no-activity" in still swings from 1.05◦ to 157.8◦, which can falsely
identify activities.

Interestingly, we find that the dense multipath patterns indeed carry rich information
about human activities. Specifically, in a tag-free configuration with multiple reference
tags, if we can obtain a description of the paths along which the tag signals propagate, i.e.,
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Figure 4.3: Spectrum for sitting
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Figure 4.4: Spectrum for walking
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Figure 4.5: Spectrum for running

both the direction and the power of the backscattered signals, the human activity could
be identified with high sensitivity. Our TagFree system deploys multiple reference tags
to increase the density of multipath, and preprocesses the raw phase through the MUSIC
(Multiple Signal Classification) algorithm [2]. This algorithm has been widely used in the
multi-path context for calculating the directions of arriving signals. Consider an illustrative
example in Figure. 4.2, 4.3, 4.4 and 4.5. We place a stationary tag in front of a 4-antenna
array with 2-meter distance and continuously collect tag readings with a Thingmagic reader,
giving the corresponding spectrums for four human activities: no-activity, sitting, walking
and running. The spectrum shows how the directions of arriving signals evolve over time,
where high-amplitude angles are colored in yellow. Figure. 4.2 shows the no-activity scenario
and there is only one significant direct path in the environment. The activity of sitting is
shown in Figure. 4.3, where two more signal paths are produced with the sitting person,
which are relatively stable. In the walking activity, a volunteer walks back and forth between
the antenna array and the tag, where the multipath patterns in the spectrum become
explicitly different with sitting as shown in Figure. 4.4. Figure. 4.5 shows the spectrum of
running, which the signal peaks shift frequently. Using the signal multipath spectrum of
the reference tags, we can quantify the correlation between the multipath signal patterns
and a specific human activity.

We further have a detailed look into the experiments for sitting and no-activity, re-
spectively. Figure. 4.6 (a) demonstrates the spectrums in 2 seconds for the sitting activity,
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where there exist three signal paths, namely, path 1, 2, and 3. When the person blocks
path 1 at 40◦, the power of path 1 is decreased, which successfully detects the activity along
this directly affected path. Meanwhile, the angles and power of the other two paths are
affected as well, though with different levels: path 2 at 90◦ is shifted to 85◦ with increased
peak amplitude, and path 3 has little change. In short, both the signal power and angle are
highly related to human activities, impacting multiple paths with different levels. However,
the peak amplitude on an AoA spectrum estimated by MUSIC is a probability function [2].
As such, the peak amplitudes in the spectrum data do not necessarily represent the true
signal power. In particular, with “no-activity", the power of a path should remain stable.
Yet as Figure. 4.6 (b) shows, although the tag continuously reflects the signals with the
same angle from 80◦ and 130◦, the peak amplitudes of paths 1 and 2 have dramatically
changed between the 1st and the 2nd second. The multiple signals also twist with each oth-
er and sometimes hide behind noises, so that the relationships to human activities cannot
be easily identified. All these call for solutions to dynamically identify and extract intrinsic
features from the massive spectrum data with high accuracy. We accordingly introduce a
deep learning solution, which is not only effective in uncovering features for the common
activities, but also scales up to identify more complex activities.

4.3 TagFree Overview

Figure. 4.7 shows the basic idea of our TagFree system. In Figure. 4.7 (a), the spectrum
shows that there exist three paths from a stationary tag, where the stationary Tag 1 continu-
ously reflects the signals with the same angle and power from 40◦, 90◦ and 125◦, respectively.
Figure. 4.7 (b) shows a simple case that when one person blocks path 1 at 40◦, where not
just the peak of the blocked path is decreased, the other peak amplitudes and angle of other
paths change as well. Figure. 4.7 (c) illustrates another case when there are many tags in
the area. We can see that the number of signal paths increases rapidly with five more tags.
Therefore, such rich and massive multi-path signal information provides an opportunity for
activity identification with RFID tags.

To verify the above hypothesis, we conduct a series of field studies to examine the
scenarios in Figure. 4.7 (a)-(c).2 The results are plotted in Figure. 4.7 (d)-(f), which clearly
demonstrate that the angle shift and power reduction are highly related to user activities:
(i) In Figure. 4.7 (d), we place a stationary tag with a distance of 3 m facing the uniform
linear array at the 125◦ direction (as shown in Figure. 4.7 (a)). We observe that there are
three amplitude peaks in 1200 ms, which matches the “no-activity" situation, although the
peaks are not stable. (ii) In Figure. 4.7 (e), we keep the tag at the same place and one
person blocks the signal’s propagation along path 1(as shown in Figure. 4.7 (b)). The peak
of blocked path 1 experiences a clear drop and the angle of path 2 shifts frequently. (iii) In

2For ease of exposition, here we disable frequency hopping, which will be further examined in Section 4.4.
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d distance between two antennas xt input at time t
θ spatial angle y a set of labels
N number of received signals it input gate at time t
fi frequency at channel i ft forget gate at time t
φj(t) measured phase at frequency fi ot output gate at time t
φ(t) calibrated phase at time t ct memory cell at time t
si(t) a signal source i ht hidden state at time t
M number of source signals yt output at time t
s(t) source signal vector (M by 1) γ activity cluster
r(t) received signal vector (N by 1) Rr correlation matrix of received signals
w(t) noise vector (N by 1) Rs correlation matrix of source signals
a(θ) steering vector (N by 1) Us signal subspace
A matrix of steering vectors (N by M) Un noise subspace

Table 4.1: Summary of notations

Figure. 4.7 (f), we place six tags in front of the antenna array (as shown in Figure. 4.7 (c));
these signals twist with each other and sometimes hide behind noises, making the patterns
of the relationships between them and human activities hard to observe.

Recall the challenge we discussed in Figure. 4.6 (b), the peak amplitudes may dramati-
cally change in a short time, which could be filtered out as noises for activity identification.
Each individual spectrum frame forms only a small part of human activity. The traditional
machine learning methods, e.g., support vector machine (SVM), would have to deal with in-
complete information and suffer from much confusion in activity identification. Learning an
activity description in the temporal spectrum data is important for activity identification,
since the temporal spectrum data provide more information to the activity identification.
Therefore, we employ the recurrent neural network with Long Short Term Memory (LST-
M) [47] units to discover long-range temporal relationships, which uses memory cells to
store, modify, and access internal state. By sharing parameters through time, LSTM net-
works can learn how to integrate information and maintain a constant number of parameters
while capturing an accurate activity description in the massive spectrum data.

Based on this basic idea, we propose the TagFree framework to identify the activities
shown in Figure. 4.8. Our framework consists of three stages: preprocess stage, training
stage, and activity identification stage. We first preprocess a large amount of tag phase
readings based on the MUSIC algorithm and stack the spectrum frames in time series,
serving as input for training and learning. It is followed by a deep learning architecture
consisting of CNN and LSTM layer for model training and then activity identification.

4.4 Data Preprocessing

Before we proceed with the detailed solutions for the individual modules, we first summarize
the key notations in Table. 4.1.
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Figure 4.8: TagFree framework
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4.4.1 Phase Calibration

Accurate AoA estimation is the key part of our activity identification system, which highly
depends on the accurate phase measurements. To limit co-channel interference, FCC regu-
lation requires that commercial UHF RFID readers must randomly hop across 50 channels
within the 902-928 MHz band for every 400 ms. Such hopping inevitably causes phase
offset due to the phase difference of oscillator and non-uniform frequency response of the
tags’ antennas. Our experiment and Tagyro [49] both verify that the frequency hopping
introduces phase offset into the phase measurement.

