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Abstract

In this thesis, we present the space BMO, the one-parameter Hardy-Littlewood
maximal function, and the two-parameter strong maximal function. We use the
John-Nirenberg inequality, the relation between Muckenhoupt weights and BMO,
and the Coifman-Rochberg proposition on constructing A1 weights with the Hardy-
Littlewood maximal function to show the boundedness of the Hardy-Littlewood
maximal function on BMO. The analogous statement for the strong maximal
function is not yet understood. We begin our exploration of this problem by dis-
cussing an equivalence between the boundedness of the strong maximal function
on rectangular BMO and the fact that the strong maximal function maps A∞
weights into the A1 class. We then extend a multiparameter counterexample to the
Coifman-Rochberg proposition proposed by Soria (1987) and discuss the difficulties
in modifying it into a A∞ counterexample that would disapprove the boundedness
of the strong maximal function.
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CHAPTER 1

Introduction

Notation

|E|: Lebesgue measure of a set E ∈ Rd.
B(x, r): open balls of radius r centered at x ∈ Rd, i.e.

{
y ∈ Rd | |x− y| < r, r > 0

}
.

αB(x, r) = B(x, αr).
fB : mean value of function f over ball B, i.e. 1

|B|
∫
B
f(x) dx.

w(E):
∫
E
w(x)dx, w is a nonnegative locally integrable function.

Lp(Rd): Banach Space of functions such that

‖f‖Lp :=

∫
Rd

|fp|
1
p dx <∞, where 1 ≤ p <∞.

L∞(Rd): f : R→ R such that ‖f‖∞ := ess sup |f(x)| <∞.

p′: conjugate opponent of p :
1

p′
+

1

p
= 1 (p > 1).

type (p, q): for operator T , ‖Tf‖q ≤ A‖f‖p, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and A does
not depend on f , i.e. T is bounded from Lp to Lq.

1.1. The space BMO

The Banach space of function of bounded mean oscillation (abbreviated as
BMO) was first introduced by John in 1961, when he studied rotation and strain
in elasticity theory.

Definition. (BMO function) Let f be a locally integrable function on Rd. f is
said to be in the space BMO, if there exists a constant A such that

sup
B

1

|B|

∫
B

∣∣f(x)− fB
∣∣ dx < A

where the supremum is taken over all balls B in Rd. The smallest A that satisfies
the property is denoted as ‖f‖BMO or ‖f‖∗, the norm of f in space BMO.

Note that constant functions have zero BMO norm where f(x) = fB for all
B 3 x; in fact one considers the equivalence classes of functions modulo additive
constants. Further, the definition is equivalent when we replace balls with cubes.
Any bounded functions are in BMO but the converse is false (e.g., log(|x|) is in
BMO. See [12] for details.) Precisely, for f ∈ L∞, using the triangle inequality,
‖f‖∗ ≤ 2‖f‖∞, therefore L∞ ⊂ BMO.

John and Nirenberg later proved the John-Nirenberg inequality, demonstrating
that the percentage of any cube on which a BMO function differs by more than
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1.2. THE HARDY-LITTLEWOOD MAXIMAL OPERATOR AND THE STRONG MAXIMAL OPERATOR4

λ from its mean decreases exponentially dependent on that constant. So BMO is
also called the John-Nirenberg space.

Proposition 1. (The John–Nirenberg Inequality) [7] If f ∈ BMO, and λ > 0, for
all cubes Q in Rd, there exist constants c1, c2 such that∣∣∣∣{x ∈ Q | ∣∣f − fQ∣∣ > λ

}∣∣∣∣ ≤ c1|Q| e−c2λ‖f‖∗

Here we omit the proof of the above proposition. However, the BMO function
actually satisfies a stronger type of inequality that holds for every p < ∞, and
a limiting version of its exponential integrability [11] [5]. The following corollary
gives a more precise statement of this assertion.

Corollary 1.1.1. If f ∈ BMO, then:

(1) For every 0 < p <∞:

‖f‖∗,p := sup{ 1

|B|

∫
B

|f(x)− fB |pdx}
1
p ≤ Cp‖f‖∗

where Cp does not depend on f .
(2) For every λ such that 0 < λ < 1

2d+1e‖f‖∗
, d is dimension

sup
1

|B|

∫
B

eλ|f(x)−fB |dx <∞

1.2. The Hardy-Littlewood Maximal Operator and the Strong
Maximal Operator

The Hardy-Littlewood maximal operator and its variants, along with so-called
square functions and singular integrals, form the central objects of study in har-
monic analysis [12]. It is defined as follows.

Definition. Let f be a locally integrable function on Rd. The (uncentered) Hardy-
Littlewood maximal function is given by

Mf(x) := sup
x∈Q

1

|Q|

∫
Q

∣∣f(x)
∣∣ dx,

where the supremum is taken over cubes containing x with sides parallel to the axes.

The Hardy-Littlewoord maximal operator has a wide variety of applications.
For example, using the Vitali Covering Lemma that we will show in section 2.1,
one can give a quick proof of the Lebesgue differentiation theorem that for almost
every point, the value of an integrable function is the limit of infinitesimal averages
taken about the point [12].

The properties of the one-parameter Hardy-Littlewood maximal operator M
have been well studied, but there is still ongoing research to understand how mul-
tiparameter versions (that is, versions where the supremum is taken over multipa-
rameter families of geometrical objects) of the operator behave. The one we are
interested in is called the strong maximal function Ms, where the operator takes
in f as a function of ~x ∈ R2 and the supremum is taken over rectangles with sides
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parallel to axes. The function space analogous to BMO is taken to be rectangular
BMO (denoted bmo(R2)).

1.3. Overview of the Thesis

The purpose of this thesis is to understand the behavior of the one-parameter
Hardy-Littlewood maximal function and its two-parameter generalization, the strong
maximal function, on the space BMO of functions of bounded mean oscillation.
The Hardy-Littlewood maximal function and its generalizations, because of their
tight relation with so-called singular integrals (operators that can be realized as
a convolution with a singular kernel), are some of the most central and studied
constructions in harmonic analysis. In this thesis, chapters 2, 3, and 4 will present
the one-parameter results and chapter 5 will focus on the multiparameter case.

