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Abstract

Sentiment analysis has taken on various machine learning ap-
proaches in order to optimize accuracy, precision, and recall.
However, Long Short-Term Memory (LSTM) Recurrent Neu-
ral Networks (RNNs) account for the context of a sentence
by using previous predictions as additional input for future
sentence predictions. Our approach focused on developing an
LSTM RNN that could perform binary sentiment analysis for
positively and negatively labeled sentences. In collaboration
with Mariam Salloum, I developed a collection of programs
to classify individual sentences as either positive or negative.
This paper additionally looks into machine learning, neural
networks, data preprocessing, implementation, and resulting
comparisons.
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Chapter 1

Introduction

Human beings are naturally endowed with the ability to understand lan-
guage. Language allows for innumerable manners of verbal expression which
we can almost always understand. However, that skill is not inherent in
machines which require strict parameters in order to function. Fortunately,
considerable progress has been made in Natural Language Processing (NLP)
which allows computers to understand language. NLP has become culturally
relevant due to consumer inventions such as Apple’s Siri, Amazon Alexa, and
Google Home which provide powerful voice recognition and command-based
software to everyday consumers at a relatively low price point [Ohl]. NLP
employs machines to function in a manner that’s user-friendly and natural.
However, NLP is by no means perfect; Amazon recently dealt with a NLP
bug that triggered the Amazon Alexa to eerily laugh for no apparent rea-
son. This occurred because of a somewhat frequent sound that could easily
create a false positive hit for the words “Alexa, laugh.” [Day18]. To fur-
ther improve NLP, engineers are constantly developing new programs and
implementing revolutionary techniques.

One very important field to NLP is sentiment analysis. Although senti-
ment, a feeling or emotion, may be something nascent to humans and living
creatures, there is a lot of value in building programs that can detect basic
emotions such as happiness and sadness, and even more complex emotions
like sarcasm. The continued development of analytical patterns that provide
both singular and multiscale sentiment analysis confirms that importance
of accurately analyzing emotion from text-based inputs. Singular classifica-
tions attempt to determine whether the text has only one of two emotions
while more complex sentiment analysis can make an educated guess from a
variety of emotions.
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This paper will first cover general machine learning basics by reviewing
important steps to train a basic AI while covering key algorithms and tech-
niques. I then examine neural networks specifically including how they can
tackle problems such as NLP. Next, I review noteworthy related work in
general sentiment analysis as well as sentiment analysis in regards to neural
networks. I then walk through my implementation for training a sentiment
analyzing neural network and compare my results to other experiments.
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Chapter 2

Machine Learning Overview

When most people think about machine learning, it’s commonly perceived as
some super intelligent machine that can think for itself. However, that’s far
from today’s reality; most machine learning techniques train a program to
be very good at finding patterns and making inferences from those patterns.

The beauty of machine learning, for many, is the ability to develop ex-
tremely nuanced and personal answers to various questions. One prominent
use of machine learning stems from recommendation systems like those used
in prominent companies such as Netflix and Yelp. Recommender systems
are especially important in ensuring the platform can find the user mean-
ingful content. Many of these examples from industry are constructed using
fundamental algorithms and steps which are described below.

2.1 Preprocessing and Feature Extraction

It’s important to note that before beginning any sort of machine learning on
a set of documents, one must clean each document to remove any unwanted
data. This could be anything from improperly formatted data, to removing
stop words (the, is, it, etc.) that we don’t want to feed into our program. For
example, if we were to analyze a collection of books from Project Gutenberg,
we’d notice there is metadata stored at the beginning of every book; it would
make sense to systematically remove this information because it offers no
insights into the text that we do not already know about. Note, we do this
before doing any sort of machine learning because it would only take more
time to read through that information in the ML process. What’s next is a
more in depth explanation of various types of machine learning techniques
and implementations.
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Next, the user needs to make important decisions regarding feature ex-
traction; in other words, what characteristics about the data will likely lead
to an accurate prediction? For sentiment analysis, we need to ask, what
qualities of a sentence or tweet can potentially provide insight into the sen-
timent? Basic features can include but are not limited to: adjectives, word
frequency, punctuation, and more. More complex features include TF-IDF,
Word2Vector, and metadata.

