
 

 

 

 

 

 

 

 

EUROPEAN MASTER IN QUALITY IN ANALYTICAL 

LABORATORIES 

 

 

 

APPLICATION OF BISMUTH MODIFIED 

DISPOSABLE SCREEN PRINTED CARBON 

ELECTRODE FOR METAL- PLANT THIOLS 

COMPLEXATION STUDIES  

 

 

 

 

 

 

                                       
                                          Master thesis by Belachew Tolla Feyssa 

             Barcelona, February 2010 

 



 

 

APPLICATION OF BISMUTH MODIFIED DISPOSABLE SCREEN 

PRINTED CARBON ELECTRODE FOR METALS- PLANT THIOLS 

COMPLEXATION STUDIES  

 

 
 

 

 

 

 

 

A Thesis Submitted to University of Barcelona 

Faculty of Chemistry 

In Partial Fulfillment of the 

Requirements for the Degree of 

European Master in Quality in Analytical Laboratories 

 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

BELACHEW TOLLA FEYSSA 

FEBRUARY, 2010 

 

 



 

 

 

 

 
 

 

This master thesis has been accomplishedin by Belachew Tolla Feyssa in the Department of 

Analytical Chemistry of the Faculty of Chemistry of the University of Barcelona (UB) under the 

direction of Dr. Jose Manuel Diaz-Cruz. 

 

 

 

 

 

 

 

Dr.Jose Manuel Diaz-Cruz 

Associate professor of Analytical Chemistry  

University of Barcelona 

 

 

 

 

 

 

 

Barcelona, 8
th
 February 2010 

 

 

 

 

 

 



 

 

 
AKNOLEDGEMENT 

 

 

For all his sincere devotion to help me for the accomplishment of this work much appreciation is 

expressed for my supervisor Dr.Jose Manuel Diaz -Cruz. 

 

I also gratefully acknowledge Prof. Miquel Esteban and Dr. Cristina Arino for their assistance 

and support during my study. 

 

I would also like to express my gratitude for financial support provided by European 

Commission to complete this master’s course. 

 

Special thanks are due to Dr. Elena Checkmeneva for her unlimited support and encouragement. 

Also I can’t forget the help of Dr.Olga Gonzalo, Rui Gusmao and Angela Dago for their faithful 

and continuous technical assistance. 

 

In addition, the generous support and contribution of all my colleagues, friends and families are 

deeply acknowledged and emphasized in all cases of my future life. 

         



 

 

 

 

 

INDEX 
 



Index 

 

i 

 

TABLE OF CONTENTS  

 

TABLE OF CONTENTS                               i 

LIST OF TABELES                                        iv 

LIST OF FIGURES                                                    v 

LIST OF ACRONYM AND ABBREVIATION             vii 

ABSTRACT                 viii 

 

1. INTRODUCTION                                                 1 

1.1. Toxicity and Sources of Cadmium                 1 

1.2. Effect of Cadmium Speciation on its Toxicity               2 

1.3. General Description of Phytochelatins (PCn)               3 

1.4. Analytical Methodologies for Characterization of Metal-thiol             5 

 Peptide Complexation 

1.5. Types of Electrochemical Systems for Thiol peptides-Metal               7 

Complexation Studies  

1.5.1. Electrochemical System Based on Mercury Electrodes            7 

1.5.2. Electrochemical System Based on Bismuth Film Electrodes            8 

1.6. Screen Printed Carbon Electrodes                9 

1.7. Overview of Modification of Surface of Electrode by Bismuth          11 

1.7.1. Ex situ plating                12 

1.7.2. In situ plating                12 

1.7.3. Bi2O3 Modified Electrodes              13 



Index 

 

ii 

 

1.8. Objectives and Scopes              13 

1.8.1. General objectives                                   13 

1.8.2. Specific objectives              14 

2. EXPERIMENTAL                15 

2.1. Apparatus                15 

2.2. Reagents                                 17 

2.3. Preparation of Film Electrodes                17 

2.3.1. Preparation of Bismuth Modified Glassy Carbon Electrode           17 

2.3.2. Preparation of Bismuth Modified Screen Printed Carbon Electrodes        18 

2.4. Procedure for Voltammetric Measurements             18 

2.4.1. Cyclic and Differential Pulse Anodic Striping Voltammetric        18 

    Measurements   

2.4.2. Differential Pulse Voltammetric Measurements          19 

2.5. ESI-MS  Measurement                               19 

2.6. Data Treatment               22 

3. RESULT AND DISCUSSION                                      25 

3.1. ESI-MS Experiments               25 

3.2. Selection of the Useful Potential Window            30 

3.3. Effect of pH on the Electrochemical Reaction of the Cadmium Complex         31 

on BiSPCE 

3.4. Free Metal Reduction Signal              34 

3.4.1. Free Metal Reduction Signal on the BiFE                                   34 

3.4.2. Free Metal Reduction Signal on BiSPCE           36  



Index 

 

iii 

 

3.4.3. Free Ligand Reduction Signal on BiSPCE and BiFE          38 

3.5. Complaxation Study of Cd with Glutathion              40 

3.5.1. Cd-GSH System on BiFE             40 

3.5.2. Cd-GSH system on SPCE                                         44 

3.6.  (γ-Glu-Cys)2Gly Complexation with Cadmium study on BiSPCE          47 

4. CONCLUSION                                                                                  52 

5. REFERENCES                   54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index 

 

iv 

 

LIST OF TABLES 

 

 

 

Table                Page 

 

 

 

1. ESI-MS for data of binary solution of GSH/Cd(II) and GSH/Bi(III) in 1:9            26 

     acetonitrile: 20 mM ammonium acetate in water at pH 7.5 

 

2. ESI-MS for data for ternary solution of GSH, Cd(II), and Bi (III) in 1:9           26 

acetonitrile: 20 mM ammonium acetate in water at pH 7.5. 

 

3. Repeatability of Peak current and stability of peak potential (n= 6) at               32 

various pH values. 

 

4. ESI-MS data for a solution containing GSH, Cd(II), and Bi(III) in various           49 

     proportion in 1:9 acetonitrile: 20 mM ammonium acetate in water at pH 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index 

 

v 

 

LIST OF FIGURES 

 

 

Figure                page 
 

1. The general structure of phytochelatins                              4 

2. (a) A typical plant capable of synthesising PC (b ) Plant  cell structure showing           4 

the place where  PC-metal complexes are stored 

3. Systematic representation of detoxification of process of Cd
2+

 by PC in a plant cell        5 

4. Typical Dropsens screen printed electrode                                                                              10 

 

5. The two common types of connector that links screen printed electrodes to the                    10 

potentiostat (taken from Dropsens) 

6. A photograph showing the electrochemical system used in this study                                    15  

Flow chart for the electrochemical set up                                                                                16 

7. Systematic representation for the process of ion formation in ESI-MS                                  20    

Flowchart for potential shift correction for MCR-ALS analysis applied for                           23 

Experimental data matrix Iexp  

8. Electrospray ionization mass spectrum (ESI-MS) for (a) 1:4 (Bi:GSH) and          28 

 (b) 1:1:4 (Cd:Bi:GSH)  in 10% acetonitraile-0.02 M Ammonum acetate  in water. 

9. CV Voltamograms for the different buffer solution at scan rate of 0.1V/s                             30       

10. CV voltamogram for 0.05 borate buffer solution at pH 7.5 and scan                      31 

rate of 0.1V/s with first and second vertex potential at -1.6 and 0.5V vs Ag/AgCl.    

11. The effect of pH on the peak intensity of the1:2 Cd: GSH complex reduction signal           32 

12. Peak current vs pH showing Effect of pH on the peak intensity of the                                   32 

Cd-GSH complex signal      

13. Normalized Singular values generated from the data matrix shown  in Figure 14                  34        

14. Differential pulse voltammogram of Cd(II) on BiFE at different concentration  of               35 

      Cadmium in Borate buffer at pH 7.5 

15. The corresponding calibration curve for Cd(II) in borate buffer at 7.5                                   36                  

16. Differential pulse voltammogram on BiSPCE for increasing addition of                               37 

Cd to borate buffer at pH 7.5. 



Index 

 

vi 

 

17. The corresponding calibration curve for Cd(II) in borate buffer at 7.5             37 

20.  Scanning electron microscopy images of: (a) a bare screen printed carbon electrode           38  

       (b) a bar glassy carbon electrode  

21.  The voltamogram of 1x10
-4 

M free GSH M in 0.05 borate buffer solution (pH7.5)              39    

22. Differential voltamogram s measured during the titration of 2x10
-5

 M GSH with Cd           43  

      solution in borate buffer at pH 7.5 by using BiFE. 

23. Peak current Vs [Cd]:[GSH] in borate buffer solution (a) for complex signal                      43              

      (b) for labile and free Cd reduction signal. 

24. Differential voltamograms measured using the titration of 2x10
-5

 M   GSH with Cd            44                                  

      solution in borate buffer at pH 7.5 by using BiSPCE.   

25. Peak current intensity vs Cd:GSH (a) for the 1:2 Cd:GSH complex and  (b) for the             45   

       total labile and free metal cadmium reduction signal 

26. Cd-GHS complex formation reaction when at low Cd:GSH ratio                                          46 

27. Complex formation reaction for higher Cd:GSH ratio                                                            46 

28.  (a) The voltamogram profile of titration of 2x10
-5

 with 1x10
-3

 M Cd
2+

  in                          48 

       borate buffer solution at pH 7.5 (b) the corresponding mesh plot of the  

current data matrix. 

