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ABSTRACT Conventional stitching techniques for images and videos are based on smooth warping
models, and therefore, they often fail to work on multi-view images and videos with large parallax captured
by cameras with wide baselines. In this paper, we propose a novel video stitching algorithm for such
challenging multi-view videos. We estimate the parameters of ground plane homography, fundamental
matrix, and vertical vanishing points reliably, using both of the appearance and activity based feature
matches validated by geometric constraints. We alleviate the parallax artifacts in stitching by adaptively
warping the off-plane pixels into geometrically accurate matching positions through their ground plane
pixels based on the epipolar geometry. We also exploit the inter-view and inter-frame correspondence
matching information together to estimate the ground plane pixels reliably, which are then refined by energy
minimization. Experimental results show that the proposed algorithm provides geometrically accurate
stitching results of multi-view videos with large parallax and outperforms the state-of-the-art stitching
methods qualitatively and quantitatively.

INDEX TERMS Multi-view videos, video stitching, image stitching, large parallax, adaptive pixel warping,
epipolar geometry.

I. INTRODUCTION

MULTI-VIEW videos are widely used in many appli-
cations such as surveillance [1]–[3], sports [4]–[6],

virtual training [7] and video conferencing [8], [9]. One of the
essential techniques for multi-view applications is stitching,
which combines multiple images, captured from different
viewing positions and directions, to generate a single im-
age with a wider field of view [10]. Image stitching has
been actively studied in the literatures [11]–[21], and related
commercial products have been also developed, e.g., Adobe
Photoshop Photomerge™ and Microsoft Image Composite
Editor. Moreover, many current mobile devices with cam-
eras are able to synthesize a panorama image by stitching
multiple images captured at different time instances. Also,
around view monitoring is one of the core applications of
autonomous vehicles, which employs bird’s eye views of
stitched multiple images captured by front, side, and rear
view cameras [22].

Traditional image stitching methods assume that a pair of
images are taken from very close camera locations to each
other and the captured scene structures are roughly planar.
Based on these assumptions, we obtain stitched images by
performing the three major steps: feature matching, image
alignment, and image composition. First, feature points are
detected from different images, which are then matched
together by using feature descriptors, e.g., SIFT [23]. In
the alignment step, a global image warping model such
as homography is estimated by using the obtained feature
matches, and multiple images are aligned to a common image
domain accordingly. Finally, the pixel values in a stitched
image are determined by average blending or seam cutting
methods [10].

However, when multi-view cameras capture non-planar
scene structures at relatively far camera positions from one
another, resulting multi-view images exhibit parallax phe-
nomenon where the relative locations of scene contents are
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varying across different views. In such cases, the traditional
stitching methods suffer from parallax artifact. Therefore,
advanced image stitching methods [11]–[21] have been stud-
ied which alleviate some amount of parallax artifact by de-
signing locally adaptive transformations for flexible warping,
employing similarity transformation to reduce perspective
distortion, and/or hiding the misalignment in composition
stage based on seem-cutting method.

Recently, in many practical applications such as surveil-
lance and sports, static multiple cameras are placed at very
far viewing positions from one another with wide baselines.
Also, captured 3D real-world scenes often include multi-
ple foreground objects moving over a wide range of scene
depths. For example, walking pedestrians are captured by
static multiple cameras installed at arbitrary locations [24]–
[26], and multiple players in sports games are captured by
static cameras with wide baselines [27]. On these challeng-
ing multi-view images, even the aforementioned advanced
image stitching techniques have limitations to combine the
diverse scene structures accurately causing ghosting artifacts
in stitching results due to the two main reasons. First, abrupt
depth discontinuity among multiple foreground objects and
background is hard to be treated accurately by the existing
warping schemes. Second, appearance-based feature descrip-
tors may provide large numbers of outlier matches due to
severe parallax.

Compared to the image stitching research, relatively little
effort has been made to develop multi-view video stitching
techniques. Video stitching was regarded as an extension
of image stitching where the multiple frames from different
views at a certain time instance are stitched together by using
existing image stitching techniques [28]. Also, a temporal
cost term is simply added to the cost function for image
stitching [29]. Therefore, stitching for challenging multi-
view videos with large parallax still has the aforementioned
problems of image stitching.

In this paper, we propose a geometrically accurate stitch-
ing algorithm for multi-view videos with large parallax
(MVLP) which are captured by stationary cameras with
wide baselines. We also consider surveillance and sports
applications where multiple people are moving on the ground
plane at arbitrary distances from the cameras. We develop
a parallax-adaptive pixel warping model, where the ground
plane pixels are warped by homography, but the pixels off
the plane, i.e. the pixels on the foreground objects and the
distant background region, are warped through their ground
plane pixels based on the epipolar geometry. We also estimate
the optimal ground plane pixels by employing both of the
reliable spatial and temporal feature matches based on energy
minimization framework. Experimental results show that the
proposed algorithm stitches multi-view videos successfully
without severe parallax artifacts, and yields a significantly
better performance than that of the existing state-of-the-art
image stitching techniques qualitatively and quantitatively.

A preliminary result of this work was presented in [30].
The major differences between [30] and this paper are as

follows.
• We propose a more generalized video stitching frame-

work which aligns the foreground objects and the back-
ground, respectively, while our previous algorithm [30]
was applied to the foreground objects only.

• We improve the warping performance by estimating op-
timal ground plane pixels, while our previous work [30]
estimates a projective depth using the lowest pixel in
each object.

• We perform more extensive experiments using 12 video
sequences and provide comparative experimental results
between the conventional methods and the proposed
algorithm qualitatively and quantitatively.

The rest of this paper is organized as follows. Section II
describes the related work on image and video stitching and
static multi-camera based tracking. Section III proposes the
basic concept of the proposed parallax-adaptive pixel warp-
ing model. Section IV and Section V explain the algorithms
of parameter estimation and ground plane pixel estimation,
respectively. Section VI presents the experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK
A. IMAGE AND VIDEO STITCHING
Homography is a traditional image warping model which de-
scribes the projective relationship between two image planes
based on the planar scene assumption [10], [31]. In general,
an optimal homography is estimated by feature matching
between two images. Homography can register multiple im-
ages associated with small camera baselines successfully,
however, it fails to work on the images with large camera
baselines where a captured scene is composed of multiple
planar structures.