We can extract features from the metadata of an individual data record
and use that to make predictions. For example, if it were the case that
people made more negative remarks at night, then we could potentially use
the time of day as a feature. Any other information associated with the
actual text can be used in addition to the text.

Term Frequency-Inverse Document Frequency (TF-IDF) is a specific
feature extraction approach based on word frequencies. The Term Frequency
is the calculation of terms or phrases that appear most frequently within a
document ’whereas Inverse Document Frequency represents the importance
of a term relative to the entire corpus’ [MB12]. The algorithm ultimately
helps find words associated with specific topics by looking for words unique
to one document (or a group), but not present in all of the corpus. Conse-
quently, if we have documents with different expected categories, then there
should be keywords that do not appear in other documents. One example
of TF-IDF in practice would be analyzing various store reviews. The as-
sumption is that reviewers likely drop important keywords that denote the
type of store. Many reviews for a coffee shop might mention frappuccino
and barista; using TF-IDF we can see how a high frequency of these words
in the review likely indicate the review is for a coffee shop rather than, say,
a hot dog stand.

Term Frequency Inverse Document Frequency (TF-IDF) calculates the
frequency of words in a given document or data record in relation to the
frequency of those words in the entire corpus or dataset [Ram]. These cal-
culations then should give an estimate for how important those words are
to a given document.

Word2Vector relies on the premise that some words have similarities
and connections to one another which can help us perform natural language
processing [MCCD13]. Since words can have different word-endings but
retain the meaning, Word2Vector attempts to encode that in a vector
that can have varying degrees of similarity and dissimilarity determined
through vector distance.

Word2Vector models need to be trained on a corpus of text before it
can be used for another ML pre-processing task.

4



Figure 2.1: A given Word2Vector model may encode cat and dog as
these vectors. Since the two words are different in meaning but similar in
category (i.e. mammal), then their vector distances may be further apart
compared to cat and feline or dog and poodle.

2.2 Machine Learning Algorithms

After properly identifying characteristics of a sentence using feature extrac-
tion, its possible to train a machine learning algorithm to properly categorize
a sentences with some confidence. Naive Bayes classifiers use words inde-
pendently as their primary feature and calculate probabilities based on the
appearance of certain words. Support vector machines (SVMs) attempt to
find the most suitable features that accurately generates a consistent clas-
sification scheme that correctly splits the training data [ZS14]. K-Nearest
Neighbor (KNN) classifies sentiments based on the greatest number of sim-
ilar documents to the one in question [GC12].

Figure 2.2: In general machine learning, learning goes through a series of
steps until it can make a prediction.

Thus, the entirety of machine learning can be broken down into a distinct
workflow as seen in Figure 2.2. After understanding what our machine
learning task is, we can find a dataset. From there we attempt to identify
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significant features to provide valuable information for the ML classifier we
will pass that data into. After some number of training iterations, we can
save the current state of the learning process as a model and use it to make
predictions or further examine the testing accuracy.

Unfortunately, rudimentary machine learning approaches are unable to
grasp the context of a sentence. Because of the complexity of human lan-
guage, we can have several different meanings for the same sentence and
also several different sentences for the same meaning. In this respect, the
challenge for natural language processing is ’the translation of potentially
ambiguous natural language queries and texts into unambiguous internal
representations on which matching and retrieval can take place’ [Cho03].

The ML approaches mentioned above would be unable to accurately
classify in this manner since they cannot account for words or phrases except
in isolation; the features are used independently and the order of the sentence
or document is ultimately unaccounted for. The next section of this paper
explain how neural networks can better approach sentiment analysis.

6



Chapter 3

Neural Networks

3.1 History

At its fundamental level, a neural network attempts to replicate the basic
structure of a human brain [Gra07]. Humans learn through a repetitive
learning process that strengthens our neural pathways. The growth of neural
networks originated from extensive nervous system research conducted by
Donald Hebb in the 1940s. He concluded that humans and other animals
learn by strengthening the neural pathways “by averaging the results from a
number of animals, trial by trial, that one can manage to get a simple curve
showing steady improvement with practice” [Heb49]. These insights looked
more into how humans and living creatures learn and motivated others to
replicate that procedure using computers.

