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ABSTRACT
Most research in nuclear mechanotransduction has focused on the nuclear lamina and lamin binding
proteins. These structures provide mechanical stability to the nucleus, establish a link between the
cytoskeleton and chromatin, and can transmit mechanical signals. At the same time, mechanical
perturbations to the nucleus also affect its phospholipid membranes. In this commentary, we discuss
how changes in nuclear membrane tension can mediate mechanotransduction.
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Introduction

Mechanical forces affect virtually every tissue and organ
in our body. Cells have developed numerous ways to
sense and convert mechanical stimuli into biochemical
signals in a process known as mechanotransduction.
Physical forces applied to the cell surface distort the
plasma membrane and are quickly transmitted to the
cytosol. Membrane mechanotransduction has been pri-
marily attributed to proteins embedded in, or attached to
the plasma membrane, such as integrins and mechano-
sensitive ion channels.1 The physiological consequences
of mechanical stretch of intracellular membranes and
organelles are less well understood. Mechanical forces
applied to the cell are transmitted to the nucleus and
modulate nuclear structure and gene transcription.2,3

Most studied cases of nuclear mechanotransduction
involve structural changes of nuclear envelope proteins
or chromatin.3 By contrast, whether and how nuclear
membranes transduce mechanical signals is little studied
and understood.

From nuclear structure to nuclear membrane
tension

The nucleus can be divided into 2 parts, the nuclear
envelope (NE) and the nuclear interior. The nuclear

envelope is composed of an inner and outer nuclear
membrane, which are continuous with each other and
the endoplasmic reticulum. The two membranes join at
the nuclear pore complexes (NPCs), which allow trans-
port between the nucleus and the cytoplasm. Besides
separating the genomic space from the cytoplasm, the
NE providesmechanical support to the nucleus through
its lamina,4 a network of lamin and lamin-binding pro-
teins underlying the inner nuclear membrane. The lam-
ina anchors both to the inner nuclear membrane and to
peripheral DNA and chromatin. The major building
blocks of the nuclear lamina are A- and B-type lamins.
The LINC complex (Linker of Nucleoskeleton to the
Cytoskeleton) anchors elements of the cytoskeleton, the
actin microfilaments, microtubules and intermediate
filaments to lamins, chromatin, NPCs and other nuclear
membrane proteins.5,6 This linkage establishes a physi-
cal connection between the nucleoskeleton and the cell
cortex through which mechanical signals can be trans-
duced from the cell surface into the nucleus - to chro-
matin, and nuclear membranes (Fig. 1).

When nuclei are deformed, for example by squeezing
or stretching, most of the applied force is redistributed
through deformation of the nuclear lamina meshwork,
which acts as a ‘molecular shock absorber’, and protects
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the NE from rupture.7 Likely, only a small fraction of
the total force is ultimately transmitted to the nuclear
membranes to generate bilayer tension (Fig. 1).8 Of
note, we here define nuclear membrane tension as the
in-plane tension of the lipid bilayers. This is not to be
confused with the apparent NE tension. Akin to the
apparent tension of the plasmamembrane, the apparent
NE tension comprises both the in-plane tension within
the lipid bilayer and the cortical tension in the underly-
ing structural protein network: the lamina in case of the
nucleus or the actin cortex in case of the plasma mem-
brane.9 Direct physical measurements of nuclear mem-
brane tension are not available. However, emerging
literature suggests that the nuclear membranes are
stretched during various pathophysiological conditions.
For example, when the lamina is impaired in cancer
cells or as a consequence of lamin A/C mutations,10

membrane stretch can lead to transient NE rupture.
Likewise, cell migration through confined channels can
result in increased nuclear pressure and the formation
of nuclear membrane blebs that eventually rupture,11,12

implying damaging levels of tension. In addition, mem-
brane stretch is induced by nuclear swelling.13

Nuclear swelling is a direct consequence of cell swell-
ing or lysis, which are universal hallmarks of severe
homeostatic tissue perturbation and damage. When
cells swell, their cytoplasmic macromolecules become
diluted through extracellular water influx. When cells
lyse, their cytoplasmic macromolecules leak out. In
both cases, the resulting drop of extranuclear oncotic
pressure forces water into the nucleus, which induces
swelling and nuclear membrane stretch, if the NE
remains intact. Pathological cell swelling, also termed
‘cytotoxic edema’ can have various causes. For example,
following a shortage of oxygen during ischemic and
hypoxic tissue injury, oxidative phosphorylation and
ATP generation in mitochondria is halted. ATP is
required to operate the NaC/KCATPase. ATP depletion
leads to intracellular NaC overload, water influx and cell
swelling.14 Necrotic pore formation within the plasma
membrane during programmed necrosis (e.g., pyropto-
sis, necroptosis, etc.) results in ‘oncosis’—a lethal form
of cell swelling that eventually leads to plasma mem-
brane rupture.15 More directly, cell swelling is induced
by hypotonic exposure of cells.16 Hypotonic cell swell-
ing can be rapidly reversed by a physiological adaption
mechanism termed ‘regulatory volume decrease’
(RVD). During RVD, cells expel cytoplasmic osmolytes
to dissipate the osmotic pressure gradient over the
plasma membrane.17 In animals, such reversible cell
swelling occurs, for instance, when the epidermis of
freshwater organisms is breached, and low osmolarity
fluid enters the tissue. Reminiscent of our descent from
freshwater vertebrates, the mucosal linings of mouth
and esophagus of land-dwelling mammals are still cov-
ered by a hypotonic liquid, known as saliva. Wounding
of these mammalian epithelia results in swelling of the
underlying tissue just like wounding of freshwater fish.