29. Analysis of experimental data matrix produced from titration of 2x10
-5

 PC2 with                 49 

      1x10
-3

M  Cd in 0.05 borate buffer solution at pH 7.5  

30.  Error distributions along the potential axis(c) as a result of deviation of the                         30 

Irep (b) from the Iexp (a) 

 

 

 

 

 

 

 



Index 

 

vii 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

 

 

AdCSV  Adsorptive Cathodic Stripping Voltammetry 

ASV   Anodic Stripping Voltammetry   

BiFE   Bismuth Film Electrode 

BiSPCFE  Bismuth Modified Screen Printed Carbone Electrode 

BLM   Biotic Ligand Model 

CCSCP  Constant Current Stripping Chronopotentiometry Potentiometry 

CV   Cyclic Voltammetry 

DME   Dropping Mercury Electrode  

DPV   Differential Pulse Voltammetry 

ESI-MS  Electron Spry Ionization Mass Spectrometry 

FIAM   Free Ion Activity Model 

GSH   Glutathione 

HMDE   Hanging Mercury Drop Electrode 

ICT   Isothermal Calorimetry Titration 

MCR-ALS  Multivariate Curve Resolution Alternating Least Square 

MFE   Mercury Film Electrode 

MTs    Metallothioneins 

NMR        Nuclear Magnatic Resonance 

PCn   Phytochelatins 

RSD   Relative Standard Deviation 

SCE   Size-exclusion Chromatography 

SPCE   Screen Printed Carbone Electrode 

SVD   Singular Value Decomposition 

 



Index 

 

viii 

 

 

ABSTRACT 

 

The application of Bismuth modified cheap and disposable screen printed carbon electrode 

(BiSPCE) for voltammetric studies of metal–thiol rich peptides complexation was evaluated 

considering systems consisting of  cadmium as a metal and GSH and PC2 as thiol peptides. 

Comparison of the performance of BiSPCE with the commonly used glassy carbon electrode 

(BiFE) was made.  The information obtained about the complexation sequence using the former 

electrode was quite consistent with previous studies made on GSH and Cd systems using the 

conventional mercury electrodes due to the absence of signal splitting, the good sensitivity and 

the wider linearity range. In contrast with the conventional mercury electrodes, the anodic 

signals associated with bismuth electrode material were observed to be weakened and all the 

available signals were well resolved which shows the suitability of Bismuth based electrode for 

metal- thiol complexation studies.   MCR-ALS could not be applied due to the continuous shift 

of the peak potentials, loss of linearity of the species and anomalous shape of the complex signal 

formed between Cd and GSH. Therefore, the complexation sequence between GSH and Cd
2+

 

was evaluated qualitatively. However, a relatively well defined shape and intense 

voltammograms were observed for Cd-PC2 system and consequently, MCR-ALS was applied 

after correction of the continuous peak potential shift for the complex signals. The peak intensity 

associated with complex signal was dominated by the intense signal of the free metal reduction 

in acidic and fairly basic medium. However a relatively intense signal of the complexes was 

obtained at pH 7.5 in borate buffer solution. In addition extensive Bi complexation was observed 

from ESI-MS experiment which proves the suitability of ex situ mode of Bi film preparation for 

thiol- metal complexation studies by voltammetric titration technique. 

 

Key words: Differential pulse voltammetry, Bismuth film electrodes, Screen printed carbon 

electrode, ESI-MS, MCR-ALS. 
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(BiSPCE) for voltammetric studies of metal–thiol rich peptides complexation was evaluated 

considering systems consisting of  cadmium as a metal and GSH and PC2 as thiol peptides. 

Comparison of the performance of BiSPCE with the commonly used glassy carbon electrode 

(BiFE) was made; the information obtained about the complexation sequence using the former 

electrode was quite consistent with previous studies made on GSH and Cd systems using the 

conventional mercury electrodes due to the absence of signal splitting, the good sensitivity and 

the wider linearity range. In contrast with the conventional mercury electrodes, the anodic 

signals associated with bismuth electrode material were observed to be weakened and all the 

available signals were well resolved which shows the suitability of Bismuth based electrode for 

metal- thiol complexation studies.   MCR-ALS could not be applied due to the continuous shift 

of the peak potentials, loss of linearity of the species and anomalous shape of the complex signal 

formed between Cd and GSH. Therefore, the complexation sequence between GSH and Cd
2+

 

was evaluated qualitatively. However, a relatively well defined shape and intense 

voltammograms were observed for Cd-PC2 system and consequently, MCR-ALS was applied 

after correction of the continuous peak potential shift for the complex signals. The peak intensity 

associated with complex signal was dominated by the intense signal of the free metal reduction 

in acidic and fairly basic medium. However a relatively intense signal of the complexes was 

obtained at pH 7.5 in borate buffer solution. In addition extensive Bi complexation was observed 

from ESI-MS experiment which proves the suitability of ex situ mode of Bi film preparation for 

thiol- metal complexation studies by voltammetric titration technique. 
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electrode, ESI-MS, MCR-ALS. 
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1. INTRODUCTION 

 

1.1 Toxicity and Sources of Cadmium 

The presence of toxic metals such as Cd and Pb in the environment has been a source of concern 

to environmentalist and governmental agencies. This is mainly due to their health implication 

since they are toxic above a certain tolerable level to human, animals and plants. The adverse 

effect of these metals is aggravated by their ability to accumulate in the living organisms and 

resist for bio-degradation process. Although the existence of cadmium containing carbonic 

anhydrase from some marine diatoms has been recently found [1], it is generally accepted that 

Cd
2+

 is non-essential metal for both plants and animals. The International Agency for Research 

on Cancer has classified cadmium as human carcinogen [2]. In plants Cd
2+ 

causes various 

effects, such as inhibition of photosynthesis, respiration, nitrogen metabolism as well as the 

decrease of water and mineral uptake [3]. Those Cd
2+

 - induced changes in plant metabolism 

finally lead to inhibition of plant growth. Cd
2+

 inhibits the growth or production of cells in 

mammals, causes cell death and may cause cancer [4]. Particularly in human it replaces the role 

of Zn in enzymes and accumulates in the bones, kidney, and liver leading to failure after 

prolonged exposure [5]. Although the final reaction of plants and mammals to Cd
2+

 may be 

different, many Cd
2+

 related processes are common in both types of cells [6].  

 

Cadmium is naturally present in the environment as minor constituent of soil, surface and 

groundwater as hydrated ion and inorganic complexes such as carbonates, hydroxides, chlorides 

or sulphates, or as organic complexes with humic acids [7]. However, a wide range of human 

activities contributed to the current increased level of Cd metal in the natural environment. 

Cadmium is commonly introduced to the natural environmental systems through atmospheric 

deposition, direct discharge from industrial operations, leakage from landfills and contaminated 

sites, and the use of sludge and fertilisers in agricultural activities.  
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1.2 Effect of Cadmium Speciation on its Toxicity 

 

Generally, significant relationship have been found  in many cases, between metal bioavailability 

and free metal ion concentrations as predicted by the Free Ion Activity Model (FIAM) [8] or the 

Biotic Ligand Model (BLM) [9]. It should be noticed that the free metal ion activity or 

bioavailability in the natural environment is not a function of only the total recoverable amount 

of metal rather, speciation of the metal in the medium greatly affect the bioavailability of the 

metal. The concept of “toxicity is simply a function of the total concentration of a metal” can be 

or extremely oversimplification of the truth in some cases. Nowadays, the importance of 

considering bioavailability in assessing ecological impacts of metals has been recognized by both 

regulatory authorities and the scientific community in contrast to the original concept which 

relates heavy metals toxicity solely with the total recoverable amount [10]. More specifically 

various studies on the speciation  have shown that absorption of toxic metals like cadmium by an 

organism decreases in the presence of natural organic and inorganic ligands due to the 

complexation phenomena [11, 12, 13, 14] according to : 

 

                    (1) 

 

Phytochelatins (PCs) produced by plants and Metallothioneins (MTs) synthesized by animals are 

among those essential naturally occurring metal-binding organic ligands that play a key role in 

metal binding processes and thus influencing metal speciation, bioavailability and toxic effect in 

cellular environments [15]. In the particular case of metal detoxification (i.e., the response of the 

organism to an excessive uptake of heavy metals), the process involves simple molecules like 

glutathione and longer chain peptides MT and PCs.  PCs and MTs are different classes of 

cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized 

peptides, whereas MTs are gene-encoded polypeptides [16]. The thiol groups of MT and PCn 

ensure the formation of very stable metal-peptide bonds which immobilize the metal, thus 

decreasing its toxicity and making its elimination easier.  

 

Currently plant derived phytochelatins are being used for developing a technology called 

Phytoremediation that can  potentially reduces the problem of contaminated soil or water with 
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toxic metals [18]. In this technology genetically engineered plants are involved that uptake metal 

and metalloids ions from the polluted site by the process called phytoextraction. Therefore it is 

quite interesting to study the complexation mechanism of metals with plant thiols for better 

understanding of the role of phytochelatins and the mechanism in metal detoxification processes. 

 

1.3 General Description of Phytochelatines (PCn) 

 

PCn were first identified in the fission yeast Schizosaccharomyces pombe, currently PCn have 

been found in some fungi, some marine diatoms, and all types of plant species investigated [4].  

They act as high affinity metal chelators and for this reason plant cells are capable of tolerating 

high levels of metals like Cd
2+

. It was well confirmed that metal induced phytochelatin 

production decreases cellular levels of glutathione [16]. Hence they are synthesized from a 

precursor glutathione in the presence of some metals such as Cd, Cu, Hg, As or Pb, in a reaction 

controlled by enzyme γ- glutamylcysteine dipeptidyl transpeptidase (PC synthase) that catalyzes 

the transfer of γ- glutamylcysteine dipeptide part of GSH to an active GSH molecule for growing 

of PC chain according to the following reaction [18]:  

 

γ-Glue-Cys-Gly + (γ-Glu-Cys)n-Gly                    (γ-Glu-Cys)n+1-Gly + Gly          (2) 

 

The above reaction is highly dependent on the presence of heavy metal in the plant cell and it has 

been shown that the efficiency of activation of the metals on the enzyme is according to the 

following: 

 

Cd
2+

 >Ag
+
>Pb

2+
>Cu

2+
>Hg

2+
>Zn

2+
>Sn

2+
>Au

3+
>As

5-
 > In

3+
>Tl

3+
>Ge

4+
>Bi

3+
>Ga

3+ 

 

However 39 elements in the periodic table have no any tendency to activate the enzyme 

responsible for PC synthesis [18]. 