To overcome this limitation, advanced image stitching
methods employ spatially-varying warps which adaptively
align spatial deviation between two images caused by par-
allax. Gao et al. estimated dual homographies to align the
ground plane and the distant background plane, respectively,
by clustering the feature points according to their posi-
tions [11]. Lin et al. initialized a global affine transformation
which is then iteratively refined to minimize a cost function
defined by matched features [12]. Zaragoza et al. partitioned
an input image into multiple cells, and estimated a homog-
raphy for each cell by weighting feature matches according
to the relative distances to the feature points [13]. Zhang et
al. proposed a mesh-based alignment technique to mitigate
the shrinking problem of wide-baseline panorama synthe-
sis, which designs a scale preserving cost function using
the perimeter of polygons created from feature points [14].
The spatially-varying warps reduce the parallax artifact of
image stitching by a certain amount, however they cannot
reflect abrupt depth changes in a captured scene completely
since the neighboring cells are processed with smoothness
constraints. Moreover, the spatially-varying warps were in-
herently designed to deform images assuming small base-
lines [32], and thus the warped images look unnatural when
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FIGURE 1: Stitching images with large parallax. (a) A target image and (b) a reference image. The resulting stitched images by using (c) a
homography based warping scheme, (d) APAP [13], and (e) the proposed parallax-adaptive stitching, respectively.

the relative orders of control points are changed across mul-
tiple images due to large parallax [33].

The stitched images usually exhibit perspective distortions
in non-overlapping regions among multiple images where
no valid feature matches are obtained. To alleviate the per-
spective distortions, shape-preserving warps were proposed
which extrapolate the warping models to non-overlapping
regions using similarity transformation and/or homography
linearization [15]–[18]. Chang et al. applied a homography to
the overlapping region of images and similarity transforma-
tions to the non-overlapping regions, respectively [15]. Lin et
al. proposed a homography linearization method to combine
homography and similarity transformations smoothly [16].
Chen et al. improved the shape-preserving warp by accu-
rately estimating the scale and rotation of similarity trans-
formation [17]. Li et al. proposed quasi-homography warps
which linearly extrapolate the horizontal component of ho-
mography [18]. The shape-preserving warps provide visually
plausible stitching results, but do not always produce geo-
metrically correct results.

Attempts have been also made to align only a certain
region of input images and hide the artifacts of mismatched
regions by applying seam-based composition methods. Gao
et al. obtained multiple homographies by taking the groups
of inlier feature matches in order, and selected the best ho-
mography that yields a minimum seam cost [19]. Zhang et al.
clustered closely located feature points together and found an
optimal local homography associated with a minimum seam
cutting error to align a local image region [20]. They also
applied content-preserving warping (CPW) [34] to further
refine the local alignment. Lin et al. generated multiple local
homographies using a superpixel-based grouping scheme,
and further refined each homography to select the best one
by using energy minimization [21]. They also designed an
energy function to encourage the warp undergoes similarity
transformation and to preserve the structures like curves and
lines after warping. Note that these techniques register one
local region only and thus inevitably cause geometrically
inaccurate stitching results.

On the other hand, the previous video stitching algorithms
simply apply the existing image stitching techniques to stitch
the video frames at each time instance, respectively [28].
Also, they extend the image stitching techniques straightfor-
wardly to video stitching for the purposes of improving the
computation speed or reducing the flickering artifacts. El-
Saban et al. computed SIFT descriptors for selected frames
only and tracked the feature points to reduce the com-

putational complexity of video stitching [28]. Jiang et al.
extended CPW of local alignment and image composition
to video stitching by applying the seam cutting scheme to
spatiotemporal domain [29].

B. STATIC MULTI-CAMERA BASED TRACKING
Multi-camera based people tracking techniques detect walk-
ing pedestrians on a ground plane from multiple videos,
which are captured by different static cameras set toward a
common ground plane and positioned with relatively wide
baselines. Specifically, moving foreground objects are first
detected by background subtraction methods, and then the
elongated shapes of detected people are represented by
principal axes [24] which are used for people tracking in
addition to the ground plane homography. To localize each
person for robust tracking, Khan et al. computed multiple
homographies associated with parallel planes to the ground
plane using vanishing points [25]. In addition to homography
and vanishing points, fundamental matrix was also used to
reliably find correspondence matching for the top points of
people [26].

III. PARALLAX-ADAPTIVE PIXEL WARPING MODEL
In many practical applications of multi-view videos such as
surveillance and sports, static multiple cameras are located
with wide baselines toward a target real-world scene which
yields severely different camera parameters, e.g., rotation,
translation, and zoom factor. Also, in a typical video se-
quence, the background is composed of a ground plane
and optionally a far distant region orthogonal to the ground
plane, and moreover, people moving on the ground plane at
different distances from the cameras are captured as multiple
foreground objects. Figs. 1(a) and (b) show two frames of
the ‘Soccer’ sequence captured by two cameras with severely
different positions and viewing directions from each other,
where large parallax is observed especially in the vicinity of
the foreground objects. For example, the players denoted by
red boxes in Fig. 1(a) appear in a different order in Fig. 1(b).
In addition, the players denoted by yellow boxes appear in
only one view of Fig. 1(a) not in Fig. 1(b).

Such large parallax makes the multi-view video stitching
quite a challenging problem, and the conventional stitching
techniques often fail to provide faithful results. Fig. 1(c)
shows the stitched image by warping a target frame in
Fig. 1(a) to a reference frame in Fig. 1(b) according to the
homography. Since the homography-based warping assumes
a planar scene structure, only the ground plane is accurately

VOLUME x, 2018 3



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2835659, IEEE Access

K.-Y. Lee and J.-Y. Sim: Stitching for Multi-View Videos With Large Parallax Based on Adaptive Pixel Warping

FIGURE 2: Epipolar geometry.

aligned and the foreground objects and the distant back-
ground region yield large parallax artifacts. Also, Fig. 1(d)
shows the stitching result of APAP [13] which is one of the
state-of-the-art image stitching techniques. The APAP adap-
tively warps images using mesh grid structure to reduce par-
allax artifacts, however, it still exhibits inaccurate alignment
of multiple foreground objects due to depth discontinuity,
and furthermore, it causes perspective distortions in the non-
overlapping area between two images.