We measure the phase of a stationary tag for 60 seconds, and plot the phase values
versus frequencies in Figure. 4.9 (a), where the phase and frequency relation follows a linear
model. These experiments imply that different frequencies induce different initial phase-
offsets at the reader. We accordingly design a mechanism to calibrate the phase difference
between frequencies, so that the phase output looks like coming from a fixed frequency. The
calibration is done by collecting an initial phase measurement that takes about 10 seconds
for the tag in stationary. We have frequency fj , ∀j ∈ [1, 50] and set a common frequency at
a common frequency fr (default to 908.25 MHz). Let φj(t) denote the measured phase at
frequency fj at time t, and φ̃j represent the median value of measured phase at frequency
j in recent 10 seconds. We map the measured phase φj at frequency fj to the calibrated
phase φi as follows:

φ(t) = φj(t)− φ̃j + φ̃r (4.1)

4.4.2 Multipath De-coupling

Intuitively, as shown in Figure. 4.9 (b), the AoA estimation works as follows: A signal
source s = ejφ impinges on the array of N antennas with an angle θ, where φ denotes
the phases of the received signal that we measure at the antennas. Let d be the distance
between two antennas and λ be the wavelength of the received signal. Their relationship
can be calculated as φ = 2π

λ · d · cosθ. Assume the phase measurements at the first two
antennas are φ1 and φ2, we can then estimate the AoA θ as:

θ = arccos( |φ1 − φ2|
π

) (4.2)

However, in practice the AoA estimation may not work well because of the multipath
effect. To this end, we adopt the MUSIC (MUltiple SIgnal Classification) algorithm [2],
which is the best known algorithm based on eigenstructure analysis of an N×N correlation
matrix Rr. The entry at the lth column and mth row is the mean correlation between the
lth column and mth antennas’ signals. Consider M signals s1, . . . , sM (t) a from different

47



angles θ1, . . . , θM , and into a uniform linear array (ULA) of N antennas. Then we have

s(t) =
[
s1(t), . . . , sM (t)

]>
(4.3)

Let a(θ) be an N × 1 vector which is the array steering vector for that direction. It is
given by:

a(θ) =
[
1 e−j

2πd
λ

cos(θ) e−j2
2πd
λ

cos(θ) . . . e−j(N−1) 2πd
λ

cos(θ)
]>

(4.4)

The N × 1 received signal vector r(t) can be expressed as:

r(t) = As(t) +w(t) (4.5)

where A =
[
a(θ1), . . . ,a(θM )

]
is an N ×M matrix of the steering vectors, and w(t) is a

noise term. Hence the array output consists of the signal plus noise components, where
r(t) and w(t) are assumed to be uncorrelated and w(t) is modeled as temporally white
and zero-mean complex Gaussian process. The spatial correlation matrix R of the observed
signal vector r(t) can be defined as:

Rr = E{r(t)rH(t)} = ARsA
H + µ2I (4.6)

whereRs = E{s(t)sH(t)}, µ2 is the noise covariance matrix, and I is an N×N matrix. The
correlation matrix Rr has N eigenvalues associated with N eigenvectors U = [U1, . . . ,UN ].
The largest M eigenvalues correspond to the M incoming signals while the rest N −M
correspond to the noise. The corresponding eigenvectors in U can be classified into the
signal subspace Us and noise subspace Un:

[UsUn] = [U1, . . . ,UM︸ ︷︷ ︸
Us

,UM+1, . . . ,UN︸ ︷︷ ︸
Un

] (4.7)

The MUSIC algorithm utilizes the orthogonality relationship between the signal and
noise subspaces [2], which implies:

aH(θ)Un = 0 (4.8)

The direction of the arrival angle can be represented in terms of the signal sources and
the noise subspaces as shown in the following equation:

θMUSIC = arg min
θ
aH(θ)UnUnHa(θ) (4.9)

The above equation can be represented in terms of its reciprocal to obtain the peaks in
a spectral estimations:
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PMUSIC = 1
aH(θ)UnUnHa(θ)

(4.10)

The M higher peaks are of great power [2] and corresponds to the estimated direction
of arrival of the signal source with the angles θ1, . . . , θM .

4.5 Deep Learning for Activity Identification

This section describes the main components of our TagFree design. As illustrated in Fig-
ure. 4.10, we construct a deep learning architecture, which is divided into the three main
layers: input layer, hidden layer, and output layer. The hidden layer is further divided into
a CNN (Convolutional Neural Network) sublayer and an LSTM (Long Short-Term Mem-
ory) sublayer, and is stacked as deep networks. We discuss each layer one by one in the
following subsections.

4.5.1 Input Layer

This part starts from the design of our spectrum frames. The preprocessing stage outputs
the spectrum for each tag, where we utilize the spectrum of all tags to build the spectrum
frame, as Figure. 4.11 (a) shows. The size of a spectrum frame is 180 × n, where n is the
number of tags and 180 is the number of angles. The input layer then takes all the spectrum
outputs from our preprocessing stage and build the corresponding spectrum frames x =
(x1, . . . , xT ), where a series of spectrum frames along the time will further serve as the
initial input for the hidden layer.

4.5.2 Hidden Layer

Our hidden layer includes a CNN (Convolutional neural network) structure for effective
object classification and detection [46], and an LSTM (Long Short-Term Memory) struc-
ture for activity identification [47]. Such layers contain rich implicit patterns [50], e.g.,
object patterns and textures, and thus have been extensive used in Deep Learning networks
where computer vision researchers have achieved tremendous successes in activity identifica-
tion [51] [52] [53] [54]. In our framework, we adopt a similar approach that extracts features
at every spectrum frame, like image frame in videos, and stacks those features across time
into a vector as the input of the LSTM structure. The parameters and settings of our deep
learning network will be detailedly examined in Section. 4.7.

CNN Structure

The CNN takes the spectrum frames as input and provides the output to the LSTM struc-
ture. In this work, we report results using the output of the fully-connected layer, where
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these features are outputs of rectified linear units (RELUs) [55]. In particular, each input
spectrum frame is 180 × n, where the features are extracted by the CNN. The extracted
lower dimension features are then fed to a fully-connected layer and form the inputs to the
The fully-connected layer has commonly been used to avoid overfitting [52], and we applied
dropout in all the convolutional layers and the fully connected layer.

LSTM Structure

Figure. 4.11 (b) shows a single LSTM cell [47]. A stacked LSTM first encodes the frames
one by one, taking the output of a fully-connected layer. An LSTM cell allows to easily
memorize the context information for long periods of time in sequence data, which includes
three gates: the input gate it, the forget gate ft, and the output gate ot, which have the
controls to overwrite, keep, or retrieve the memory cell ct, respectively. Each LSTM cell
remembers a single floating point value ct. This value may be diminished or erased through
a multiplicative interaction with forget gate ft or additively modified by the current input
xt multiplied by the activation of input gate it. The output gate ot controls the emission
of the memory value from the LSTM cell.

Let σ(x) = (1 + e−x)−1 be the sigmoid function, which controls the inputs to a [0,1]
range. We then have

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4.11)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4.12)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4.13)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (4.14)

ht = ot tanh(ct) (4.15)

where the W terms denote weight matrices (e.g. Whi is the input-hidden weight matrix),
and the b terms denote bias vectors (e.g. bf is the bias vector of forget gate).

The LSTM cells are then grouped and organized into a deep LSTM architecture. Inside
the architecture, the output from one LSTM layer will be the input for the next LSTM
layer. We fine-tune the LSTM architecture with varying numbers of layers and memory
cells, and chose to use two stacked LSTM layers, each with 32 memory cells. Following the
LSTM layers, a softmax classifier is used to make a prediction at every spectrum frame.

4.5.3 Output Layer

The outputs from the last hidden layer is normalized with a softmax function, obtaining
the probability distribution over the activity label y in the activity cluster γ:

Pr(y|xi) = exi∑
y′∈γ e

xi
(4.16)
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(a) Thingmagic M6e reader (b) ImpinJ R420 UHF reader

(c) Antenna and tag (d) Antenna array

Figure 4.12: Commercial hardware used to implement TagFree System

Our goal is to find the maximum likelihood of all training samples. We use the negative log
probability, i.e., cross entropy error function, as the objective.

E = −
∑
γ

zylnPr(y|xi) (4.17)

where zy ∈ {0, 1}. Pr(y|xi) is the predicted probability of class y.

