
cienceDirect

Nuclear Engineering and Technology 50 (2018) 570e581
Contents lists available at S
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
Development of simulation-based testing environment for
safety-critical software

Sang Hun Lee a, Seung Jun Lee b, Jinkyun Park c, Eun-chan Lee d, Hyun Gook Kang a, *

a Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
b School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919,
Republic of Korea
c Integrated Safety Assessment Division, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero, 989beon-gil, Yuseong-gu, Daejeon, 34057,
Republic of Korea
d Korea Hydro & Nuclear Power Co., Ltd., 1655 Bulguk-ro, Gyeongju-si, Gyeongsangbuk-do, 38120, Republic of Korea
a r t i c l e i n f o

Article history:
Received 30 January 2018
Received in revised form
28 February 2018
Accepted 28 February 2018
Available online 27 March 2018

Keywords:
Digital Instrumentation and Control System
Nuclear Power Plant
Software Reliability Quantification
Software Testing
* Corresponding author.
E-mail addresses: lees35@rpi.edu (S.H. Lee), sj

kshpjk@kaeri.re.kr (J. Park), eclee@khnp.co.kr (
(H.G. Kang).

https://doi.org/10.1016/j.net.2018.02.007
1738-5733/© 2018 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
a b s t r a c t

Recently, a software program has been used in nuclear power plants (NPPs) to digitalize many instru-
mentation and control systems. To guarantee NPP safety, the reliability of the software used in safety-
critical instrumentation and control systems must be quantified and verified with proper test cases
and test environment. In this study, a software testing method using a simulation-based software test
bed is proposed. The test bed is developed by emulating the microprocessor architecture of the pro-
grammable logic controller used in NPP safety-critical applications and capturing its behavior at each
machine instruction. The effectiveness of the proposed method is demonstrated via a case study. To
represent the possible states of software input and the internal variables that contribute to generating a
dedicated safety signal, the software test cases are developed in consideration of the digital character-
istics of the target system and the plant dynamics. The method provides a practical way to conduct
exhaustive software testing, which can prove the software to be error free and minimize the uncertainty
in software reliability quantification. Compared with existing testing methods, it can effectively reduce
the software testing effort by emulating the programmable logic controller behavior at the machine level.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With a shift in technology to digital systems as analog systems
are approaching obsolescence and because of functional advan-
tages of digital systems, existing nuclear power plants (NPPs) have
begun to replace analog instrumentation and control (I&C) sys-
tems, while new plant designs fully incorporate digital systems [1].
Compared with the analog I&C systems, the digital systems provide
advanced performance in terms of accuracy and computational
capabilities and have potential for improved capabilities such as
fault tolerance and diagnostics [2]. However, the use of
microprocessor-based digital systems in NPP safety I&C systems
has triggered a big challenge in incorporating their characteristics
into the probabilistic risk assessment (PRA) model of NPPs used to
lee420@unist.ac.kr (S.J. Lee),
E.-c. Lee), kangh6@rpi.edu

by Elsevier Korea LLC. This is an
evaluate the digital system reliability and its risk effect on the NPP
safety.

A comprehensive review of the risk issues of digital I&C systems
that should be considered in the NPP PRA model has been con-
ducted by Kang and Sung [3]. Among various issues, estimation of
the software failure probability was identified as one of the
important factors in terms of NPP risk, and a sensitivity study was
conducted to analyze the relationship between the system reli-
ability and the software failure probability for a typical digital
reactor protection system (RPS). A report on operation and main-
tenance experience described how software error was a major
cause of digital system failures during 1990e1993 [4]; during this
time, 30 failures were caused by software error, compared with
nine random component failures, among a total of 79 digital system
failure events. Several reports also stated the importance of
software-based errors, which are considered to be a credible source
of the common-mode or common-cause failure of the digital sys-
tems [5,6], that can lead to significant safety threats of NPPs.
Therefore, quantification of software reliability plays a very
open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lees35@rpi.edu
mailto:sjlee420@unist.ac.kr
mailto:kshpjk@kaeri.re.kr
mailto:eclee@khnp.co.kr
mailto:kangh6@rpi.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2018.02.007&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2018.02.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2018.02.007
https://doi.org/10.1016/j.net.2018.02.007


S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 571
important role in ensuring the safety of NPPs, and the verification of
a very low software failure probability is crucial for the PRA of a
digitalized NPP.

In response, quantitative software reliability methods such as
the software reliability growth model (SRGM), Bayesian belief
network (BBN) model, and test-based method have been proposed
and adopted in the nuclear field. The SRGM method [7] has been
widely used in the software engineering field to assess software
reliability by estimating the increment of reliability as a result of
fault removal over time. By applying a software reliability model
and using existing software failure data to estimate its parameters,
the software reliability is assessed and predicted based on extrap-
olation. However, the SRGMmethod was found to be not applicable
to safety-critical software [8] because of its high sensitivity in
estimating the number of faults to time-to-failure data and the rare
software failure sets in NPP safety-critical applications that are
developed under a strict development and verification and
validation life cycle.

The BBN method has also been extensively applied to estimate
the software reliability of NPP safety systems [9,10]. The method
models and aggregates disparate information about the software,
such as software failure data and the quality of software life cycle
activities. However, the limitations of the BBN method in quanti-
fying the software reliability include the need to develop a credible
BBN model, which requires identification of a complete and inde-
pendent set of software attributes and the qualification of experts
to estimate model parameters and qualitative evidence. Owing to
those limitations, the uncertainty in the estimated software resid-
ual faults and failure probability from the BBN model may be very
large, which makes it difficult to verify the very low failure prob-
ability of 10�4 to 10�5 required for safety-critical safety integrity
level (SIL) level 4 software [11].