In chapter 2, we will begin with the Vitali Covering Lemma, a result of the
engulfing property of balls (or cubes). The lemma has two important consequences
for the Hardy-Littlewood maximal operator: the weak-type (1, 1) estimate and the
strong-type (p, p) estimate via interpolation of the weak-type one.

In chapter 3, we then will discuss the boundedness of M on Lp(wdx) if we
insert a weight w (non-negative locally integrable function) into our measure. This
question turns out to be closely related to the study of Muckenhoupt weights Ap.
We will show the weights that make M bounded on Lp(wdx) are exactly the Ap
weights. Then we will utilize two important properties of Ap weights to prove the
boundedness of M on BMO, but we will build up some machinery to get us there.
The first property is the Coifman-Rochberg proposition that the fractional power
of the maximal function applied to any locally integrable function is an A1 weight,
which in turn implies M maps any Ap weight into an A1 weight (a special limiting
class of weights). The second useful fact is that the logarithm of any Ap weight is
in BMO.

If f is a BMO function, suppose we can control the value of Mf by the log-
arithm of some Ap weight, maybe in conjunction with some other obvious BMO
function. This is exactly what Ou’s commutation lemma says; and as a conse-
quence, we are able to show that M is bounded on BMO. In chapter 4, we will
present the proof of this main result, where we will integrate the results developed
in chapter 3.

In chapter 5, we will explore the multiparameter maximal function following
a similar mindset to that shown in the one-parameter result. In this paper, we
mainly focus on the two-dimensional rectangles with sides parallel to the axes as
the multiparameter object. We will first provide the definitions of the multiparam-
eter analogues of the maximal function, bounded mean oscillation, and Mucken-
houpt weights, namely the strong maximal function Ms, rectangular bmo, strong
Ap weights A∗p, respectively. We will also show that rectangles have an alternative
covering lemma, which only gives the weak-type estimate of Ms from the Orlicz
space L(logL)d−1 to L1,∞.

We then will continue our discussion of Ms by working on some open questions.
Even though less is known for the boundedness of Ms on bmo, this problem is equiv-
alent to the behavior that Ms maps (A∗∞) into a A∗1. However, still little is known
about this conjecture. For our exploration, we will first explain a counterexample
constructed by Soria showing that the Coifman-Rochberg proposition does not hold
for the strong maximal function. In order to disprove the conjecture, we attempted
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CHAPTER 2

The Weak-type Estimate of Hardy-Littlewood
Maximal Function

To give some sense of the distinction between the one-parameter and the two-
parameter strong maximal functions, we begin with the Vitali Covering Lemma of
the geometric objects defined in M , namely balls or cubes. We then show the weak
type (1, 1) estimate of M using the covering lemma and provide the proof of the
lemma to highlight the engulfing property and the doubling property. Lastly, we
prove that M is bounded on Lp.

Proposition 2. (Weak Type (1,1) Estimate for Hardy-Littlewood Maximal Func-
tion) For a given constant α, let Eα :=

{
x |Mf(x) > α

}
. There exists a constant

c satisfying,

|Eα| ≤
c

α
‖f‖L1 (weak (1,1) condition).

2.1. Vitali Covering Lemma

Lemma 2.1.1. (The Vitali Covering Lemma) Let E ⊂ Rd. Given any finite col-

lection of balls, E =
n⋃
i=1

Bi, then exists a disjoint subcollection Bn1 , Bn2 , · · · , Bnk
of these balls which satisfy

c|E| ≤
k∑
i=1

|Bni |

where c is a universal constant.

The lemma implies the weak type (1, 1) estimate as follows. If x ∈ Eα,
namely Mf(x) > α, given Eα is open, there exists a ball B containing x such

that
1

|B|

∫
B

|f | dx > α. Every point in this ball is in Eα, since for any point xo in

the ball Mf(xo) ≥ 1
|B|
∫
|f |dx ≥ α. One can thus obtain a collection of balls that

satisfy
⋃
Bi = Eα. Applying the covering lemma, there exists a subcollection of

balls such that

|Eα| ≤ c
∑
k

|Bni |.

In addition, for each ball Bni ,
1

|Bni |

∫
Bni

|f | dx > α; so
1

α

∫
Bni

|f | dx > |Bni |. Thus,

|Eα| <
c

α

∑
i

∫
Bni

|f |dx ≤ c

α

∫
Rd

|f | dx,

7



2.2. THE BOUNDEDNESS OF HARDY-LITTLEWOOD MAXIMAL FUNCTION ON Lp 8

and then we get the proposition.

Proof of Lemma. One can select the biggest ball in the collection, denote
it as Bn1

, and then remove all other balls that intersect with Bn1
. Repeat this

procedure until one runs out of balls. After this greedy algorithm, one ends up
with a subcollection of disjoint balls, namely Bn1 , Bn2 , · · · , Bnk , and each ball in
Bi is either selected or removed. If one expands the radius of each ball in Bni by a
factor of 3, each ball in Bi that has been removed is covered by some ball in 3Bni ,
consequently

E =
⋃
Bi ⊆

⋃
3Bni .

Since all balls in Bni are disjoint,
∣∣⋃Bni∣∣ =

∑
|Bni |, so

|E| ≤

∣∣∣∣∣∣
k⋃
i=1

3Bni

∣∣∣∣∣∣ ≤
k∑
i=1

|3Bni | ≤ 3d
k∑
i=1

|Bni |,

where d is the dimension of the set. Thus the claim follows with an universal
constant of 1

3d
. �

The Vitali Covering Lemma can be generalized by using other objects like
cubes. The main properties of those objects are the engulfing property and the
doubling property. Engulfing property states that if two balls (or cubes) intersect,
one is contained in some dilated form of the other one. The doubling property
simply allows us to exploit the first property. In the proof of lemma, to cover all
the removed balls that intersect with the selected one, we can choose the constant
3 that works for any size of balls. However, this does not apply to the rectangles
used to define Ms. If two rectangles intersect, i.e. R1 ∩ R2 6= ∅, but one cannot
obtain a fixed constant c like 3 such that R1 ⊂ cR2 for all possible rectangles. For
example, one can consider R1 as an arbitrarily narrow and long rectangle and R2 as
a cube, so that one cannot find a constant factor to expand the sides of R1 to cover
R2. However, rectangles do satisfy another covering lemma, and we will discuss it
further in chapter 5.

