
University of South Florida
Scholar Commons

Civil and Environmental Engineering Faculty
Publications Civil and Environmental Engineering

10-20-2016

Feasibility Study of Land Cover Classification
Based on Normalized Difference Vegetation Index
for Landslide Risk Assessment
Thilanki Dahigamuwa
University of South Florida

Qiuyan Yu
University of South Florida

Manjriker Gunaratne
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/egx_facpub

Part of the Civil and Environmental Engineering Commons

This Article is brought to you for free and open access by the Civil and Environmental Engineering at Scholar Commons. It has been accepted for
inclusion in Civil and Environmental Engineering Faculty Publications by an authorized administrator of Scholar Commons. For more information,
please contact scholarcommons@usf.edu.

Scholar Commons Citation
Dahigamuwa, Thilanki; Yu, Qiuyan; and Gunaratne, Manjriker, "Feasibility Study of Land Cover Classification Based on Normalized
Difference Vegetation Index for Landslide Risk Assessment" (2016). Civil and Environmental Engineering Faculty Publications. 46.
http://scholarcommons.usf.edu/egx_facpub/46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholar Commons - University of South Florida

https://core.ac.uk/display/159385392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/egx_facpub?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/egx_facpub?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/egx?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/egx_facpub?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/egx_facpub/46?utm_source=scholarcommons.usf.edu%2Fegx_facpub%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


geosciences

Article

Feasibility Study of Land Cover Classification Based
on Normalized Difference Vegetation Index for
Landslide Risk Assessment
Thilanki Dahigamuwa 1,*, Qiuyan Yu 2 and Manjriker Gunaratne 1

1 Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620, USA;
gunaratn@usf.edu

2 School of Geosciences, University of South Florida, Tampa, FL 33620, USA; qiuyanyu@mail.usf.edu
* Correspondence: thilanki@mail.usf.edu; Tel.: +1-813-974-5598

Academic Editors: Yongwei Sheng and Jesus Martinez-Frias
Received: 1 June 2016; Accepted: 13 October 2016; Published: 20 October 2016

Abstract: Unfavorable land cover leads to excessive damage from landslides and other natural
hazards, whereas the presence of vegetation is expected to mitigate rainfall-induced landslide
potential. Hence, unexpected and rapid changes in land cover due to deforestation would be
detrimental in landslide-prone areas. Also, vegetation cover is subject to phenological variations
and therefore, timely classification of land cover is an essential step in effective evaluation of
landslide hazard potential. The work presented here investigates methods that can be used for
land cover classification based on the Normalized Difference Vegetation Index (NDVI), derived from
up-to-date satellite images, and the feasibility of application in landslide risk prediction. A major
benefit of this method would be the eventual ability to employ NDVI as a stand-alone parameter
for accurate assessment of the impact of land cover in landslide hazard evaluation. An added
benefit would be the timely detection of undesirable practices such as deforestation using satellite
imagery. A landslide-prone region in Oregon, USA is used as a model for the application of the
classification method. Five selected classification techniques—k-nearest neighbor, Gaussian support
vector machine (GSVM), artificial neural network, decision tree and quadratic discriminant analysis
support the viability of the NDVI-based land cover classification. Finally, its application in landslide
risk evaluation is demonstrated.

Keywords: Normalized Difference Vegetation Index (NDVI); land cover; supervised classification;
landslide risk; remotely sensed soil moisture; logistic regression

1. Introduction

Thick vegetation cover improves the shear strength of soil by increasing cohesion and suction
through evapotranspiration [1]. Thus, the presence of vegetation indicates conditions that are
unfavorable for landsliding. Conversely, the lack of vegetation cover would create favorable conditions
for erosion and slope failure. Moreover, the destruction of vegetation cover due to deforestation,
construction and urbanization invariably enhances the potential for erosion and landsliding [2].
Hence, timely identification of changes in land cover, particularly the reduction of forest cover due to
deforestation, is vital to landslide risk mitigation.

In landslide hazard evaluation, it is important to first identify the factors which contribute to
landslide occurrence. There are two types of factors that can affect the potential for landslide occurrence
at a given location: (1) factors that can be attributed to that location and (2) factors that trigger mass
soil movement [3]. Location-dependent causative factors consist of land cover, slope angle, soil type,
rock type, land form, hydrological factors, etc. [2]. If the conditions of the above attributes are favorable
for landsliding, such as low vegetation cover, landslides can be triggered by rainfall, earthquakes,
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volcanic activity, wildfire, human activity, etc. [2]. Rainfall-triggered landslides are mostly caused by
conditions that promote sudden increases in pore water pressures and the soil overburden.