The test-based approach is another method that can be used to
assess the reliability of NPP safety-critical software; this method
applies standard statistical methods to the results of software
testing, in a manner similar to that in which the reliability of
hardware components is analyzed [12]. The studies relevant to the
test-based approach conducted in the nuclear field are mainly
divided into two testing methods: 1) black-box testing methods
[13e15] and 2) white-box testing methods [16,17]. The black-box
testing methods consider a software program as a black box, take
random samples from its input space, determine if the outputs are
correct, and use the results for statistical analyses to estimate the
software reliability. However, because the black-box testing
methods are conducted without knowledge on the program's in-
ternal logic or structure, the limitations of black-box testing include
limited coverage and completeness of the test cases [18]. On the
other hand, the white-box testing methods have an advantage in
that they take into consideration the internal structures of the
software; so, the tests are performed to ensure that certain parts of
the software are functioning correctly, with full coverage. However,
because the white-box testing methods aim to test all possible
paths and nodes of the software, the number of tests that must be
carried out for exhaustive testing is often very large [17] when the
operational profile of the software encountered in an actual use is
neglected. Therefore, an efficient and effective software testing
framework for the safety-critical software used in NPP digital I&C
systemsmust be developed to prove the correctness of the software
and further quantify the software reliability based on software test
results.

The objective of this study is to develop a simulation-based
software test bed for white-box testing of NPP safety-critical soft-
ware. The test bed is developed by emulating the microprocessor
architecture of a safety-critical programmable logic controller (PLC)
used in an NPP digital I&C system and capturing its behavior at each
machine instruction line while the software executes its dedicated
safety function. The effectiveness of the proposed software testing
framework is demonstrated with the safety-critical trip logic soft-
ware of a fully Integrated Digital Protection System-Reactor Pro-
tection System (IDiPS-RPS), developed under the Korea Nuclear
Instrumentation & Control Systems (KNICS) project [19]. Given
specific software input and internal states, the proposed method
can effectively reduce software testing efforts by emulating the
software behavior at a machine language level; this is in contrast to
existing black-box testing, which uses trajectory inputs for software
testing. The test results of safety-critical software from the sug-
gested method can be used to support the software reliability
quantification of NPP digital I&C systems and can be applied to the
PRA of an NPP to analyze the effect of software failure on the digital
system availability or the NPP risk.

2. Target system

In this section, an overview of the NPP safety-critical digital I&C
system in which the test bed is developed is provided. The basic
architecture and operationmechanism of the safety-grade PLC used
in the target system are reflected in the test bed.

2.1. IDiPS-RPS configuration

The IDiPS-RPS is a digitalized RPS developed in the KNICS
project for newly constructed NPPs and for upgrading existing
analog-based RPS [19]. It has the same function as an analog RPS to
automatically generate a reactor trip signal and engineered safety
feature actuation signals whenever demand comes. Fig. 1 illustrates
the architecture of the IDiPS-RPS, which has four redundant
channels of processors for its dedicated safety functions.

As a part of the IDiPS-RPS, the bistable processors (BPs) deter-
mine the trip state by comparing the process variables measured
from the plant sensors with the predefined pretrip or trip set-
points; coincidence processors (CPs) generate a final hardware-
actuating trip signal by voting logic. The processors are config-
ured based on the safety-grade PLC platform (POSAFE-Q) [20], and
the function of each processor is implemented as software in the
PLC platform.

2.2. POSAFE-Q architecture

The POSAFE-Q consists of various modules, such as a processor
module, communication module, and I/O module [21]. The pro-
cessor module consists of a TI C32 digital signal processor, central
processing unit (CPU), and various types of memory, such as flash
memory and static random accessmemory (SRAM). The application
programs in the IDiPS-RPS, such as BP trip logic and CP voting logic,
are downloaded into the memory embedded within the processor
module. The application software is developed based on function
block diagram and ladder diagram (FBD/LD) programming. In the
implementation, the FBD/LD programs are compiled to machine
instruction codes, which are loaded into the PLC memory area and
executed by the PLC microprocessor [22]. Fig. 2 shows the safety-
grade PLC compile procedure used to generate the machine code
from the user application program, written in FBD/LD language.

3. Test bed development

In this section, the test bed development processes are
described. The microprocessor architecture and operation mecha-
nisms of the safety-grade PLC are emulated in the simulated
environment. The methods of test bed verification are also
described.



Fig. 1. Block diagram of IDiPS-RPS.
IDiPS-RPS, Integrated Digital Protection System-Reactor Protection System.

Fig. 2. FBD/LD compile procedure of safety-grade PLC [22].
FBD/LD, function block diagram and ladder diagram; PLC, programmable logic controller.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581572
3.1. Development of software test bed

The most fundamental characteristic of PLC operation is the
cyclic operation mode [23]. Each iteration of the cyclic operation of
the PLC, called a scan cycle, consists of several operation stages that
are sequentially repeated. After checking its own status, the PLC
will copy all the software input values into the RAM, where input/
internal/output variable data and user programs are stored. Then,
the CPU executes the application program implemented in the PLC
memory map, and the output of the software is updated based on
the execution result. In each scan cycle, the aforementioned oper-
ations are repeated at a fixed interval of time called a scan time.
In this study, to simulate the software behavior given the states
of software input and internal variables and to check whether the
correct output is generated by the target software application
program, a software test bed is developed that captures both the
internal (CPU and memory architecture) and external (states of
program input and output variables) aspects of the PLC scan cycle.
The test bed is developed in C code by emulating the PLC micro-
processor architecture, such as the CPU register and memory map
[24] and the assembly language instructions. Fig. 3 shows an
overview of the developed test bed structure. The test bed is
composed of four major modules; the description of eachmodule is
as follows:



Fig. 3. An overview of the simulation-based test bed for safety-critical PLC software testing.
CPU, central processing unit; PLC, programmable logic controller.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 573
- 1) Architecture module: The components of the safety-grade PLC
microprocessor consist of CPU register files, such as 40-bit
extended registers, 32-bit auxiliary registers, and other regis-
ters, and the memory units that are accessible to the CPU, which
contains the total memory space of 16-Mbyte 32-bit words.
Within the 16-Mbyte word address space, the program, data,
and I/O space are contained, allowing the program code or data
of the user application software to be stored in the memory
map. In the test bed, the major components of the micropro-
cessor are emulated to capture the state of the CPU instruction
line of the application software. To simulate reading or writing
of the values from/to the memory space, several different
memory addressing modes, including the register, direct, indi-
rect, and immediate addressing modes, are implemented.

- 2) Assembler module: The instruction set of the safety-grade PLC
microprocessor contains a total of 113 instructions. All in-
structions are defined as a single machine word long (32-bit),
and most instructions require one cycle to be executed. The
categories of instruction sets include the instructions for load
and store, 2-/3-operand arithmetic, program control, inter-
locked, and parallel operations. The syntax of each instruction
set contains its specific 9-bit opcode, the addressing mode, and
operands. To emulate the execution of application software in
the 32-bit binary format, the functions and syntaxes of in-
struction sets are implemented in the test bed.