The parallax between two views can be explained based
on the epipolar geometry as shown in Fig. 2. Homography is
a planar mapping from one image domain to another image
domain. Suppose that a 3D real-world point X1 is located on
a plane π and projected to the pixels p1 and q1 in the image
planes I and J , respectively. Then the relation between p1

and q1 is described by

q1 = Hπp1 (1)

where Hπ is the homography associated with the plane π.
However, for the pixels p2 and q2 projected from a 3D point
X2, which is not on π, the relation (1) does not hold, i.e.,
q2 6= Hπp2, and therefore, a single homography Hπ map
p2 to a wrong pixel q̃2 = Hπp2, which causes parallax
artifact. On the other hand, we can describe the geometric
relationship between any pair of corresponding pixels by
epipolar constraint. For example, for a given pixel p2 ∈ I ,
the corresponding pixel q2 ∈ J should be located on the
epipolar line l2 computed as

l2 = Fp2 (2)

where F is the fundamental matrix.
In this work, we propose an adaptive pixel warping model

for parallax-free stitching of MVLP which employs faithful
correspondence matching among multi-view videos based on
the epipolar constraint. We first define on-plane pixels which
are projected from the ground plane in real-world scene, and
define off-plane pixels belonging to the foreground objects
and the far distant background region. We generalize the
concept of epipolar constraint, used for matching the top
points of people in multi-camera based tracking [26], to
find reliable correspondence matching of off-plane pixels. As
shown in Fig. 3, for a given off-plane pixel p in a target image
I , we first estimate the ground plane pixel (GPP) gp of p
along the object direction Lp = p × vI determined by the

FIGURE 3: Parallax-adaptive pixel warping.

vertical vanishing point vI . Since gp is an on-plane pixel, it
can be warped to the corresponding GPP gq in the reference
image J by using the homography matrix H evaluated on the
ground plane.

gq = Hgp. (3)

The unknown pixel q corresponding to p can be estimated as
the cross point between the object direction line Lq = gq ×
vJ passing through gq and the vertical vanishing point vJ ,
and the epipolar line lp = Fp specified by the fundamental
matrix.

q = Lq × lp. (4)

Fig. 1(e) shows the resulting image stitched by using the
proposed warping model, where we see that the multiple
foreground objects and the background are aligned correctly,
while the parallax artifacts, occurred in the conventional
methods as shown in Figs. 1(c) and (d), are alleviated effec-
tively. Also the proposed algorithm can warp the foreground
objects and the background on the non-overlapped areas
naturally as well.

Consequently, to perform the proposed parallax-adaptive
pixel warping, we need to estimate the parameters of the
homography matrix H of the ground plane, the fundamental
matrix F, and the vertical vanishing points vI and vJ .
We will explain the details of the parameter estimation in
Section IV. Also, we need to estimate an optimal GPP gp for
a given query pixel p. Note that [26] employs only a single
query pixel at the top of a foreground object and roughly
estimates the GPP by using the average height of objects.
In this work, we estimate optimal GPPs more accurately by
using the spatial and temporal feature matches based on an
energy minimization framework, which will be explained in
Section V.

IV. PARAMETER ESTIMATION
For given two input MVLP, we first estimate the parameters
of the homography matrix, the fundamental matrix, and the
vertical vanishing points. Note that these parameters are fixed
over all the frames since we assume that multi-view videos
are captured by static cameras.
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FIGURE 4: (a) An input video sequence and (b) its background
image.

A. GROUND PLANE HOMOGRAPHY
We estimate the homography associated with the ground
plane using inter-view correspondence matching. In general,
initial matching between two views is performed by using
feature descriptors such as SIFT [23] or ASIFT [35], and
then the spurious matches are removed by outlier removal
schemes such as RANSAC [36]. However, the conven-
tional appearance-based techniques may not provide reliable
matching results on MVLP, especially in multiple foreground
objects at different scene depths, since the neighboring pixels
of a feature point in one image yield severely different
values from that of the corresponding feature point in another
image [37], [38]. Therefore, in this work, we estimate the
homography more reliably by employing the appearance fea-
tures as well as the activity information of moving foreground
objects.

Fig. 4(a) shows an input color video sequence: I = {I(k) :
k = 1, 2, · · · ,K} where I(k) denotes the k-th frame and
K is the total number of frames. We find Bground the set of
feature matches on the ground plane between I and J using
the activity-based correspondence matching technique [38].
Then we compute an initial homography Hinit from Bground

using RANSAC. We also obtain a background image IBG,
as shown in Fig. 4(b), by performing the median filtering to
all the frames in I. Then we use SIFT to find a set of feature
matches B between two background images IBG and JBG
obtained from two video sequences I and J , respectively.
Note that B includes the matches on the ground plane and
the matches in the distant background region together. Hence
we first extract the matches on the ground plane only from
B by selecting the inliers matches of Hinit. Then we refine
Hinit to obtain a final homography H by using Bground and
the selected ground plane matches in B, based on RANSAC.

B. FUNDAMENTAL MATRIX
To estimate the fundamental matrix between two views, we
find inter-view feature matching on the foreground objects as
well. Note that, while the correspondence matching for the
background is performed once over a whole video sequence,
that for the foreground objects is performed at each time in-
stance, respectively. In practice, we use SIFT to find the inter-
view feature matches between I(k) and J (k), and obtain the
set F (k)

spatial by selecting the matches lying on the foreground
regions only by using background subtraction [39]. While
Bground includes a small number of outlier matches thanks to

FIGURE 5: Ground plane pixel estimation. p and q are given as
corresponding to each other. L′

p and L′
q denote the homography

transformed lines of Lp and Lq into the other views, respectively.