In addition to increasing shear strength, the presence of vegetation affects the development of
pore pressures and overburden [4]. Thus, research efforts have been focused on understanding the
negative relationship between vegetation density and landsliding [4–6]. Furthermore, visible signs
of occurrence of a past landslide at a given location indicate a higher probability of reccurrence of
landslides at the same location [7]. Phenological changes, human activity and landslides themselves
can vastly change the land cover pattern, hence regular monitoring of land cover patterns can be useful
in identifying the risk of landsliding at a given location [5].

1.1. Land Cover Classification Techniques

Of the numerous techniques that have been employed for land cover classification in landslide
studies, the most widely used method is the image-based land cover classification. Image based
classification utilizes differences in spectral signatures between different land cover classes. This
classification can be performed as a supervised classification or as an unsupervised classification [8].
In supervised classification, prior knowledge regarding the locations of land cover classes is necessary.
Conventional matching techniques are applied to classify unknown areas into pre-defined classes.
Supervised classification techniques include nearest neighbor classification, maximum likelihood
classification, use of artificial neural networks, etc. On the other hand, unsupervised classification
identifies natural groupings in spectral properties with the use of clustering algorithms. Both of the
above techniques have been employed by various authors to derive land cover classifications in the
study of landslides [9–12].

On the other hand, several landslide studies have used normalized difference vegetation index
(NDVI) along with land cover class as parameters in landslide risk assessment [11,12]. NDVI can be
derived from satellite imagery using the following relationship:

NDVI =
NIR − R
NIR + R

(1)

where NIR represents the near infra-red band’s reflectance and R represents the red band’s reflectance
in a satellite image. For example, chlorophyll in green vegetation absorbs R for photosynthesis while
NIR is mostly reflected. Therefore for vegetation, NIR reflectance is high while R reflectance is low.
Thus, NDVI provides an indication of the vegetation density and has the potential to be used as
a parameter for land cover classification. As mentioned earlier, rapid changes in forest cover is a
major contributing factor for landslide occurrence. In this regard, NDVI’s ability to detect changes in
vegetation density would be crucial in identifying locations at increased risk for landslding due to
human activities such as deforestation. Furthermore, this would combine the two parameters used for
landslide risk assessment mentioned above, namely land cover class and NDVI into a single parameter.
Thus, the use of NDVI as a stand-alone parameter has the potential to eliminate the redundancy
associated with the existing method of landslide risk assessment.

NDVI has been used as a tool in effective land cover classification in the past [8,12,13]. Supervised
techniques such as decision tree classification and maximum likelihood classification have been
successfully employed in developing land cover classification criteria from NDVI [8,13]. DeFries et al.
(1994) developed a land cover classification at the global level using NDVI obtained from Advanced
Very High Resolution Radiometer (AVHRR) imagery with the maximum likelihood classification
applied to derive eleven land cover types. However, the derived land cover classes only represent
vegetation or barren lands. Thus, this method is unable to classify areas with water bodies or urban
development. Furthermore, Friedl et al. (1997) developed a land cover classification using both
NDVI and land surface temperature as parameters, with imagery derived from Landsat Thematic
Mapper (TM) and AVHRR sensors [8]. The above classification was performed based on a decision
tree analysis. The results were compared with the results from linear discriminant analysis and a
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maximum likelihood classification. However, the above researchers have not considered the seasonal
behavior of vegetation in selecting Landsat imagery for the analysis. Moreover, the developed land
cover classes from Landsat imagery were limited to either distinct vegetation classes or barren land.

This research aims to investigate the use of NDVI as a reliable stand-alone parameter in deriving
land cover classification in a timely manner, as required for the evaluation of landslide hazard
potential. The investigation is based on a case study in the landslide prone west coast of Oregon,
USA. Five supervised classification techniques were employed to determine the most accurate
classification. In the next section, the five supervised classification techniques employed in this
research are introduced.