- 3) Emulation module: Based on the instruction set decoded from
the binary program file by the Assembler module, the operands of
the instruction set from the register files are read, and the set
performs its specific operation. The operation result is written to
the CPU registers or to a specificmemory element, depending on
the operands and addressing modes. The CPU contexts such as
the system stack, the condition flags stored in the CPU status
register, and the data in the memory area are updated at every
machine instruction line.

- 4) Interface module: The Interface module provides an interface
between each module. For example, the instruction set decoded
from the Assembler module is transferred to the Emulation
module to conduct its specific operation. In addition, the result of
instruction set execution by the Emulation module is updated to
the CPU register and the memory elements emulated in the
Architecture module.

The test bed is executed based on four basic operation processes
of the PLC microprocessor: 1) fetch, 2) decode, 3) read, and 4)
execute [24]. In the fetch phase, the executable code, which is
uploaded to the memory map, is fetched from the Architecture
module. In the decode phase, the fetched executable code, in binary
form, is decoded into a specific instruction set by the Assembler
module. In the read phase, the address generation is performed, and
the operands are read from the CPU registers. In the execute phase,
the operation of the decoded instruction set is performed by the
Emulation module, and the operation results are stored in the CPU
register or thememory. If necessary, the registers that represent the
status of the microprocessor, such as stack management, are
updated during the execute phase.

To conduct software testing using the developed test bed, the
program executable code compiled from the user application FBD/
LD program and the program constant file, which contains the
memory map of the input (e.g., pressure, water level in NPP) and
the internal variable (e.g., counter, test parameters) used in the
application program, are loaded into the test bed. Then, the soft-
ware test cases are uploaded to the memory area emulated in the
Architecture module. After all machine instruction lines of the
application program are executed, the final status of CPU registers
and memory map is automatically saved as an output file for every
software test case. By checking the specific memory area that cor-
responds to a dedicated safety function of the application program,
such as the trip signal, generated output files are used to verify
whether correct output is generated given the test case.

3.2. Verification of software test bed

To validate the developed simulation-based software test bed,
unit testing and functional testing were conducted for the in-
struction sets emulated in the test bed.

3.2.1. Unit testing of software test bed
Unit testing is a software testing method inwhich the individual

units of the source code, such as the associated functions, are tested
to determine whether each unit of the code generates the precise
expected output [25]. In this study, the unit test cases for every PLC
microprocessor machine instruction set were developed and used
to verify the correctness of the instruction set operations emulated
in the test bed. Fig. 4 shows the procedure of software test bed
verification using the instruction unit test cases.

The instruction unit test cases for test bed verification were
developed in consideration of all possible addressing modes and
operands of the instruction sets based on the specification docu-
ments of the safety-grade PLC microprocessor [24] and converted
into an equivalent 32-bit binary representation. The initial states



Fig. 4. Verification of the software test bed with instruction set unit test cases.
LDI, load integer.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581574
(before instruction execution) of the CPU register andmemorymap
are defined based on the unit test cases, and the final state of the
microprocessor (after instruction execution) is captured to verify
the result by comparing it with the expected final state of the CPU
register or memory element. The code coverage analysis result was
also used to verify that all source code areas of the instruction set
operation in the test bedwere correctly executedwith full coverage.

3.2.2. Functional testing of software test bed
Functional testing is a type of software testing in which the

source code is tested by checking the correctness of the programvia
comparison of the results for a given specific input [26]. In this
study, the standard FBDs defined in IEC61131-3 [27], such as
addition (ADD), logical conjunction (AND), and logical equality (EQ)
function blocks, were used to test the functionality and correctness
of the test bed by verifying the generated output in the test bed
with the expected output of each function block.

The test cases are developed by modeling the standard FBDs,
including their input and output ports, and generating an equiva-
lent 32-bit binary program using the digital signal processor
compiler. Then, the program file and constant file, which includes
the memory map of the input ports and internal variables used in
the modeled FBD, are loaded into the test bed. The final state of the
output port (after program file execution) is then checked to verify
whether the output generated by the test bed is the same as that
expected from the FBD model. Fig. 5 shows the procedure of test
bed verification using the standard FBDs.

4. Case study

As a case study, the proposed software testing method was
applied to the target safety-critical software program of KNICS
IDiPS-RPS. The test cases were developed based on the profile of the
software input and internal variables. For each test case, the test
results are generated by capturing the final state of the output
variable after the application program is executed in the developed
test bed.

4.1. Target safety-critical software

In the IDiPS-RPS system, the BP compares the process variables
transmitted from the measurement instruments in the NPP with
the predefined trip setpoints, and the CPs perform two-out-of-four
voting logic with the signals transmitted from the four redundant
channels of the BP to determine whether the system should
generate a trip signal. The function of each module is implemented
as a software logic in the PLCmemorymap in binary format. Among
the BP software modules, 19 modules for the trip logics are defined,



Fig. 5. Verification of the software test bed with standard FBD/LD test cases.
FBD/LD, function block diagram and ladder diagram.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 575
and the process variable of each module is compared against its
predefined threshold values [28]. These trip logics are categorized
into four types: 1) fixed set-point trip (10 modules); 2) variable set-
point trip (3 modules); 3) manual reset trip (3 modules); and 4)
digital trip (3 modules). Table 1 shows the BP trip logics of the
Table 1
KNICS IDiPS-RPS BP application software modules [29].