Dr. Bernard Widrow came up with a mathematical and technical ap-
proach to create “trainable neural elements” by using the steepest descent
algorithm to “direct the weight vector” which effectively helped generate
better predictive models [Wid05]. Since Widrow could determine how ac-
curate the output was, this could be fed back into the algorithm to adjust
the weights to maximally increase accuracy. These initial findings, however,
were not developed using software but circuits due to technological limita-
tions of the time. Not until much later could software advancements for
neural networks be implemented.

3.2 How Neural Networks Work

Today, neural networks have become exceedingly important because of their
ability to mimic human learning. They are used for solving problems that

7



are “complex, ill-defined, highly nonlinear, of many and different variables,
and / or stochastic” [Gra07]. Neural networks are capable of this because
they process the input through different layers which allow them to analyze
an input from several different aspects and then come up with a prediction.

Neural networks are composed of cells. Each cell contains an activation
function which is a mathematical function that accepts one or more inputs,
but only has one output. These activation functions can be associated with
the firing of neurons. In order for a cell to activate, it needs to reach a certain
number typically determined by a sigmoid function given by the function
f(x) = 1

1+e−x . However, the network also has a global bias term that can

f(x) =
1

1 + e−x

Figure 3.1: A cell in a neural network activates after passing through a
sigmoid function. Determined by f(x) = 1

1+e−x . Values quickly approach
either 1 or -1 which equate to positive or negative activation.

be configured manually. The bias subtracts a fixed number from the cells
activation function before being plugged into the sigmoid function. This
effectively allows it to shift the cells output in another direction which can
help correct activation functions that may be too eager to activate based on
a certain dataset.

The complexity of neural networks lies in complex connections cells have
between one another; a given cell’s outputs serve as another cell’s inputs.
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However, every neural network separates cells into layers. These layers con-
sist of input layers, output layers, and hidden layers. The input layer starts
as the initial point where data is fed into the network while the output
layer is the final layer that makes a prediction. The hidden layers serve as
intermediary layers that make inferences on different parts of the input.

One additional layer that many choose to add to their neural networks
is a dropout layer. These were created to prevent a common phenomenon
known as overfitting. This occurs when a neural network has essentially
memorized the training dataset. Memorization is bad because although the
network has optimized for the training data, it will perform horribly on
anything outside of that. In order to combat this, we can randomly remove
cells during training and testing by blocking their incoming and outgoing
signals. Doing so helps prevent the network from receiving familiar in-
put consistently and will be forced to make an inference from fewer inputs
[SHK+14]. In order to train the neural network, the inputs of each cell are
given individual weights. While these weights are relatively arbitrary at the
beginning of training, theyre constantly being adjusted through backprop-
agation; the neural network changes these weights by checking how well its
predictions performed against the labels and calculates the loss.

Neural networks can choose from a variety of optimizers that may be
more effective for different types of training tasks. These optimizers serve as
different calculations during backpropagation. Bernard Widrow developed
the signature gradient descent algorithm that changes the weights in such
a way that it will find the change in weights that will result in the steepest
decrease in error.

Common to other types of machine learning processes, the neural net-
work typically also undergoes validation and testing in addition to training.
First, the validation phase occurs intermittently between training iterations.
The validation stage tests the current model against data the model has
never seen. The accuracy from the validation can be used to determine how
well the training is progressing. At this point, the programmer can choose
to end training. If training ends, then the model moves into a testing phase
that gauges how well the network performs against data not in the valida-
tion or training set. The accuracy from testing is then the official accuracy
generated for the entire network model.
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Figure 3.2: A basic neural network with weighted inputs and outputs that
feed into the next layers. This network has one hidden layer.