FIGURE 6: Refinement of feature matching on (a) foreground objects
and (b) background. Correct and spurious matches are denoted by
the yellow and red lines, respectively.

reliable performance of activity-based matching,F (k)
spatial and

B include relatively large numbers of spurious matches since
appearance-based matching is vulnerable to severe parallax.
Therefore, we further refine the matches in F (k)

spatial and B
using the geometric constraints.

As shown in Fig. 5, when a pair of corresponding off-plane
pixels p ∈ I and q ∈ J are given, their GPPs gp and gq are
corresponding on-plane pixels to each other and should be
located on the object direction lines Lp and Lq, respectively.
Hence we can estimate gp and gq as [24]

gp = Lp × L′q,

gq = Lq × L′p, (5)

where L′p and L′q are the warped lines of Lp and Lq into
the other views, respectively, by the ground plane homog-
raphy H. Based on this property, we induce two geometric
constraints to validate the obtained correspondence matches.
First, gp should be located at a position on Lp equal to or
below p such that (gp − p) · vI ≥ 0. Similarly, we have
(gq − q) · vJ ≥ 0. Second, gp should be close to the
lowest possible pixel plow along Lp in a connected object
area. In practice, we employ a tolerance range for gp such
that |(gp − plow) · vI

||vI || | is less than 40% of the height of a
foreground object. This also applies to gq and q.

We remove the false matches from F (k)
spatial, which violate

the first and/or second constraints, to yield a refined set
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F̃ (k)
spatial. For B, we test only the first constraint and apply the

multi-structure guided sampling (MULTI-GS) [40] to obtain
a refined set B̃. Fig. 6 shows that the proposed matching
refinement for MVLP removes most of the spurious matches
successfully both on the foreground objects and the back-
ground. Finally, we estimate the fundamental matrix F by
applying RANSAC to the appearance-based feature matches
of F̃ (k)

spatial’s and B̃ as well as the activity-based matches of
Bground together. Note that, due to computational complexity,
we empirically collect 1000 feature matches from F̃ (k)

spatial’s
associated with randomly selected frames.

C. VERTICAL VANISHING POINTS

Vanishing points are the points where the parallel lines are
converging [31]. In multi-view video sequences, people are
assumed to be standing along the orthogonal direction to the
ground plane, and therefore, we define a vertical vanishing
point as a converging point of parallel lines in a scene
orthogonal to the ground plane. In practice, we estimate the
vertical vanishing points by using [41]. Instead of complex
people tracking, we simply select 10,000 major axis lines
of people from randomly selected frames, where the lines
satisfy the condition that the ratio of the length of minor axis
to the length of major axis is below 0.3. Then, as shown in
Fig. 3, the object direction Lp can be computed at each off-
plane pixel p as the line passing through p and v

Lp = p× v (6)

where v is the vertical vanishing point. Note that the object
direction Lp is used to estimate the GPP gp based on the
constraint that gp should be located on Lp.

V. GROUND PLANE PIXEL ESTIMATION
We estimate optimal GPPs for given query pixels in a target
frame to find their warped pixels in a reference frame. Note
that the proposed pixel warping model is not only applicable
to off-plane pixels but on-plane pixels such that gp = p for a
pixel p on the ground plane. We perform the GPP estimation
for the foreground objects and the background, respectively,
where the inter-view and inter-frame feature matches are
used together for the foreground objects while only the inter-
view feature matches are used for the background. The esti-
mated GPP positions are also optimized based on an energy
minimization framework.

A. GROUND PLANE PIXEL AND GROUND VALUE

Multiple off-plane pixels on a same object direction line
share a same GPP, since the corresponding real-world points
are assumed to be located on a same vertical line perpendic-
ular to the ground plane. For example, as shown in Fig. 7(a),
the pixels r1, r2 and r3 on Lr have the GPP gr, while the
pixels s1, s2 and s3 on Ls have GPP gs. However, off-plane
pixels lying on different object direction lines have different
GPPs. We define a ground value δp for the pixel p according

FIGURE 7: Relation between ground plane pixels and ground values.
(a) A target frame and (b) its ground value map.

to its GPP gp, as shown in Fig. 7(a).

δp =
vI − p

||vI − p||
· gp. (7)

Note that the ground values of off-plane pixels are almost
invariant within a same foreground object or a same distant
background region. We exploit this property to estimate the
GPPs by estimating their ground values instead, since gp and
δp are put in one-to-one correspondence with each other for
a given p via (7).

B. SPATIOTEMPORAL ESTIMATION FOR FOREGROUND
OBJECTS
Let us first define Φ

(k)
spatial as the set of feature pixels in

F̃ (k)
spatial detected from a target image I(k). For a given feature

pixel p(k) ∈ Φ
(k)
spatial associated with an inter-view match

denoted by a yellow line in Fig. 8, a GPP gp(k) is found by
(5). We call this procedure of GPP estimation using inter-
view feature matches as spatial matching based estimation
(SME). We perform SME using F̃ (k)

spatial for each k-th frame,
respectively.

However, some foreground objects may not provide suffi-
cient numbers of inter-view matches or may have no inter-
view match at all, due to large parallax between two views
and/or relatively small areas in an image. Hence we addi-
tionally employ the temporal information from the previous
frame to predict GPPs. Specifically, we use SIFT to obtain
the set of inter-frame feature matches F̃ (k)

temporal associated
with the foreground objects between a current frame I(k)

and its previous frame I(k−1), which are denoted by the
blue lines in Fig. 8. In general, F̃ (k)

temporal has a much larger
number of reliable matches than F̃ (k)

spatial, since the adjacent
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FIGURE 8: Inter-view feature matches (yellow lines) and inter-frame
feature matches (blue lines).

frames in a same view exhibit similar scene contents to
each other while the frames from different views exhibit
severely different appearance due to large parallax. Note that
some pixels may be detected as the spatial features and the
temporal features simultaneously, which belong to both of
F̃ (k)

spatial and F̃ (k)
temporal.

Let us define Φ
(k)
temporal as the set of inter-frame fea-

ture pixels in F̃ (k)
temporal detected from a target image I(k).