4.6 System Implementation

In this section, we describe the key implementation details that are not covered in the pre-
vious sections. Our implementation is entirely done with a commercial reader and requires
no modifications to tags.
RFID Readers: Our system works with today’s commercial off-the-shelf readers, and
our prototype implementation uses a Thingmagic reader3 (Figure. 4.12 (a)), and an Impinj
Speedway R420 reader4 (Figure. 4.12 (b)) without any hardware or firmware modification.
The Thingmagic M6e reader provides the APIs to customize the frequency hop table, thus

3http://www.thingmagic.com/
4https://support.impinj.com/
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(a) Office environment (b) Hall environment

(c) Office deployment layout (d) Hall deployment layout

Figure 4.13: Two typical indoor environments and deployment layouts with the positions
of arrays and tags

we fix the channel on the common frequency 908.25 MHz. We use the fixed channel con-
figuration of Thingmagic M6e reader to compare with Impinj R420 reader with frequency
calibration, so as to test the performance of our phase calibration. The Impinj Speedway
R420 reader has four antenna ports only. The reader is compatible with EPC Gen2 stan-
dard and the antennas work in a time division multiplexing mode. The FCC regulation
requires that RFID readers perform frequency hopping in the range of 902-928 MHz, mak-
ing phase measurements not accurate enough for activity classification. Due to the available
frequencies of RFID reader, we set the common frequency f = 908.25 MHz, and the typical
wavelength λ is 0.33 m.
Antennas Settings: We connect our Impinj Speedway R420 reader to four omni-directional
antennas as shown in Figure. 4.12. An important setting is the distance between antennas,
where we set d as λ/8 in our experiments for the following reasons:

• Theoretically, the antenna separation d should be spaced by λ/2, which effectively
reduces the ambiguity caused by the high-resolution grating lobes [4];
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Stand Sit Walk Run WorkWave Bow

Figure 4.14: Activities in experiments

• Since RFIDs communicate by backscattering the reader signal, the signal phase read-
ing returned by the reader reflects the round trip distance instead of the one-way
distance. Hence, d should be reduced to half, giving d = λ/4.

• Most readers can only measure phases within [0, π], including the ThingMagic and
ImpinJ readers. Although the ImpinJ reader can report phase readings ranging from
to 0◦ to 360◦, but it has π radians ambiguity, i.e., the reported phase can be the true
phase (θ) or the true phase plus π radians (θ + π). To account for such period π

instead of 2π, the separation d is further reduced by half, i.e., d = λ/8.

Deployment: One critical deployment issue is to determine the tag placement. We run
experiments in two typical indoor environments: a multipath-rich office and an empty hall
with little multipath effect. The office with a size of 13.75 m × 10.50 m has many file
cabinets and writing desks, as shown in Figure. 4.13 (a). The file cabinet has a height of
1.32 m and is made of metal, resulting in rich multipaths and strong NLoS. The empty hall
with a size of 8.75 m × 7.50 m is shown in Fig 4.13 (b). The deployment layouts of the
environments are shown in Figure. ?? (c) and (d), respectively. In each environment, we
deploy one readers and 6 tags. We place the antenna array at a height of 1.25 m. We use
the basic ImpinJ tags as shown in Figure. 4.12 (c) and place them facing the antenna array
with angles 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, respectively. The tags are usually placed on the
furniture, so their heights are between 1 to 1.5 m above the ground and their distance to
the reader is around 3 to 8 m. Indeed, the tags can be randomly placed without explicitly
knowning their exact locations. Unless specifically mentioned, we use the default setup for
performance evaluation.
Evaluation Metrics: We invite ten volunteers and each volunteer5 stands between the
tags and the antenna array in our experiments. To conduct a comprehensive evaluation, we
test seven scenarios as shown in Figure. 4.14, including standing, sitting, waving, bowing,
walking, running, and working. In each activity case, each volunteer is required to repeat-

5Note that those volunteers cover a broad range in age, gender, height, and weight.
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edly perform the activity and the RFID reader continuously queries the RFID tags for 10
minutes. Each activity example contains all RFID readings in one minute period.
Server and algorithm implementation: The system employs a typical client-server
architecture. We run the client on a Lenovo laptop (ThinkPad T560) connecting to the
Impinj Speedway R420 reader, equipped with an Intel Core i5-6200U Dual 2.3/2.8GHz CPU
and 8 GB 1333 MHz DDR3 RAM. The server runs on a customized PC with an Intel Core i7-
6850K 3.60 GHz 12-core CPU and Dual Nvidia GTX 1080 Ti GPUs. The processes on clients
adopt the LLRP protocol [42] to communicate with the reader, with Mercury API6 and
Octane SDK Java7 for Impinj R420 reader. It requires the reader to continuously execute
the tag reading operation, and upload tag readings to the backend modules for further
analysis. Therefore, we utilize multi-threading, which returns immediately a sequence of
RFID reads to the calling thread, which then uploads the tag readings to the server. The
backend module on the server accepts and stores the streaming of tag readings as the
training data in a database, and executes our algorithms to identify the activity.

CNN and LSTM classifiers are implemented in Keras8 with cuDNN on Dual Nvidia
GTX 1080 Ti GPUs, and the multiclass classifiers are implemented based on the Scikit-
learn library [43]. We compared the performance of our deep learning system with ten
mainstream classifiers: k-Nearest Neighbors, one-vs-all Linear SVM, one-vs-all RBF SVM,
Gaussian Process, Decision Tree, Random Forest, Neural Net, Adaptive Boosting, Bayesian
Net and Quadratic Discriminant Analysis. We treated activity identification as a multi-class
classification problem and considered the detection of each activity as a binary classification
problem.

4.7 Evaluation

4.7.1 Model Training

To evaluate the prediction quality, we run an experiment on the real-world data with 5690
activity examples, where 2845 examples come from multipath-rich environments and 2845
examples from environments with little multipath. We train the models for the two different
scenarios with cross validation to mitigate overfitting, where 80% of the data is used as a
training set and the remaining 20% is used as a test set. The training includes 500 epochs
using stochastic gradient descent (SGD). To combat exploding gradients, we scale the norm
of the gradient, and both hyperparameters are chosen using the training set. We implement
the CNN networks with two convolutional layers with a dropout of 0.5, followed by one fully-
connected layer. Our LSTM networks use 32 memory cells per layer. Throughout training,
we save the model and compute prediction accuracy on the test set for each epoch.

6Mercury API Programmer’s Guide. https://www.thingmagic.com/
7Octane SDK Programmer’s Guide. https://support.impinj.com/
8Keras: Deep Learning library for Theano and TensorFlow. https://keras.io/
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Figure 4.15: Results of phase calibration
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Figure 4.16: Impact of phase calibration
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4.7.2 Impact of Phase Calibration

We first evaluate the impact of the reader’s channel hopping on the phase value by measuring
the phase of a stationary tag for 2 minutes. Figure. 4.15 (a) shows the result of the calibrated
phase data with respect to Figure. 4.9 (a). It illustrates the phase offset causing by frequency
jumping can be effectively eliminated by our method. Figure. 4.15 (b) plots the histogram of
the phase values. Without calibration, the phases are almost evenly spread over all possible
phase values, where our phase calibration method can reduce the standard deviation from
49.69◦ down to 2.91◦.

It is worth noting that our phase calibration mechanism contributes toward improving
the precision of activity identification, as shown in Figure. 4.16. We evaluate how phase
calibration benefits TagFree in Figure. 4.16 (a) and (b), where the x-axis of the figures
represents the model training epochs and y-axis represents the prediction accuracy. The
results show that our calibration method achieves a high accuracy and minimizes the nega-
tive influence of frequency hopping. Specifically, the TagFree system in the multipath-rich
office with phase calibration achieves an activity identification accuracy of 91%, against the
accuracy of 64% without calibration, for our calibration mechanism achieves a high AoA
estimation accuracy. In the low-multipath hall environment, TagFree with phase calibration
can reach a 97% accuracy, against the accuracy of 68% without calibration.

4.7.3 Impact of Different System Settings

TagFree de-couples the multipaths using an array of antennas. Therefore the number of
antennas limits the number of multipaths that can be detected by our pre-processing scheme.
With the information of more signal paths, TagFree achieves a higher multipath density in
the area and improves the activity identification accuracy. We thus investigate the impact
of the number of antennas in two typical environments, as shown in Figure. 4.17 (a) and
(b), respectively. We can see that when the number of antennas increases from 2 to 4,
more angle information of multipath can be detected, and thus TagFree can achieve even
higher activity identification accuracy.9 The default setting of our remaining experiments
is 4 antennas connecting to the reader.