2.2. The Boundedness of Hardy-Littlewood Maximal Function on Lp

The weak-type estimate has powerful consequence as it implies the strong-type
estimate of M . Next theorem says that M is bounded on any Lp space where p > 1.

Theorem 2.2.1. (Boundedness of M on Lp) Suppose f ∈ Lp with 1 < p ≤ ∞,
then ‖Mf‖Lp ≤ Cp‖f‖Lp , where Cp depends on p but not on f .

To start off the proof, it is easy to see that M is bounded on L∞ (type (∞,∞)).
If |f | is bounded by some constant, certainly all averages of |f | are still bounded
by the same constant. When 1 < p < ∞, the proof combines the weak-type (1,1)
estimate, L∞ boundedness, and Marcinkiewicz interpolation [13].

Proof. To prove Mf ∈ Lp, we make a stronger version of the weak-type
inequality:

(2.2.1) |{x : Mf(x) > α}| ≤ 2c

α

∫
|f |>α

2

|f |dx
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for all α > 0. Decompose f = f1 + f∞, where

f1(x) =

{
f(x), if

∣∣f(x)
∣∣ > α

2

0, otherwise

and similarly,

f∞(x) =

{
f(x), if

∣∣f(x)
∣∣ ≤ α

2

0, otherwise

So we have f1 ∈ L1 and f∞ ∈ L∞. By the sub-additivity of M , we have Mf <
Mf1 +Mf∞. Given that f∞ is essentially bounded by α

2 , so Mf < Mf1 + α
2 . Since

{x : Mf(x) > α} ⊂ {x : Mf1(x) > α
2 }, apply weak-type estimate to f1 to yield

inequality (2.2.1). Now rewrite ‖Mf‖Lp with respect to α,∫
|Mf |pdx = p

∞∫
0

|Mf > α|αp−1dα

Thus, apply inequality (2.2.1) to complete the proof,∫
|Mf |p ≤ 2cp

∫
(

∫ 2|f |

0

αp−2dα)|f |dx =
cp

p− 1
2p
∫
|f |pdx.

The theorem holds with the constant Cp = p 2p

3d(p−1) , which only depends on p and

dimension d. �



CHAPTER 3

Weighted Inequalities

3.1. Muckenhoupt Weights

In Linear Algebra, we introduced the norm of a vector and then the weighted
norm of a vector that is

‖~v‖~w =< ~v,~v >~w= (
∑

v2iwi)
1
2 where ~w ≥ 0.

The weighted norm of a function f is defined similarly as

‖f‖w =< f, f >w= (

∫
|f |2w)

1
2 ,

which can be considered as the weighted L2 norm of f . Having shown M is bounded
on Lp, in other words, the Lp norm of Mf is bounded by the Lp norm of f , it is a
natural question to ask: for what weights w(x) (locally integrable positive function)
that M is bounded on Lp(wdx), i.e. there exists a constant C that satisfies the
following inequality,

(3.1.1)

∫
|Mf(x)|pw(x)dx ≤ C

∫
|f(x)|pw(x)dx.

Surprisingly, the following weights turn out to provide the answer.

Definition. (Ap weight, p > 1) For p > 1, a weight w ∈ Ap class if

(3.1.2) Ap(w) := sup
B

(
1

|B|

∫
B

wdx)(
1

|B|

∫
B

w−
1
p−1 dx)p−1 ≤ ∞.

Ap(w) is called the Ap characteristic where A is constant.

We remark that for p1 < p2, through simple calculation, Ap1 ⊂ Ap2 . Therefore,
we denote by A∞ the union of all Ap classes where p > 1. To build more intuition
about the A∞ weight, we give the following theorem of crucial characterizations of
the class A∞.

Theorem 3.1.1. (R. Feferrman Notes) The following statements are equivalent:

(0) w ∈ A∞.

(1) There exists ε > 0 such that for any subset E ⊆ B, if |E||B| ≥
1
2 , then

w(|E|)
w(|B|) ≥ ε.

(2) If |E||B| ≤
1
2 , then w(|E|)

w(|B|) ≤ 1− ε.
(3) For all E, there exists a constant δ such that

(

∫
E

w1+δdx)
1

1+δ ≤ C
∫
E

wdx.

10



3.1. MUCKENHOUPT WEIGHTS 11

(4) For all E ⊆ B, there exists a Cη such that w(|E|)
w(|B|) ≤ Cη( |E||B| )

η, where

η = 1
(1+δ)′ = δ

1+δ .

(5) w ∈ Ap(Rd) for some 1 < p <∞.
(6) w satisfies a Reverse Jensen’s inequality, namely

1

|B|

∫
B

w ≤ Ce
1
|B|

∫
B

logw

where we denote the smallest such C by A∞(w). In fact, lim
p→∞

Ap(w) →
A∞(w).

One can use any of above statements to check whether a weight is in A∞ class.
The statement (1) gives us an important observation: a A∞ weight assigns to the
subset E of a ball B a fair share of the weight of B; “fair” in terms of the ratio of
the Lebesgue measure of E and B. This observation combined with statement (3)
also entails that a A∞ weight does not grow or degenerate too quickly.

The set A∞ of all Ap weights is also called Muckenhoupt weights, since Muck-
enhoupt proved that (3.1.1) is equivalent to (3.1.2), i.e. the weights that make M
bounded on Lp(wdx)(1 < p <∞) are exactly the Ap weights [8]. The proof comes
from the following important proposition.

Proposition 3. (Reverse Hölder inequality) If w ∈ A∞, there exists two constants
s > 1 and c > 0 depending on w such that

(3.1.3) (
1

|B|

∫
B

wsdx)1/s ≤ c

|B|

∫
B

wdx

for all balls B, i.e. w lies in the reverse Hölder class RHs, where the Reverse Hölder
characteristic, denoted as RHs(w), is defined to be the infimum of c.

Proposition 3 is a powerful tool that will be used in many proofs in this thesis.
It also yields an important corollary that the Ap class of Muckenhoupt weight can
always be improved.

Corollary 3.1.1. If w ∈ Ap where 1 < p < ∞, then there exists a p1 < p such
that w ∈ Ap1

Proof. For w ∈ Ap, σ = w−
p′
p . Ap(w)

1
p = Ap′(σ)

1
p′ , so σ is in Ap′ ⊂ A∞.