The thin and translucent tail fin epithelium of the
freshwater fish danio rerio (zebrafish) is an excellent
model to study the physiological consequences of cell
swelling within an intact organism. Healing and inflam-
matory responses of wounded zebrafish larvae closely
resemble those of higher vertebrates.18 In zebrafish, cell
swelling acts as a central trigger for wound closure and
inflammation by recruiting epithelial cells and leukocytes
to the site of injury.19,20 Early leukocyte recruitment is
triggered by nuclear swelling. The resulting nuclear
membrane stretch recruits and activates 2 key members
of the ‘eicosanoid’ cascade, cytosolic phospholipase A2
(cPLA2),

13,20 and 5-lipoxygenase (5-LOX),13 which
together produce powerful leukocyte chemoattractants.

Figure 1. The membranes of the nuclear envelope (NE) are sup-
ported by the protein meshwork of the nuclear lamina and the
cytoskeleton, which are linked via the LINC complex. Stretching
forces resulting from mechanical perturbations such as nuclear
swelling, are transmitted to the protein networks of the lamina
and cytoskeleton, and to the nuclear membrane. Stretching the
nuclear membrane increases in-plane membrane tension and
loosens lipid packing, which promotes novel hydrophobic pro-
tein-lipid interactions between the inner nuclear membrane and
proteins such as cPLA2 and LOX-5.
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Unlike the nucleoskeleton and its associated pro-
teins, nuclear membranes have been little considered
as mechanotransducing structures although they are,
in principle, well suited for this purpose. First, nuclear
membranes do not participate in constitutive mem-
brane trafficking. Intrinsic membrane tension fluctua-
tions caused by membrane vesicle fusion or fission are
low. Therefore, nuclear membranes are likely better
suited for sensing and transducing extrinsic mechani-
cal perturbations than, for instance, the plasma mem-
brane, or membranes of the Golgi apparatus, which
are heavily engaged in vesicle trafficking. Second,
nuclear membranes are buffered against excessive
extrinsic force through the lamina. Owing to this
structure, nuclear membranes can endure strong
mechanical perturbations without rupture. Nuclei can
even stay intact and retain much of their nucleoplas-
mic protein content long after their host cells have
died and released their cytoplasm. We recently
showed that these remnant nuclei, when containing
cPLA2, can act as sterile inflammatory signaling bea-
cons that attract leukocytes to cell corpses.13

Biological lipid bilayers expand elastically by »3%
before they rupture.21 However, nuclear surface
increases of »60% have been reported for isolated
nuclei of Xenopus oocytes and Hela cells.7,13 Appar-
ently, swelling taps into additional surface reservoirs
to expand nuclear surface without rupture. The under-
lying mechanisms are very little studied and under-
stood. Nuclear and ER-lumina (cisternae) are
separated, but the outer nuclear membrane and rough

ER-membranes are continuous,21 which enables lipid
diffusion and likely also exchange of bulk membrane
between compartments. ER membranes are stabilized
by scaffolding proteins and are under tension.21,22

This could provide resistance to membrane flows
between compartments. During cell swelling, oncotic
pressure gradients cause water influx both into the
nucleus and the ER leading to swelling of these organ-
elles. We envision a tug of war between nuclear and
ER swelling, with each organelle pulling on the shared
membrane estate thereby causing stretch (Fig. 2). Net-
flux of membrane into the NE is likely mediated by a
membrane tension gradient,23 for example, caused by
different osmotic pressures acting on the ER- versus
nuclear membranes. Per LaPlace’s law, organelle size
and topology may also contribute to tension gradients:
in response to the same osmotic pressure, a large com-
partment will develop more membrane tension than a
small one, and the nucleus is the largest organelle of
the cell. In addition, nuclear NPC dilatation may play
a role in nuclear surface expansion: NPCs cover over
11% of the nuclear surface area in HeLa cells.24