 

PCn are represented by a formula of [γ-Glu(-Cys)]n-Glyc where n varies from 2 to 11 and their 

general structure is depicted in figure 1 .  
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Figure 1. The general structure of phytochelatins 

 

More than 90% of toxic metal like Cd
2+

 interring the cytosol of a given plant cell is accumulated 

as Cd-PC complexes temporally in the plant membrane organelle which is called vacuole (Figure 

2 b). To summarize the process the metal ions activate the latent PC synthase to produce PC 

from GSH, and the PC molecules of various chain length form PC-metal complex. Then the PC-

metal complexes are transported to the vacuole and this transport is energized by hydrolysis of 

ATP [18]. The process is summarized in figure 4. 

 

 

Figure 2. (a) A typical plant capable of synthesising PC (b) Plant cell structure showing the place 

where  PC-metal complexes are stored 
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Inactive 

PC synthase

Cell wall

Active 

PC synthase

+  ATP

Cd-PC-GlyGSH

Vacuole

PC + Cd2+ Cd2+.PC

Degradation

H+

Cd2+

Cytosol

 

Figure 3. Systematic representation of the process of detoxification of Cd
2+

 by PC in a plant cell 

 

Although animal metallothioneins are relatively well characterized and confirmed to contain 

cysteinyl-sulphur coordinated metal ions arranged in multinuclear center (clusters) the structural 

information about phytochelanies metal complex is not fully understood yet [19]. However the 

relative stability and the possible stoichiometries of the resulting complexes formed were 

extensively studied by various techniques.  

 

1.4  Analytical Methodolegies for Characterization of Metal-thiol Peptide Complexation 

 

The speciation of toxic metals in the presence of phytochelatins and essential biological 

compounds have been studied by various techniques extensively. An approach based on size-

exclusion chromatography (SEC) with off-line mode for the detection of phytochelatins and 

atomic absorption spectrometry for metal quantification has been used to study Cd and Pb 
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phytochelatin complexes distribution [20]. In the study of Cd
2+ 

complexation with GSH in 

human erythrocytes glutathione was monitored by 
1
H-NMR [21]. UV spectroscopy and 

potentiometric techniques were also applied for quantification of free glutathione and free 

cadmium ion respectively to explain the mechanism of cadmium complexation with gluthation 

[22]. More recently Isothermal Titration calorimetry (ITC), ESI-MS and electroanalytical 

techniques were used simultanously for study of competitive Binding of Cd and Zn with the 

Phytochelatin (γ-Glu-Cys)4-Gly [23]. 

 

However, electroanalytical techniques are one of the imperative ways for metal speciation 

studies because of their low detection limit, high selectivity for a particular redox state of a 

species, speed, low cost and convenient operation. In addition they can be employed for field (at-

site) study and flow analysis methodologies [24]. Particularly voltammetric and 

chronopotentiomeric techniques have been extensively used to study the metal complexation 

phenomena with phytochelatins and other biological organic ligand using mercury electrodes and 

other material film electrodes . The common way of characterization of the complexation process 

is by titrating the metals with the ligand or using the reverse process to get a progressively 

changing ligand-to-metal ratio that yield valuable information about the relative stability of the 

metal bound in different manners and possible stoichiometries of the resulting complexes.  

 

Developing electroanalytical methods having sufficient detection limit down to the cellular level 

is essential to model the complexation process in the living organism cell. To achieve that, 

anodic stripping techniques seems to be a prior option. However, due to the strong attachment of 

the metal ion on to the thiol site of the ligand, oxidative striping of the metal from the complex is 

not possible because the reduction of the metal complex becomes irreversible [25]. For this 

reason adsorption   stripping chronopotentiometric (AdSCP) method, which is less affected by 

the presence of organic matter, and performs a reductive stripping of the previously adsorbed 

complex, was proposed for the study of thiol-metal complexation [26]. However differential 

pulse polarography or voltammetry are being used extensively to study complexation  because of  

their low detection limit which are still enough to quantify low level metal and ligand 

concentration comparable to those existing in organisms cells and they present the advantage of a 
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higher simplicity. Moreover the appearance of signals for the free peptide, free metal ion and 

complex in different peak potentials position makes this technique to be more preferable.   

 

1.5 Types of Electrochemical Measuring Systems for Thiol peptides-Metal Complexation 

Studies  

 

1.5.1 Electrochemical System Based on Mercury Electrodes 

 

Mercury electrodes, most frequently the mercury film electrode (MFE), the hanging mercury 

drop electrode (HMDE) and the dropping mercury electrode (DME) have been used extensively 

for routine stripping analysis and complexation studies. This is due to some important 

advantages over solid electrodes and other material film electrodes that are used for anodic 

scanning purposes. First, mercury is the best for cathodic scanning because of its large hydrogen 

over voltage that extends the negative limit of potential window and show a well defined 

electrochemical behavior in the negative potential region with very low background and noise as 

compared to the solid electrodes [27]. The other advantage originated from the periodic renewal 

of the surface of the electrode that reduces the problem of contamination. However, the main 

disadvantage of this electrode and the corresponding film electrode (MFEs) is related to its 

toxicity, volatility, and disposal and so that it is considered environmentally undesirable [28]. In 

addition to this as mercury electrodes have low mechanical stability and require special handling 

their application for flow analysis is very limited [28]. 

 

With regard to the application of mercury for the study of thiol- metal complexation, its good 

sensitivity and reproducibility for free metal, free ligand and complex entities facilitates such 

studies by polarographic techniques. However, mercury electrodes usually give complicated sets 

of overlapping signals that correspond to the reversible reduction of metal ions, the non 

reversible reduction of strongly bound metal to the thiol peptide and signals associated with the 

oxidation of mercury electrode itself [23, 25, 26]. In the latter case the oxidized mercury forms 

thiol complexes by itself to give important anodic signals which complicate the interpretation of 

the complexation process. This makes necessary the use of chemometric techniques, especially 
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multivariate curve resolution by alternating least squares (MCR-ALS) to resolve the signals of 

pure species and the evolution of their concentrations during the titration.  

 

Due to the aforementioned disadvantages of mercury electrodes different inert solid materials 

like carbon, silver, and gold electrodes have been tried as a substituent of mercury electrode [29].  

These electrodes exhibit good mechanical stabilities together with the possibilities for surface 

modification which increases their performance. However, bare solid electrodes suffer from 

memory effects due to lack of surface regeneration and consequently, either polishing or a 

tedious chemical or electrochemical surface regeneration is frequently required [28]. As a result 

electrodes which are environmentally friendly and that have properties which removes the 

problem associated with the use of solid electrodes are being sought continuously. For the first 

time Wang and coworkers introduced an environmentally friendly bismuth- film electrode by 

their pioneered works as a best alternative electrode for mercury and bare solid electrodes [30]. 

 

1.5.2 Electrochemical System Based on Bismuth Film Electrodes 

 

Researches within the past few years have shown that the performance of bismuth film 

electrodes (BiFE) which is composed of metallic bismuth on a conductive supporting substrate is 

comparable or even surpass that of the conventional mercury electrodes that are being used 

commonly for anodic stripping voltammetry analysis [31] and chronopotentiometric stripping 

analysis [32]. In addition, adsorptive cathodic stripping voltammetry (AdCSV) has been 

successfully employed at Bi film electrode [33]. The most important characteristics of this 

electrode are simplicity of preparation, high sensitivity , good mechanical stability , well defined 

and highly reproducible stripping signal, good resolution between neighboring peaks, low 

background characteristics , less affected by potential interferents such as surfactants and ionic 

species, large cathodic potential working range, removal of the film easily when it is required 

and being insensitive for dissolved oxygen that greatly reduce the time required and amount of 

nitrogen used for the deoxygenation step [33]. The high sensitivity of the electrode is due to the 

property of Bismuth to form fused alloys with heavy metals, which is analogous to the amalgams 

that mercury forms according to equation 3. In addition, bismuth is known to be a non-toxic 
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element [35] as compared to mercury electrode whose use as an electrode material may in the 

future be constrained. 

                                      

M
n+

 + ne
-
                                Bi(M

0
)        (3) 

 

 

Specifically more recently Bismuth modified glassy carbon electrode (BiFE) was proposed as an 

alternative method for complexation study [34]. It was shown that all signal observed in mercury 

film electrode were also present in voltammograms obtained using Bismuth film electrode. 

Moreover, good improvement was observed towards the problem associated with signal 

overlapping.  However it was noticed that the reduction process of the complexes showed 

remarkably inert electrochemical character on bismuth film electrodes that hinder to do 

experiments at very low concentration ( lower than 2x10
-5

 M)  that were easily achieved  by 

using mercury film electrodes. In addition the free ligand evolution was not linear for 

concentration higher than 2x10
-5

 M and its shape changes with increasing concentration 

consequently it was not possible to apply MCR-ALS analysis. Fortunately this did not prevent 

qualitative interpretation of the complexation process as all the signals were well resolved in 

contrast to the signals observed using mercury film electrode. In light of the above mentioned 

thiol-complexation study using BiFE, in this study the applicability of cheap and disposable 

screen printed carbon electrode modified with bismuth was tested for heavy metal complexation 

with phytochelatines considering the case of cadmium complexation with gluthation and PC2 as a 

model ligand for the higher thiol peptides and other organic ligands.   