For each pixel p(k) ∈
(

Φ
(k)
temporal − Φ

(k)
spatial

)
, we find its

temporal corresponding pixel p(k−1). In addition, we also
collect the inter-view feature pixels from Φ

(k)
spatial, which

are located in the same foreground object to p(k). Then,
by (3) and (4), we compute a candidate pixel q̂(k) in the
reference image J (k) corresponding to p(k) by finding a
candidate GPP ĝp(k) . Note that we estimate the optimal GPP
by estimating the ground value via (7) instead. In practice,
we take a ground value of p(k) as the ground value of p(k−1)

and the ground values of the additionally collected inter-
view feature pixels, respectively, since the ground values are
same within a same foreground object while the GPPs are
changeable. Then we check whether each of the candidate
positions q̂(k) lies on a foreground object region in J (k) or
not, and we discard the associated GPP ĝp(k) when q̂(k)

lies outside of the foreground areas within J (k). Finally, we
evaluate the SIFT descriptors for the surviving candidate
positions q̂(k), and select the GPP of p(k) associated with
the best matching candidate position. We call this procedure
as temporal matching based estimation (TME).

When TME returns no available solution, we estimate the
GPP by taking the ground value of the lowest possible pixel
in a foreground object. We call this procedure as region based
estimation (RE). RE yields relatively lower accuracy of GPP
estimation than SME due to the lack of inter-view matching
information, however it can perform reasonable warping of
the foreground objects lying on the non-overlapping region
which appear only in I(k) but not in J (k).

C. SPATIAL ESTIMATION FOR BACKGROUND
We also estimate the GPPs for the background. We assume
that the background is composed of the ground plane and

optionally a far distant region. To adaptively warp the back-
ground image, we first decide whether the captured scene
includes a distant background region or not. To be specific,
we use the inter-view feature matching on the background.
From B̃, we extract the set of matches which are outliers of
the ground plane homography obtained in Section IV-A. If
the number of outlier matches is less than 5% of the total
number of matches in B̃, we decide the background scene
includes only the ground plane without a distant region, and
then we simply estimate the GPPs as gp = p for all the
background pixels p.

Otherwise, it means that the background includes a distant
region where we perform GPP estimation. We first compute
the GPPs for the extracted outlier matches in B̃ by SME,
and predict a line passing through the obtained GPPs using
linear regression. This line is regarded as a boundary to
roughly separate the distant background region from the
ground plane. For the pixels p located below the boundary
line, we simply estimate the GPPs as gp = p. For the feature
pixels in B̃ located above the boundary line, we estimate the
GPPs by SME.

D. GROUND VALUE OPTIMIZATION
For seamless warping of foreground objects and distant
background region, we further refine the positions of the
initial GPPs for the off-plane feature pixels, obtained in
Section V-B and Section V-C. Specifically, we formulate an
energy function EFG to refine the associated initial ground
values for the feature pixels of the foreground objects in
Φ(k) =

(
Φ

(k)
spatial

⋃
Φ

(k)
temporal

)
.

EFG(F(k)) = EFG,data(F(k))+αEFG,ss(F
(k))+βEts(F

(k))
(8)

where F(k) denotes the set of optimal ground values δp(k) ’s
for all feature pixels p(k)’s in Φ(k). We set the weighting
parameters as α = 0.5 and β = 0.5 experimentally.EFG,data

is the data cost designed as

EFG,data(F(k)) =
∑

p(k)∈Φ(k)

(
δp(k) − δ̄p(k)

)2
(9)

where δ̄p(k) denotes the initial ground value of p(k). The
initial ground values may be inaccurate due to the errors in
feature matching and/or background subtraction. Hence we
employ the spatial smoothness cost given by

EFG,ss(F
(k)) =

∑
p

(k)
i ∈Φ(k)

∑
p

(k)
j ∈N

(k)
i

w(p
(k)
i ,p

(k)
j )·

(
δ
p

(k)
i
− δ

p
(k)
j

)2

(10)
where N (k)

i denotes the set of spatially neighboring pixels
to p

(k)
i . Two pixels p

(k)
i and p

(k)
j are regarded as spatial

neighbors to each other when they are located in a same fore-
ground object region and satisfy the compatibility constraint:
the warped pixel of p

(k)
i ∈ I(k) using the initial GPP of

p
(k)
j is located on a foreground object region in J (k), and

at the same time, the warped pixel of p(k)
j ∈ I(k) using the
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initial GPP of p
(k)
i is also located on the same foreground

object in J (k). In this work, we select at most the four nearest
neighboring pixels to p

(k)
i to defineN (k)

i . The spatial weight
is given by

w(pi,pj) = exp (−||pi − pj ||/τ) (11)

where we set τ = 100 empirically. Moreover, to mitigate the
flickering artifacts in a resulting stitched video sequence, the
temporal smoothness cost is defined as

Ets(F
(k)) =

∑
p(k)∈Φ

(k)
temporal

(
δp(k) − δ∗p(k−1)

)2

(12)

where δ∗
p(k−1) is the optimal ground value of the inter-frame

corresponding pixel p(k−1) in the previous frame I(k−1).
Note that we do not use the temporal cost function at the first
frame.

Let Ψ represent the set of the feature pixels in B̃ located
above the boundary line in the background image of a target
view. We also formulate an energy function EBG for Ψ as

EBG(B) = EBG,data(B) + γEBG,ss(B) (13)

where B denotes the set of optimal ground values δp’s for all
feature pixels p’s in Ψ. The weighting parameter γ is set to
be 1 empirically. The data term is given by

EBG,data(B) =
∑
p∈Ψ

(
δp − δ̄p

)2
(14)

where δ̄p denotes the ground value of p ∈ Ψ initially
obtained by SME. The spatial smoothness cost is given by

EBG,ss(B) =
∑
pi∈Ψ

∑
pj∈Ni

w(pi,pj) ·
(
δpi
− δpj

)2
(15)

where Ni is the set of the four feature points in Ψ nearest to
pi.