With more tags, more signals will be reflected, creating more paths to cover the monitor-
ing area and providing more information for activity identification. In the next experiments,
we vary the number of tags from 1 to 6. Both Figure. 4.18 (a) and (b) show that more tags
are helpful to provide more information and improve the activity identification accuracy.
Since the number of multipath that our data pre-processing scheme can detect for each
tag is limited by the number of antennas on the reader, using more tags indeed is a better
alternative to increase the path diversity in the environment. In an indoor environment,
more tags only bring marginal increase to the system cost, which is considerably lower than

9Note that Impinj Speedway R420 reader has maximally four ports to connect with antennas.
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H
ei
gh

t
(m

) The distance from tags to antennas (m)
3 4 5 6 7 8

1.0 0.92 0.90 0.88 0.86 0.82 0.80
1.25 0.93 0.91 0.90 0.89 0.83 0.81
1.5 0.94 0.92 0.91 0.91 0.86 0.83

Table 4.2: Comparison of performance with different physical configuration in the office
with RICH-multipath

H
ei
gh

t
(m

) The distance from tags to antennas (m)
3 4 5 6 7 8

1.0 0.97 0.97 0.97 0.96 0.90 0.89
1.25 0.98 0.98 0.97 0.97 0.91 0.90
1.5 0.98 0.98 0.97 0.97 0.93 0.90

Table 4.3: Comparison of performance with different physical configuration in the hall with
LOW-multipath

increasing the number of antennas on readers [22]. To this end, we use a tag number of 6
as the default setting of our evaluation.

Tab. 4.2 and Tab. 4.3 show the details of activity identification accuracy with different
physical configuration of our TagFree approach, where each row represents the tag heights
and each column denotes the distance from tags to antennas. Also, the experiments are
conducted in high and low multipath environments, as shown in Tab. 4.2 and Tab. 4.3
respectively. In the experiments, we evaluate the accuracy with varying tag heights rang-
ing from 1.0 m to 1.5 m, where the results do not exhibit clear correlation with the tag
heights. Thus, the tag height around 1.0 m to 1.5 m is not a crucial factor affecting the
activity identification accuracy. We use 1.5 meter as the default tag height for the remained
experiments. Then we further examine the activity identification accuracy when applying
different distance (3 to 8 m) from tags to antennas. The results illustrate that the smaller
the distance is, the greater the accuracy achieves. Beyond 6 m, the reduced reading rate of
RFID tag makes the activity identification accuracy decrease, due to many effects, e.g., too
weak signals. We use the distance from tags to antennas of 6 meter as the default setting
of our evaluation, since smaller distances may make our design impractical. The default
distance setting of 6 meter yields an average accuracy of 91% and 97% in high and low
multipath environments, respectively.

We compare the results of our TagFree with various combinations of deep learning archi-
tectures as shown in Figure. 4.19 (a) and (b). First, we compare the performance TagFree
with CNN networks, and both of them integrate the preprocessing scheme of TagFree.
TagFree can achieve a 14% higher accuracy on average than the CNN networks, which
demonstrates that the LSTM architecture is necessary for activity identification. Then, we
evaluate TagFree against the phase-based LSTM and the RSSI-based LSTM networks. It
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Figure 4.20: Overall performance of TagFree framework

clearly shows that TagFree can achieve a 22% higher accuracy than the RSSI-based LSTM
networks, and a 20% higher accuracy than the phase-based LSTM networks. The results
illustrates that our preprocessing scheme and CNN can efficiently extract the features for
activity identification. In summary, the benefits of TagFree comes from both the preprocess-
ing scheme and the deep learning, which work jointly to harvest the rich phase information
for activity identification in a multipath environment.

As illustrated in Table. 4.4, using more convolutional layers generally achieves better
performance, but there exists tradeoff between the performance gain and the computation
resources. We have tested the CNN with 1 to 5 convolutional layers. The results in Table. 4.4
show little gain in precision, recall and F-Score when using more than two convolutional
layers, and hence we use two layers in our implementation. With this default setting, we
then vary the convolution kernel size, and the results in Table. 4.5 show that the size of
2×16 has the best performance. In Table. 4.6, we summarize the results for various number
of LSTM layers. Again, though a single layer LSTM network is not effective, the 2-layer
LSTM achieves sufficiently good performance. Table. 4.7 further suggests that increasing
the number of LSTM cell per layer beyond 32 cells achieves only marginal performance
improvement, and thus we set the number of LSTM cell to 32.
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1 2 3 4 5
Precision 0.69 0.94 0.95 0.96 0.97
Recall 0.74 0.93 0.93 0.97 0.94
F-score 0.69 0.94 0.87 0.95 0.91

Table 4.4: Comparison of performance with different number of convolutional layers

2 × 2 2 × 8 2 × 16 2 × 32 4 × 64
Precision 0.89 0.93 0.94 0.97 0.93
Recall 0.87 0.88 0.95 0.97 0.92
F-score 0.87 0.90 0.94 0.97 0.92

Table 4.5: Comparison of performance with different kernel size

1 2 3 4 5
Precision 0.84 0.94 0.94 0.92 0.90
Recall 0.77 0.93 0.97 0.93 0.97
F-score 0.73 0.94 0.95 0.81 0.89

Table 4.6: Comparison of performance with different number of LSTM layers

1 2 3 4 5
Precision 0.84 0.94 0.94 0.92 0.90
Recall 0.77 0.93 0.97 0.93 0.97
F-score 0.73 0.94 0.95 0.81 0.89

Table 4.7: Comparison of performance with different number of LSTM cells per layer

4.7.4 Overall Activity Identification Performance

Figure. 4.20 shows the performance of our TagFree compared with 8 mainstream classifier-
s, including k-Nearest Neighbors, one-vs-all Linear SVM, one-vs-all RBF SVM, Gaussian
Process, Decision Tree, Random Forest, Bayesian Net and Quadratic Discriminant Anal-
ysis, where all the classification methods take the same spectrum data as input. TagFree
achieves a 94% accuracy of activity identification on average. In the low-multipath hall
environment, we can see that our TagFree performs the best among all approaches with an
accuracy 97% on average, which is 20% better than the runner-up (SVM). The 4-antenna
array maximally decouples the three signals paths for each tag, which should be easy to
cope with the challenge of sparse multipath in the hall. Unfortunately, the classical machine
learning methods, e.g., linear SVM, only have an accuracy 77% or lower, reaffirming the
effectiveness of our deep learning scheme. The experiments in a multipath-rich office show
that the performance of other classifiers degrades heavily and TagFree still maintains a high
accuracy of 91% on average.

We break down the results of TagFree in Figure. 4.20 into Tables 4.8 and 4.9. The tables
illustrate the details of the experiments in the hall and the office, respectively. Each row
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Predicted activities
Stand Sit Wave Bow Walk Run Work

Stand 1.00 0 0 0 0 0 0
Sit 0 0.96 0.04 0 0 0 0
Wave 0 0.04 0.96 0 0 0 0
Bow 0 0 0 1.00 0 0 0
Walk 0 0 0 0 0.98 0 0.03
Run 0 0 0 0 0.02 0.98 0
Work 0 0 0 0 0 0.02 0.97

Table 4.8: Low multipath environments in hall

Predicted activities
Stand Sit Wave Bow Walk Run Work

Stand 0.95 0.03 0 0 0 0 0
Sit 0.05 0.94 0.04 0 0 0 0
Wave 0 0 0.90 0 0 0 0
Bow 0 0.03 0.03 0.91 0.17 0.03 0
Walk 0 0 0.07 0.09 0.83 0.08 0.05
Run 0 0 0 0 0 0.89 0
Work 0 0 0 0 0 0 0.95

Table 4.9: Rich multipath environments in office

denotes the actual activity performed and each column represents the activity identified
by TagFree. Each element in the matrix represents the percentage of activities in the row
that is recognized as the activity in the column. As shown in the Tab. 4.8, the average
accuracy is 97% in the hall with low multipath for all scenarios, where the identification of
slow activities (stand, sit, wave, bow and work) has achieved an accuracy at least 94%. In
the multipath-rich environments, TagFree can achieve a 91% accuracy on average, where
the identification accuracy for fast moving activities still keeps above 83% . This indicates
that TagFree can distinguish activities at different speeds with high accuracy.
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Chapter 5

Multiple Object Activity
Identification using RFIDs

5.1 Introduction

Human activity identification has become a key component in such critical Internet-of-
Things applications as healthcare and smart homes. It has attracted significant attention
from both academia and industry, with a wide range of solutions based on cameras [29],
radars [28], and/or various inertial sensors [30]. They generally require the object of i-
dentification to carry sensors/wireless transceivers, which are not negligible in both size
and weight, not to mention the constraints from the battery. Recently, Radio Frequency
Identification (RFID) is experiencing an explosion in many application contexts given its
low cost, small form size, and batterylessness nature [56] [57] [33] [58] [59]. We have seen
pioneer studies on RFID-based activity identification as well [4] [6], together with prelim-
inary adoptions in industry. For instance, Disney has built an RFID gaming system that
can sense when a player attached with an RFID tag is moving or touching objects in real
time [31].