 

1.6 Screen Printed Carbon Electrodes 

 

Disposable carbon electrodes have a typical complete electrochemical cell configuration, i.e they 

combine the working, reference and auxiliary electrode together and are highly suitable for 

working with micro volumes and decentralized assays or to develop specific sensors by 

modifying their surface with various materials. The typical screen printed carbon electrode by 

Dropsens (Oviedo, Spain) is based on Ceramic substrate: H33 x L10 x W 0.5 mm, Electric 

contacts: Silver. The electrochemical cell consists of Working electrode: Carbon (4 mm 
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diameter), Counter electrode: Carbon and Reference electrode: Silver. The arrangements of the 

parts of this electrode are shown in Figure 2. 

 

The screen printed electrode is connected to any model of potentiostate by a special type of 

connector which is manufactured by Dropsens that acts as bridge between the screen-printed 

electrode and potentiostat. Figure 2 shows the two kinds of connector used for screen printed 

electrodes. The sample is usually applied on the working electrode part in the form of small drop 

on isitu or in the laboratory for stripping analysis of environmental or biological samples. 

 

Figure 4. Typical Dropsense screen printed electrode 

 

 

Figure5. The two common types of connector that links screen printed electrodes to the 

potentiostat (taken from Dropsens) 
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In addition to the above mode of application disposable carbon electrodes can also be used as 

working electrode in the place of the conventional working electrodes in an electrochemical 

system. The most important advantages of disposable screen printed electrodes are their 

inexpensive price, disposable character, flexibility in design and that they are easy to produce. 

For this reason one can use a new screen printed electrode every time, which eliminate the 

problem associated with the carry over contamination and reutilization and reduce the fear of 

expensive damage associated with reusable electrodes. In addition the working surface of solid 

electrodes including glassy carbon usually needs to be polished quite frequently before formation 

of bismuth film on them which leads to difficulty to use such electrodes with high precision for 

online analysis with the use of automated systems and for on-site filed portable instruments [29]. 

For this reason screen printed electrodes (SPEs) can be a good substrate for preparation of film 

electrodes for the purpose of anodic stripping voltammetry measurements of trace elements and 

speciation studies. Another important advantage of the screen printed carbon electrode provide a 

better surface structure for platting of bismuth as the film electrode on SCPCE showed a better 

sensitivity in stripping analysis than the corresponding glassy carbon electrode [28]. In this study 

the carbon screen printed electrode modified with bismuth film was used as working electrode 

for thiol–metal complexation studies. 

 

1.7 Overview of Modification of Surface of Electrode by Bismuth 

 

Bismuth can be plated on several materials, such as glassy carbon [30], carbon paste [36], 

Screen–printed carbon ink [37], carbon- fibers [38] and gold [39]. A large number of studies 

used carbon electrodes as supporting material for preparation of Bi-film electrode. The common 

way of preparation of BiFEs is by electroplating of the conductive supporting material such as 

glassy carbon, carbon pest, and screen printed  carbon ink electrode with Bi from Bi(III) solution 

by applying a negative potential in the reductive potential regime at either in situ or ex situ 

condition. In addition the surface of those electrodes can be modified with Bi2O3 to further 

electrochemically reduce bismuth 
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1.7.1 Ex situ plating 

 

Ex situ mode of film electrode preparation involves electroplating of the substrate material with 

the Bismuth from a solution containing Bi (III) ion separately and before the use of the electrode 

for analysis in the pre-analysis step. Consequently this requires a transfer of the prepared 

bismuth film electrode to the measurement solution or in flow system. Since bismuth film 

prepared is used for several measurements the overall stability of the electrode is very important 

[40]. It has been reported that formation of mercury film electrode by ex situ mode is 

complicated by the difficulties associated with the preparation of the mercury coating which 

result in the loss of mercury up on transfer to a solution to be measured [41]. In contrast, stability 

problem with bismuth film electrode prepared using normal sized glassy carbon electrode or 

screen carbon electrode were not observed [42]. The ex situ mode of deposition of bismuth film 

was also proved to be a better option of film electrode preparation by a previous study for study 

of metal complexation where the presence of Bi(III)-ions  in the solution could interfere with  the 

speciation of other  metals [43]. 

 

1.7.2 In situ plating 

 

The Bi film electrode can be electrochemically formed by in situ mode if the film is plated on the 

substrate material simultaneously with the target metal ion to form metal alloy during the 

preconcentration step from the solution containing about 400 to 1000 µg/L Bi(III) in stripping 

analysis.  As in situ plating does not require separate bismuth plating the time required for 

completion of the analysis is shortened and the stability of the film is not a critical problem. 

However, in situ plating is limited for fairly acidic pH range of the sample solution as the Bi(III) 

ion undergoes immediate hydrolysis at natural and basic pH condition. 

 

 

                    Bi
3+

  +  3H2O                  Bi(OH)3 +3H
+

             (4) 
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However, interestingly in situ plating can be applied at extremely high pH values and this is 

because instead of insoluble Bi(OH)3  soluble and  stable complex is formed according to the 

following reaction: 

 

 

                     Bi
3+

  + OH
- 
                Bi(OH)

2+
          (5)        

 

During the deposition process the complex ion is reduced on the electrode surface as the free 

Bi(III). The above property is one of the advantages of BiFE over MFE as the later is known to 

be non functional at extreme basic conditions [28].  

 

1.7.3 Bi2O3 Modified Electrodes 

 

BiFE is also prepared by modifying the surface of the substrate electrode with Bi2O3 [44]. This is 

based on the reduction of Bi2O3 on the surface electrode by applying a sufficiently high negative 

potential, usually -1.0 V vs Ag/AgCl according to the following reaction: 

 

                                     Bi2O3(s) + 3H2O +6e-                     2Bi(s) + 6OH
-
   (6) 

 

Then the electrode is said to be activated and can be used readily for the intended purpose. It is 

interesting to note that this mode of BiFE preparation does not require Bi(III) for deposition of 

Bi film and can be applied simply for in situ analysis after activating at an appropriate potential. 

However Bi2O3 is prepared by mixing it in carbon paste to integrate it into the electrode surface; 

therefore this mode of BiFE preparation is practically confined to carbon paste electrodes. 

 

1.8 Objectives and Scopes 

 

1.8.1 General objectives 

 

This work reports the application of a new method for complexation studies of cadmium with 

phytochelatins using screen printed carbon electrodes which are modified by plating with 
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bismuth in ex situ mode of deposition (BiSPCE). Although cadmium phytochelatin complexation 

has been extensively studied by polarographic techniques and other analytical methods the 

current study evaluate if there are significant advantages of using BiSPCE in resolution of 

overlapped signals, and minimization of the number of signals in order to facilitate the 

interpretation of the process. Also the possibilities of application of MCR-ALS will be evaluated 

for this particular system which was not possible in the case of BiFE. 

 

1.8.2 Specific objectives 

 

� To develop a method for the study of cadmium complexation with gluthatione and PC2 

using bismuth modified screen printed carbon electrode (BiSPCE) with special attention 

to the optimization of the experimental conditions. 

� To compare critically the results obtained from BiSPCE with those results from 

conventional glassy carbon disk electrode (BiFE) and mercury film electrodes (MFE) and 

to see the possible merits of bismuth modified screen printed carbon electrodes over that 

of the MFE and BiFE. 

� To apply MCR-ALS methodologies to resolve the concentration profile and the pure 

signal of each species during the titration process 

� To propose possible complexation mechanisms and compare the results with other 

literature results and the result obtained from ESI-MS experiments. 

� Apply ESI-MS experiments to understand the different behaviour of the anodic signal of 

thiol compound in bismuth film electrodes. 
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EXPERIMENTAL 

2.1 Apparatus  

          
All voltammetric measurements were performed using a Metrohm 663 VA Stand (Metrohm, 

Switzerland) interfaced to a computer controlled potentiostat/galvanostat Autolab System 

PGSTAT12 (Eco Chemie, The Netherlands) and measurements were controlled by a general 

purpose electrochemical software operating system, Autolab GPES 4.9 (software  version for 

windows 2000 and XP). Bi modified glassy carbon electrode (BiFE) of 2mm diameter 

(Metrohm) and Bismuth modified Carbon Screen Printed Electrode (BiSCPE) 4 mm diameter 

provided by Dropsens (Oviedo, Spain) were used as working electrodes. The reference electrode 

and the auxiliary electrode were Ag/AgCl/KCl (3 mol L
−1

) and a Pt wire, respectively. The 

whole electrochemical set up is shown in Figure 6 and Figure 7.  

 

 

 

Figure 6. A photograph showing the electrochemical system used in this study 
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Figure7. Flow chart for the electrochemical set up 

 

The electrochemical parameters used for DPV and DPASV measurements were a pulse time of 

50 ms, pulse amplitude of 50 mV, potential step of 2 mV. During DPASV measurement the 

deposition potential (Ed) was applied for 60 s and a rest period of 5 s was made between the 

deposition and the stripping steps. For cyclic voltammetery measurement the scan rate was set at 

0.1 V/s. 

 

The measurement of pH value during the experiments was carried out by means of a Crison 

micro pH meter. All experiments were performed at a controlled room temperature of 20
o
C.   

 

ESI-MS experiments in positive ion-mode for a mixture containing Cd(II), B(III), GSH and PC2 

were done using an Agilent 1100 Q-TOF instrument. The instrument control was performed 

using Analyst QS software. 
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2.2 Reagents 

 

Glutathione (GSH), in the reduced form, was provided by Merck with purity greater than 99% 

and Phytochelatins with n = 2 was provided as trifluoroacetate salt by Diver- Drugs S.L. 

(Barcelona, Spain) with a purity of ca. 90% . A standard Bi(III) solution (996 gL
−1

, atomic 

absorption standard solution) was purchased from Fluka. All other reagents used were Merck and 

Sigma/Aldrich analytical grade. 10
−2

 mol L
−1

 Cd(II) stock solutions were prepared from 

Cd(NO3)2·4H2O and standardized complexometrically. Borate buffer were prepared from sodium 

tetraborate, and the pH was adjusted to the value of 7.0, 7.5 and 8.5 with the addition of ultra 

pure HNO3 (65%, Merck). Maleic acid–KOH buffer solution was used for pH control at the 

value of 6.4.  KNO3 was employed as supporting electrolyte. Ultrapure water (Milli-Q plus 18.2 

systems, Millipore) was used in all experiments. 