We refine the ground values for all the off-plane feature
pixels in the foreground objects by minimizing the energy
function in (8) using a linear solver. Then the remaining non-
feature pixels in the foreground objects are assigned ground
values by using the nearest interpolation on the available
optimal ground values computed at the feature pixels. We
also find the set of the optimal ground values at the off-plane
feature pixels in the distant background region by minimizing
the energy function in (13), which are then interpolated to
determine the ground values at all the background pixels
above the boundary line. In practice, we apply the linear
interpolation within the convex hull of the feature pixels
and apply the nearest interpolation outside of the convex
hull. Fig. 7(b) shows the resulting ground value map of
a target image frame in Fig. 7(a). Note that the off-plane
pixels belonging to a same foreground object region or a
distant background region have almost same ground values
to one another, even though their GPPs are different. On
the contrary, the on-plane pixels on the ground plane have
different ground values according to their relative positions

TABLE 1: Specification of test video sequences.

Sequence Resolution Distant
Background

Time
(min)

Parallax
Angle(°)

Fountain 640×360 x 51 1.9
Tennis 640×360 o 34 12.3
Lawn 640×360 x 37 12.7

Badminton 640×360 o 52 18.2
Square 640×360 x 35 18.3
Office 640×360 o 30 18.5
Trail 640×360 o 51 18.7

Stadium 640×360 o 35 24.4
Soccer 320×240 o 55 28.0
Street 640×360 o 29 30.5
School 640×360 o 36 31.9
Garden 640×360 o 24 32.0

along the direction toward the vertical vanishing point.

VI. EXPERIMENTAL RESULTS
We evaluate the performance of the proposed algorithm using
12 test video sequences, as shown in Fig. 12. Each test video
sequence is composed of two videos captured at 30 frames
per second by two synchronized cameras with unknown cam-
era parameters. A captured scene includes multiple moving
people on a ground plane at various scene depths. Table 1
presents the specification of the test sequences. We simply
approximate the parallax angle by first taking the sum of
the angle between Lp and L′q and the angle between Lq

and L′p shown in Fig. 5, and by computing the average for
all the manually obtained ground truth matching pixels of
p and q which is then divided by 2. In general, a larger
parallax angle is yielded, when two videos are captured with
a wider camera baseline and a captured scene is closer to
the cameras. We warp each pixel in a target image frame to
a reference frame based on the proposed parallax-adaptive
pixel warping model. The hole pixels in warped target frame
are interpolated by using the valid warped pixels. To evaluate
whether the alignment is geometrically accurate or not, we
simply use the average blending scheme to combine the
warped target frame and the reference frame.

A. FOREGROUND OBJECT ALIGNMENT
The performance of video stitching highly depends on the ac-
curacy of correspondence matching between different views.
In particular, accurate inter-view matches on the foreground
object regions are required to adaptively alleviate the parallax
artifacts caused by different scene depths of multiple objects.
Therefore, we first evaluate the alignment performance of
multiple foreground objects according to various GPP esti-
mation methods.

Fig. 9 compares the stitching results on selected frames
from the three test sequences of MVLP, using the GPPs
estimated by the four different methods: RE, SME+RE,
SME+TME+RE without optimization, and SME+TME+RE
with optimization. Figs. 9(a) and (b) show target frames
and reference frames, respectively, where we mark the ob-
tained inter-view feature pixels in F̃ (k)

spatial by crosses. In the

8 VOLUME x, 2018



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2835659, IEEE Access

K.-Y. Lee and J.-Y. Sim: Stitching for Multi-View Videos With Large Parallax Based on Adaptive Pixel Warping

FIGURE 9: Stitching results of multiple foreground objects using the proposed ground plane pixel estimation methods. (a) Target frames and
(b) reference frames. The stitched images by using (c) RE, (d) SME+RE, (e) SME+TME+RE without optimization, and (f) SME+TME+RE with
optimization, respectively. From top to bottom, “Lawn,” “Street,” and “Garden” sequences.

FIGURE 10: Comparison of the average error of correspondence
matching for the foreground objects using different ground plane pixel
estimation methods. The matching error measures the RMSE be-
tween the resulting matches and the ground truth matches averaged
over 12 test sequences.

“Lawn” sequence, the foreground objects occupy relatively
small image areas since the cameras are located far from the
captured scene, and thus they yield few inter-view feature
matches. RE shows the artifact on the person in red, since the
associated GPPs are selected on the person in white, which
is connected to the person in red in the target frame by the
blob analysis. The matching accuracy on the person in red is
improved by using SME+RE, but the artifact on the legs is
still observed. The selected frames in the “Street” sequence
are quite a challenging case, since the two people occlude
each other. SME+RE improves the results of RE using inter-
view matching information, but it still causes the misalign-
ment on the right person. However, SME+TME+RE provides
accurate results of foreground object alignment on the two
sequences by using the spatiotemporal information together.
The “Garden” sequence includes the false matches marked
by yellow crosses in Figs. 9(a) and (b). Hence, SME+RE
and even SME+TME+RE without optimization suffer from
the misalignment artifact of foreground objects, however, this
artifact is alleviated in SME+TME+RE with optimization.

We also quantitatively measure the matching errors of the
foreground objects using the ground truth correspondence
matches. We select regularly distributed query pixels on
the foreground objects in a target frame, and obtain initial
matching pixels in a reference frame by using a dense feature

descriptor DAISY [42], which are then refined manually. We
find ground truth matches on 100 selected pairs of frames
for each sequence, and on average, we obtain about 20
matches on the foreground objects at each pair of frames.
Fig. 10 compares the root mean squared errors (RMSEs) of
the foreground matching averaged over the 12 test sequences,
where the RMSEs of RE, SME+RE, and SME+TME+RE
without and with optimization are 5.45, 4.38, 3.77, and 3.34
pixels, respectively.

B. VIDEO STITCHING
Fig. 11 shows the video stitching results of the proposed
algorithm on six test sequences of MVLP. We select frames
at five different time instances in each sequence which in-
clude various challenging scene contents. In Fig. 11, all the
sequences except the “Square” are detected to include the dis-
tant background regions in addition to the ground planes. We
see that the ground planes and the distant background regions
are well aligned simultaneously, since the on-plane pixels
and the off-plane background pixels are warped adaptively.
Note that the ground planes in the “Office” and “Soccer”
sequences have less textures, which are often occurred in
surveillance and sports scenes, but the proposed algorithm
also finds correct homographies for these ground planes by
using the appearance and activity based feature matches
together.