The Reverse Hölder inequality tells us that for some s > 1,

(
1

|B|

∫
B

σsdx)1/s ≤ c

|B|

∫
B

σdx.

Let 1 < p1 < p satisfy s =
p′1
p1

p
p′ , and the inequality translates into

(
1

|B|

∫
B

w
−p′1
p1 dx)

p1
p′1 ≤ (

C

|B|

∫
B

w
−p′
p dx)

p
p′

Then multiply both sides by 1
|B|
∫
B

w(x) to see that we have w ∈ Ap1 . �
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Theorem 3.1.2. Suppose 1 < p < ∞ and w is a nonnegative integrable function.
Then, for all f ∈ Lp(w(x)dx), there exists a constant C such that∫

(Mf(x))pw(x)dx ≤ C
∫
|f(x)|pw(x)dx,

if and only if w ∈ Ap.

Proof of Theorem. Suppose (3.1.1) holds for a locally integrable function

f = w−
1
p−1χB . By definition of M , for all B 3 x, Mf(x) ≥ 1

|B|
∫
B

w−
1
p−1 dx. Then,

rewriting the inequality (3.1.1) in w,

(3.1.4)

(
1

|B|

∫
B

w
−1
p−1 dx)p

∫
B

wdx ≤
∫

(Mf)pwdx

≤ C
∫
B

w
−p+(p−1)

p−1 dx

= C

∫
B

w−
1
p−1 dx.

Dividing both sides by |B| and rearranging the terms, we obtain

(
1

|B|

∫
B

w
−1
p−1 dx)p−1

1

|B|

∫
B

wdx ≤ C

Thus f satisfies the Ap condition.
For the reverse direction, if w ∈ Ap, we claim that M satifies a weak-type

(Lp(wdx), Lp(wdx)) condition, i.e.

|{x : M(f)w > α}| ≤ C

αp

∫
|f(x)|pwdx for all α > 0

We define Mw by

Mwf(x) := sup
B

1∫
B

w(x)dx

∫
B

|f(y)|pw(y)dy.

Recall the weak-type (1,1) estimate of M , for any a > 0,

|{x : Mw(f) > α}| ≤ C

α

∫
|f(x)|w(x)dx

Replace f with |f |p and α with αp,

|{x : Mw(|f |p) > αp}| ≤ C

αp

∫
|f(x)p|w(x)dx

If w ∈ Ap, The condition Ap is exactly when the pth power of the mean value of fB
is bounded by the mean value of fp with respect to w(x)dx, namely,

(fB)p ≤ c∫
B

w(x)dx

∫
B

fpwdx, where c is constant.

Take the supremum of all balls B on both sides, the inequality translates into

(Mf(x))p ≤ cMw(|f |p).
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|{x : M(f)w > α}| ⊂ |{x : Mw(|f |p) > αp}|, thus the weak type estimate holds.
Then from above corollary, w ∈ Ap1 for some p1 < p and satisify the weak type
estimate on Lp1(wdx). Simialr to the proof of the boundedness of M onLp, using
Marcinkiewicz interpolation together with the boundedness of L∞(wdx), we are
able to conlcude that M is bounded on Lp(wdx). �

3.2. Coifman-Rochberg Proposition

Now let us consider another limiting case of Ap classes. We define the A1 class
as all weights w, for which there exists a constant C such that Mw(X) ≤ Cw(X),
where the smallest C is the A1 charateristic, denote it as A1(w). A1 ⊂ Ap for all
p > 1, so A1 class is a subset of the intersection of all Ap classes [5]. To build some
intuition, we can imagine the class of Muckenhoupt weights to be a shooting target.
Given that p does not have a upper limit, the target techinically does not have an
outer rim. The size of Ap class shrinks as p decreases. Thus, as the set inside all
Ap weights, A1 is the bullseye of the target.

Coifman and Rochberg [3] provided an important proposition regarding the re-
lation between the Hardy-Littlewood maximal function and the A1 weights, when
they tried to express a BMO function using the logarithm of the M of some func-
tion. We state the main theorem of their paper as follows, but in this thesis, we
mainly use the proposition.

Theorem 3.2.1. There is a constant c (which depends only on dimension d) such
that if α and β are positive constants, g and h are weights with finite Mg and Mh
a.e., and b is any bounded function, then the function

f(x) = α logMg − β logMh+ b(x)

is in BMO and ‖f‖∗ ≤ c(α+ β +‖b‖∞).
Conversely, if f is any function in BMO then f can be written in above equa-

tion with

α+ β +‖b‖∞ ≤ c‖f‖∗
.

Proposition 4. (The Coifman-Rochberg Proposition) Let µ(x) be a locally inte-
grable function such that Mµ(x) < ∞ for a.e. x ∈ Rn. For any 0 < δ < 1,
w(x) = (Mµ(x))δ is an A1 weight, i.e. there exists a constant C s.t.

M(Mµ(x))δ ≤ C(Mµ(x))δ

C only depends on δ and the dimension d.

Using the Hölder inequality and the reverse Hölder inequality, it is easy to get
the following corollary regarding the behavior of M on A∞.

Corollary 3.2.1. If w(x) ∈ A∞, Mw(x) ∈ A1.

Proof. By the reverse Hölder inequality and Hölder inequality, if w ∈ A∞,
then for s > 1,

c(
1

|B|

∫
B

wsdx)1/s ≤ 1

|B|

∫
B

wdx ≤ (
1

|B|

∫
B

wsdx)1/s
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Rewrite the inequality in terms of M ,

c(Mws)
1
s ≤Mw ≤ (Mws)

1
s

By reverse Hölder inequality, Mws is bounded by Mw, so Mws ∈ A∞. By the
Coifman-Rochberg proposition, (Mws)

1
s is an A1 weight with 0 < 1

s < 1. Since

Mw is comparable to (Mws)
1
s , thus Mw ∈ A1. �

3.3. The Logarithm of Muckenhoupt weights

We have seen L∞ and log |x| are in BMO. In this section, we first show that
BMO function can be produced from the logarithms of A1 weights; we then show
that in fact the logarithms of Ap for any p ≥ 1 is in BMO.