 

1.1  Preparation of Film Electrodes  

 

2.3.1 Preparation of Bismuth Modified Glassy Carbon Electrode 

 

New BiFE were prepared every day immediately before voltammetric measurements. Ex situ 

preparation of the Bi film on glassy carbon electrode was performed based on an optimized 

procedure as described in N. Serrano et al [17]. To describe it briefly, prior to bismusth film 

formation the glassy carbon electrode which serves as the supporting substrate was properly 

polished with 0.05 µm alumina powder suspension on a polishing pad (metrohm) and washed 

several times with ultrapure water and sonicated for several minute  in ultrapure water bath . 

Then the electrode was rinsed with pure water and  pure alcohol and connected to the 

electrochemical system as working electrode  and placed in a plating solution containing 100 

ppm Bi(III) solution in 0.2 M acetate buffer (pH=4.5). After deoxygenation of the solution for 20 

min with pure nitrogen the bismuth film was generated using a deposition potential of -0.6V 

applied for 300 s with stirring at the rate of 500 rpm. The solution was left for 20 s without 

stirring to equilibrate. After preparation of BiFE all electrodes of the electrochemical system 

were washed several times with ultrapure water carefully without scratching the bismuth film. 

Finally the Bi(III) solution was substituted with the analyte solution to be measured. 
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2.3.2 Preparation of Bismuth Modified Screen Printed Carbon Electrodes 

 

To prepare BiSPCE the same procedure was applied as BiFE preparation with slight 

modification. To describe it briefly, first the screen printed carbon electrode was connected to the 

potentiostat as working electrode using a 1 meter length cable provided by the electrode 

manufacturer (Dropsens). Then the three electrode system was immersed to a 20 mL solution 

containing 100 ppm Bi (III) in 0.2 M acetate buffer at pH 4.5. The solution was deoxygenated 

with pure nitrogen for 20 min followed by deposition of bismuth on to the screen printed 

electrode at deposition  potential of -0.8 V for 300 second with solution stirring (by means of an 

external mechanical stirrer) and then the solution was left for 20 s without stirring to equilibrate. 

Finally, before using voltammetric measurements of the analytes solution the whole electrode 

system was rinsed with ultrapure water several times without scratching the bismuth film on the 

screen printed electrode. 

 

2.4 Procedure for Voltammetric Measurements  

 

2.4.1 Cyclic and Differential Pulse Anodic Striping Voltammetry Measurements 

 

In order to assess the useful potential window and reversibility of electrochemical reactions on 

the BiSPCE cyclic voltammetry measurements were done at different pH values. CV of borate 

buffer at pH 7.0, 7.5, 8.5 and maleic/maleate buffer at pH 6.4 were measured in the absence of 

either peptide ligand or Cd(II) to select the widest potential window. 20 ml of the respective 

buffer solution were placed in to the voltammetric cell and the solution was deoxygenated for 20 

min then the CV was recorded for each buffer system at scan rate of 0.1 V/s with the limit of first 

and second vertex potential at -0.5 and -1.6 V respectively. In addition differential pulse anodic 

striping voltammetry was recorded for Cd(II) solution to locate the peak potential at the selected 

pH value (7.5) by placing 20 mL of  borate buffer solution in to the voltammetric cell and 40 µL 

of 10
-2 

M Cd(II) solution followed by purging for 20 min then DPASV was recorded. In addition, 

before each voltammetric titration process, the presence of Cd(II) was checked by recording 

DPASV of the blank buffer solution. 
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2.4.2 Adsorptive Cathodic Stripping Voltammetery Measurements 

 

The procedure used to obtain adsorptive cathodic stripping voltammograms was as follows: 20 

mL of 0.05 M borate buffer solution at pH 7.5 was transferred in to the voltammetric cell. The 

stirrer was switched on and the solution was purged with nitrogen gas for 20 min. Then 

accumulation was effected for 120 s at -0.6 V whilst stirring the solution. At the end of the 

accumulation time the stirrer was switched off. After 5 s had elapsed to allow the solution to 

become quiescent, the potential was scanned from -0.6 to -1.1 V using differential stripping 

voltammetry. When further ligand or metal solution was added to the cell, the solution was 

deoxygenated with nitrogen before carrying out further voltammetric measurement.   

 

2.4.3 Differential Pulse Voltammetric Measurements 

 

Differential pulse voltammetry was performed according to the following procedure: 20 ml of 

buffer solution containing 0.01 M maleic–maleate (pH=6.4) and 0.05 M KNO3 as supporting 

electrolyte or a buffer solution containing 0.05 M Borate (pH = 7.5, 7.0 and 8.5) were put in an 

acid cleaned and dried glass cell.  Then the solution was purged with pure nitrogen for 30 min 

and blank anodic stripping voltamograms were recorded to check the presence of cadmium 

contamination in the solution. Then to investigate the voltammetric nature of pure Cd
2+

 and 

GSH, solutions containing these pure species were added to the cell to obtain concentration 

range of 10
-4

 to 10
-7

 M in the voltammetric cell and the respective voltammograms were 

recorded. Titration of Cd
2+ 

with GSH or PC2  was done by adding 40 µL of 1x10
-2

 M Cd
2+ 

solution to the cell to get its concentration exactly 2x10
-5

 M and titrating it with 1x10
-3

 M freshly 

prepared GSH or PC2 solution in order to get various ligand to metal ratios (from 0 to 3). The 

reverse titration was also done in such a way with successive addition of 1x10
-3

 M Cd
2+

 solution 

to 2x10
-5

 M GSH solution in the voltammetric cell. Voltammograms were measured after 

deoxygenation of the solution for 1 min with stirring after each addition of GSH or Cd
2+

 solution 

to the cell. 
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2.5 ESI-MS Experiments 

 

The ESI-MS with positive mode was performed for a mixture containing GSH, PC2, Bi
3+

, and 

Cd
2+

 in Ammonium Acetate/Ammonium Hydroxide Buffer at pH 7.5 and using mobile phase 

made of 5 mM ammonium acetate in water–acetonitrile mixture (90:10, v/v) at pH 7.5.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure8. (a) Schematic representation of the ESI-MS ion source (b) A schematic of the 

mechanism of ion formation in ESI-MS. 

(a) 

(b) 
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The operational procedure was adapted from E.Chekmeneva et.al [45]. To explain briefly: 

samples were introduced in to the electron spray source by direct injection mode of  50µL  in 

Ammonium Acetate/Ammonium Hydroxide Buffer at pH 7.5 at flow rate of 40 µL /min at a 

source temperature of  300 
o
C. The applied voltage was maintained at 4.0 kV for the capillary 

and 200 V  for the fragmentor.  The mass spectra were collected through m/z range from 100 to 

1500. The mixture containing GSH, Bi
3+

 and Cd
2+

 were prepared by mixing 1x10
-3

 M of each 

species in the buffer solution to get ratio of Cd
2+

: GSH and Bi
3+

:GSH (1:1:1, 1:2:1, 2:1:1) and 

Cd
2+

:Bi
3+

:GSH(1:1:1, 1:1:2, 2:2:1, 1:2:1, 2:1:1, 1:1:4 ). 

 

ESI-MS is especially useful in producing ions from macromolecules where the analyte often 

requires that non-covalent molecule-protein or protein- metal complexes are representatively 

transferred into the gas-phase by overcoming the propensity of these molecules to fragment 

when ionized. This is the reason why this technique was selected for this particular investigation 

as it helps to see unfragmented PC-Metal complex in the spectra. Figure 8   summarises the main 

steps in ion production in ESI-MS technique.  

 

As any other mass spectroscopic devices ESI-MS combines four basic parts.  Ion source, mass 

analyzer, detector and recorder. As stated above the unoqe properties of ESI-MS arises from its 

ion source. To describe briefly the process involved in ion formation the liquid containing the 

analyte is injected into the system from the injection syringe  pump and passes through the 

electrospray needle,  that has high potential difference in reference to the counter electrode.  This  

results in formation of a spray of charged droplets from the needle and then the droplets are 

repelled from the needle towards the source sampling cone on the counter electrode and finally 

solvent evaporation occurs when the droplets travel between the electrospray needle and the 

collecting cone (Figure 8b). As the solvent evaporation occurs, the droplet shrinks until it reaches 

the point that the surface tension provided by the solvent can no longer sustain the charge (the 

Rayleigh limit) at which point a "Coulombic explosion" occurs and the droplet is ripped apart. 

This produces smaller droplets that can repeat the process as well as naked charged analyte 

molecules. These charged analyte molecules can be singly or multiply charged and trapped to the 

mass analyzers. Because the formation of  ions involves extensive solvent evaporation, the 

typical solvents used for electrospray ionization are prepared by mixing water with volatile 
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organic compounds like acetonitrile. The ions observed by mass spectrometry may be 

quasimolecular ions created by the addition of a proton (a hydrogen ion) and denoted [M + H]
+
, 

or of another cation such as sodium ion, [M + Na]
+
, or the removal of a proton, [M − H]

−
. 