3.3 Recurrent Neural Networks

General artificial neural networks perform quite well on a number of prob-
lems, however, these neural networks still consider words independent of the
entire sentence. In order to resolve this, recurrent neural networks (RNNs)
were developed. RNNs have feedback connections which provide previous
neuron states as input [JM99]. This allows RNN to effectively handle NLP
because they use in predictions about previous parts of the text as input
back into the network.

By the end of the process, the network will have effectively used previous
prediction scores to make a general prediction about the entire sentence. In
order to understand this, let’s investigate a basic sentence example.

In Figure 3.4, the sentence is broken up into 5 different parts. Assuming
that I has no sentiment value, then by t = 2, we’d have processed I don’t
which would likely be a −1 prediction for negative. A RNN would then
use that prediction from t = 2 to make a new prediction for t = 3. A
well trained RNN would likely recognize that a negative prediction at t− 1,
followed by another negative word such as not should be positive instead.
Therefore, the following prediction score for everything up to t = 3 would
be +1. This process would continually happen until the end of the input
has been reached.

10



Figure 3.3: The figure above highlights that information passing through the
RNN is re-directed back into the hidden layers as input for later predictions.
This feature allows RNNs to hold onto information in a sequential fashion.

Figure 3.4: An example sentence for better understanding how an RNN
would work.

3.4 Long Short-Term Memory

Recurrent Neural Networks with Long Short-Term Memory (LSTM) are a
specific RNN that replicate memory using a memory cell. Each memory
cell contains an input, forget, and output gate. Gates provide finer control
over information and decide what passes through and what does not. These
gates all have the same inputs passed into them, but interact with them
differently. LSTMs have a forget gate to enable “the LSTM to reset its own
state” [GSK+15]. This allows the LSTM to look back many timesteps in
order to make a more accurate prediction.

Let’s imagine we wanted to create a LSTM to produce a 6 digit number
without repeating previous numbers. If our current number was 123, then
our LSTM would have these inputs passed into the neural network. The

11



forget gate would be in charge of forgetting the current input, namely 3,
but relay information that 1 and 2 cannot be used. The rest of the neural
network would still have the current input of 3, and factor in output from the
forget gate to choose the next number. In terms of sentiment analysis, the
LSTM is especially useful for analyzing words farther back in the sentence
since not all significant words occur right after each other.

12



Chapter 4

Related Work

4.1 Early Work

Sentiment Analysis has grown significantly since the early 2000s. However,
one of the first significant attempts to classify words began with Hatzivas-
silogou and Mckneown in 1998 with their work on Predicting the Semantic
Orientation of Adjectives [MGK16]. Because dictionaries do not contain sen-
timent, they made a basic assumption that the sentence itself would provide
that information. Their algorithm looks for conjunctions between adjectives
and utilized that to generate similarity scores between words which could
then be used to find the best clusters of adjectives [HM97].

For example, using the sentence I thought Disneyland was fun,
but expensive reveals that the words fun and expensive are dissimilar
words evident from the conjunction but. After analyzing numerous docu-
ments, they were able to train an algorithm that could infer sentiment with
accuracy scores of around 90%. However, their work involved people manu-
ally verifying their results which appeared to focus specifically on identifying
the sentiment orientation of adjectives and not sentences as a whole.

4.2 Recent Work

A study by Sharma and Dey utilized artificial neural networks (ANNs) for
sentiment analysis by training on movie reviews [SD12]. Notably, they used
a feature extraction technique called Information Gain (IG). IG measures
the entropy which is the anticipated information needed to classify some-
thing which can then be used to build decision trees for likely classifications
given appearances of certain features. Information gain correlates roughly
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to information that strongly connects to a given document; by finding a
collection of attributes that strongly correlate to certain documents, we can
reduce the amount of information needed to make classifications.

Let’s look at a restaurant categorization problem that can train on a
set of reviews. IG can possibly check unigrams and find ones that maxi-
mize entropy in the given review, but is small in the entire dataset. Thus,
information about the name of a food in a given review such as chicken
katsu should have a high entropy in the review, but is likely uncommon
amongst all restaurant reviews for many different restaurants. IG differs
from TF-IDF since it usually breaks down features into subsets. In other
words, a restaurant may likely be Hawaiian if they not only serve chicken
katsu, but also serve macaroni salad.