Theorem 3.3.1. logA1 ∈ BMO

Proof. Let w(x) ∈ A1 and φ = log(w), that is w = eφ. By definition of A1,

1

|B|

∫
B

eφdx ≤ Ceφ

=⇒ (
1

|B|

∫
B

eφdx)e− infB φ(x) ≤ C

By Jensen’s Inequality,

1

|B|

∫
B

eφdx ≥ e
1
|B|

∫
B

φdx

= eφB

Then we have eφB−inf φ(x) ≤ C, equivalently,

0 < φB − inf φ(x) ≤ C
For φ ∈ BMO, 1

|B|
∫
B

∣∣φ(x)− φB
∣∣ dx needs to be finite for all balls B. By the

triangle inequality,
∣∣φ(x)− φB

∣∣ ≤ ∣∣φ(x)− inf φ(x)
∣∣ +
∣∣inf φ(x)− φB

∣∣. Taking the
average over all balls |B|,

1

|B|

∫
B

∣∣φ(x)− φB
∣∣ dx ≤ 2|φB − inf φ(x)| = 2C <∞.

Therefore φ = logw(x) ∈ BMO. �

If φ satisfies 1
|B|
∫
B

φ−infB φ ≤ C over all balls B, we say φ is in BLO (functions

of bounded lower oscillation) and denote the smallest constant C by ‖φ‖BLO. In
the proof above, by the triangle inequality, we see that BLO is a subset of BMO.
Indeed, if w ∈ A1, logw satisfies a strong condition that logw ∈ BLO.

In order to show log(A∞) ∈ BMO, we state the next theorem that gives the
characterization of Ap weights in terms of their logarithms.

Theorem 3.3.2. If φ is locally integrable on Rd and 1 < p <∞.

(1) eφ ∈ Ap if and only if:

(a) 1
B

∫
B

eφ(x)−φBdx ≤ C,
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(b) 1
B

∫
B

e−
φ(x)−φB
p−1 dx ≤ C.

(2) Given that (1b) vanishes, eφ ∈ A∞ if and only if (1a) is true.

Proof. The conditions (1a) and (1b) together implies the Ap condition,

(
1

B

∫
B

eφ(x)−φBdx)(
1

B

∫
B

e−
φ(x)−φB
p−1 dx)p−1

= (
e−φB

B

∫
B

eφ(x)dx)(
e
φB
p−1

B

∫
B

e−
φ(x)
p−1 dx)p−1

= (
1

B

∫
B

eφ(x)dx)(
1

B

∫
B

(eφ(x))−
1
p−1 dx)p−1 ≤ C × Cp−1

Conversely, if φ ∈ Ap, condition (1a) is satisfied,

1

B

∫
B

eφ(x)−φBdx =
e−φB

B

∫
B

eφ(x)dx

= (e−
φB
p−1 dx)p−1

1

B

∫
B

eφ(x)dx ≤ (
1

B

∫
B

e−
φ
p−1 dx)p−1

1

B

∫
B

eφ(x)dx ≤ C

Similarly, condition (1b) can be obtained,

1

B

∫
B

e−
φ(x)−φB
p−1 dx = (eφB )

1
p−1 (

1

B

∫
B

e−
φ(x)
p−1 dx)

≤ (
1

B

∫
B

eφdx)
1
p−1 (

1

B

∫
B

e−
φ(x)
p−1 dx) ≤ C

For second part of the theorem, when φ ∈ A∞, φ(x) − φB is bounded by some
constant, so condition (1a) is satisfied. �

The following corollary simplies Theorem 3.3.2, because the A2 condition has
a simpler and more symmetric appearance. We will use this corollary later in this
thesis to determine whether a weight falls into the A2 class.

Corollary 3.3.1. If φ is locally integrable on Rd. eφ ∈ A2 if and only if there
exists a constant C such that

1

B

∫
Q

e|φ(x)−φB|dx < C.

Proof. When p = 2, by Theorem 3.3.2, the two conditions are 1
B

∫
Q

eφ(x)−φBdx ≤

C and 1
B

∫
Q

e−(φ(x)−φB)dx ≤ C. Combining both terms, we get 1
B

∫
Q

e|φ(x)−φB|dx ≤

C, which is equivalent to the A2 condition. �

The next theorem shows that the averagae fluctuation of the magnitude of Ap
weights w on every ball is uniformly controlled.

Theorem 3.3.3. logA∞ ∈ BMO
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Proof. Let w(x) ∈ A∞ and w = eφ. For the case p < 2, w(x) lives in some

Ap ⊂ A2. Applying Corollary 3.3.1, 1
B

∫
Q

e|φ(x)−φB|dx is bounded by some constant.

By definition of BMO, we can see φ ∈ BMO as follows,

‖φ‖∗ = sup
1

B

∫
Q

∣∣φ(x)− φB
∣∣ ≤ sup

1

B

∫
Q

e|φ(x)−φB| = C.

For the other case when p > 2, there exists p′ < 2 such that function σ = w−
p′
p ∈

Ap′ ⊂ A2, so log(σ) lives in BMO. Also, log(σ) = log(w−
1

1−p ) = − 1
1−p log(w). It

follows that log(w) ∈ BMO for both cases. �

In fact, the converse of Theorem 3.3.3 is true: for every real-valued function
f ∈ BMO, if we fix p > 1, then f = c logw for some w ∈ Ap and some constant c.
A short version of the proof of this statement is included in the proof of Theorem
4.0.1 when we fix p = 2.



CHAPTER 4

The Boundedness of the Hardy-Littlewood
Maximal Operator on BMO

In previous chapters, we have shown M is bounded on Lp as well as Lp(wdx)
if w is an Ap weight. Now we are ready to show M is bounded on the space BMO.
Bennett, DeVore and Sharpley first showed the following result in 1981 [2].

Theorem 4.0.1. M : BMO → BMO is bounded.

4.1. Commutation Lemma and Proof of the Main Result

The proof has several versions, and this thesis relies on the one given by Ou [9].
Ou used a generalization of M called natural maximal operator M \, first introduced
by Bennett in [1]. M \ takes the average of the function itself, i.e.

M \ := sup
x∈Q

1

|Q|

∫
Q

f(x) dx

Obviously, M \ and M are the same for nonegative functions like weights. Notice
that Mf = M \|f |, so it suffices to show the boundedness of M \ to prove Theorem
4.0.1. Ou’s proof begins with a commutation lemma as follows.