 

The ions are then sorted according to their mass to charge ratio by the mass analyzer. In this 

experiment the analyzer is time of flight analyzer (TOF). In this mass analyzer the total time 

elapsed for a given ion to travel from the iterance point to the detector is determined by: 

 

   

 

 

 

2.6 Data Treatment 

 

The raw electrochemical data were converted into the corresponding current data matrix I that 

contains as many rows as the number of recorded voltammograms and as many columns as 

potentials scanned during the current measurements using a homemade programs developed in 

Mathlab [46]. First singular value decomposition (SVD) is applied to estimate the minimum 

number of mathematical components (principal components) which corresponds to the number 

of possible electrochemical reaction which contribute linearly to the signal. Then the matrix I is 

decomposed as the product of a matrix C (concentration of each component) and a matrix V
T
  

( that correspond to the pure voltamograms that contribute to the current) plus an error matrix X 

[47] which is denoted by the following equation: 

 

                  I = CV
T
 + X                        (8) 

 

Where V
T
 stands for the transposed  matrix V and the unit of I and X is current (A), mol L

-1
 for 

C and A mol
-1

 L for V.  

 

The above procedure is made in an itertative way from a first estimation of concentration profile 

or pure signals which is postulated from the data  matrix. In the ALS analysis several restrictions 

(7) 
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can be made such as selectivity (only one component exists in some part of the matrix), non-

negativity (for concentration and voltammetric signals), unimodality (single peak shape of 

concentration profiles and or pure voltammograms), closure (mass balance application) and 

signal shape (fitting signals to empirical equations) [47]. The error associated with 

decomposition of the original current matrix is expressed as the percentage of lack of fit (lof) as 

the following equation: 

 

                                                            

 

 

  

Where Iij are the element of the original current matrix Iij, and resulting matrix 

calculated from the product of C and V
T
 by ALS analysis. 

 

In the case that any of the signals moves along the potential axis during the titration, the linearity 

of the signal decreases and a correction is necessary prior to the use of MCR-ALS. This can be 

done by shiftfit/shifitcalc program which is developed on the Matlab. Before the correction of 

the potential shift estimation of the initial reference voltamograme  is required by a program 

called peak maker on Matlab that generate Gaussian peaks according to the equation: 

 

 

       (10) 

 

 

Whose characteristic parameters (height a, position b and width c) are selected manually with the 

mouse by visual comparison to the data matrix (I). The peaks are then integrated into a matrix 

that can be used whether as a set of reference voltammograms (V0) to be applied in shiftfit or as 

an initial estimation of the pure voltammograms (V) used to start the MCR-ALS iterations. This 

is done from the 2D plot of the experimental data matrix by moving the curser of the mouse on 

the top of the possible components and pressing the mouse button. Then the parameters a, b, and 

c are defined and the guasian peak for each component is established on the experimental 2D 

(9) 
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current matrix. Using the initial reference voltamograms (Vo) developed the shift correction is 

done. Figure 9 show that the combined application of shiftfit and shiftcalc to an experimental 

matrix Iexp affected by lateral movement of one or more signals. 

. 

 

Figure9. Flowchart for potential shift correction for MCR-ALS analysis applied for experimental 

data matrix Iexp ( A.Alberich et al). 
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To describe briefly how the function works shiftcalc displaces every voltammogram from the 

experimental matrix, Iexp, a given potential ∆E to produce a matrix Ishift and shiftfit optimize the 

value of ∆E iteratively to produce a new matrix Icor that has a fixed potential as assigned in the 

Vo matrix (a matrix which is defined intuitively from the original experimental matrix), a 

concentration matrix and a potential shift matrix ∆E. Then Icor can be treated by the usual MCR-

ALS to obtain optimized C and V matrices and ∆E can be used in further investigation for the 

calculation of parameters for the complex such as stability constant by fitting hard models 

developed by the DeFord and Hume [48] according to the following equation: 

 

                                                               

  (11) 

 

 

where F0 is the Leden function of zero order, F is the Faraday unit of charge, E0, I0 are the 

characteristic potential and current, respectively, measured for the free metal ion in the absence 

of the ligand, E, I, are the same parameters obtained for a bulk concentration cL of the ligand and 

βi are the successive overall stability constants of the formed complexes (with i ranging from 1 to 

m). 
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3. RESULTS AND DISCUSSION 

 

3.1 ESI-MS Experiments 

 
Electro spray ionization mass spectrometry (ESI-MS)  is a versatile and efficient spectrometric 

technique that allows a definitive identification of stoichiometries of ionic complexes through 

interpretation of uncomplicated and easy to understand mass spectra established by a plot of 

relative abundance as a function of mass-to-charge ratio (m/z) for the species detected in the gas 

phase [ 23,45,50]. In electro spray mode of ionization soft energy is employed for ionization of 

the analyte species which enables one to get prominent peaks for unfragmented molecular ionic 

species in the mass spectrum unlike the other mode of ionization technique that are 

conventionally used in mass spectroscopic techniques. Therefore, the technique is highly 

desirable for the study of protein- metal complexes [50]. In this study the influence of adsorption 

of peptide ligands on the Bismuth film electrode on the Cd
2+

- thiol complexation is examined to 

evaluate the potentiality of Bismuth-based electrodes for metal-thiol complexation studies. In 

addition the result of ESI-MS experiment was used to get supportive information for proposal of 

complexation mechanism for PC2 and GSH with Cd under the given experimental condition.  

 

Positive ion ESI-MS has been applied for various proportion mixtures of Cd
2+

, Bi
3+

, GSH and 

PC2 in NH4/AC buffer solution. In a previous investigation on metal complexation process by 

ESI-MS incubation of the metals-ligand mixture for 12 hour was required for total complexation 

reaction [50]. However in this study mixture solutions were prepared freshly to reproduce the 

electrochemical measurement conditions. The more intense peaks observed in the spectra are 

presented in Table 1 as m/z values. Peak assignments are listed according to the general formula: 

 

m/z    =   [CdxBiy(GSH)z-nH]
 +

                                  (12) 

                            

Where the dominant isotopic mass for Cd = 114, Bi =209, GSH= 307 and H=1 and the value of 

x, y, and z are selected to assign the observed m/z values. Also the value of n corresponds to the 

number of  hydrogen that must be removed or added to optimize the observed m/z charge and 

mass which is equal to 2 x +3y-1.  
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Solution 

Components Molar Ratio of 

the Components 

Mass –to-

charge m/z +ve Assignment  

 

Intensity 

(number of 

counts) 

 2:1 179 [Cys-Gly+H]+ 2.00E+05 

  308 [GSH+H]+ 2.00E+06 

Cd,GSH  615 [(GSH) 2+H]+ 7.90E+05 

  419 [Cd(GSH)-H]+ 9.00E+02 

  725.44 [Cd(GSH)2-H]+ 4.80E+02 

 1:1 179 [Cys-Gly+H]+ 4.19E+05 

  308 [GSH+H]+ 5.00E+04 

  615 [(GSH) 2+H]+ 8.00E+05 

  419 [Cd(GSH)-H]+ 9.00E+03 

  725.44 [Cd(GSH)2-H]+ 4.80E+02 

 1:2 179 [Cys-Gly+H]+ 5.00E+04 

  308 [GSH+H]+ 8.00E+05 

  615 [(GSH)2+H]+ 3.00E+04 

  419 [Cd(GSH)-H]+ 1.00E+04 

  725.44 [Cd(GSH)2-H]+ 4.60E+03 

  836.94 [Cd2 (GSH)-H]+ 6.20E+02 

Bi,GSH 2:1 179 [Cys-Gly+H]+ 4.00E+04 

  308 [GSH+H]+ 3.00E+05 

  514 Bi(GSH)-H]+ 1.00E+03 

  820.9 [Bi(GSH)2-H]+ 3.00E+03 

 1:1 179 [Cys-Gly+H]+ 2.00E+05 

  308 [GSH+H]+ 2.00E+06 

  615 [(GSH) 2+H]+ 1.00E+03 

  514 [Cd(GSH)-H]+ 2.00E+03 

  820.9 [Cd(GSH)2-H]+ 6.00E+02 

 1:2 179 [Cys-Gly+H]+ 8.00E+04 

  308 [GSH+H]+ 2.80E+05 

  615 [(GSH) 2+H]+ 4.40E+04 

  514 [Bi(GSH)-H]+ 1.90E+05 

  820.9 [Bi(GSH)2-H]+ 3.00E+05 

 

Table 1.ESI-MS for data of a binary solution of GSH/Cd(II) and GSH/Bi(III) in 1:9 acetonitrile: 

20 mM ammonium acetate in water at pH 7.5. 
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Solution 

Components 

Molar ratio of 

the Components 

 

m/z +ve(int.%) Assignment  

 

Intensity 

(number of 

counts) 

 

Table 2.ESI-MS for data for ternary solution of GSH, Cd(II), and Bi (III) in 1:9 acetonitrile: 20 

mM ammonium acetate in water at pH 7.5. 

Cd,Bi,GSH 1:1:1 308 [GSH+H]+ 1.40E+05 

  179 [Cys-Gly+H]+ 2.00E+04 

  615.06 [(GSH)2+H]+ 4.00E+03 

  514 [Bi(GSH)-2H]+ 1.75E+04 

  820.9 [Bi(GSH)2-2H]+ 3.50E+04 

Cd,Bi,GSH 1:1:2 308 [GSH+H]+ 1.60E+06 

  179 [Cys-Gly+H]+ 1.00E+04 

  615.06 [(GSH)2-H]+ 9.50E+04 

  514 [Bi(GSH)-2H]+ 4.75E+04 

  820.9 [Bi(GSH)2-2H]+ 1.60E+05 

Cd,Bi,GSH 2:2:1 308 [GSH+H]+ 1.00E+05 

  179 [Cys-Gly+H]+ 6.00E+03 

  615.06 [(GSH)2-H]+ 6.50E+03 

  514 [Bi(GSH)-2H]+ 9.50E+04 

  820.9 [Bi(GSH)2-2H]+ 5.00E+03 

Cd,Bi,GSH 1:2:1 308 [GSH+H]+ 7.00E+05 

  179 [Cys-Gly+H]+ 3.60E+04 

  615.06 [(GSH)2-H]+ 1.50E+04 

  514 [Bi(GSH)-2H]+ 1.00E+04 

  820.9 [Bi(GSH)2-2H]+ 1.60E+04 

Cd,Bi,GSH 2:1:1 308 [GSH+H]+ 1.60E+06 

  179 [Cys-Gly+H]+ 7.00E+04 

  725.44 [Cd(GSH)2-H]+ 5.80E+03 

  514 [Bi(GSH)-2H]+ 1.50E+04 

  820.9 [Bi(GSH)2-2H]+ 1.00E+05 

Cd,Bi,GSH 1:1:4 308 [GSH+H]+ 7.50E+05 

  179 [Cys-Gly+H]+ 6.00E+04 

  615.06 [(GSH)2 + H]+ 5.00E+05 

  514 [Bi(GSH)-2H]+ 7.00E+04 

  820.9 [Bi(GSH)2-2H]+ 1.00E+05 
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Characteristic natural abundance isotopic pattern of cadmium was also used for definitive 

assignation of the observed m/z by comparison of the experimental pattern with a statically 

determined pattern [50]. 