The state-of-the-art solutions mostly focus on the simple scenario, i.e., a single person in
the open space. A reader tracks the wireless signal backscattered from the person attached
with RFID tags and, from changes of the signal, identifies the activities of the person. Ex-
tension to the more realistic realworld scenarios with multiple persons (each with distinct
RFID tags) however is non-trivial. Given the much richer interactions among them, the
backscattered signals will inevitably mixed, obscuring the information of individual activi-
ties. This is further complicated with multi-path in a common indoor environment. Besides
reflection from surrounding walls, a person can also be occluded by furniture and other
persons, resulting in the signals to be deflected and take multiple paths to arrive at the
RFID reader.
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There have been efforts towards better understanding and distinguishing signals from
different paths caused by mutual interferences among multiple persons’ activities, and the
Hidden Markov Model (HMM) has been suggested as a useful tool [6]. Unfortunately, the
features of RFID-based activities are hard to be pre-selected manually, for the received
signals are a mixture of multi-path and multi-object, and the rules for making correct
estimations are hard to be pre-defined, either. Without good a priori knowledge, the
effectiveness of HMM can be quite limited in this context.

We however argue that, though often considered harmful, the rich interactions combined
with multi-path indeed offer more observable data that carry abundant information about
the activities. The raw RFID signals, which is a mixture from multi-objects, can be too noisy
to be directly processed and understood; to limit co-channel interference, commercial RFID
systems also support frequency hopping that further scrambles the raw signals. Yet after
careful processing, critical information about the activities can be unveiled through modern
learning tools. We present M2AI (Multipath-aware Multi-object Activity Identification), an
RFID-based activity identification framework that for the first time accommodates both
multi-path and multi-object. 1

As shown in Figure. 5.1, M2AI involves four steps: preprocessing, activity identification,
and activity assessment. Our data preprocessing incorporates (1) a phase calibration mech-
anism to automatically eliminate the frequency hopping offsets; and (2) a novel decoupling
mechanism that jointly considers both periodogram [3] and pseduospectrum [2] in the raw
signal mixture. The carefully separated angles and powers of different paths are then fed
into an advanced deep-learning engine for activity identification. Our engine integrates a
Convolutional Neural Network (CNN) [46] and a Long Short Term Memory (LSTM) net-
work [47]. We show that this integration is computationally effective with high accuracy,
beating such conventional classification tools as SVM and Nearest Neighbors.

Our M2AI is readily deployable using off-the-shelf RFID readers (e.g., a single UH-
F reader with a limited number of antennas), and allows reusing existing RFID readers
for indoor activity identification. We have implemented an M2AI prototype with Impinj
UHF passive tags and a Speedway R420 reader. Experiments with multiple objects in a
multipath-rich indoor environments report an identification accuracy of 97%, a significant
gain (27%) over state-of-art solutions.

The rest of the chapter is organized as follows. Section 5.2 examines the key challenges
for identifying the activities of multiple objects in the indoor environment, and presents our
M2AI framework to explore the hidden information in multipath. Section 5.3 introduces our
data pre-processing scheme to deal with frequency hopping and de-couple multipath signals.
Section 5.4 then presents a deep learning solution for multiple object activity identification

1An object of activity identification refers to a person equipped with multiple RFID tags, where the
number of tags is set to 3 by default. Note however our solution works with non-human moving objects as
well.
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Figure 5.1: M2AI framework

70



from the processed data. Section 5.5 discusses the framework implementation details, with
its performance being evaluated in Section 5.6. Section ?? discusses some potential further
extensions.

5.2 M2AI: Motivation and Overview

The Angle of Arrival (AoA) of an RF source is computed by comparing the phases of the
received signals at antennas [60] [61]. AoA estimation is widely used in RF-based positioning
given the different propagation distances to different antennas, and serves as a foundation
for activity identification as well [4]. It is known that the estimation is quite challenging in
a multi-path indoor environment, not to mention with multiple objects.

Consider an illustrative example in Figure. 5.2. We consider an object of activity identi-
fication as a single person equipped with multiple tags. In Figure. 5.2(a), Tag 1 is attached
to one person, and there exist three paths in the indoor environment as the AoA spectrum
shows. In particular, the stationary Tag 1 continuously reflects the signals with the same
angle and power from 40◦, 90◦ and 125◦, respectively. Further, Figure. 5.2(b) illustrates
the scenario for a single object of activity identification with another moving object, where
the moving person blocks path 1 at 40◦. As such, not only the peak of the blocked path is
decreased, but the peak amplitudes and angles of the other paths are also changed. Specif-
ically, the path at 90◦ is shifted to 85◦ with power decrease. When there are more tags
in the area, e.g., Figure. 5.2(c) with five more tags added, we can see that the number of
signal paths increases rapidly in multiple objects of activity identification.

Intuitively, estimating AoA is more difficult in these indoor environments than in an open
space. Analyzing the estimated data to derive the corresponding activities can be even more
complicated, particularly for the latter two cases with multi-object. On the other hand, the
massive multi-path signal information in this context also provides opportunities, as they
indeed reflect the activities from different observation angles.

It is however non-trivial to explore the rich but hidden information therein.

• Mixture of signals from multiple paths and multiple objects: First, the signals
may twist with each other and sometimes hide behind noises, the patterns of the
relationships between them and human activities are hardly determined with a simple
set of predefined rules;

• Frequency hopping: Second, to limit the co-channel interference, FCC regulation
requires that commercial UHF RFID readers must randomly hop to one of the 50
center frequencies within the 902-928 MHz band every 200 ms. The recent study shows
that frequency hopping will cause noticeable phase offset due to the phase difference
of the oscillator and the non-uniform frequency responses of the tags’ antennas [49].
The aggregated impact with multi-path and multi-object can be even more dramatic.
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Figure 5.2: The basic idea of M2AI from a single object to multiple objects of activity
identification in the indoor environments.
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To deal with the above challenges, our M2AI incorporates a phase calibration scheme to
automatically calibrate the phase difference between frequencies without the requirement
of human intervention. It then combines the signals’ pseduospectrum and periodogram
frames to decouple signals from multiple paths while reserving the accurate signal power
and direction estimation at the same time. Such pre-processing provides refined data with
the essential information for identifying the activities through automated learning.

Our learning network takes two inputs, i.e., periodogram and pseduospectrum. Since
each individual spectrum frame forms only a small part of the human activities, such con-
ventional machine learning methods as support vector machine (SVM) and decision tree
based on the incomplete information can easily be confused. They do not well utilize the
temporal spectrum, either, which contain important information about the activity. Hence,
we explore the latest deep learning tools; in particular, we use an integrated design of a
Convolutional Neural Network (CNN) [46] and a Long Short Term Memory (LSTM) net-
work [47] units, which uses memory cells to store, modify, and access internal state, so
as to discover long-range temporal relationships. Our networks integrate information and
maintain a constant number of parameters while capturing an accurate activity description
in the massive spectrum data.

It is worth noting that although working with rich multi-paths in indoor environments,
our M2AI design requires only one reader with four antennas and can increase the path
diversity by adding tags in the area, so the deployment cost can be well reduced. Moreover,
M2AI does not need to explicitly know the RFID tags’ locations. Hence, the tags can be
arbitrarily placed with a high degree of flexibility.

5.3 Data Preprocessing

The state-of-the-art RFID hardware with the standard Low Level Reader Protocol (LLRP)
can provide low-level data reports, such as the phase and Doppler shift. Yet, as indicated
in previous research work [48] [15], the reported data may not be accurate enough to be
immediately applied to activity identification, due to such factors as the multipath effect and
frequency hopping. Targeting on these factors, we propose our M2AI design to preprocess
the measured phase from the reader.