1.2. k-Nearest Neighbor Classification (kNN)

kNN is a non-parametric classification technique where no assumption is made regarding
the frequency distribution of the input parameters. Although it is one of the oldest classification
techniques available, it provides reasonably accurate estimations [14]. Furthermore, the nearest
neighbor classification technique is used widely in land cover classification from satellite imagery.
Classification is performed by establishing the distance to every point to be classified from all the
training data points. The k-number of points which are nearest to the above point in terms of the
distance is selected and the appropriate class of the point is assigned based on the majority rule, i.e.,
the class with a majority within the set of “k” is selected. Thus, the criteria for establishing the distance
is crucial for the accuracy [14].

Euclidean distance is the most common metric used for distance measuring, although for optimal
results, the distance metric should be adopted according to the problem being solved. Other widely
used distance metrics are cosine distance metric, cubic distance metric, etc. The fineness of the model
is based on the number of training data points which are considered to be “near”, i.e., the value of “k”,
with models which contain a k-value of 1 being considered the finest. In this study, use of different
distance metrics and “k” values were attempted and finally, a Euclidian distance metric with a “k”
value of 10 was used since it resulted in the best overall classification accuracy.

1.3. Support Vector Machine Classification (SVM)

SVM is a non-parametric machine learning technique. This technique can be used in problems
which are linearly separable or non-separable. A set of machine learning algorithms are employed
to estimate optimal boundaries between classes [15]. In this classification technique, only the points
which are closest to the decision boundary, named “support vectors”, are employed in developing the
optimal decision boundary. The optimal boundary is selected such that the distance between support
vectors and the boundary is maximized. Commonly used SVM kernels include linear, quadratic,
cubic and Gaussian kernels. Linear classification is used for linearly separable problems, where an
optimal hyperplane is selected based on support vectors. In problems which are not linearly separable,
the original map is transformed to a new space. A Gaussian SVM (GSVM) with a kernel scale of
2.4 was selected for the current study as it presented better overall classification accuracies compared
to other SVM kernels and kernel scales.

1.4. Sclaed Conjugate Gradient Backpropagation Neural Network (SCGB)

The objective of an artificial neural network (ANN) is to unveil any complex relationship between
an input and the output, with the aid of a number of hidden layers (Figure 1). A neural network can be
trained with a set of input and the corresponding output parameter values, to derive the relationship
which exists between inputs and outputs. Training data are first fed to the input layer of a neural
network. The output of any hidden layer is calculated from the input, weights associated with the
connections, bias term and activation function associated with that layer [16]. Then, the output of
that hidden layer is considered as the input to the next hidden layer and so on. The output of the last
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layer is considered as the model output. The error is calculated by comparing the model output to the
corresponding actual output of training data which was initially fed to the network.
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Figure 1. Architecture of a neural network with a single hidden layer.

For this problem, ANN can be used to determine land cover classes from the NDVI value and
the location. In the neural network selected for this study, backpropagation is used to distribute
the error computed in the training process between connections. The gradient of the error function
is computed in conjugate directions and weights and biases are adjusted in order to minimize this
error [17]. Once the network is trained, validation is performed to prevent overfitting and identify
when the optimum level of training is achieved. A trained and validated neural network can be used
in testing new data and eventually, for prediction purposes. In this study, the number of neurons in the
hidden layer was varied until the result is optimized. It was observed that 30 neurons in the hidden
layer provided the best overall classification accuracy.

1.5. Decision Trees (DT)

Decision tree-based classification is a non-parametric classification method which is composed
of the continuous partitioning and classification of data based on a decision rule [8]. A decision
tree consists of a root node, split nodes and terminal nodes. The root node consists of input data
while split nodes consist of results of the intermediate partitioning of input data based on the
decision rule. Terminal nodes, also known as leaves, consist of final classifications assigned to the
partitioned data. Splitting is performed such that the classification error at each node is minimized.
Three popular splitting criteria, namely Gini index, twoing rule and cross-entropy were attempted, and
the Gini index was selected for classification since it resulted in the best overall classification accuracy.
The “Gini index” defined as,

G =
K

∑
k=1

pmk(1 − pmk) (2)

where pmk stands for the proportion of observations that are in the mth region belonging to kth class
and K represents the number of classes in the classification

1.6. Quadratic Discriminant Analysis (QDA)

Discriminant analysis, also known as the maximum likelihood classification [18] is a probabilistic
classification technique. This is a parametric classification method which assumes each class to be
normally distributed. With this assumption, the means and covariance matrices of each class can be
obtained from training data. Thus, the probability of a given data point belonging to each class can be
computed using the probabilities of occurrence of each class, the mean and the standard deviation of
each class and the Bayes’ theorem. Finally, the considered data point is assigned to the class with the
highest probability of belonging.
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2. Methodology