 

 

 

 

Figure10. Electrospray ionization mass spectrum (ESI-MS) for (a) 1:4 (Bi:GSH)  and (b) 1:1:4 

(Cd:Bi:GSH)  in 10% acetonitrile-0.02 M Ammonum acetate  in water. 
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The result of ESI-MS show that for all proportions of Bi(III), Cd(II) and GSH the dominant 

complex species were bismuth complex with very low intensity of some Cd-GSH complexes. 

For example for the mixture of 1:1:4 Cd:Bi:GSH solution the ESI-MS spectra shows dominantly 

Bi(GSH)2 and Bi(GSH) (Figure10b) complex with minor peaks associated with Cd-GSH 

complexes. In addition comparison of the spectra obtained from the solution containing only 

Bi(III) and GSH  with that  containing Cd(II), Bi(III) and GSH a close similarity was observed ;  

therefore there is a relatively intense peak for Bi-GSH complex as compared to the Cd-GSH 

complex species. This observation does not lead to an absolute conclusion that bismuth complex 

formation is more favored than cadmium complex formation as ESI-MS may have a higher 

sensitivity to the former complex. However, there is clear evidence that bismuth has very high 

affinity to SH-bearing compounds which leads to adsorption of significant amount of GSH on to 

the surface of Bi-film that results in the oxidation of the electrode to form Bi-GSH complex (see 

the discussion part on section 3.4.3). Oxidation of Bi-film results in a release of Bi(III) to the 

solution which may interfere in two ways with the study of complexation of thiol-bearing 

peptides with analyte metal ion. First it gives rise to unwanted signal in the voltammogram 

which creates complexity in the interpretation of the complexetion sequence and secondly Bi(III) 

decreases the  actual concentration of peptide which may lead to wrong prediction of 

stoichiometries of the complex of the main analyte metal. Fortunately the anodic signal related to 

oxidation of bismuth film is not very significant due to probably an inert electrochemical 

character of the oxidation process of Bi film to form Bi-peptide complex as compared to the 

corresponding mercury electrode.  

 

It is appropriate to mention that “in situ” mode of Bi-film preparation from a solution containing 

Bi(III) and  thiol-peptide is not a suitable technique for speciation studies of  a given metal ion 

due to the direct interference of Bi(III) in the complexation process of the analyte metal with the 

thiol compounds. Therefore “ex situ” mode of film preparation seems to be the preferred 

technique for such study. In addition a great deal of care is required in selection of an appropriate 

working potential window to avoid the oxidation of Bi-film electrode even in ex situ technique.  
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3.2 Selection of the Working Potential Window 

 

Previously the potential window for BiFE in stripping analysis was assessed in  acetate buffer 

and it was  pointed out that basic pH conditions give the widest potential range with minimum 

solvent reduction signal [33]. To confirm this fact and to find the widest potential window for the 

case of BiSPCE buffer solutions with varying pH values were investigated. Cyclic voltammetric 

measurements were done inside the potential range of -0.5 and -1.6 V for 0.01 M maleic-maleate 

buffer at pH 6.4 and 0.05 M borate buffer system at pH 7.0, 7.5 and 8.5. The appropriate 

potential window for each system is limited by reduction of solvent in the negative side and 

oxidation of bismuth film in the positive direction. As it can be seen from Figure 11 the widest 

potential window is observed in alkaline conditions (7.5 or 8.5). However there was no much 

difference in the potential width between pH 7.5 and 8.5 and the former is preferable for 

speciation studies as it is close to the natural conditions. In addition, to select the appropriate 

potential window considering BiSPCE +0.5 V and -1.6 V were set as first vertex and second 

vertex potential respectively for the system of 0.05 M borate buffer at pH 7.5.  According to 

Figure12 the positive and negative potentials are limited at -0.25 V and -1.5 V by oxidation of 

bismuth film and reduction of the solvent respectively. 

 

Figure11. CV Voltamograms for the different buffer solution at scan rate of 0.1V/s :(a) 0.01 

maleic-malete buffer pH 6.4 (b) 0.05 borate buffer pH 7.0 (c) 0.05 borate buffer pH 7.5 (d) 0.05 

borate buffer pH 8.5. 

a 

b 

c 
d 



Result and Discussion 

 

32 

 

 

Figure12. CV voltammogram for 0.05 borate buffer solution at pH 7.5 and scan rate of 0.1V/s 

with first and second vertex potential at -1.6 and 0.5V vs Ag/AgCl. 

 

3.3 Effect of pH on the Electrochemical Reaction of Cadmium Complex on BiSPCE 

 

As a complementary work for the above preliminary investigation, the effect of pH on the 

electrode response for complex and free metal was investigated at various pH values.  For thiol 

metal complexation process the removal of proton from sulfur group is required [51]. Therefore 

theoretically it is expected that complexation process is far to complete when the pH of the 

reaction medium is fairly high.  Therefore it seems that higher pH value may help to improve the 

low sensitivity problem of bismuth based electrodes to thiol-metal complex by mounting the 

yield of the complex formed. However the repeatability of the peak intensity and the stability of 

the peak potential should be evaluated at various pH to make sure that the data obtained are 

suitable for further chemometrical analysis before choosing the best pH value. 

 

The peak intensity of the complex and the free metal reduction signals were monitored at various 

pH values (6.4, 7.0, 7.5, and 8.0) in 0.01 M maleic-maleate buffer system at pH 6.4 and 0.05 M 

Borate buffer for the rest of pH values. The effect of pH on the peak intensity of 1:2 Cd: GSH is 

shown in Figure 13 and also the plot of peak current against the pH value can be seen in Figure 

14. The peak current associated with Cd-GSH complex reduction signal increases from 6.4 to 7.5 

and drops sharply for pH values higher than 7.5. In contrast, the effect of pH on the free metal 
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reduction signal intensity is negligible as compared to its effect on the complex signal. This 

suggests that the optimum working pH for thiol complexation studies on BiSPCE is at slightly 

basic medium. At lower pH the thiol site of the ligand molecules are prtotonated and 

consequently the complexation process is hindered and the signal will have very low intensity. 

On the other hand higher pH values possibly affect the peak intensity of the complex signal due 

to passivation of the electrode surface with hydroxide ions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The effect of pH on the peak intensity of the1:2 Cd: GSH complex reduction signal  

( 8x10
-5

M GSH and Cd
2+

) 

 

 

 

 

 

 

 

 

 

 

Figure14. Peak current vs pH plot showing the effect of pH on the peak intensity of the 1:2 Cd-

GSH complex signal. 

6 6.5 7 7.5 8 8.5 9
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-6

E/V

I/
A



Result and Discussion 

 

34 

 

The stability of the reduction signal associated with the metal and the complex on BiSPCE was 

assessed since a highly reproducible data is required to fulfill the necessary conditions for the 

subsequent MCR-ALS analysis as stated previously. The peak current repeatability and peak 

potential stability for 1:2 GSH:Cd mixture were estimated by calculating % RSD from six 

repeated measurements at the various pH values.  The peak intensity variability and peak 

potential stability for the complex signals were observed to be small at the lowest pH value (6.4) 

relative to the results obtained at higher pH values (Table 3). Anyways, the variability of peak 

intensity and stability of peak potential at all pH values were not significantly different from 

each other. Similar observations were seen for the free metal reduction signal. However 

significant potential shift was observed for both free metal and complex signals going from 

lower pH values to the higher values as potential is dependent on the pH of the medium [51]. 

Generally for reversible system the peak potential (half-wave potential) and pH of the medium at 

25
o
C are related as: 

 

E=Econt-(mRT/nF)pH                                                          (13) 

 

Where m and n corresponds to the number of protons and electrons involved in the electrode 

reactions, respectively [51]. In consistency with this fact the peak potentials for the reduction of 

the complex signal were observed on average at -0.80, -0.85, -0.88, and -0.940 at pH 6.4, 7.0, 7.5 

and 8.5 respectively.  

 

From the potential window optimization and the study of the effect of pH on the current and 

peak potential it is reasonable to select pH 7.5 for further complexation study of cadmium with 

thiol-peptides in borate buffer on BiSPCE.  