Assuming that NPCs can dilate by 30 nm 25 upon
membrane stretching, NPC-expansion could account
for »10% of the total »60% surface area expansion of
swelling HeLa cell nuclei. In summary, we hypothesize
that swelling-induced membrane tension, or a gradi-
ent thereof, drives net-expansion of nuclear surface
through NPC dilatation or ER membrane incorpo-
ration, in parallel to activating inflammatory cPLA2

signaling.13

Figure 2. Hypothetical scheme of nuclear surface reservoirs during swelling. The outer nuclear membrane is continuous with the mem-
brane of the rough ER. The lumina of both compartments are separated, and have different size and shapes. Upon cell swelling, water
influx (blue arrows) into ER cisternae and nucleoplasm may give rise to compartmental differences in osmotic pressure and membrane
tension (red arrows), respectively. Tension gradients may drive bulk flow of membrane from the ER (yellow) to the nucleus (black) to
expand nuclear surface. At the same time, nuclear pores may expand and thereby add to increase of nuclear surface.
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Sensing changes in nuclear membrane tension

What are the structural alterations induced by stretch-
ing of lipid bilayers, and how are these exploited for
nuclear mechanosensing? Stretching loosens lipid pack-
ing of phospholipid bilayers and exposes the hydropho-
bic membrane core to the solvent.26 This makes
bilayers more susceptible to insertion of hydrophobic
protein residues.27 Nuclear membranes may be particu-
larly suited for transducing tension-signals: due to their
low cholesterol- and unsaturated acyl chain-content,
their lipid bilayers are less densely packed, and better
tuned for stretch-induced insertion of peripheral mem-
brane proteins than the relatively rigid, tightly packed
plasma membrane, which preferentially engages with
proteins via electrostatic interactions.28

In vitro experiments had shown that low lateral
lipid pressure favors the activity of various peripheral
membrane enzymes, such as isoforms of protein
kinase C, phospholipase C and A2.29-31 It remained
unclear whether this constituted a physiologically rele-
vant transduction mechanism. We found that nuclear
membrane stretch directly stimulates membrane bind-
ing of the C2(-like) domains of cPLA2 and 5-LOX,13 2
crucial enzymes of the ‘eicosanoid’ cascade. The eicos-
anoid cascade –one of the most powerful inflamma-
tory mechanisms in humans– produces lipid-based
paracrine mediators such as prostaglandins, leuko-
trienes, oxo-eicosanoids, and many more. We showed
that this important cascade is physiologically activated
by nuclear membrane stretch upon cell swelling or
lysis, which constitutes a key inflammatory mecha-
nism in zebrafish.13,20 Our findings point to an unex-
pected explanation for the enigmatic nuclear
localization of the eicosanoid cascade,32 and assign a
novel, non-genetic function to the cell nucleus: By
using the eicosanoid cascade to monitor nuclear
deformation, organisms can sense dangerous, homeo-
static tissue perturbations (e.g., after epidermal
wounding in zebrafish) and coordinate the rapid
recruitment of antimicrobial cells accordingly. Inter-
estingly, both cPLA2 and 5-LOX have functionally
similar membrane binding domains. Their calcium
binding loops harbor hydrophobic residues that allow
them to deeply penetrate the membrane.33 Calcium
ions (Ca2C) neutralize acidic residues within the cal-
cium binding loops, thus decreasing the desolvation
penalty of membrane association and penetration.34

By exposing hydrophobic interaction surface through

membrane packing defects, nuclear membrane stretch
probably promotes this interaction.

How is nuclear membrane mechanotransduction
regulated in cells? Our results suggest that an intact
actin cytoskeleton and an intact lamina restrict mem-
brane binding of cPLA2, possibly through regulating
nuclear morphology and membrane stretch.13 For
example, cytoplasmic F-actin structures such as the
‘perinuclear actin cap’, or the actin cortex may restrict
nuclear swelling and stretching (Fig. 1). Alternatively,
actin filaments may somehow strengthen the nuclear
lamina. As detailed above, mechanical forces affecting
the nucleus and NE are mainly transmitted to and
redistributed by the nuclear lamina. Nuclei with softer
nuclear lamina resist compressive forces less. Accord-
ingly, nuclear membranes on top of a soft lamina likely
receive a larger share of input force than membranes
that are supported by a rigid lamina. Indeed, we
observed that swelling-induced nuclear translocation
and activation of cPLA2 is enhanced in lamin A/C-
depleted cells 13 possibly because their lamina is soft-
ened. A diverse group of genetic disorders termed lami-
nopathies are caused by mutations in the LMNA gene,
which encodes lamin A and C. The precise disease
mechanism for symptoms ranging from neuropathies
to muscular dystrophies, lipodystrophies, and prema-
ture aging syndromes is still unknown,35,36 but an
inflammatory component has been linked to some of
these diseases.37,38 Our findings raise the question
whether nuclear stretch-sensitive inflammatory path-
ways contribute to the pathomechanism.

Thefieldofnuclearmembranemechanotransductionis
in its beginnings, and full of unanswered questions. Given
the number of peripheral membrane proteins that –like
cPLA2and5-LOX–localizetonuclearmembranesthrough
similardomains,nuclearstretchsensingcouldbeabroadly
utilizedprincipleofcellandtissueregulation.
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