Lemma 4.1.1. For w ∈ A∞, 0 ≤ [logM \ −M \ log]w(x) ≤ logA∞(w).

Proof of Lemma. From Jensen’s inequality, over all balls B,

e
1
|B|

∫
B

logw

≤ 1

|B|

∫
B

w.

By Reverse Jensen’s inequality, we have

1

|B|

∫
B

w ≤ Ce
1
|B|

∫
B

logw

;

where, recall, A∞(w) denotes the smallest such C. Now we have,

1

|B|

∫
B

w ≤ A∞(w)e
1
|B|

∫
B

logw

≤ A∞(w)
1

|B|

∫
B

w.

Take the supremum over all B 3 x,

M \w(x) ≤ A∞(w)eM
\ logw ≤ A∞(w)M \w.

Take the logarithm,

logM \w ≤ logA∞(w) +M \ logw ≤ logA∞(w) + logM \w.

17
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�

The commutation lemma tells us that logM \ is bounded by M \ log and loga-
rithm of the A∞ characteristic of w. To get the boundedness of M \ from BMO
into BLO, we combine the above lemma with what we have established: 1) the
John-Nirenberg Inequality; 2) the corollary of the Coifman-Rochberg proposition;
3) the fact that the logarithm of any A1 weight is in BLO.

Proof. First, we want to show that for every φ ∈ BMO, if we fix p = 2, φ
can be rewritten as a multiple of the logarithm of an A2 weight, i.e. if w ∈ A2,
φ = c logw(x) for some c.

By Corollary 1.1.1 of John-Nirenberg Inequality, if φ ∈ BMO,

1

B

∫
B

eλ|φ(x)−φB| ≤ c

for all balls B. The inequality holds when 0 < λ < cd
‖φ∗‖ and cd = 1

2d+1e
, d denotes

dimension [5]. By Corollary 3.3.1, we observe w(x) = eλφ ∈ A2 and A2(w) ≤
√
e.

Thus,

(4.1.1) φ(x) = λ−1 logw(x) =
‖φ‖∗
cd

logw(x).

Apply the commutation lemma to (4.1.1),

M \φ(x) =
‖φ‖∗
cd

M \ logw(x) ≤
‖φ‖∗
cd

[logM \w(x) + logA∞(w)].

The term logA∞(w) is finite, as A∞(w) ≤ A2(w). Consider logM \w(x), w(x) > 0
allows us to switch M \ to M . M maps A∞(containing A2) to A1 and logA1 ∈ BLO,
so logM \ eventually maps w to BLO. �

Thus, to complete the proof of Theorem 4.0.1, for f ∈ BMO, simply let Mf =
M \(|f |) ∈ BLO ⊂ BMO.

4.2. Question: The Boundedness of the Strong Maximal Function

In this chapter, we have finally connected our discussion on weights back to the
original question on the boundedness of operators on BMO. We have seen that one
could use the Coifman-Rochberg proposition that (Mf)δ ∈ A, for any f ∈ L1

loc(R)
and any 0 < δ < 1, combined with the John-Nirenberg inequality, to show that
the Hardy-Littlewood maximal operator M , the one-parameter case, is bounded
on BMO. However, the analogous statement in the multi-parameter case is still
not yet understood. In the next chapter, we would like to explore the boundedness
of Ms on bmo by utilizing an equivalent relationship between Theorem 4.0.1 and
Corollary 3.2.1.



CHAPTER 5

Behaviors of the Strong Maximal Function

The Hardy-Littlewood maximal function is called the one-parameter case, be-
cause we take the supremum over a family of the geometric objects like balls or
cubes, which in essence are described by one piece of data (the radius or the side
length). However, the strong maximal function considers a more general set of
objects Ms is defined over a 2-parameter family. We define it as,

Msf(x) := sup
x∈R

1

|R|

∫
R

∣∣f(x)
∣∣ dx,

where the supremum is taken over all rectangles on R2 containing x with sides
parallel to the axes, denote the collection of these rectangles as R.

If we denote Mj as the one-parameter maximal function, we observe

Msf ≤M1M2f.

The multiparameter version of the space BMO is known as the rectangular
BMO, denoted as bmo(R), where the supremum of the mean oscillation is taken
over all rectangles in R.

5.1. The Boundedness of the Strong Maximal Function on Lp

The failure of Vitali covering lemma on rectangles demonstrates a crucial dif-
ference between M and Ms, and consequently Ms is not of weak-type (1, 1) as M
is. However, Corboda and Fefferman gave a refined covering lemma for Ms [4].

Theorem 5.1.1. Let {Rj}j∈J be a collection of all rectangles in R. There exists
a subcollection of those rectangles {Rjk} ⊂ {Rj} such that

(1) | ∪j∈J Rj | ≤ cn| ∪k Rjk |

(2)

∥∥∥∥exp

∑
k χRjk
n−1

∥∥∥∥
L1

≤ Cn| ∪j∈J Rj |

The above lemma provides a geometric proof of the weak-type estimate of the
strong maximal function, which was first studied by Jessen, Marcinkiewicz, and
Zygmund [6]. However, the weak-type estimate for Ms is defined only from the
Orlicz space L(logL)n−1(Rd) to L1,∞(Rd):

Theorem 5.1.2. For any f ∈ L(logL)n−1(Rd) and any λ > 0,∣∣∣{x ∈ Rd|Msf(x) > λ}
∣∣∣ ≤ C

λ

∫
Rd

∣∣f(x)
∣∣ (1 +

(
log

∣∣f(x)
∣∣

λ

)n−1)
In our discussion on M , we utilize the interpolation to obtain the strong-type

estimate from the weak-type one. However, one can obtain the boundedness of

19
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Ms on Lp via an inductive argument. Analogous to Ap, we define the strong Ap
weight (denoted as A∗p) that preserves the (3.1.2) when the supremum is taken over
rectangles in R. Note that w ∈ A∗p implies that w ∈ Ap(R) uniformly on any line
parallel to the coordinate axis.

Similar to how we use the weights theory to arrive at the boundedness of M
on BMO, we are naturally led to ask: is Ms bounded on bmo?

5.2. Equivalent Problems

In the one-parameter result, the behavior of M on A∞ allows us to conclude
the boundedness of M on BMO. Precisely, Ou [9] pointed that M \ maps BMO
function into BLO corresponds exactly to the behavior that M maps A∞ into A1.