2.1. Site Selection

A region located along the west coast of Oregon, USA was selected for this study (Figure 2).
The study area has been continuously affected by landslides, with the February 1996 and November
1996’s ones being the major rainfall triggered landslide events [19]. The study area is subject to
seasonality in weather conditions with spring, summer, autumn and winter seasons occurring from
March to May, June to August, September to October and November to February respectively. Thus,
seasonal behavior patterns can be observed in vegetation. The study area was sub-divided into
1 km × 1 km sections and the center point of each section was considered as a single data point in the
ensuing classification.
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Figure 2. Geographical location of the selected site in the state of Oregon.

2.2. Development of the Database

Two distinct types of data were used for development of the database which was used in
formulating the model. First data type was the land cover data relevant to the points selected for
classification obtained from the National Land Cover Dataset (NLCD) 2011 [20]. NLCD 2011 consists
of sixteen land cover classes as shown in Table 1. Land cover classes in Table 1 were further condensed
to seven basic land cover classes, namely: (1) water (2) crop land (3) forests (4) impervious (5) bare land
(6) grass land and (7) herbaceous/wetlands as shown in Table 2. A similar classification excluding
the herbaceous/wetlands class has been used successfully by Jia et al. (2014) [21] in performing land
cover classification.
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Table 1. Land cover classes according to National Land Cover Dataset (NLCD) 2011.

Class Number Class

1 Open water
2 Perennial snow/ice *
3 Developed, open space
4 Developed, low intensity
5 Developed, medium intensity
6 Developed, high intensity
7 Barren land
8 Deciduous forest
9 Evergreen forest

10 Mixed forest
11 Shrub/scrub
12 Herbaceous
13 Hay/pasture
14 Cultivated crops
15 Woody wetlands
16 Emergent herbaceous wetlands

* It should be noted that the selected area did not contain the land cover type perennial snow/ice.

Table 2. Developed land cover classes.

Modified Class Number Modified Class Classes Assigned from NLCD 2011

1 Water 1
2 Crop land 14
3 Forests 8, 9, 10, 11
4 Impervious 3, 4, 5, 6
5 Bare land 7
6 Grass land 13
7 Herbaceous/wetlands 12, 15, 16

The second data type consists of NDVI values derived for the site locations (Section 2.1). NDVI was
obtained from surface reflectance derived using atmospherically corrected Landsat TM imagery at a
spatial resolution of 30 m × 30 m. The data points were selected randomly from the above 1 km × 1 km
grid. Phenological changes in plant life occur throughout the year. Thus, in order to capture these
changes, several NDVI images from the same locations, obtained during different seasons of the year
have to be employed in the analysis. Hence, four Landsat derived NDVI images of the study area,
each representing one of the four seasons, were used for this study. The dates and the observed cloud
cover condition in the NDVI images on above dates are given by Table 3. In addition to NDVI and
land cover class, the database includes information regarding the location of the data points.

Table 3. Dates and percentage of cloud cover of NDVI images used in the study.

Date of the Image Season % Cloud Cover

3rd January 2011 Winter 29
28th January 2011 Winter 29
18th May 2011 Spring 10–30
20th May 2011 Spring 10–20
21st June 2011 Summer <10
30th July 2011 Summer <10
09th September 2011 Autumn 0
18th October 2011 Autumn 0
10th November 2011 Winter 19
12th November 2011 Winter 25
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2.3. Classification Procedure

The above developed database, which consists of NDVI, location of each of the selected points
from the study area and land cover class was classified according to the five classification techniques
described and parameterized in Sections 1.2–1.6, and the performance of each of the above techniques
was evaluated. The validation set approach was selected to validate the results with 70% of the
dataset been assigned for training while the remaining 30% of the data was used for testing of models
developed by kNN, GSVM, DT and QDA classifications. In SCGB neural network classification, 70% of
the data was used for training, 15% of the data was used for validation while the remaining 15% was
used for testing.

Furthermore, the land cover classification performed using NDVI was compared with a land
cover classification performed using surface reflectance Red, NIR and SWIR (Short Wave Infrared)
bands. The results of this analysis are demonstrated in Section 3.4.