Software modules Description

VA_OVR_PWR_HI Trip (_1_) Variable Over Power Hi Trip
LOG_PWR_HI Trip (_2_) Log Reactor Power Hi Trip
LPD_HI Trip (_3_) Local Power Density Hi Trip
DNBR_LO Trip (_4_) Departure from Nucleate Boiling
PZR_PR_HI Trip (_5_) Pressurizer Pressure Hi Trip
PZR_PR_LO Trip (_6_) Pressurizer Pressure Low Trip
SG1_LVL_LO_RPS Trip (_7_) SG-1 Low Level Trip
SG2_LVL_LO_RPS Trip (_8_) SG-2 Low Level Trip
SG1_LVL_LO_ESF Trip (_9_) SG-1 Low-Low Level Trip
SG2_LVL_LO_ESF Trip (_A_) SG-2 Low-Low Level Trip
SG1_LVL_HI Trip (_B_) SG-1 Hi Level Trip
SG2_LVL_HI Trip (_C_) SG-2 Hi Level Trip
SG1_PR_LO Trip (_D_) SG-1 Low Pressure Trip
SG2_PR_LO Trip (_E_) SG-2 Low Pressure Trip
CMT_PR_HI Trip (_F_) Containment Hi Pressure Trip
CMT_PR_HH Trip (_G_) Containment Hi-Hi Pressure Trip
SG1_FLW_LO Trip (_H_) SG-1 Low Coolant Flow Trip
SG2_FLW_LO Trip (_I_) SG-2 Low Coolant Flow Trip
CWP Trip (_J_) CPC-CWP

*BP, bistable processor; Digital, On/Off trip; Fixed, fixed trip setpoint; KNICS, Korea Nuclea
operator bypass; RPS, reactor protection system; RR, variable trip setpoint by automatic
IDiPS-RPS [29]; the description of each trip setpoint (TSP) type is as
follows:

- Fixed set-point logic: As the process input signal rises or falls
through the fixed pretrip or trip setpoint, the BP generates the
OB TSP type

d RR, Rising
Y Fixed, Rising
d Digital

Ratio Low Trip d Digital
d Fixed, Rising
Y MR, Falling
d Fixed, Falling
d Fixed, Falling
d Fixed, Falling
d Fixed, Falling
d Fixed, Rising
d Fixed, Rising
d MR, Falling
d MR, Falling
d Fixed, Rising
d Fixed, Rising
d RR, Falling
d RR, Falling
d Digital

r Instrumentation& Control Systems; MR, variable trip setpoint bymanual reset; OB,
rate limiting; TSP, trip setpoint.



Fig. 6. An overview of the pressurizer-pressure-low trip logic [30].

Fig. 7. A part of RESET_FALLING logic in BP PZR_PR_LO trip logic.
BP, bistable processor; PZR_PR_LO, pressurizer-pressure-low.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581576
pretrip or trip signal, and the trip setpoint is decreased by
hysteresis. When the BP is untripped, it restores the trip set-
point value.

- Variable set-point logic: The BP generates a pretrip or trip signal
when the process input signal reaches the level of the trip or
pretrip setpoint. In this logic, the set-point value can change
depending on the rising or falling of the process input signal.

- Manual reset logic: The operation is identical to that of variable
set-point logic, but the operator can delay the trip bymoving the
trip setpoint to an upper or lower value by pushing a reset
button.

- Digital logic: The BP generates a pretrip or trip signal based on
the digital input signal (0 or 1) from other RPS modules, such as
the core protection calculator.

Among 19 trip logics, the pressurizer-pressure-low (PZR_PR_LO)
trip logic, which has a variable TSP and operator bypass function,
was chosen as a case study to demonstrate the effectiveness of the
proposed software test method. The PZR_PR_LO trip logic is one of
the most complicated logics among BP trip logics; it includes
various functions, such as operator bypass, reset delay timer, and
set-point reset by the operator.

Fig. 6 shows the operation logic of the PZR_LO_PR trip [30]. The
process variables of the PZR_LO_PR trip logic, which include the
pressurizer pressure obtained from the measuring instruments
(0e3,000 psi), are processed into analog voltage signals (0e10
voltage direct current (VDC)) that are converted into digital signals
(0e30,000 counts) by a 15-bit analogedigital converter [31]. The trip
logic generates a trip signal if the process variable decreases below
the trip setpoint. When the plant is in full-power mode, the trip
setpoint is fixed at 1,779 psi. The trip setpoint ranges between 1,779
psi and 300 psi during shutdown and start-up processes. The oper-
ator should manually decrease the trip setpoint while the pressure
slowly decreases during the plant shutdown phase. When the pre-
trip alarm occurs, where the pretrip setpoint is at 70 psi above the
trip setpoint, the operator has to push the reset button, after which
the trip setpoint decreases to 400 psi below the current pressure.
Further decrease of the trip setpoint is not permittedwithin a certain
delay time, and bypass is permitted under 400 psi. When the pres-
surizer pressure increases as the plant starts up, the trip setpoint is
automatically set to 400 psi below the current pressure, and the trip
set-point reset bypass is canceled from 500 psi.

4.2. Test case generation of target software

The generation of the software test cases that cover all possible
states of the software input and internal variables is one of the key
steps in the software testebased method. Previous test-based ap-
proaches conducted in the nuclear field [12,13] have involved
developing an input set as a trajectory form (a series of successive
values for the input variables of a program that occur during the
operation of the software over time) by random sampling of test
sets from the software input profile. However, the limitations of
those approaches include the uncertainty caused by random sam-
pling, the ambiguity in the necessary length of a trajectory, and a
long execution time per test case.

Because software failure is basically a deterministic process, i.e.,
the software will follow the same execution path and generate the
same output for the same input and internal state of the software, it
is possible to test the software by constructing a test set as a
combination of possible profiles of the software input and internal
variables and verifying whether the correct output was generated
by the software for each test set. Therefore, there is no need for a
long input test trajectory as in previous test-based methods; this
improvement allows the software testing time to be drastically
reduced. Furthermore, compared with the existing black-box
testing methods, the total number of test cases for exhaustive
software testing which covers all possible software states can be
mathematically derived.

In this study, the software test cases were developed by iden-
tifying the variables that contribute to generating the output signal
of the target PZR_PR_LO trip logic software and deriving a possible
profile of the input and internal variables in consideration of the
operating profile of the software.

4.2.1. Variables and states of the target software
As previously discussed, the BP trip logics are programmed with

FBD/LD language. For example, Fig. 7 shows a part of the RESET_-
FALLING logic, which is one of the FBD components in the
PZR_PR_LO trip logic. The value of the output variable (TRIP_LOGIC)
is generated from the combined execution of several function
blocks, as shown in Fig. 7. The LE_REAL function block in the left-
most position receives the process variable (PV_OUT) and the in-
ternal variable (TSP) as inputs and computes the output. The output
of LE_REAL function block combined with the TRIP_LOGIC variable
is used in the next function blocks as input. If the enable (EN) values
of both function blocks are true, the TRIP_LOGIC variable is set as
true by the MOVE_BOOL function block, and the value of the TSP
variable is increased by the value of the hysteresis (HYS) variable by
the ADD2_REAL function block.