Theorem 5.2.1. M \ : BMO → BLO is equivalent to M : A∞ → A1.

The reverse direction was already shown in the proof of the boundedness of
M on BMO. The forward direction can be shown using the commutation lemma
together with a special characterization of BLO given in the following proposition.
We leave the proof of this proposition for the readers [1]. Remark that the multi-
parameter version of this proposition is also true for blo (functions of bounded lower
oscillaton with supremum taken over rectangles in R).

Proposition 5. φ(x) ∈ BLO if and only if Mφ(x) ≤ φ(x) +‖φ‖BLO.

Proof Of Theorem. When w ∈ A∞, apply the commutation lemma twice
to w,

eM
\M\ logw(x) ≤MMw(x) ≤ A∞(Mw)A∞(w)eM

\M\ logw(x)

Since M \w ∈ BLO by hypothesis, use the Proposition 5 to yield

MMw(x) ≈ eM
\M\ logw(x) ≤ eM

\ logw(x)+‖M\ logw(x)‖
BLO

≈Mw(x)e‖M
\ logw(x)‖

BLO

where e‖M
\ logw(x)‖

BLO is finite by hypothesis. So Mw(x) is an A1 weight. �

Notice that the above equivalence still works for the multiparameter maximal
operator: the commutation lemma holds for the strong Ap weights, as the definition
of A∗p guarantees that A∗p weights will satisfy the Jensen’s inequality and the reverse
Jensen’s inequality. The theorem that log(A∗∞) ∈ bmo is also true, given the proof
of the one parameter result does not utilize the engulfing property of the geometric
objects defined in the maximal function. One can obtain the proof of this theorem
by simply following the proof of Theorem 3.3.1 shown in the previous chapter and
replacing balls B with rectangles R. Thus in order to prove Ms is bounded on bmo,
due to above equivalence, it suffices to find whether the following statement is true:

Conjecture. Ms(A
∗
∞) ∈ A∗1.

5.3. Soria’s Counterexample

In previous chapters, the Corollary 3.2.1 that M(A∞) ∈ A1 is shown as a sim-
ple corollary of the Coifman-Rochberg proposition (Proposition 4). Notice that
Proposition 4 holds in Rd, where the maximal function is taken over hyper-cubes
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or hyper-balls with the doubling properties. However, the strong maximal function
considers rectangles of arbitrary eccentricity. The statement analogous to Proposi-
tion 4 might not be true in multiparameter case as the other theorems do shown in
previous section. One distinguishment of Proposition 4 is that the proof relied on
the weak-type (1, 1) estimate of M , but Ms does not have this property.

Indeed, Soria [10] provides a function g which, when operated by Ms and raised
to any fractional power, is not an A1(Ms) weight. To state it precisely, there exists
a function g ∈ ∩0<p<∞Lp(Rd) such that, for every 0 < δ and every constant C > 0,
there is a set S of positive measure such that

(5.3.1) Ms(Msg)δ(x) ≥ C(Msg)δ(x),∀x ∈ S.
Soria’s counterexample is constructed using a sequence of functions v(x) =

{vN (x)} with compact support. We define each function vN (x) as follows. For
k, j ∈ Z, let Qk,j denote the unit square (assuming d = 2 for simplicity) with the

lower left corner at the point (k, j). For k = 1, 2, . . . , N and dk = 2k

k , we let the

height of the function VN on the unit square Qk,dk be 2k, i.e.

vN (x) =
∑

1≤k≤N

2kχQk,dk (x)

To give a picturesque description, let us call vN (x) the N-th city and define the area

of city as [1, N + 1]× [1, 2
N

N + 1], thus denote |city| = |[1, N + 1]× [1, 2
N

N + 1]| = 2N

(that is the area of its support). Each city contains n number of towers, and the
height of k-th tower is 2k. The essential supremum of the city is the height of the
tallest tower, so ‖v‖∞ = 2N . Those cities satisfy the following lemma, which is
essential in constructing the counterexample.

Lemma 5.3.1. For all N ∈ N, there exists v = vN with compact support so that

{Ms(Msv)δ(x)}1/δ ≥ CδNMsv(x), ∀x ∈ [0, 1]2

Observe that ‖v‖pLp =
N∑
1

2kp for 0 < p < ∞. One can use the formula for

geometric series to show ‖vN‖Lp ≤ cp2
N :

‖vN‖Lp =
(2 ∗ p(2Np − 1)

2p − 1

)1/p
≤ 2 ˙(2Np)1/p

(2p − 1)1/p
= cp2

N

with cp = 2
(2p−1)1/p . We scale the cities to make v(x) a Lp function, 2−2NvN ∈ Lp

for 0 < p ≤ ∞ and for all N . Place those scaled cities distant from another, for
example at points xN = (2N , 2N ), i.e.

g(x) =
∑

2−2NvN (x− xN )

Notice that the values of Msg for any point in unit square [xN , xN + 1]2 are the
same as the values of Ms(2

−2NvN ) in [0, 1]2. g does not have compact support
outside of the cities, and cities are sufficiently far from each other. To calculate
Ms(g(x)) where x is in [xN , xN + 1]2, one does not have to consider rectangles that
stretch to other cities. In other words, if we look at each city individually, in the
N-th city vN , for x in [0, 1]2, Ms(vN (x)) is the supremum taken over some rectangle

inside [0, N + 1]× [0, 2
N

N + 1]. When N goes to infinity, for any x on [xN , xN + 1]2,

the value of {Ms(Msv)δ(x)}1/δ = O(N) becomes infinitely large. One cannot find



5.4. ATTEMPTS TO MAKE A STRONG MUCKENHOUPT WEIGHT COUNTEREXAMPLE22

a multiple of Msv(x) = O(1) that is comparable to Ms(Msv)δ(x) for any x on
[xN , xN + 1]2 and for every N ∈ N. Thus, the inequality (5.3.1) holds on a set of
infinite measure.

5.4. Attempts to Make a Strong Muckenhoupt Weight Counterexample

Soria’s counterexample is exciting but does not necessarily allow us to conclude
that the conjecture 5.2 is false. Notice g is locally integrable but not a weight.
Following the proof of corollary 3.2.1, we hope to construct an A∞ weight, based
on g, that preserves two of its properties: 1) lemma 5.3.1. 2) for any x ∈ [0, 1]2 in
vN , the value of Ms(vN ) does not change after we place an infinite number of cities
(in appropriate locations) on the same plane.