3. Results of the Study

3.1. Frequency Distribution of Classes

The frequency distribution of NDVI values belonging to each class in Table 2 was derived and
modeled with a normal distribution to obtain the mean and the standard deviation of that class.
The results of this analysis is listed in Table 4. Since R radiation is absorbed while NIR radiation is
reflected by green vegetation, the NDVI increases with the increase of vegetation density. Thus, highest
mean NDVI values were obtained for the “forest” class (class 3). However, NIR and R reflection
from water is generally low, thus reducing the NDVI values for water. The other land cover classes
assume NDVI values in-between water and forest cover. It is seen in Table 4 that mean NDVI increased
for water, barren land, crop, grass land, herbaceous/wetlands, impervious and forest classes in the
mentioned order.

Phenological changes which occur in vegetation throughout the year can be observed in NDVI
values with low mean values in winter and high mean values, especially in the forest class, observed
during summer and autumn.

Table 4. Frequency distribution of NDVI values of individual land cover classes.

Class Season Number of Points Mean Standard Deviation

1

Summer

151

0.2593 0.2598
Autumn 0.2548 0.2703
Winter 0.2979 0.3167
Spring 0.2255 0.2348

2

Summer

1504

0.5057 0.2072
Autumn 0.4934 0.1977
Winter 0.4274 0.2226
Spring 0.6585 0.2020

3

Summer

29,232

0.7883 0.1743
Autumn 0.8198 0.0886
Winter 0.5680 0.2549
Spring 0.6550 0.2024

4

Summer

2027

0.6517 0.2295
Autumn 0.6795 0.1986
Winter 0.5141 0.2479
Spring 0.5892 0.2026

5

Summer

248

0.4693 0.1961
Autumn 0.4674 0.1892
Winter 0.3975 0.2224
Spring 0.3886 0.1856
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Table 4. Cont.

Class Season Number of Points Mean Standard Deviation

6

Summer

1844

0.5176 0.2005
Autumn 0.5312 0.1779
Winter 0.4315 0.2136
Spring 0.6809 0.1651

7

Summer

2277

0.6175 0.2043
Autumn 0.6249 0.1579
Winter 0.4852 0.2206
Spring 0.5375 0.1953

3.2. Overall Accuracy of Classification

The overall classification accuracy was defined as the percentage of points accurately classified
w.r.t. the total number of points classified. The results obtained by applying each of the classification
techniques is shown in Table 5. While most classification techniques yielded similar results, it can be
observed that GSVM classification demonstrates the highest overall classification accuracy, closely
followed by SCGB, kNN and DT, while the QDA method produced the least accurate results. It was
noted that of all the supervised classification techniques employed, QDA is the only parametric
classification technique which assumes data to be normally distributed, while the other classification
techniques are not based on assumptions regarding the frequency distribution of data. Thus, this
assumption can be attributed to the relatively low classification accuracy observed using QDA.

Table 5. Overall accuracies of NDVI based land cover classification.

Method of Classification Overall Classification Accuracy (%)

kNN 83.3
GSVM 83.5
SCGB 83.4

DT 82.7
QDA 80.6

3.3. Accuracies of Individual Classes

Table 6 demonstrates the classification accuracies of testing data observed for individual land
cover classes under the alternative classification techniques, while Table 7 demonstrates the confusion
matrices for true comparison of known (true) class vs. class predicted by NDVI w.r.t. each classification
method. The classification accuracy listed in Table 6 is the percentage that was classified correctly
in each class w.r.t the number of points which were assigned to that class. It can be observed that
irrespective of the classification technique, classes 1 and 3 consistently demonstrate higher levels of
accuracy compared to other classes. Generally, the other classes demonstrate similar levels of accuracy
with all classification techniques. Furthermore, QDA, which displayed the lowest overall classification
accuracy (Table 5), demonstrates lowest class accuracies in most cases as well. It must be noted that
confusion matrices in Table 7 are derived from model testing data introduced in Section 2.3.

Table 6. Individual class accuracies of NDVI-based land cover classification.

Method of Classification
Class Accuracy (%)

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

kNN 76 44 89 43 36 46 51
GSVM 73 51 88 52 20 47 49
SCGB 69 51 89 45 31 44 46

DT 70 40 90 31 33 42 45
QDA 45 39 89 34 28 32 38
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Table 7. Confusion matrices for the results obtained for the five classification techniques.