5.3.1 Phase Calibration

To limit the co-channel interference, FCC regulation requires that commercial UHF RFID
readers must randomly hop to one of 50 center frequencies within the 902-928 MHz band
every 400 ms, which will cause phase offset due to the phase difference of the oscillator
and the non-uniform frequency responses of the tagsŠ antennas. To this end, we measure
the phase of a stationary tag for 60 seconds, which supposed to keep consistent on phase
values. We plot phase values against their frequency in Figure. 5.3, where it is clear to see
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Figure 5.3: Phase jumping caused by frequency hopping

that the phase and frequency relation follows the linear model. These experiments imply
that different frequencies induce different initial phase-offsets at the reader. To overcome
the issue, we design a mechanism to calibrate the phase difference between frequencies, so
that the phase output looks like coming from a fixed frequency. The calibration is done by
collecting an initial phase measurement that takes about 10 seconds for the tag in stationary.
In particular, we have frequency fj , ∀j ∈ [1, 50] and set a common frequency as fr (default
to 910.25 MHz). Let φj(t) denote the measured phase at frequency fj at time t. Let φ̃j

and φ̃r represent the median value of measured phase in recent 10 seconds at frequency fj
and common frequency fr, respectively. We map the measured phase φj at frequency fj to
the calibrated phase φ(t) as follows:

φ(t) = φj(t)− φ̃j + φ̃r (5.1)

5.3.2 Angle of Arrival

Intuitively, the AoA estimation works as illustrated in Figure. 5.4: A signal source s impinges
on the array of N antennas with an angle θ. Let φ denote the phases of the received signal
that we measure at the antennas. Their relationship can thus be defined by:

φ = 2π
λ
· d · cosθ (5.2)
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where d is the distance between two antennas and λ is the wavelength of the received signal.
However, in practice AoA estimation may not work well because of the multipath effect,

which we will address in this subsection. Consider a number of plane waves fromM narrow-
band sources s1(t) = ρ1e

jφ1 , . . . , sM (t) = ρMe
jφM (which may also be multipath signals from

the same source) impinging from different angles θ1, . . . , θM , and into a uniform linear array
(ULA) of N antennas. Then we have

s(t) =
[
s1(t), . . . , sM (t)

]>
(5.3)

Let a(θ) be an N × 1 vector referred to as the array response to that source or array
steering vector for that direction. It is given by:

a(θ) =
[
1 e−jφ . . . e−j(N−1)φ

]>
(5.4)

The N × 1 received signal vector r(t) can be expressed as:

r(t) = As(t) +w(t) (5.5)

where A =
[
a(θ1), . . . ,a(θM )

]
is an N ×M matrix of steering vectors, and w(t) is a noise

term. The spatial correlation matrix R of the observed signal vector r(t) can be defined as:

Rr = E{r(t)rH(t)} = ARsA
H + µ2I (5.6)

where Rs = E{s(t)sH(t)}, µ2 is the noise covariance matrix, and I represents an N × N
matrix.

5.3.3 De-couple Multipath Signals

As shown in Figure. 5.4(c), consider a number of plane waves from M narrow-band sources
s1(t) = ρ1e

jφ1 , . . . , sM (t) = ρMe
jφM (which may also be multipath signals from the same

source) impinging from different angles θ1, . . . , θM , and into a uniform linear array (ULA)
of N antennas. Then we have

s(t) =
[
s1(t), . . . , sM (t)

]>
(5.7)

Let a(θ) be an N × 1 vector referred to as the array response to that source or array
steering vector for that direction. It is given by:

a(θ) =
[
1 e−jφ . . . e−j(N−1)φ

]>
(5.8)

The N × 1 received signal vector r(t) can be expressed as:
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r(t) = As(t) +w(t) (5.9)

where A =
[
a(θ1), . . . ,a(θM )

]
is an N ×M matrix of steering vectors, and w(t) is a noise

term. The spatial correlation matrix R of the observed signal vector r(t) can be defined as:

Rr = E{r(t)rH(t)} = ARsA
H + µ2I (5.10)

where Rs = E{s(t)sH(t)}, µ2 is the noise covariance matrix, and I represents an N × N
matrix.

Pseduospectrum Estimation

Our pseduospectrum estimation design is mainly based on the MUSIC (MUltiple SIgnal
Classification) algorithm [2], which is one of the high resolution subspace AOA (Arrival of
Angle) algorithms and is originally used to estimate the number of received signals from
their directions of arrival. The correlation matrix Rr has N eigenvalues associated with N
eigenvectors U = [U1, . . . ,UN ]. The largest M eigenvalues correspond to the M incoming
signals while the rest N −M correspond to the noise. The corresponding eigenvectors in
U can be classified into the signal subspace Us and noise subspace Un:

[UsUn] = [U1, . . . ,UM︸ ︷︷ ︸
Us

,UM+1, . . . ,UN︸ ︷︷ ︸
Un

] (5.11)

Similar to the MUSIC algorithm utilizing the orthogonality relationship between the
signal and noise subspaces [2], which implies aH(θ)Un = 0, the direction of arrival angle
can be represented in terms of a spectral estimation plots:

PMUSIC = 1
aH(θ)UnUnHa(θ)

(5.12)

The above equation results in high peaks, when the direction of arrival of the signal
source is exactly equal to that of θ. In Figure. 5.5(a), the M higher peaks are of great
power, where each corresponds to an estimated arrival angle.

Periodogram Estimation

We introduce the periodogram [3] to strengthen pseduospectrum estimates by taking the
accurate power information into consideration. The Power Spectral Density (PSD) is defined
as the discrete-time Fourier transform (DTFT) of the covariance sequence:

φ(ω) =
∞∑

k=−∞
r(k)e−jwk (5.13)
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Figure 5.5: Illustration of data preprocessing in our M2AI framework
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where r(k) = 1
2π

∫ π
−π φ(ω)ejωkdω. We use the periodogram spectral estimator to compute

the power density distribution as follows:

φ̂p(ω) = 1
N
|
N∑
t=1

y(t)e−jwt|2 (5.14)

where {y(t)} denote a deterministic discrete-time data sequence. In practice, it is not
possible to evaluate φ̂p(ω) over a continuum of frequencies. Hence, the frequency variable
must be sampled for the purpose of computing φ̂p(ω). The following frequency sampling
scheme is most commonly used:

ω = 2π
N
k, k = 0, . . . , N − 1 (5.15)

Let W be e−i
2π
N . Then, the evaluation of φ̂p(ω) at the frequency samples reduces to the

computation of the following Discrete Fourier Transform:

Y (k) =
N∑
t=1

y(t)W tk, k = 0, . . . , N − 1 (5.16)

In our system, we use Fast Fourier Transform [62] to estimate the power distribution.
According to the Parseval’s theorem [63], the Fourier transform is unitary, i.e., the sum (or
integral) of the square of a function is equal to the sum (or integral) of the square of its
transform.

As illustrates in Figure. 5.5(b), we can get four values in the periodogram for the power
density distribution. In the implementation, we have four antennas to connect to the
Impinj Speedway R420 reader, where the number of RF ports in the reader limits the scale
of our antenna array. We can increase the antenna number by Impinj antenna hubs. The
effectiveness of the periodogram estimation has also been demonstrated by our experiments
in Section. 5.6.

5.4 Deep Learning Design for Activity Identification

This section describes the main components of our M2AI design. Our deep learning design
takes the results from data preprocessing into our M2AI deep learning architecure, i.e.,
periodogram and pseduospectrum frames, as shown in Figure. 5.6(a) and Figure. 5.6(b),
respectively. As illustrated in Figure. 5.7, we develop an integrated design of a Convolutional
Neural Netwok (CNN) [46] and a Long Short Term Memory (LSTM) network [47]. CNN
networks can extract spatial relationships in a single spectrum frame; while LSTM networks
can learn dynamic temporal relationships from a sequential spectrum frames. The output
is the classification of object activities using a softmax layer. We discuss the design of each
layer one by one in the following subsections.
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Figure 5.6: Illustration of spectrum frames in our M2AI framework
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Figure 5.7: M2AI deep learning network architecture
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5.4.1 Input Layer

This part starts from the design of our spectrum frames. The preprocessing stage outputs
the spectrum for each tag, where we utilize the spectrum of all tags to build the spectrum
frame. Specifically, we provide the following as input to the model: (1) pseudospectrum
frames for angle of arrival as illustrated in Figure. 5.6(a), and (2) periodogram frames for
power spectral density as Figure. 5.6(b) shows. By combining these two types of information,
the model can take into account both the angle and power information of signals. The size
of pseudospectrum frame is n × 180, and the size of periodogram frame is n × N , where
n is the number of tags, N is the number of antennas and 180 is the number of angles.
The input layer then takes all the spectrum outputs from our preprocessing stage and build
the corresponding spectrum frame, where a series of spectrum frames along the time will
further serve as the initial input for the hidden layer.