Figure 4.1: A simple information gain decision tree based on the appearance
of the words chicken katsu, udon, and macaroni salad. Information gain can
make more specific classifications by associating features together.

They then used a standard ANN to calculate the weights using back-
propagation. Their ANN was able to achieve around 95% accuracy on movie
review classifications. Their results primarily highlighted the advantage of
using the Information Gain feature selection technique over others.

In 2014, Zainuddin and Selamat investigated binary sentiment analysis
using SVM (Support Vector Machine) [ZS14]. Their study involved imple-

14



menting various feature extraction techniques such as TF-IDF in conjunc-
tion using unigrams, bigrams, and trigrams. Using TF-IDF with different
n-grams will yield various results because the frequency of two words (bi-
grams) would theoretically be different than one word (unigram). For exam-
ple, the frequency of the unigram pizza may be different than the bigram
cooking pizza. The latter more definitively highlights the process of the
pizza being made which could potentially be a cooking class on pizza. On
the other hand, the former could easily be referring to either a pizza cooking
class or a pizza restaurant. Using TF-IDF with unigrams, however, yielded
the highest accuracy of 77.50%.

There has been recent work by Severyn and Moschitti in 2015 that specif-
ically focused on convolutional neural network (CNN) sentiment analysis
using Twitter tweets [SM15]. CNNs are special because of their additional
convolutional layers. Convolutional layers are more adept at detecting pat-
terns especially in images and speech; these layers have filters that help
identify certain patterns. Their work analyzed how the initialization of
weights at the beginning of training affects overall accuracy.

In order to test different weight initializations, Severyn and Moschitti
had three different evaluations which were random, derived from word em-
beddings, and one where word embeddings are further tuned using a dis-
tant supervised dataset. After training, each was tested on various labeled
Twitter datasets. Their official results revealed that the distant supervision
improved test results overall with message-level accuracies of around 73%.

In 2018, Wang, Sun, Han, Liu, and Zhu published a paper in 2018 on
Recurrent Neural Network Capsules for positive and negative sentiment clas-
sification [WSH+18]. Their experiment trained a capsule network which is
an augmentation of CNNs. After processing data through a neural network,
the information is represented as a vector entity passed to some number
of capsule determined by the number of potential predictions or categories
an algorithm can make; these capsules then compute the prediction and
also reconstruct the representation of the input. For this paper, since each
capsule is associated with a different sentiment, it provides two important
computations; how certain is the capsule that the input matches the cap-
sule’s sentiment, and how accurately can the capsule rebuild the original
input from the computed input.

For example, a capsule network for sentiment analysis would attempt to
reconstruct the actual sentence and check how well that sentence matches
up against the original sentence. From there, it computes a reconstruction
loss coupled with the prediction score. If these values combined reach a
certain number, the capsule can activate (like a cell), which then feeds its

15



output into a final prediction score. Capsule networks are usually utilized
for image recognition in order to identify images that are rotated or skewed
a certain way; other neural networks are unable to handle this since they
look for features in the same general location and cannot look for features in
different regions of the image. However, this method highlights that capsule
networking can also provide high accuracy for NLP problems.

Using three different datasets (movie reviews, hospital feedback, and
a proprietary dataset), their capsule network outperformed LSTM, Naive
Bayes, and SVM by yielding an accuracy of 91.6% on a hospital feedback
dataset and 83.8% on the movie review dataset.
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Chapter 5

Environment

The coding environment we worked under immensely improved our workflow
by increasing code reusability, reducing run-time, and providing valuable
data representations. All programming was done using Python 3.5.4.