Predicted Class (kNN)

Class No. 1 2 3 4 5 6 7

True Class

1 26 3 7 2 2 2 3
2 0 212 86 28 0 112 13
3 0 22 8599 18 4 42 84
4 4 56 392 80 4 44 28
5 2 5 23 3 12 2 28
6 1 157 133 38 0 202 22
7 1 30 406 16 11 37 182

Predicted Class (GSVM)

Class No. 1 2 3 4 5 6 7

True Class

1 27 2 7 1 1 3 4
2 0 200 105 18 0 118 10
3 1 7 8645 6 1 37 72
4 4 47 405 53 4 72 23
5 2 1 21 2 2 1 46
6 1 122 155 16 1 244 14
7 2 11 454 5 1 46 164

Predicted Class (SCGBP)

Class No. 1 2 3 4 5 6 7

True Class

1 8 1 0 3 1 0 2
2 4 97 10 35 0 81 18
3 5 40 4345 195 16 77 187
4 0 6 4 19 0 6 6
5 1 0 0 2 2 0 0
6 2 48 24 32 0 104 20
7 3 6 49 26 20 18 89

Predicted Class (DT)

Class No. 1 2 3 4 5 6 7

True Class

1 14 6 3 1 2 1 18
2 0 244 75 0 1 114 17
3 0 33 8563 10 9 64 90
4 2 118 383 9 5 59 32
5 2 2 20 0 18 1 32
6 1 183 116 5 2 221 25
7 1 30 395 4 17 61 175

Predicted Class (QDA)

Class No. 1 2 3 4 5 6 7

True Class

1 25 3 4 1 4 0 8
2 3 252 118 10 1 56 11
3 9 25 8346 11 7 170 201
4 10 106 382 22 10 39 39
5 4 2 16 3 13 1 36
6 2 207 140 10 3 142 49
7 3 45 367 7 8 42 211

3.4. Comparison of Results with Classification Accuracies Obtained Using Raw Spectral Information

The classification accuracies obtained by performing the land cover classification with
Landsat-derived NDVI were compared with a land cover classification performed using the
corresponding Red, NIR and SWIR (Short Wave Infrared) surface reflectance images. The Landsat
images used in this analysis were obtained on the same dates as the Landsat-derived NDVI images.
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Four Landsat images, with one image from each season, were used in the analysis. The results of
this analysis are shown in Table 8. By comparing the results obtained using NDVI (Table 5) and
Red-NIR-SWIR surface reflectance (Table 8), it can be observed that the two methods yield similar
overall classification accuracies, indicating that changes in spectral signatures do, in fact, translate well
into changes in NDVI.

Table 8. Overall accuracies of Red-NIR-SWIR-based land cover classification.

Method of Classification Accuracy (%)

kNN 83.6
GSVM 83.9
SCGB 84.1

DT 82.0
QDA 70.6

4. Application to Landsliding

The NDVI-based land cover classification method developed above was applied in a landslide
study performed for a site in Western Oregon, USA. The authors have developed a landslide database
consisting of information regarding past landslides as part of an ongoing research. This database
consists of location of past landsides as well as extensive information on landslide attribute and
triggering factors (Section 1) at the above locations. The attributing factors include slope angle,
soil type, rock type as well as land cover classification derived using both NLCD and NDVI. The slope
angle was obtained from the digital elevation models while soil type information was obtained from
Natural Resources Conservation Service (NRCS) of United States [22]. The observed soil types were
aggregated into 9 broader categories based on the ‘soil order’. Soil orders are differentiated from each
other based on soil formation, horizon characteristics, etc. The soil orders identified at these locations
were, alfisols, andisols, mollisols, inceptisols, ultisols, urban and complex soil formations including
inceptisols-rock outcrop, inceptisols-urban, mollisols-rock outcrop.

Information regarding the type of bedrock was obtained from United States Geological Survey
(USGS) [23]. 11 different rock types were observed at the above locations, which include basalt,
andesite, clay or mud, gravel, sandstone, mudstone, greywacke, pelitic schist, sand, siltstone and
theolite. The landslide attributing factor freshly included in this database is the land cover class,
derived with NDVI (Sections 2 and 3).

In addition, information on one major landslide triggering factor, rainfall, was included in the
database since all the selected landslides in the database are rainfall triggered landslides. A relationship
between remotely sensed soil moisture and landsliding events have been observed in the past [24,25].
Thus, remotely sensed soil moisture obtained from the Climate Change Initiative (CCI) project of
European Space Agency (ESA) was used in this study to represent the impact of the landslide
trigger [26]. The database consisted of 696 landsliding locations from 1996–2010. Apart from
landsliding locations, the database includes information regarding non-landsliding locations as well.
A randomly selected equal (696) set of non-landsliding locations from the same study area was also
included in the database to provide a control set of data.