We also observe that the multiple foreground objects are
accurately aligned without ghosting artifacts in most frames.
For example, in the “Tennis” sequence, the two people on
the right side are moving toward different directions from
each other, and thus they are detected as a single object at
some time instances due to overlap. The proposed algorithm
provides accurate warping of these foreground objects by
estimating optimal GPPs reliably using the spatiotemporal
feature matches. In the “Square” sequence, the left person
moves on the overlapped area between the target and ref-
erence views at the 29571th and 29663th frames, however
it disappears from the reference frames at the 29804th and
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FIGURE 11: Video stitching results of the proposed algorithm. For each sequence, pairs of target and reference frames (left) and the stitched
images (right) are shown.
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29857th frames. The proposed algorithm warps this object
naturally on the non-overlapped area in the stitched images.
In the “Trail” sequence, the foreground object approaches
to the camera yielding severely changing scene depths, but
the proposed algorithm aligns this object correctly at various
scales. On the other hand, the proposed algorithm yields
artifacts on some exceptional situations. In the “Badminton”
sequence, the person marked with a red circle is jumping and
never touches the ground plane at the 27767th frame. In such
a case, no valid inter-view feature matches are obtained on
this region due to the geometric constraint in Section IV-B,
and thus RE yields the misalignment artifact. In the “Office”
sequence, we see some artifacts near the right person since a
moving car behind the cameras is reflected on the background
windows. The “Soccer” is quite a challenging sequence
which includes various fast moving players, where multiple
people occlude one another at the 3800th and 5038th frames.
In such cases, SIFT provides insufficient correct inter-view
matches or even no correct match at all, resulting in the
stitching artifacts indicated by red circles.

C. COMPARISON WITH CONVENTIONAL METHODS
We compare the performance of the proposed algorithm with
that of the four conventional methods including the state-of-
the-art image stitching techniques: Homography, CPW [34],
SPHP [15] and APAP [13]. Note that CPW is used as an
alignment model for stitching methods [20], [29]. SPHP is
a shape-preserving warping method which can be compared
to evaluate the naturalness of warping on non-overlapping
regions. APAP is one of the most flexible warping methods
which directly estimates multiple homographies for local
image regions. However, we do not compare the seam-based
techniques [19]–[21], since they just hide the misalignment
artifacts using seam-cutting based composition. We apply the
compared image stitching techniques to the frames at each
time instance, respectively. We implement Homography and
CPW. The parameters for warp in CPW are set as [29]. We
obtain the stitching results of SPHP and APAP using the
source codes provided by the authors’ webpages [43], [44]. In
our experiment, MULTI-GS [40] used in [13] yields a better
performance of outlier removal than RANSAC, and thus we
also apply MULTI-GS to remove outlier matches of SIFT in
Homography, CPW, and SPHP as well.

Fig. 12 compares the stitching results on selected frames
of 12 test video sequences. All the conventional methods
including the proposed algorithm achieve good stitching re-
sults on the “Fountain” sequence which yields the smallest
parallax angle of 1.9◦. However, for the other sequences
of MVLP, the conventional methods fail to work to align
multiple foreground objects and background simultaneously.
For example, in the “Square” and “Office” sequences, the
feet of multiple people are well aligned on the ground planes,
but the mismatch artifact gets worse toward the heads, since
the ground plane warping is dominant in the conventional
methods. On the other hand, in the “Stadium,” “Soccer,” and
“Garden” sequences, a same person appears twice at different

locations without any overlap on the stitched domain, since
the conventional methods extract dominant features from
the distant background regions causing the misalignment
artifacts on the ground planes and the foreground objects.

Specifically, Homography warps all the pixels in a target
frame by global transformation derived from a dominant
planar scene structure, and thus it mismatches either the
ground plane or a distant background region. CPW adap-
tively refines the initial homography according to feature
matches, and reduces the parallax artifacts on the foreground
objects compared with that of Homography, as shown in the
“Tennis,” “Office” and “Street” sequences. SPHP adopts the
similarity transformation to reduce the perspective distortion
of the non-overlapping area, and thus it aligns the foreground
objects on the non-overlapping areas well in the “Square”
sequence as marked with a red circle. However, at the same
time, SPHP distorts the line structure on the ground plane
to curves as marked with green ellipses in the “Lawn” and
“Square” sequences. APAP estimates locally adaptive warps
and reduces the spatial deviation of a same foreground object
in the stitched domain compared with that of CPW, as shown
in the “School” sequence, however, APAP results in unnat-
ural distortions in the “Badminton,” “Trail,” and “School”
sequences as marked with green ellipses.

On the contrary, in all the frames, the proposed algorithm
alleviates the parallax artifacts of video stitching success-
fully by adaptively aligning the multiple foreground objects
and background simultaneously. It also performs geomet-
rically accurate warping on the non-overlapping areas as
well, as shown in the “Badminton,” “Square,” and “Soccer”
sequences. Moreover, the proposed algorithm correctly de-
termines the existence of distant background regions in all
12 test sequences. Thus both of the ground plane and the
distant background region are correctly aligned as shown in
the “Badminton,” “Office,” and “School” sequences. In the
“Soccer” sequence, even some ghost artifacts are observed
due to significant amount of occlusion as marked by a red
circle, the proposed algorithm aligns most people accurately
while the compared methods fail to work on this challenging
case. Also, the umpire chair and the net in the “Tennis”
sequence and the net and the light lamp in the “Badminton”
sequence are static objects over a whole video sequence
which are not detected as moving foreground objects, and
therefore the proposed algorithm cannot align them correctly.
However, all the compared methods also fail to align these
objects as marked with yellow ellipses. More comparative
results of video stitching are provided in the supplementary
video.