5.1 Jupyter Notebook

Jupyter Notebook provides users the ability to use literate programming.
This allows programmers a user-friendly and readable way to add para-
graphs of text to describe and highlight their code. Jupyter supports var-
ious markdown and languages including Python, Markdown, and LaTeX.
Jupyter supports a cell structure where code can be written, executed, and
re-executed on demand. As a result, Jupyter Notebook is ideal for machine
learning since it helps you effectively organize and configure your code to
minimize unnecessary code reruns. We utilized Jupyter by splitting our
code into various areas for preprocessing, configuration, training, and test-
ing. That way, if we needed to rerun one of those code blocks, we would not
have to rerun them all at once. For example, changing code in the config-
uration cell allowed us to immediately run the training without needing to
rerun preprocessing.

5.2 Tensorflow and Tensorboard

Tensorflow by Google is a machine learning framework with great docu-
mentation for configuring and training neural networks. We decided to use
TensorFlow because its library already has many key neural network fea-
tures already built into the API. The API allows users to easily plug in
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different layers into the network without much overhead. In my project, I
utilized Tensorflow 1.3.

Tensorboard is used in conjunction with Tensorflow and provides users
with a ready-made interactive dashboard to view all training iterations.
These are essential for viewing accuracy and loss plots while the network is
training.

Figure 5.1: The Tensorboard dashboard with options to manipulate views
of various training runs.

5.3 Matplotlib

Matplotlib allows users to easily and quickly plot large amounts of data.
It offers standard line and bar plots as well as histograms, color coordina-
tion, labeling, and more. We utilized Matplotlib to perform necessary data
analysis on the individual data sets and to visualize testing and training it-
erations. These visualizations provided us with valuable insights into how to
better optimize our preprocessing and training configurations for improved
performance.
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Chapter 6

Approach

While many have attempted to implement sentiment analysis through var-
ious algorithms, we wanted to gauge the performance of a recurrent LSTM
neural network using different Twitter datasets. Some previous work utilized
significantly more complex neural networks and algorithms and achieved
high accuracy doing so. While they compared their results to other ML
approaches, most results are not compared against other neural networks.
Thus, we wanted to measure their results against an LSTM recurrent neural
network.

6.1 Dataset

This study focused on binary classification of sentiments using a LSTM re-
current neural network from two labeled Twitter datasets [RFN16, GBH09].
The first dataset (SemEval ’16) contained manually labeled tweets cate-
gorized into various years. The second dataset (Sentiment140) was auto-
matically generated under the assumption that tweets with happy emoticons
were positive and tweets with sad emoticons were negative. Both datasets
labeled each tweet as either positive, negative, or neutral.

After basic data processing, we found the SemEval ’16 dataset to be
heavily unbalanced for positive tweets. The dataset had approximately
16, 000 positive tweets and 5, 000 negative tweets. On the other hand, the
Sentiment140 dataset had 800, 000 tweets for positive and negative. Ad-
ditionally, due to the processing power limitations of my machine, we could
only use approximately 100, 000 tweets in total. It’s important to note that
a balanced dataset is not necessarily best. If Twitter typically has more
positive tweets than negative, then it may be appropriate. Whether or not
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this is the case is unfortunately outside the scope of this paper, however,
it is important to consider trends such as these when applying the neural
network to texts and inputs outside of Twitter.

(a) Semeval’16 manually labeled
dataset.

(b) Sentiment140 automatically gener-
ated dataset.

Figure 6.1: Tweet count by sentiment.

We were concerned with the unbalanced SemEval dataset, because a
trained model may be over-eager to choose positive sentiments. However,
we decided to use it as a test against the balanced Sentiment140 dataset
in future tests.
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6.2 Preprocessing and Configuration

After loading the tweets into separate lists for positive and negative tweets,
we analyzed the average words per tweet in order to determine the necessary
sequence length for the neural network. Sequence length is the size of input
we feed into the neural network determined for us by the number of words
in a given tweet. After deciding on these basic configurations, we processed

(a) Semeval’16 average word histogram.

(b) Sentiment140 number of words his-
togram.

Figure 6.2: Histogram plots depicting number of words per tweet.

each tweet through a Word2Vector model trained from a news dataset
with over 400, 000 words [PSM14]. This model then converted each word
to a vector in the model. If a word could not be identified, the word was
assigned a generic unknown word vector (the same vector was used for all
unknown words).
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After all tweets were successfully preprocessed, the dataset was shuffled,
then split into a training, validation, and testing set. The training set was
given approximately 80% of the dataset, while the validation and testing set
were each given 10%.