Statistical classification techniques can be employed to formulate a landslide prediction model
based on the above attributes and the triggering factor (moisture) using such a database. Logistic
regression modeling is a promising technique that can be employed in this regard since landslide
occurrence or non-occurrence is a binary outcome and hence it cannot be modeled with ordinary least
squares regression. Thus the natural logarithm of the odds of landslide occurrence, i.e., the natural
logarithm of probability of landslide occurrence over the probability of non-occurrence, or the “logit”,
was employed for the model development. The probability of landslide occurrence using logistic
regression can be expressed as shown in Equation (3) [27].
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(F) =
1

1 + exp [− (β0 + β1X1 + βkXk + . . .)]
(3)

where β0, β1 and βk are constants. X1 represents continuous variables and Xk represents categorical
variables. If category “k” is observed at the landsliding location, the value of Xk would be equal to 1.
Thus, the contribution to the above equation from category “k” would be βk.

Logistic regression was applied to the above developed dataset to identify landsliding locations
from non-landsliding locations based on above attributes. In order to validate the model results
and improve its accuracy, a “10 fold cross validation” technique was employed. A cross validation
approach is better suited for this dataset compared to a validation set approach due to its small
size [28]. Two different logistic regression models were developed with the above dataset (1) land
cover classification derived from NDVI (2) land cover classification derived from NLCD. The parameter
estimates of the two logistic regression models are given in Table 9. It should be noted that no data
points were observed under ‘bare land’ category with the NDVI based method while no data points
were observed under ‘water’ category with the NLCD based method. The land cover class ‘Grass land’
demonstrated a high parameter estimate of 100.55 with NLCD method. However, the p-value of the
mentioned parameter was high (0.99), indicating that the parameter is not statistically significant.
This class demonstrated a relatively high p-value in NDVI based classification as well. Furthermore all
the parameter estimates with a p-value greater than 0.05 were considered statistically insignificant.
Hence, slope, basalt, sandstones, gravel, andisols, urban and mollisols-rock outcrop under both
classification methods were determined to be statistically insignificant. Herbaceous/wetlands, theolite
and mollisols demonstrated a high p-value under NLCD based classification, while water class and
Inceptisol-rock outcrop demonstrated a high p-value with NDVI based classification, indicating their
statistical insignificance for prediction of landslide events.

Table 9. Parameter estimates and p-values of developed logistic regression models.

Variable Category
Parameter Estimate p-Value

Model 1
(NDVI Based)

Model 2
(NLCD Based)

Model 1
(NDVI Based)

Model 2
(NLCD Based)

Intercept N/A −6.04 −5.26 9.1 × 10−8 8.48 × 10−20

Soil moisture N/A 13.65 13.65 2.4 × 10−39 1.5 × 10−38

Slope N/A 0.0062 0.002 0.40 0.71

Land cover

Water 1.06 N/A 0.58 N/A
Crop land 0 0 N/A N/A

Forest 2.54 1.60 0.02 0.0009
Impervious 2.97 2.65 0.009 2.09 × 10−7

Bare land N/A 2.35 N/A 0.0005
Grass land 0.54 −100.55 0.64 0.99

Herbaceous/Wetland 3.81 1.51 0.0007 0.12

Rock type

Basalt 0.63 0.92 0.09 0.13
Sandstone −0.20 −0.01 0.59 0.99
Theolite −1.39 −1.11 0.04 0.09

Mudstone −1.51 −1.34 0.004 0.01
Siltstone −2.48 −2.30 0.0008 0.002
Gravel −1.69 −1.33 0.06 0.15

Pelitic schist −3.97 −3.72 0.002 0.002
Andesite −2.96 −2.61 0.0001 0.0009

Graywacke −2.98 −2.76 1.02 × 10−6 5.4 × 10−6

Sand 1.66 1.62 0.003 0.002
Clay or mud 0 0 N/A N/A

Soil type

Ultisols −1.88 −1.91 7.05 × 10−13 1.73 × 10−12

Alfisols −0.93 −1.11 0.02 0.004
Andisols 0.42 0.36 0.20 0.27

Inceptisols-urban 2.91 2.60 1.33 × 10−5 5.53 × 10−5

Inceptisols-rock outcrop 0.64 0.92 0.14 0.05
Mollisols −0.67 −0.53 0.02 0.07

Urban 1.58 1.62 0.19 0.16
Mollisols-rock outcrop 1.33 0.92 0.16 0.30

Inceptisol 0 0 N/A N/A
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An overall classification accuracy of 81.2% was observed with the NDVI-based land cover
classification, as opposed to classification accuracy of 80.6% observed with the NLCD-based land
cover classification. Hence, NDVI based land cover classification exhibits the potential to replace the
NLCD-based land cover classification in landslide risk assessment.