As an initial step towards A∞, we would like to make a non-negative function
by adding a constant term α > 0, like a “floor” under the city. Now we have
ṽ(x) = v(x) + α, where v(x) is inherited from (the same as in) Soria’s example.
The essential supremum only changes by α, i.e. ‖ṽN‖∞ = 2N +α, and the Lp norm
is still bounded by O(2N ),

‖ṽN‖Lp ≤‖ṽN‖Lp +Nα ≤ c̃p2N

In order to show ṽ satisfies the lemma, we rely on Soria’s proof of the lemma but
with some modification. Consider the rectangle Rk = [1, k + 1] × [1, dk + 1]. By
subadditivity of Ms, for any x ∈ [0, 1]2,

Msṽ(x) ≤Msv(x) +Ms(α) ≤Msv((1, 1)) + α

= sup
1≤k≤N

|Rk|−1
∫
Rk

v(y)dy + α ≤ 2 + α

Note that the strong maximal function of any constant function is still constant.
Then consider the rectangle R̃k = [k, k+ 1]× [1, dk + 1], which looks like a strip on

column k. The strong maximal function of any x ∈ R̃k is larger than k + α,

Msṽ(x) ≥|Rk|−1
∫
Rk

(v(y) + α)dy =
2k + dkα

dk
≥ k + α

If we then take the rectangle R = [0, N + 1]2, and denote f = Msṽ, we see that for
x ∈ [0, 1]2

(5.4.1)

{Ms(Msṽ)δ(x)}1/δ ≥ {Ms(f)δ(x)}1/δ

≥ (|R|−1
∫
R

fδ)1/δ

≥ ((N + 1)−2
∫
R

fδ)1/δ ≤ N

≥ [(N + 1)−2
N∑
j=1

N∑
k≥2 log2N

(k + α)]1/δ ≈ O(N)

Recalling that Msṽ < 2 + α, we confirm that the new city constructed on a
constant floor preserves the lemma. We then place each city with its left bottom
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corner at XN = (22N, 22N) without scaling down its height, i.e.

g′(x) =
∑

ṽN (x− xN ) =
∑

(v + α)(x− xN )

Given the floor under all cities are the same, the value of the strong maximal op-
erator decreases as the rectangle exceeds the city area, so g̃(x) satisfies the second
criteria. Obviously, g̃ /∈ L∞, as the tallest tower 2N determines the essential supre-
mum, which is not bounded when N becomes arbitrarily large. Further, g̃(x) is not
an A∞ weight as it fails the first characterization of A∞ stated in theorem 3.1.1:
take Q as the unit square of the tallest tower combined with an adjacent unit square
of the floor, and let E be that unit square of floor, so |E| ⊂ |Q| and |E| = 1

2 |Q|.
Observe that w(E) = α

2N+α
w(Q) and α

2N+α
vanishes as N approaches infinity. A∞

weights require a fixed ratio between the weights of two embedded sets.
To make the function bounded above, we mimic Soria’s example by scaling each

city by a multiplicative factor of 2−2N and placing them at points xN = (2N , 2N ),
and then we add a universal constant α to all cities. However, this setting violates
the lemma, as each city becomes 2−2NvN +α = 2−2N (vN + 22Nα). To ensure that
the lemma holds, we want each city to be of the form 2−2N (vN + α), so that the
floor needs to be short enough for every city. Let the height of the floor be 2−2Nα,
but 2−2Nα vanishes as N approaches ∞. Thus, we cannot make a weight using
this strategy.

Another possibility would be to make the constant α dependent on the height
of each tower. Take Soria’s function g and filling in the gap among cities, we have

g\ =
∑
{2−2N (vN (x− xN )) + 2−2Nαχx̃N }

where x̃N = [2N ≤ |x1| < 2N+1]× [2N−1 ≤ |x2| < 2N ]

Regrettably we find g\ does not satify the second criteria. For x in [2N , 2N + 1]2,
Ms(vN (x)) is the supremum taken over some rectangle that stretches to other cities.
To be more precisely, consider the Nth city, based on Soria’s reasoning, for x in
[2N , 2N + 1]2

Ms(vN (x)) ≤Ms(vN (2N + 1, 2N + 1)) =
1

|city|

∫
city

g

=
2−2N

2N

∫
city

(vN + α) ≈ 2−2N (2N + 2N )

2N
≈ 1

22N

But consider the rectangle R = [0, 2N ]× [0, 2N ] containing all the cities and floors
before Nth city, we obtain

1

|R|

∫
R

g′′ ≥ 1

22N

∫
R

2−2Nαχx̃N ≈
N

22N
≥ 1

22N

that is, the weight of the floors overpowers the weight of the towers.
From the above example, we notice when g becomes an A∗∞ weight, it gets

harder to control Msv(x) where x ∈ [0, 1]2 of each city. The floor could certainly
be scaled much shorter so that the total weight of floor does not grow at the rate
of O(N). But to construct an A∗∞ weight, we need to restrict the ratio between the
height of tower and the height of floor, that is, the floor cannot be infinitely short
compared to the tower. The results in this section could add to the discussion that
maybe the characteristics of A∗∞ are so restrictive that they essentially force us to
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violate the lemma. The proof of this statement will make a huge step in studying
the behavior of Ms.

It seems that it is not trivial to construct an A∗∞ weight example to meet
Soria’s proposition 5.3.1. Part of the trouble understanding the boundedness of Ms

on bmo relates to the difficulty of constructing a non-trivial A∗∞ example. That is,
if u(x) and v(x) are one-parameter Ap weights, then we know w(x) = u(x)v(x) is
a strong Ap weight. However, since Msw ≤ M(w)M(w), obviously Msw ∈ A∗1, as
the right-hand-side satisfies the Coifman-Rochberg proposition which holds true in
higher dimension. In other words, we only know the well-behaving trivial examples.
There do not seem to be any good examples in the literature of strong Ap weights
that do not arise as the product of one-parameter Ap weights. Constructing a
nontrivial strong Ap weight example can also be a breakthrough to understand the
boundedness of the strong maximal function on BMO.
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