6.3 Training

With the data preprocessed, properly shuffled, and split, we began training
our neural network. We additionally configured an LSTM RNN with a
dropout layer in order to prevent the neural network from memorizing the
training set.

Figure 6.3: Workflow diagram.

To train, we randomly select 24 tweets from the training set to have the
neural network learn from. We could then add controls to check progress ev-
ery 24 tweets. For most training experiments, we chose to train on 100, 000
iterations or 2, 400, 000 tweets with validation intervals every 5, 000 itera-
tions or 120, 000 tweets. Every validation test checked the model’s accuracy
against 2, 400 tweets. This setup allowed us to intermittently check how well
our model performed against data not in the training set. Throughout this
process, Tensorflow logged training accuracy and loss to Tensorboard every
50 iterations or 1, 200 tweets.

During training, we logged the validation accuracy and kept track of
the model with the best performance. After training completed, we took
the best model and computed its accuracy on the testing dataset. While
we logged general testing accuracy, we also calculated the total number of
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(a) Tensorboard training accuracy with data logged every
50 iterations.

(b) SemEval validation accuracy over iterations. At
around 66K iterations, we logged a validation of over 85%
which we eventually used for testing.

correct and incorrect positive and negative predictions.
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Chapter 7

Results

In order to test our models against data and measure it, we needed to
capture information on how many correct predictions for positive and neg-
ative occurred as well as incorrect predictions. Correct predictions (true
predictions) were those that matched with their label, whereas incorrect
predictions (false predictions) did not.

accuracy =
truePositive + trueNegative

totalPredictions

Figure 7.1: Our basic formula for calculating accuracy involves summing the
total number of correct predictions by total number of predictions.

Using the formula in Figure 7.1, we made basic accuracy calculations and
plots. General testing against our own datasets yielded validation accuracies
up to 85.6% after training for 66K iterations on the SemEval ’16 dataset.
That model translated into a testing accuracy of 84.62%. However, after
testing the same model on the Sentiment 140 testing set, it scored an
accuracy of 64.64%.

We made further calculations of recall and precision using formulas pre-
sented in Table 7.1. The recall calculates the correct predictions for one
sentiment divided by the incorrect and correct predictions for the sentiment.
This helps us understand how good the model is for one sentiment; a higher
recall means the overall sentiment category is more complete or accurate.
Precision calculates the true positives divided by the true positives and false
positives. In other words, how correct are the results? If the precision is
poor, that implies the results for that sentiment are not useful or reliable.
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Variable Definition

tp true positive
tn true negative
fp false positive
fn false negative

Name Formula

accuracy tp+tn
tp+tn+fp+fn

recall tp
tp+fn

precision tp
tp+fp

Table 7.1: Formulas for recall, precision, and accuracy. These formulas
provide us with helpful information to that lets us know if the model is
biased.

Ideally, both the precision and recall should be high for a good model since
that shows that the category itself is reliable with few incorrect guesses.

Our initial assumptions were correct when we looked into the prediction
and recall graphs which split the predictions into true and false counts. A
look into the prediction counts revealed that the SemEval model was heav-
ily biased toward guessing positive sentiments. While this worked within
its own dataset, it needed to be able to accurately predict sentiment from
any potential tweet. When we tested the SemEval model using the Sen-
timent 140 dataset, our accuracy dropped to about 65% because it still
made significantly more positive guesses.

Figure 7.2: SemEval model specificity and sensitivity statistics from testing
on Sentiment 140.