5. Discussion and Conclusions

Risks due to natural disasters faced by humankind such as landslides can be escalated by
unfavorable variations in land cover conditions and unplanned construction. This is particularly
an issue with landslides induced by human activities such as deforestation. Absence of vegetation
is a major promoting factor for landslide occurrence in mountainous areas, since the presence of
vegetation reduces the erodibility of a slope. Thus, effective land cover classification methods that
can be updated regularly such as those based on imagery have been employed in landslide risk
assessment. In developing a reliable land cover classification for landslide risk assessment, facility
for updated assessment of the vegetation density should be an important requirement. The NDVI
derived from satellite imagery provides a convenient method for quantifying the vegetation density in
a timely manner. Furthermore, the NDVI’s ability to distinguish between vegetation densities would
provide the ability for timely detection of sudden changes in land cover due to deforestation and
construction. Of the existing methods of landslide risk assessment, several methods consider NDVI
and land cover class as two separate parameters [10,11]. However, this study employed the NDVI itself
as the land cover classification parameter, thereby combining the above mentioned two parameters
into a stand-alone parameter. Therefore, the NDVI-based land cover classification method would also
eliminate the redundancy in some current landslide risk assessment methods.

Five supervised classification techniques were selected for this study and applied in an Oregon,
USA-based database to determine the method which would result in the best overall classification
accuracy. For effective classification, sixteen land cover classes defined in NLCD 2011 were condensed
to seven classes which include two non-vegetative classes, water and impervious land. All classification
techniques yielded similar classification accuracies with GSVM classification yielding the best accuracy.
The results from the NDVI-based analysis were compared with classification accuracies obtained using
Landsat Red, NIR and SWIR surface reflectance values and it was seen that the classification accuracies
were similar for both methods. Furthermore, one NDVI image per season was used in developing the
model so that the effect of phenological changes that occur over the year would be captured by the
model. It was noted that the NDVI images obtained during spring and winter seasons were obstructed
by greater cloud cover compared to images obtained during summer and autumn, thereby impacting
the overall accuracy.

The developed NDVI-based land cover classification method was applied in a landslide risk
prediction model formulated for a site in western Oregon, USA. The model results were compared with
those obtained using the NLCD derived land cover classification on the same dataset. The NDVI-based
method was observed to provide a similar classification accuracy as the NLCD-based method. Thus,
the NDVI has the potential to be used in land cover classification as part of landslide risk assessment.

In the study, development of NDVI-based land cover classification was performed using freely
available Landsat images. The surface reflectance NDVI product can be obtained free of charge at the
Landsat spatial resolution of 30 m × 30 m. Moreover, Landsat imagery covering the entire globe can
be obtained at a temporal resolution of 16 days. Once the model is developed with training data from
a given geographic region, predictions can be performed conveniently for that region. In this study,
the analysis was performed with Matlab software with an academic license; however, a similar analysis
can be performed with freely available statistical tools as well. Hence, land cover classification with the
proposed method can be performed at a relatively low cost in terms of time and funds. On the other
hand, obtaining Landsat images with low cloud cover can be a challenging task, especially during the
winter and spring seasons.
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Of the land cover classes employed by the authors, water and forest classes consistently
demonstrated better classification accuracies compared to other classes which can possibly be attributed
to the forest cover predominance in the selected study area. On the other hand, the above two classes
represent the two extreme values on the NDVI spectrum with significantly different NDVI values.
In spite of being a biomass indicator, NDVI’s ability to detect forest cover would be vital for landslide
risk assessment since it can be used effectively in the identification of sudden loss of forest cover due
to deforestation, and construction that promote landslides.

The results of this study demonstrates that NDVI can in fact be used in landslide studies for
land cover classification in a timely manner with a reasonable prediction accuracy. Therefore, the new
classification method is expected to advance the state of the art in assessing the impact of land cover in
landslide risk assessment.
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