The functions of the whole BP trip logic are configured by the
network of function blocks in the form of a circuit as a function
between the input variables and the output variables, similar to the
above example. By inspecting the FBD/LD program of the
PZR_PR_LO trip logic, the input and internal variables that deter-
mine the state of the output variable of the software (pretrip or trip
signal) were investigated. There are a total of 143 variables in the
logic. By excluding the variables for the constants and the tempo-
rary variables that are automatically calculated based on software
input and internal values between scan intervals, the remaining



S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 577
variables that contribute to generating the pretrip or trip signal of
the PZR_PR_LO trip logic were identified, as shown in Fig. 8.

The status of the BP module, whether it is in normal operation
mode or manual or automated test mode, is determined by the BP
scan flag variable (T_SCAN_FLAG), the BP test status variable
(BP_INTEST), and the periodic automated test start signal (BP_PAT_-
START) transmitted from the automatic test and interface processor
(ATIP). The process variable (_6_PV_OUT_AI) is obtained from the
plant sensors and processed through the analog-to-digital converter
(ADC) of the BP input module. The pretrip and trip set-point values
(_6_PTSP_R, _6_TSP_R) of the trip logic change depending on the
process variable and manual set-point reset signal generated by the
operator (_6_RST_REQ_MCR_DI, _6_RST_REQ_RSR_DI) when the
reset delay counter (_6_RST_DELAY_CNT) exceeds the predefined
maximum count value. When its process variable reaches below the
level of the trip setpoint that exists at that time, the BP software will
generate a trip signal for the PZR_PR_LO trip logic. The trip signal can
also be generated if there is an error signal from the analog input
module or channel (_6_AI_CH_ERR, AI_2_MDL_ERR, AI2_ch6_6). In
Table 2
Summarized variables for PZR_PR_LO (_6_) trip logic test case generation.

Variable Description

T_SCAN_FLAG Flag for PLC scan operation (operatio
BP_INTEST BP test status
_6_PTSP_R PZR_PR_LO pretrip setpoint
_6_TSP_R PZR_PR_LO trip setpoint
_6_RST_DELAY_CNT_R PZR_PR_LO reset delay count
AI_2_MDL_ERR Analog input module error signal
_6_AI_CH_ERR Analog input channel error signal
AI2_CH6_6 Analog input channel high over rang
_6_OB_PERM Operator trip bypass permission
_6_OB_REQ_MCR_DI Operator trip bypass request (from M
_6_OB_REQ_RSR_DI Operator trip bypass request (from R
_6_RST_REQ_MCR_DI Trip setpoint reset signal (from MCR
_6_RST_REQ_RSR_DI Trip setpoint reset signal (from RSR)
BP_PAT_START Periodic automatic test start signal
_6_PV_OUT_AI PZR_PR_LO process parameter (PZR

*BP, bistable processor; IV, input variable; MCR, main control room; PLC, programmable lo
variable.

Fig. 8. An overview of the function block diagrams
specific conditions in which operator bypass is permitted,
(_6_OB_PERM) a trip signal canbebypassed if the operator provides a
bypass signal (_6_OB_REQ_MCR_DI, _6_OB_REQ_RSR_DI). Detailed
description of the selected variables used for the test case generation
is shown in Table 2.

4.2.2. Obtaining the profile of the variables
From the viewpoint of NPP safety, the software testing of the BP

trip logic needs to focus on the failure of its dedicated safety
function, that is, the failure of trip signal generation when demand
comes. In this study, the test cases that include the states of input
and internal variables that cover all possible safety signal demand
situations of the target software were developed based on the
profile of each variable encountered in actual use during plant
operation.

As the states of internal variables represent a certain state of
running the software, the ranges of each internal variable that
generates the trip signal were identified by inspecting the software
logic and the other available information, such as the software
Format Type*

n/test) BOOL SV
BOOL SV
WORD SV
WORD SV
WORD SV
BOOL IV
BOOL IV

e error signal BOOL IV
BOOL IV

CR) BOOL IV
SR) BOOL IV
) BOOL IV

BOOL IV
WORD IV

pressure) WORD IV

gic controller; PZR, pressurizer; RSR, remote shutdown room; SV, state (or internal)

and variables of the BP PZR_PR_LO trip logic.



Table 3
Truth table of BPscan mode decision [31].

Case BP_T_START BP_INTEST T_SCAN_FLAG Resulta

1 F 0 F (1)
2 F 0 T (4)
3 F 1 F (5)
4 F 1 T (4)
5 F 3 F (1)
6 F 3 T (6)
7 F 6 F (1)
8 F 6 T (6)
9 T 0 F (1)
10 T 0 T (4)
11 T 1 F (2)
12 T 1 T (4)
13 T 3 F (1)
14 T 3 T (3)
15 T 6 F (1)
16 T 6 T (3)

BP, bistable processor.
a (1): Operational scan mode, (2): Manual test (MT) scan mode, (3): Automatic

scan (AT) mode, (4): Idle scan mode, (5): Restore from MT scan mode, (6): Restore
from AT scan mode.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581578
requirement specification and the software design
specification documents [31]. For example, the scan mode of the BP
software is determined by the state of two internal variables
(BP_INTEST, and T_SCAN_FLAG) and one input variable
(BP_T_START), as shown in Table 3. Because the focus of this study
is to derive the test cases that represent the trip initiation condition
by the software in normal operation, the possible combination of
software internal variables of cases 1, 5, 7, 9, 13, and 15 in Table 3
which results in operational scan mode of the BP was derived as
the profile of those variables. The profiles of other internal vari-
ables, shown in Table 2, that generate trip signals were derived in a
similar way.

The input variables represent the software input from various
sources, such as the pressure or temperature signals from the
measurement instruments in the NPP, the operator action from the
main control room (MCR) or from the remote shutdown room
(RSR), and error signals from other modules. The profiles of the
input variables were also derived; these represent the software
inputs that are encountered in actual use.