We also quantitatively compare the performance of the
proposed algorithm with that of the conventional methods us-
ing manually obtained ground truth correspondence matches
on the foreground objects and the background together. We
use the same ground truth matches on the foreground objects
as explained in Sec. VI-A. We generate ground truth matches
on the background only once for each sequence using the
background image. We first consider multiple large planar
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FIGURE 12: Comparison of video stitching results of the proposed algorithm and the four existing methods: Homography, CPW [34], SPHP [15],
and APAP [13]. From top to bottom, “Fountain,” “Tennis,” “Lawn,” “Badminton,” “Square,” “Office,” “Trail,” “Stadium,” “Soccer,” “Street,” “School,”
and “Garden” sequences.

areas in the background, and compute an optimal homogra-
phy for each planar area by using manually obtained feature
matches. Then we select regularly distributed query pixels
on the background image of a target view, and find the
ground truth matching pixels by warping the query pixels
employing the multiple homographies selectively. For the
query pixels on small and/or non-planar areas, we manually
obtain the ground truth matching pixels. The resulting ground

truth matches on the background image are added to each of
the 100 frames which are selected for finding ground truth
matches on the foreground objects, where we exclude the
background query pixels occluded by the foreground objects.
Consequently, on average, we have 724 ground truth matches
on the background for each of the 100 selected frames over
12 test sequences.

Fig. 13 presents the RMSE between the ground truth
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FIGURE 13: Quantitative comparison of the stitching performance of
the proposed algorithm with that of the conventional methods. The
matching error measures the average RMSE between the warped
pixels and the ground truth corresponding pixels.

corresponding pixels and the warped pixels on the overlapped
regions of the target and reference frames. We see that the
conventional methods tend to yield large RMSEs on test se-
quences with large parallax angles. For example, the RMSEs
of all the stitching methods are below 2 pixels on the “Foun-
tain” sequence which exhibits the smallest parallax angle
of 1.9◦. However, on the challenging sequences of MVLP
such as “Soccer” and “School,” the conventional methods
yield significantly larger RMSEs compared with that of the
other sequences. On the other hand, the proposed algorithm
always achieves smaller RMSEs than that of the conventional
methods on all the test sequences, and yields a much smaller
average error of 5.64 pixels while Homography, CPW, SPHP,
and APAP result in the average errors of 35.37, 34.91, 32.05,
and 34.86 pixels, respectively.

D. EXECUTION TIME COMPARISON
Table 2 compares the execution times of the conventional
methods and the proposed algorithm measured on a PC
with 3.4 GHz AMD Ryzen 7 1700X CPU and 32 GB
RAM. Note that this may not be a fair comparison since
the optimization level of implementation is different for the
compared methods. The execution times of the conventional
methods and the stitching (ST) in the proposed algorithm
are averaged on 100 frames for each sequence, and that of
the preprocessing (PP) and the parameter estimation (PE)
in the proposed algorithm are averaged on the entire frames
for each sequence. Homography is the fastest method which
takes 0.57 seconds per each frame on average. CPW, SPHP,
and APAP require relatively longer execution times, since
these methods use different warping models for each cell or
mesh grid in an image. Note that CPW is a non-parametric
warping scheme and takes the longest execution time of 15.4
seconds per frame among the four conventional methods. The
proposed algorithm is divided into three steps to evaluate
the execution times. PP includes the background subtraction
and the activity extraction for activity-based correspondence

TABLE 2: Comparison of Execution Times of the Conventional Meth-
ods and the Proposed Algorithm. The Unit is seconds per frame. PP:
Preprocessing. PE: Parameter Estimation. ST: Stitching.

Sequence Homography CPW SPHP APAP Proposed
PP PE ST

Fountain 0.58 13.7 5.20 4.83 0.25 0.24 9.10
Tennis 0.62 15.0 4.17 2.90 0.28 0.07 26.3
Lawn 0.54 14.8 3.91 2.75 0.27 0.14 8.20

Badminton 0.53 16.5 4.03 2.57 0.31 0.18 39.0
Square 0.59 18.1 3.91 2.55 0.29 0.17 10.0
Office 0.55 17.7 4.41 3.02 0.28 0.10 38.0
Trail 0.65 18.7 3.93 2.77 0.30 0.20 34.1

Stadium 0.69 17.2 4.20 2.87 0.30 0.08 44.8
Soccer 0.25 9.10 3.04 4.28 0.21 0.03 19.3
Street 0.57 12.2 4.19 3.32 0.30 0.09 66.0
School 0.61 16.2 4.20 3.20 0.29 0.10 39.3
Garden 0.71 15.8 4.96 4.28 0.28 0.07 72.1

Average 0.57 15.4 4.18 3.28 0.28 0.12 33.8

matching [38]. PE includes the homography estimation with
activity-based correspondence matching computation, the
fundamental matrix estimation, and the estimation of vertical
vanishing points. ST includes the SIFT matching computa-
tion, ground pixel estimation, warping, and blending. Note
that PP and PE are performed once over the entire frames for
each video sequence, and thus yield relatively short execution
times for each frame. However, ST in the proposed algorithm
consumes a major portion of the execution time to compute
hole pixels in the warped target frame using valid warped
pixels, which takes 33.8 seconds per frame on average. Note
that “Fountain,” “Lawn,” and “Square” sequences exhibit
relatively short execution times of ST, since they do not have
distant background regions.

VII. CONCLUSIONS
We proposed a novel video stitching algorithm to achieve
geometrically accurate alignment of MVLP. We warped the
multiple foreground objects, distant background, and ground
plane adaptively based on the epipolar geometry, where an
off-plane pixel in a target view is warped to a reference
view through its GPP. We also estimated optimal GPPs for
the foreground objects by using the spatiotemporal feature
matches, and for the background by using the spatial feature
matches, respectively. The initially obtained GPPs are refined
by energy minimization. Experimental results demonstrated
that the proposed algorithm aligns various MVLP accurately,
and yields a significantly better performance of parallax
artifact reduction qualitatively and quantitatively compared
with the state-of-the-art image stitching techniques. Our fu-
ture research topics include the warping of static objects
with large parallax and the parallax-free stitching for MVLP
captured by moving cameras.
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