On the other hand, the LSTM recurrent neural network had trouble
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Approach Testing Dataset Accuracy

SVM + TF-IDF Unigrams Taboada Corpus 77.50%

RNN-Capsule Movie Reviews 83.8%

Weight-Initilizated ANN SemEval ’15 64.59%

LSTM RNN SemEval SemEval ’16 84.62%

LSTM RNN SemEval Sentiment 140 64.64%

LSTM RNN Sentiment 140 Sentiment 140 74.55%

LSTM RNN Sentiment 140 SemEval ’16 70.38%

Table 7.2: Comparison for our LSTM RNN against various other networks
and ML algorithms mentioned in our previous work section. Comparing
accuracies between different datasets is difficult, but we can most closely
compare our score to the Weight-Initialized ANN since the datasets are
both from SemEval.

training on the Sentiment 140 dataset. As a result, testing and validation
accuracy hovered around 75%. However, we noticed this model performed
much more accurately against the skewed SemEval ’16 testing set with
a accuracy of 70.38%. Thus, although the network trained on a balanced
dataset, it was not biased by the dataset it trained on. Because we do not
have access to some of the datasets that other neural networks in previous
works were trained on, it’s ambiguous in some cases when comparing ac-
curacies and recall. However, we can still use our general accuracy scores
to compare to some degree. Our models rank well against the capsule net-
work, but the hospital feedback and movie review dataset could potentially
be working on larger inputs and have more sentences. On the other hand,
both our networks slightly outperformed the ANN neural network. This can
potentially indicate that recurrent neural networks are preferable to ANNs
since they can capture context. The only other study also utilized recurrent
neural networks was the capsule network experiment. Given that recurrent
neural networks on average performed higher than other machine learning
algorithms, we can reaffirm the importance of context within the sentiment
analysis field.

Unfortunately, due to the limitations of a semester long study, we were
unable to optimally train our LSTM RNN. We noticed that over 10% of
words were labeled unknown during preprocessing runs which dilutes the
inputs to the RNN. The primarily occurred because words used in Twitter
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appear as slang and typos which a Word2Vector model trained from news
articles would not be able to recognize. Creating a Word2Vector model
from our dataset could easily increase testing accuracy on both datasets.
We also could experiment with different optimizing functions for training;
although the Adam’s Optimizer is popular, there could be an optimizer
better fitted for binary sentiment classification. More testing with these
variables would allow us to make better judgments about how to improve
recurrent neural networks for sentiment analysis.
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Chapter 8

Conclusion

Achieving accuracy scores of 75% - 80% in sentiment analysis are surpris-
ingly possible with the right dataset and configurations. Despite machine
and time limitations, we were able to train a LSTM RNN to recognize
positively and negatively labeled tweets with high accuracy. Although we
cannot make sweeping generalizations with comparisons to related senti-
ment analysis work, our recurrent neural networks did outperform artifi-
cial neural networks performing similar tasks. However, the results also
highlight possible guessing habits that our neural network developed from
a severely unbalanced dataset. The higher accuracies of recurrent neural
networks with long short-term memory over other networks and machine
learning algorithms highlights the value of retaining contextual information
for sentiment analysis. All in all, while these results do not provide any
groundbreaking revelations, our work highlighted the ability to effectively
capture sentence context in order to provide more accurate sentiment clas-
sifications. Investing more work into developing a Word2Vector model
from our Twitter datasets and experimenting with various optimizers can
potentially increase performance even more.
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Steunebrink, and Jürgen Schmidhuber. LSTM: A search space
odyssey. CoRR, abs/1503.04069, 2015.

[Heb49] Donald O. Hebb. The organization of behavior: A neuropsycho-
logical theory. Wiley, New York, June 1949.

[HM97] Vasileios Hatzivassiloglou and Kathleen R. McKeown. Predict-
ing the semantic orientation of adjectives. In Proceedings of
the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of
the Association for Computational Linguistics, ACL ’98, pages
174–181, Stroudsburg, PA, USA, 1997. Association for Compu-
tational Linguistics.

31



[JM99] L. C. Jain and L. R. Medsker. Recurrent Neural Networks: De-
sign and Applications. CRC Press, Inc., Boca Raton, FL, USA,
1st edition, 1999.

[MB12] Teng-Sheng Moh and Surya Bhagvat. Clustering of technology
tweets and the impact of stop words on clusters. In Proceedings
of the 50th Annual Southeast Regional Conference, ACM-SE ’12,
pages 226–231, New York, NY, USA, 2012. ACM.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.
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