Fig. 9 provides an illustration to explain a possible profile of the
plant process parameter, which depends on the scan time (how
Fig. 9. Illustration of the process parameter profile for trip demand generation in
consideration of the plant dynamics and scan time of digital system.
often the digitalized system detects the trip demand) and the plant
dynamics (how fast the plant transient is). If a deviation happens in
an NPP, the plant process parameter will deviate from its normal
value, and a reactor trip signal will be generated if a process
parameter goes beyond its setpoint. In the real world, the process
parameter exceeds the trip setpoint at points A and B. However, as
the digitalized system reads the digital value from the transmitted
analog signal converted via the ADC, the digitalized system detects
the demand at points A1, A2, B1, and B2. Points A1 and A2 denote trip
demand in cases of slow transient (deviation A), and points B1 and
B2 denote cases of fast transient (deviation B).

As shown in Fig. 9, the trip demand is generated at point A1
(i¼�3), which is the 3rd digital value below the trip setpoint in case
of slow transient; the trip demand is generated at point B1 (i ¼ �9)
for fast transient when the scan time is t1. As the process parameter
moves faster in the case of a fast transient, the profile of the process
variable that will generate the trip demand is larger than in the case
of slow transient. The profile of the process variable that represents
the trip demand condition also depends on how often the digital
system scans the input signals. For example, in deviation B in Fig. 9,
the trip demand is generated at point B1 (i ¼ �9) for scan time t1,
whereas it is generated at point B2 (i ¼ �15) for scan time t2.
Because the deviation of the plant process parameter is limited to a
certain time interval, the deviation of the process variable increases
as the scan time of the digital system increases.

In this study, the profile of the process variable, which is the
pressurizer pressure for the PZR_PR_LO trip, was obtained by plant
thermo-hydraulic simulation. As a representative pressure tran-
sient accident, a loss-of-coolant accident (LOCA) was selected for
trip demand condition. Plant model APR-1400 was used to estimate
the plant responses using the Multi-dimensional Analysis of
Reactor Safety code [32], which was developed in the Korea Atomic
Energy Research Institute for thermo-hydraulic analysis of an NPP.
As the design requirements of the IDiPS-RPS limit the scan time to
less than 50 ms, the pressure deviation during the time interval
between operational scan modes (100 ms) at the point of trip de-
mand was derived based on the simulation results.

Fig. 10 shows the deviation of pressurizer pressure before trip
demand for various LOCA groups. To derive conservative test cases
for trip signal generation by the trip logic software, the plant
simulation result for the hypothetical double-ended guillotine
break accident case was used to derive the profile of the process
variable, as shown in Fig. 10. Table 4 shows Dmax which is the
maximum i (ith digital value below trip setpoint) given 15-bit ADC
resolution obtained from plant simulation results for various LOCA
groups.
Fig. 10. Profile of process parameter for various LOCA groups.
LOCA, loss-of-coolant operation; PZR, pressurizer.



Fig. 11. An overview of the software testing procedure using the simulation-based
software test bed and test cases.

Table 4
Dmax of the pressurizer pressure for various LOCA groups.

ID Hole diameter (inch) Dmax (count)

1 30 � 2a 51
2 30 48
3 20 46
4 15 44
5 8 29
6 6 21

LOCA, loss-of-coolant accident; RCS, reactor coolant system.
a The scenario assumes that the 30-inch diameter pipe used in the reactor coolant

system (RCS) undergoes a double-ended guillotine break (30-inch � 2) [33].

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 579
Trip bypass request and permission variables, which are inputs
from the operators, are Boolean-type variables; so, they can have a
value of either true or false. If an operator gives a trip bypass order,
the system should not generate a trip signal; so, only the combi-
nations of those variables that do not bypass the trip signal were
examined in this study. The possible states of other input variables
in Table 2 that generate the trip signal were derived by inspecting
the software code and other available information, such as software
requirement specification and software design specification.

Based on the obtained profiles of each input and internal vari-
able, the test cases are formed as the combinations of the profiles of
each software variable that will generate trip signal output as true.
A total of 705,892,684 test cases were derived, as shown in Table 5.
The test cases were used as input to the developed software test
bed to verify whether the output variable updated by the BP trip
logic software in the memory area matches the expected output.

4.3. Test procedure and results of target software

Based on the test cases derived from the possible states of each
software input and internal variable, as described in the previous
section, the test starts with initializing of the software test bed,
which includes emulating the CPU registers and memory elements
of the target digital processor. Then, the binary files of the target
application program (PZR_PR_LO trip logic software), including the
program file, which consists of the 32-bitelong binary code
generated from the user application program written in FBD/LD
programming language and the constant file that stores the
memory map of the variables used in program, are loaded into the
test bed. After reading the binary file of the target software, the test
case file, which includes the memory address and the values of the
software input and internal variables that should be tested, is
loaded into test bed and overwrites the values in the emulated
memory map. Then, the program executable file is executed by the
test bed, and the value of the memory address, where the output
variable (trip signal of PZR_PR_LO trip) is saved as an output file at
the end of program execution. The output file is used to check
whether the software output is the same as the expected output.
Table 5
An example of test cases developed for PZR_PR_LO (_6_) trip logic according to the profi

ID Input, internal variable state of test case* Description of tes

1 AI_2_MDL_ERR ¼ 0x1, … Trip generated be
2 _6_AI_CH_ERR ¼ 0x1, … Trip generated be
3 AI2_CH6_6 ¼ 0x1, … Trip generated be
4 _6_PV_OUT_AI ¼ 0x256, … Process variable i
5 _6_PV_OUT_AI ¼ 0 � 454B, _6_TSP_R ¼ 0x457E,

_6_OB_REQ_MCR_DI ¼ 0x1, …
Operator request
process variable i

6 _6_PV_OUT_AI ¼ 0x3E5, _6_TSP_R ¼ 0x3E7,
_6_OB_REQ
_MCR_DI ¼ 0x0, _6_OV_REQ_RSR_DI ¼ 0x0, …

Trip bypass is per
generated becaus

(in total of 705,892,684 test cases).
Because the test cases are developed focusing on the trip initiation
condition by the target software, the test case is verified as an error-
free portion and saved as correct output if the value of the trip
variable corresponds to true. However, if there is any test case that
results in a value of trip signal variable of false, it is saved as wrong
output and should be reviewed and debugged; the test should be
restarted from the beginning, if necessary. Fig. 11 illustrates the
procedure of software testing using the developed software test
bed with the test cases.