5.4.2 Hidden Layer

The hidden layer integrates a CNN structure and a LSTM structure.

CNN Structure

We construct a Convolutional Neural Network (CNN) to take the spectrum frames as input
and provide the output to be fed into the LSTM structure. The extracted lower dimension
features then form the input as a sequence of spectrum frames x = (x1, . . . , xT ) to the LSTM
structure. In this work, we use the fully-connected layer to merge two inputs, where these
features are outputs of rectified linear units. As illustrated in Figure. 5.7, CONV represents
convolutional layers (with filter size of kernels: CONV-E1: n×180, CONV-E2: n×32, CONV-E3:
n×4, CONV-F: n×N , while FC represents fully-connected layers and LSTM represents LSTM
layers.

LSTM Structure

In our design, a stacked LSTM first encodes the frames one by one from the output of
the CNN. LSTM is a subnet that allows to easily memorize the context information for
long periods of time in sequence data. The subnet includes three gates: the input gate
it, the forget gate ft, and the output gate ot, which have the controls to overwrite, keep,
or retrieve the memory cell ct, respectively. Each LSTM cell remembers a single floating
point value ct. This value may be diminished or erased through a multiplicative interaction
with the forget gate ft or additively modified by the current input xt multiplied by the
activation of the input gate it. The output gate ot controls the emission of the memory
value from the LSTM cell. The LSTM cells are then grouped and organized into a deep
LSTM architecture. Inside the architecture, the output from one LSTM layer will be the
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input for the next LSTM layer. We use two stacked LSTM layers, and each with 32 memory
cells. Following the LSTM layers, a softmax classifier at the output layer is used to make a
prediction at every spectrum frame.

5.4.3 Output Layer

The outputs from the last hidden layer are normalized with the softmax function. We use a
softmax function to get the probability distribution over the activity label y in the activity
cluster γ. Our goal is to find the maximum likelihood of all training samples. We apply the
negative log probability as an objective function, i.e., cross entropy error function

E = −
∑
γ

zylnPr(y|xi) (5.17)

where zy ∈ {0, 1} and Pr(y|xi) is the predicted probability of the label y.

5.5 System Implementation

Our M2AI can be fully implemented based on a commercial reader and requires no modifi-
cations to tags. In this section, we further describe the key implementation details that are
not covered in the previous sections.
Readers and Tags: Our prototype implementation uses an Impinj Speedway R420 reader2

and an antenna array without any hardware or firmware modification. The Impinj Speedway
R420 reader is compatible with EPC Gen2 standard. The reader has four antenna ports to
construct an antenna array, where the antennas work in a time division multiplexing mode
with the inventory duration for an antenna port as 25 ms. The reader perform frequency
hopping across the UHF RFID band, 902-928 MHz with hopping occurring between 902.75-
927.25 MHz in 500 KHz steps, and the dwell time on each channel is set to 400 ms in a
20-second interval. Note that since the inventory duration for an antenna port is 25 ms,
one round of ports switching in a 4-antenna array is 100 ms, which is far less than one
channel dwell time, i.e., 400 ms. Thus, the pseduospectrum and periodogram estimation
can be well implemented with Impinj R420 reader, which has been extensively used in the
research community [5] [22]. According to the available frequencies of RFID reader, we set
the common frequency fr = 910.25 MHz, and the typical wavelength λ is 0.32 m. We use
Impinj tags as shown in Figure. 5.8(a), which are one of the cheapest tags available on the
market and cost 5 cents USD.
Antennas Settings: We connect our Impinj Speedway R420 reader to four omni-directional
antennas as shown in Figure. 5.8. One important setting is the distance d between antenna
pairs, where we set d as λ/8 with the following rationale:

2https://support.impinj.com/
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(a) Implementation hardware (b) Antenna setting

(c) Laboratory (d) Hall

Figure 5.8: Commercial hardware used to implement M2AI and two typical indoor envi-
ronments, i.e., laboratory and hall, corresponding to high and low multipath environments,
respectively.

• Theoretically, the antenna separation d should be spaced by λ/2, which effectively
reduces the ambiguity caused by the high-resolution grating lobes [4].

• Since RFIDs communicate by backscattering the reader signal, the signal phase read-
ing returned by the reader reflects the round trip distance instead of the one-way
distance. Hence, each tightly spaced antenna pair has a separation d of λ/4.

• Although the Impinj reader can report phase readings ranging from to 0◦ to 360◦,
the signal processing component in the Impinj Speedway R420 reader introduces π
radians of ambiguity such that the reported phase can be the true phase (φ) or the
true phase plus π radians (φ+ π), which leads that the separation d is λ/8.

Given that λ is 0.32m, we set the separation d to λ/8 as well as the distance between
antenna pair equal to 0.04 m.
Server and Algorithm Implementation:

The system employs a typical client-server architecture. The processes adopt Octane
SDK JavaOctane SDK Programmer’s Guide3 with LLRP protocol to communicate with the

3https://support.impinj.com/
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Actual labelPredicted
lable A 01 A 02 A 03 A 04 A 05 A 06 A 07 A 08 A 09 A 10 A 11 A 12
A 01 97% 0 0 0 0 0 0 0 0 0 0 0
A 02 0 95% 0 0 0 0 0 0 0 0 0 0
A 03 0 5% 100% 0 0 2% 0 0 0 0 0 0
A 04 0 0 0 97% 0 0 0 0 0 0 0 0
A 05 0 0 0 0 100% 0 3% 0 0 0 0 0
A 06 0 0 0 0 0 98% 0 0 0 0 0 0
A 07 3% 0 0 0 0 0 95% 0 0 7% 0 0
A 08 0 0 0 0 0 0 0 95% 5% 0 7% 2%
A 09 0 0 0 0 0 0 0 0 95% 0 0 0
A 10 0 0 0 3% 0 0 2% 0 0 93% 0 0
A 11 0 0 0 0 0 0 0 5% 0 0 93% 0
A 12 0 0 0 0 0 0 0 0 0 0 0 98%

Table 5.1: Confusion matrix of activity identification

reader, collect the readings and upload them to backend module. We utilize the multiple
threads method, where a loop is used to execute the tag reading operation and returns
immediately a sequence of RFID readings to the calling thread. The calling thread then
uploads the tag readings to the server. The backend module on the server accepts the
streaming of tag readings, where the server also stores the training data in the database and
execute our algorithms to identify the activity. CNN and LSTM classifiers are implemented
in Keras with Tensorflow backend on Dual NVIDIA GeForce GTX 1080 Ti GPUs and
the multiclass classifiers based on machine learning tools are implemented based on the
Scikit-learn library.

5.6 Performance Evaluation

5.6.1 Experiment Setup

We conduct extensive experiments in two typical indoor environments, as Figure. 5.8(c)
and (d) show: a laboratory and an empty hall corresponding to high and low multipath
environments, respectively. The laboratory with a size of 13.75 m × 10.50 m has many
file cabinets and writing desks, as shown in Figure. 5.8(c). The empty hall with a size of
8.75 m × 7.50 m is shown in Fig 5.8(d). In each environment, we deploy one readers and
one 4-antenna array, where we place the antenna array at a height of 1.25 m. The tags are
attached to volunteers, so that their heights are between 1 to 1.5 m above the ground and
their distance to the reader is around 3 to 6 m.

We invite ten volunteers4 and by default each volunteer is attached with three Impinj
UHF passive tags on their hand, arm and shoulder, respectively. The volunteers do various
activities about 3-6 meters away from the reader antennas in our experiments. We test

4Note that those volunteers vary in age, gender, height, and weight.
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01: Stand, 

Stand
02: Stand, Sit 03: Sit, Sit

04: Walk, 

Stand
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Walk

07: Stand, 

Wave
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09: Walk, 

Wave

10: Wave, 

Wave

11: Work, 

Stand

12: Work, 

Walk

Figure 5.9: Sketches of the tested activities

12 activity scenarios with two people as shown in Figure. 5.9. The default setting of our
experiments is 4 antennas connecting to the reader.