The BP trip logic software consists of 32,566 lines of machine
instruction; 98,755 lines were executed on average for a single test
case. Among the executed instruction sets, LDIU (load integer
unconditionally) and LDI (load integer) machine instructions were
executed most frequently, 44,731 and 14,666 times, respectively. It
was observed that 50.32% and 8.9% of the total execution timewere
spent by the LDIU and LDI instructions, where the internal CPU
clocks used per instruction were 303 and 163 clocks in the devel-
oped software test bed, respectively. The longest internal CPU
clocks used per instruction included instructions related to
floating-point operation. For example, the CPU clocks used by CMPF
(compare floating-point value) and LDFU (load floating-point
unconditionally) were 2,406 and 1,104 clocks, respectively.

Fig. 12 shows a part of the test results using the test cases
developed for the trip initiation condition of the PZR_PR_LO trip
logic software as a case study. The output variable of the BP trip
logic software is the TRIP_R_a variable, which is sent to CP as a trip
signal for the voting logic. The TRIP_R_a variable is packedwith trip
signal output of various trip logics. For example, the _6_TRIP_R
variable, which is the trip signal for the PZR_PR_LO trip logic, is
packed at the 5th bit of the TRIP_R_a variable. As can be seen in
Fig. 12, the test results showed that the state of the TRIP_R_a var-
iable after the program execution is at 0x20, which indicates that
the 5th bit of the trip signal (PZR_PR_LO trip signal) is set to 0x1,
meaning that the software generated correct output for the given
test case. All the 705,892,684 test cases developed from the
le of input and internal variable.

t case

cause of error signal from analog input module
cause of error signal from analog input channel
cause of high over range error signal from analog input channel
s below its minimum range
ed the trip bypass signal, but it is not permitted. Trip signal is generated because
s below the trip setpoint
mitted, but the operator does not request the trip bypass signal. Trip signal is
e process variable is below the trip setpoint



Fig. 12. An example of the test result for BP PZR_PR_LO trip logic software.

S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581580
previous section generated trip signals for the PZR_PR_LO trip logic,
and the test was conducted in 76.04 h using 16 3.60 GHz logical
processors, that is, 6.205 ms were spent per test case on average in
the software test bed.
5. Conclusion

In this study, a software test method using a simulation-based
software test bed was proposed. The software test bed was devel-
oped considering the characteristics of the safety-critical PLC and
the CPU architecture and memory map of the PLC microprocessor.
Because the software test inputs for a safety-critical application,
such as the RPS of an NPP, are inputs that cause activation of pro-
tective action, such as reactor trip, the software test case was
developed in consideration of the digital signal processing features
of the PLC and plant thermo-hydraulics data for plant transients or
accidents in an NPP. As an application of the proposed software test
method, software test cases were developed for a PZR_LO_PR trip of
KNICS IDiPS-RPS BP software logic andwere tested by capturing the
state of output variables stored in the memory map after the end of
the trip logic program.

An important characteristic of the proposed software test
approach is that the test sets can be quantitatively derived to
achieve exhaustive testing of the safety-critical software. In addi-
tion, compared with the existing black-box testing, this method can
effectively reduce the software testing time per test case by
emulating the software behavior given the software input and in-
ternal states at machine language level. Therefore, the proposed
software testmethod can be used to support the software reliability
quantification of NPP safety-critical I&C applications and further
ensure the safety of software-based digital systems.

Although the proposed framework focuses on verifying that the
software logic is error free when demand comes, other causes of
software error should be investigated in consideration of the
running environment. For example, the environment on which the
software is running includes interaction with the operating system
and hardware module. Although the application software can be
tested as error free using the framework proposed in this study, the
software will not generate a safety signal if the operating system
kernel does not properly call the application software or if there is
any error in the hardware module that affects the application or the
operating system software. In addition, external causes of potential
software error, such as wrong input by operator mistake or noise
from sensors or the signal transmission path, also need to be
considered to completely model the software failure.

Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgment

This work was supported by the project of 'Evaluation of human
error probabilities and safety software reliabilities in digital envi-
ronment (L16S092000),' which was funded by the Central Research
Institute (CRI) of the Korea Hydro and Nuclear Power (KHNP)
company.

References

[1] M. Hassan, W.E. Vesely, Digital I&C Systems in Nuclear Power Plants. Risk-
screening of Environmental Stressors and a Comparison of Hardware Un-
availability with an Existing Analog System, NUREG/CR-6579, Brookhaven
National Laboratory, 1998.

[2] National Research Council, Digital Instrumentation and Control Systems in
Nuclear Power Plants: Safety and Reliability Issues, National Academies Press,
1997.

[3] H.G. Kang, T. Sung, An analysis of safety-critical digital systems for risk-
informed design, Reliab. Eng. Syst. Saf. 78 (2002) 307e314.

[4] H. Ragheb, Operating and Maintenance Experience with Computer-based
Systems in Nuclear Power Plants, in: International Workshop on Technical
Support for Licensing Issues of Computer-based Systems Important to Safety,
March 1996. München, Germany.

[5] U.S. Nuclear Regulatory Commission, Guidance for Evaluation of D3 in Digital
Computer-based Instrumentation and Control Systems, 2012. BTP 7e19 (Rev.
6).

[6] K. Korsah, M.D. Muhlheim, R. Wood, A Qualitative Assessment of Current CCF
Guidance Based on a Review of Safety System Digital Implementation Changes
with Evolving Technology, ORNL/SR-2016/148, Oak Ridge National Lab, 2016.

[7] M.R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, New
York, 1996.

http://refhub.elsevier.com/S1738-5733(18)30077-9/sref1
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref1
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref1
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref1
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref1
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref2
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref2
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref2
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref3
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref3
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref3
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref4
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref4
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref4
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref4
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref5
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref5
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref5
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref5
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref6
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref6
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref6
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref7
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref7


S.H. Lee et al. / Nuclear Engineering and Technology 50 (2018) 570e581 581
[8] M.C. Kim, S.C. Jang, J. Ha, Possibilities and limitations of applying software
reliability growth models to safety critical software, Nucl. Eng. Technol. 39
(2007) 145e148.

[9] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, R. Mishra,
Predicting software defects in varying development lifecycles using Bayesian
nets, Inf. Software Technol. 49 (2007) 32e43.

[10] H.S. Eom, G.Y. Park, S.C. Jang, H.S. Son, H.G. Kang, V&V-based remaining fault
estimation model for safetyecritical software of a nuclear power plant, Ann.
Nucl. Energy 51 (2013) 38e49.

[11] S. Brown, Overview of IEC 61508. Design of electrical/electronic/program-
mable electronic safety-related systems, Comput. Contr. Eng. J 11 (2000)
6e12.

[12] T.L. Chu, M. Yue, M. Martinez-Guridi, J. Lehner, Review of Quantitative Soft-
ware Reliability Methods, BNL-94047e2010, Brookhaven National Laboratory,
2010.

[13] J. May, G. Hughes, A.D. Lunn, Reliability estimation from appropriate testing of
plant protection software, Software Eng. J. 10 (1995) 206e218.

[14] T.L. Chu, Development of Quantitative Software Reliability Models for Digital
Protection Systems of Nuclear Power Plants, NUREG/CR-7044, U.S. Nuclear
Regulatory Commission, 2013.

[15] S. Kuball, J.H.R. May, A discussion of statistical testing on a safety-related
application, Proc. Inst. Mech. Eng. O J. Risk Reliab. 221 (2007) 121e132.

[16] H.G. Kang, H.G. Lim, H.J. Lee, M.C. Kim, S.C. Jang, Input-profile-based software
failure probability quantification for safety signal generation systems, Reliab.
Eng. Syst. Saf. 94 (2009) 1542e1546.

[17] S.M. Shin, S.H. Lee, H.G. Kang, H.S. Son, S.J. Lee, Test based reliability quanti-
fication method for a safety critical software using finite test sets, in: Pro-
ceedings of the 9th International Topical Meeting on Nuclear Plant
Instrumentation, Control & Humanemachine Interface Technologies (NPIC &
HMIT 2015), Charlotte, NC, February 2015.

[18] C.V. Ramamoorthy, W.T. Tsai, Advances in software engineering, Computer 29
(1996) 47e58.
[19] K.C. Kwon, M.S. Lee, Technical review on the localized digital instrumentation
and control systems, Nucl. Eng. Technol. 41 (2009) 447e454.

[20] J.G. Choi, S.J. Lee, H.G. Kang, S. Hur, Y.J. Lee, S.C. Jang, Fault detection coverage
quantification of automatic test functions of digital I&C system in NPPS, Nucl.
Eng. Technol. 44 (2012) 421e428.

[21] M. Lee, S. Song, D. Yun, Development and Application of POSAFE-Q PLC
Platform, IAEA-CN-194, International Atomic Energy Agency (IAEA), 2012.

[22] K. Koo, B. You, T.W. Kim, S. Cho, J.S. Lee, Development of Application Pro-
gramming Tool for Safety Grade PLC (POSAFE-Q), Transactions of the Korean
Nuclear Society Spring Meeting, May 2006. Chuncheon, Korea.

[23] J. Palomar, R.H. Wyman, The Programmable Logic Controller and its Appli-
cation in Nuclear Reactor Systems, NUREG/CR-6090, U.S. Nuclear Regulatory
Commission, 1993.

[24] Texas Instruments, TMS320C3x User's Guide, 1997.
[25] D. Huizinga, A. Kolawa, Automated Defect Prevention: Best Practices in Soft-

ware Management, John Wiley & Sons, 2007.
[26] C. Kaner, J. Falk, Testing Computer Software, Wiley, 1999.
[27] International Electrotechnical Commission, Programmable Controllers e Part

3: Programming Languages, IEC, 1993, pp. 61131e61133.
[28] J. Yoo, J.H. Lee, J.S. Lee, A research on seamless platform change of reactor

protection system from PLC to FPGA, Nucl. Eng. Technol. 45 (2013) 477e488.
[29] G.Y. Park, K.Y. Koh, E. Jee, P.H. Seong, K.C. Kwon, D.H. Lee, Fault tree analysis of

KNICS RPS software, Nucl. Eng. Technol. 40 (2008) 397e408.
[30] J.G. Choi, D.Y. Lee, Development of RPS trip logic based on PLD technology,

Nucl. Eng. Technol. 44 (2012) 697e708.
[31] Doosan Heavy Industries and Construction Co., Ltd, BP SDS for Reactor Pro-

tection System, 2008. KNICS-RPS-SDS231 (Rev. 3).
[32] J.J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional

thermal-hydraulic system code, MARS 1.3.1, Ann. Nucl. Energy 26 (1999)
1611e1642.

[33] U.S. Nuclear Regulatory Commission, Report of the US Nuclear Regulatory
Commission Piping Review Committee, NUREG/1061, 1984.

http://refhub.elsevier.com/S1738-5733(18)30077-9/sref8
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref8
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref8
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref8
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref9
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref9
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref9
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref9
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref10
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref11
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref11
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref11
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref11
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref12
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref12
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref12
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref12
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref13
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref13
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref13
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref14
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref14
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref14
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref15
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref15
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref15
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref16
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref16
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref16
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref16
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref17
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref18
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref18
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref18
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref19
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref19
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref19
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref20
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref20
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref20
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref20
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref20
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref21
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref21
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref22
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref22
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref22
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref23
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref23
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref23
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref24
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref25
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref25
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref25
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref26
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref27
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref27
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref27
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref27
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref28
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref28
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref28
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref29
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref29
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref29
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref30
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref30
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref30
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref31
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref31
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref32
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref32
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref32
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref32
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref33
http://refhub.elsevier.com/S1738-5733(18)30077-9/sref33

	Development of simulation-based testing environment for safety-critical software
	1. Introduction
	2. Target system
	2.1. IDiPS-RPS configuration
	2.2. POSAFE-Q architecture

	3. Test bed development
	3.1. Development of software test bed
	3.2. Verification of software test bed
	3.2.1. Unit testing of software test bed
	3.2.2. Functional testing of software test bed


	4. Case study
	4.1. Target safety-critical software
	4.2. Test case generation of target software
	4.2.1. Variables and states of the target software
	4.2.2. Obtaining the profile of the variables

	4.3. Test procedure and results of target software

	5. Conclusion
	Conflicts of interest
	Acknowledgment
	References