We train the models for the two different scenarios with cross validation to mitigate
overfitting, where 80% of the data is used as a training set and the remaining 20% is used
as a test set. The training includes 100 epochs using stochastic gradient descent (SGD). To
combat exploding gradients, we scale the norm of the gradient, and both hyperparameters
are chosen using the training set. Throughout training, we save the model and compute
prediction accuracy on the test set for each epoch.

5.6.2 Activity Identification Performance

Figure. 5.10 shows the performance of our M2AI compared with ten commonly used classi-
fiers: k-Nearest Neighbors, one-vs-all Linear SVM, one-vs-all RBF SVM, Gaussian Process,
Decision Tree, Random Forest, Neural Net, Adaptive Boosting, Bayesian Net and Quadratic
Discriminant Analysis. We can see that our M2AI performs the best among all approaches
with the highest accuracy up to 97%, which is 27% better than the runner-up approach
(SVM). Tab. 5.1 shows the detailed results of our M2AI approach, where each row denotes
the actual activity performed and each column represents the activity recognized by M2AI.
Each element in the matrix represents the percentage of activities in the row that is rec-
ognized as the activity in the column. As shown in the table, the identification accuracy
is at least 93% for all scenarios. This indicates that M2AI can distinguish various mixed
activities from different objects with high accuracy by efficiently extracting rich information
about the activities.

Our phase calibration mechanism also contributes to the improvement of the precision
to identify the object activity. We further compare M2AI with phase calibration and non-
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Figure 5.10: Overall activity identification performance
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Figure 5.11: Impact of phase calibration
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calibration. The results are shown in Figure. 5.11, where M2AI with phase calibration is able
to achieve the activity identification accuracy of 97% against the accuracy of 52% with no
calibration, since our calibration mechanism achieves a high AoA estimation accuracy. The
result also explains the statement in [15] that directly using the measured phase by Impinj
R420 reader API is not accurate enough for activity identification and further demonstrates
the effectiveness of our phase calibration mechanism.

We further examine the performance of M2AI for multiple object activity identification.
The results are shown in Figure. 5.12. Intuitively, with more people acting in the environ-
ment, the activity identification accuracy will drop dramatically. Yet M2AI can achieve a
high and relatively stable activity identification performance, where the average accuracy
is still close to 80% even when three people are simultaneously acting in the environment.
Figure. 5.13 shows the activity identification accuracy in two different environments, where
M2AI achieves the best performance in the hall (low multipath) environment with the ac-
curacy of 95%, and its accuracy is close to the laboratory (high multipath) environments.
In Figure. 5.14, we further evaluate the accuracy with varying distances from 1 m to 4 m,
where the results do not exhibit clear correlation with the distance. Therefore, the distance
is not a crucial factor affecting the activity identification accuracy.

M2AI de-couples the multipaths using the array of antennas, which makes that with
more multipaths, M2AI achieves a higher mulitpath diversity in the area and improves the
activity identification accuracy. Since the number of antennas may limit the multipath
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decoupling ability by our pre-processing scheme, we thus investigate the impact of the
number of antennas as shown in Figure. 5.15. We can see that when the number of antennas
increases from 2 to 45 more angle information of multipath can be detected, and thus M2AI
can achieve even higher activity identification accuracy.

With more tags, more signals will be reflected, creating more paths to cover the moni-
toring area and provide the information of target’s activity. In the laboratory environment,
we vary the number of tags from 1 to 3 per person and the results are shown in Figure. 5.16.
It is easy to see that more tags are helpful to provide more information and improve the ac-
tivity identification accuracy. Since the number of multipath that our data pre-processing
scheme can detect for each tag is limited by the number of antennas on the reader, the
number of tags actually is the most effective and cheapest method to increase the path
diversity in the environment. Thus, in an indoor environment with more tags, the cost
of the equipment can then be dramatically reduced by simply using more tags for better
accuracy.

In Figure. 5.17, we compare the results of our deep learning design with inputs from var-
ious preprocessing options. The comparison among the MUSIC-based, FFT-based, Phase-
based, RSSI-based and M2AI shows the effectiveness of our preprocessing scheme. In Fig-
ure. 5.18, we further compare the results of our M2AI with different deep learning network
architectures. It clearly shows that M2AI can achieve 30% higher accuracy than the ar-

5Note that Impinj Speedway R420 reader has maximally four ports to connect with antennas.
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Figure 5.16: Impact of # of tags per person
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Figure 5.18: Impact of different learning networks

chitecture only using CNN and our preprocessing scheme, which demonstrates that LSTM
architectures are necessary for activity identification. On the other hand, M2AI obtains 25%
higher accuracy than the architecture only using LSTM, which illustrates that CNN can
efficiently extract the features for activity identification. In summary, the benefits of M2AI
comes from both our preprocessing scheme and deep learning approach that work jointly to
enable harvesting the rich phase information for multiple object activity identification in a
multipath-rich environment.
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Chapter 6

Conclusion and Discussion

6.1 Summary of the Thesis

In this thesis, we covered a broad spectrum of activity identification with RFIDs, from the
perspectives of profiling RFID tag mobility, RFID-based device-free activity identification,
as well as multi-path and multi-object for activity identification.

• First, we presented the architectural design of i2tag, that can detect tag mobility and
identify activities in typical indoor environments. i2tag employs a novel mobility pro-
file to quantify different levels of mobility, which seamlessly integrates RSSI variance
and packet loss rate, as well as a relative-phase-based fingerprint. We have offered
a multiple dimensional dynamic time warping algorithms to detect the tag mobility
and utilize the multiclass SVMs algorithm to recognize human activities. A proto-
type has been implemented using a Thingmagic reader and Impinj tags and has been
examined under various indoor environments. Experimental results have demonstrat-
ed its superiority in mobility detection and activity identification in various indoor
environments.

• Second, we presented TagFree, the first RFID-based device-free activity identification
system by analyzing the multipath signals, which can identify activities without at-
taching tags on the targets in typical indoor environments. TagFree employs a data
preprocessing scheme to handle frequency hopping and de-couple multipath signals,
which potentially offers the rich information for activity identification. We then u-
tilize a Convolutional Neural Network and a Long Short Term Memory network to
effectively solve the tag-free activity identification problem. A prototype has been
implemented using a commercial Impinj reader and our extensive experimental re-
sults have demonstrated that TagFree achieves an activity identification accuracy of
94% on average in multipath-rich environments, which is better than the state-of-art
solutions.

93



• Third, We presented M2AI, the Multipath-aware Multi-object Activity Identification
framework, which can identify multiple object activities in typical indoor environ-
ments. M2AI employs a data preprocessing scheme to handle frequency hopping and
de-couple multipath signals, which potentially offers the rich information for activity
identification. We then build a deep learning architecture that can effectively solve
the multiple object activity identification problem. Our extensive experimental result-
s have demonstrated that M2AI achieves the activity identification accuracy of 97%,
which is 27% better than the state-of-art machine learning approaches.

6.2 Discussion

Our frameworks mark an important step toward enabling accurate indoor activity identifi-
cation. We envision the basic design can be further extended and explored in the following
aspects.

Current deep learning model is trained under the same environment with identical an-
tenna settings and tag placements. As a result, the model may need to be re-trained for
different settings and environments. This is because the pseduospectrum and periodogram
estimation are sensitive to the activity directions and tag orientations. Therefore, although
the current implementation works well on accurately identifying predefined scenarios with
multiple objects and multiple activities, it is not clear how our deep learning based frame-
work performs beyond predefined environments and activities. We expect one extension is
to identify multiple activities in different scenarios without frequently re-training, which re-
quires incorporating complex models of human activities. Yet our preliminary results have
shown that deep learning has great potentials in de-coupling the individual activities and
is thus far more effective than conventional learning tools towards this goal.

Another extension is on the coverage scale. Current coverage of our system with a
single antenna array is limited to 12 m, which is the reading range of the Impinj reader.
Yet, beyond 6 meters, the RFID tag may not harvest enough energy to achieve a desired
read rate. To cover larger areas, one may exploit Impinj antenna hubs to deploy multiple
RFID antenna arrays. It is thus interesting to explore how the system performs along this
extension.

In addition, our current design focuses on identifying multiple activities of multiple
objects. Yet, it may also be useful to further identify and differentiate users. Future
research may achieve this by extracting robust and representative user features instead of
activity features to train a model for user identification, where a solution similar to the one
based on WiFi signals [64] may be adopted for this future extension.
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