 

pH Average peak 

current, Ip(A) 

Average peak 

potential, Ep(V) 

CV% of Ip CV% of Ep 

6.4 6.00x10
-7

 -0.80 3.5 0.58 

7.0 1.05x10
-6

 -0.85 5.3 0.56 

7.5 1.75x10
-6

 -0.88 7.9 0.61 

8.5 1.50x10
-6

 -0.94 11.2 0.63 

 

Table3. Repeatability of Peak current and stability of peak potential (n= 6) at various pH values. 
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3.4. Free Metal Reduction Signal on the Absence of Ligands 

 

3.4.1 Free Metal Reduction Signal on the BiFE 

 

To figure out thiol metal complexation process it is worth to see the electrochemical behavior of 

the free metal and free ligand on BiSPCE and BiFE at the current experimental condition. In a 

recent paper it was pointed out that the reduction signal of Cd(II)  splits on BiFE in both 

differential pulse stripping voltammetric and stripping chronpotentiometric analysis [27]. For 

this reason the concentration range of Cd(II)  that give reduction signal profile on the BiFE 

similar to the signal observed on MFE was also investigated to apply BiFE for complexation 

studies in the same manner as the corresponding MFE [34]. The signal splitting of cadmium 

reduction on BiFE was also observed in this study in borate buffer solution at pH 7.5. In the 

beginning two peaks were observed one at -0.7 and the other at -0.85V (Figure 15). The peak at 

the more positive potential stabilizes at higher cadmium concentration while the other peak 

increases up to the cadmium concentration of around 5.5x10
-5

 M and  then it starts to be splitted 

to give a new third peak (Figure 15). The old peak is stabilized while the new third peak 

increases continuously with increasing cadmium concentration.  

 

Figure15. Differential pulse voltammogram of Cd(II) on BiFE at different concentration of 

Cadmium in Borate buffer at pH 7.5 
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Figure16. The corresponding calibration curve for Cd(II) in borate buffer at pH 7.5  
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Figure17. Normalized singular value generated from the data matrix shown in Figure 15. 
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Even if only a single species, free metal, exist in the system MCR-ALS analysis was applied to 

the experimental data matrix for a better understanding of the signal splitting pattern. Starting 

from the result of SVD (Figure17) for the data matrix (Figure15) three components system was 

assumed with constraints of non-negativity for both signals and concentrations and signal shape 

for all components.  However the lack of fit was very high (27%) and this is mainly because of 

the continuous movement of the potential of the  peaks under this experimental condition which 

decreases the linearity of the data. Anyways, there is a clear evidence for the presence of Cd(II) 

reduction signal splitting phenomena on BiFE in borate buffer at pH 7.5. In spite of the splitting 

behavior of the signal of free Cd(II) quantitative analysis of the free cadmium metal is still 

possible as the total area of all peak should be directly proportional to the concentration of Cd(II) 

present in the solution. Figure16 shows the calibration plot of peak area against the concentration 

of Cd(II) in the solution. A deviation from linearity was observed for higher cadmium 

concentration due to the BiFE’s surface saturation. 

 

3.4.2 Free Metal Reduction Signal on BiSPCE 

 

In contrast to BiFE  a notable signal splitting was not observed in the reduction signal of Cd(II) 

at pH 7.5 (borate buffer)  when BiSPCE electrode was used (Figure 18). This may be a good 

improvement of bismuth film electrode as it minimizes the complexity that arises from signal 

splitting when the thiol– metal complexation sequence is studied on this electrode. Specifically 

this property of BiSPCE is essential for evaluating stoichiometries and stability constants of 

metal complexes with various ligands.  

 

The comparison between BiSPCE and BiFE reveals that the sensitivity for Cd(II) reduction is  

higher on BiSPCE electrode (Figure 19), which could be due to the higher electrode area of the 

screen printed electrode and rough surface structure (Figure20) which provides a better condition 

for platting of bismuth that consequently enhance the reduction of Cd(II) from the bulk solution.  

In addition the corresponding linearity range was wider on BiSPCE in comparison to BiFE 

which ensures the potentiality of BiSPCE for metal determination and titration in a relatively 

wide concentration range. 
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Figure 18 Differential pulse voltammogram on BiSPCE for increasing addition of Cd to borate 

buffer at pH 7.5. 

 

 

Figure19. The corresponding calibration curve for Cd(II) in borate buffer at 7.5  

 



Result and Discussion 

 

39 

 

 

Figure20. Scanning electron microscopy images of: (a) a bare screen printed carbon electrode; 

(b) a bar glassy carbon electrode (A.Economu, Trends in analytical chemistry 24 (2005) 334). 

3.4.3 Free Ligand Reduction Signal on SPCE and BiFE 

 

As observed for the case of mercury electrodes [52] it is believed that thiol compounds are 

adsorbed on the other type of electrode material including bismuth film electrodes according to 

the following: 

 

           nGSH + Bi(0)                     Bi(GSH)n(ads) + nH + ne
-
                    (14) 

 

Hence, the diffusion controlled oxidation signal that corresponds to the above chemical reaction 

corresponds to the oxidation of bismuth followed by the formation of bismuth–thiols adduct 

(Equation 14). The anodic current does not diminish to the charging current, as would have been 

expected if bismuth surface had been covered with the thiol blocking layer. This confirms that 

the thiol species continuously react with the bismuth film surface as long as the potential is fixed 

more than - 0.63 (see the following discussion). 

 

In a previous study of lead-phytochelatin complexation on BiFE in maleic-maleate buffer (pH 

6.4) anodic oxidation of the electrode material by the free thiol peptides was observed as a broad 
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peak in the region between -0.6 to -0.8 V vs Ag/AgCl reference electrode where the free lead and 

its complex reduction signal were also observed [35]. In consistency with this finding the anodic 

oxidation of the electrode material in the presence of peptides was also observed at pH 7.5 on the 

BiFE and BiSPCE. Two peaks at around -0.49 and -0.63 V were observed for 1x10
-4

 M GSH 

solution in borate buffer at pH value of 7.5 as shown in Figure 21.  In a similar way as for the 

free Cd(II) reduction study,  voltammogram  were recorded  for increasing concentration of GSH 

using both electrodes but the relationship observed  between the peak current and the 

concentration of the ligand was somewhat undefined. 

  

It should be noted that the peak current  recorded for concentrated GSH (1x10
-4

 M) was 

relatively very low (Figure19) which shows that anodic oxidation of the electrode material in the 

presence of GSH was  also very low. The weakening or the absence of the anodic signal of 

bismuth electrode in the presence of thiol-peptide is an important advantage over the 

corresponding mercury film electrodes as this simplifies the interpretation of the signal in order 

to understand the complexation process. 

 

 

 

Figure21. The voltamogram of 1x10
-4 

M free GSH M in 0.05 borate buffer solution (pH7.5) 
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3.4 Complexation Study of Cd with Glutathione 

 

3.4.1 Adsorptive Cathodic Stripping Voltammetry 

 

Study of thiol complexation at lower metal concentration is advantageous to model exactly the 

detoxification mechanism at cellular level. In addition at lower concentrations of the peptides 

and metals the signal intensity and concentration of all the chemical species show linear 

relationship which allows applying MCR-ALS chemometrical methodologies to extract abundant 

information for the complexation sequence. An attempt was made to study at lower 

concentration (starting from 1x10
-6

M) however no signal was observed for the complex species 

except an intense signal associated with the free metal reduction signal. 

 

Consequently, adsorptive cathodic stripping voltammetry was applied to accumulate complex 

species on to the the Bi-film electrode surface by applying a constant potential for a given period 

of time and then latter scanning in the negative potential direction to reduce the accumulated 

species quantitatively. To select the best value of the key experimental parameters (i.e. the 

adsorption potential and the accumulation time) various adsorptive cathodic stripping 

voltammetry experiments were done. First the optimum adsorption potential was searched by 

applying potential of -0.5, -0.6 and -0.7 V vs Ag/AgCl reference electrode and then  latter 

scanning from -0.4 to -1.1V.  It was observed at -0.6V a better signal enhancement. Next 

considering this potential the optimum accumulation time was selected from 60, 90,120,180 and 

240s and the signal intensity was not observed to improve after 120s consequently this 

accumulation time was taken as the optimal time.  

 

Therefore, -0.6 V and 120 s were used as the adsorptive potential and accumulation potential 

respectively for the study of Cd-GSH complexation by adsorptive cathodic stripping analysis at 

concentration of 1x10
-6

 M for both Cd
2+

 and peptide. However a well established pattern 

between the signal intensity of the complex and concentration of the metal and the petide could 

not be seen. This is partly due to none reversible electrochemical character of these species as a 

consequence of their strong adsorption on to the surface of the electrode. Therefore differential 
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pulse voltammetric technique was applied at higher concentration of the metal and the ligand 

(2x10
-5

 M) for qualitative purpose of interpretation.  

 

3.4.2 Cd-GSH System on BiFE 

 

To see the evolution of the complexation process differential pulse voltammetric titrations were 

done in two ways:  addition of 1x10
-3

 M Cd to 2x10
-5

 M GSH solution and the reverse process, 

addition of 1x10
-3

 M GSH solution to 2x10
-5

 Cd solution in borate buffer solution at pH 7.5.  

However, the first mode of titration gave more detail and sufficient information and was selected 

to explain the complexation process. In this mode of titration, before the first addition of Cd to 

the GSH, a small peak at around -0.63 V was observed which further decreases and disappears 

after addition of cadmium solution as shown in Figure 22. By analogy to the previous study of 

SH-bearing compounds complexation with metals on BiFE [34] and to the signals observed for 

free GSH on BiSPCE in this study; this signal is associated with the anodic oxidation of Bi 

electrode in the presence of GHS. By comparing the peak potential of the free Cd(II)  in the 

absence of  ligand with that of  the peak  located at -0.85 V it can be concluded that this 

reduction signal  can be related to a fraction of free Cd(II) associated with an electrochemically 

labile complex as its potential position continuously shifts to the more positive side with 

increasing concentration of Cd(II). Also the peak observed at -0.95 V is related to the reduction 

signal of 1:2 Cd:GSH complex according to A.Alberich et al [34] which reports stabilization of a 

similar signal  at Cd:GSH ratio  around 0.5. In this study the anodic signal associated with Cd-

GSH complex was not very important and could not be clearly seen in the expected potential 

region (by the positive potential side close to the free metal reduction signal). However its 

existence is clear, since it was observed in the beginning of the titration and before it was 

dominated by the intense signal of the Cd(II) reduction. In the Pb-GSH complexation study on 

BiFE the anodic signal was observed overlapped with the free metal reduction signal. Howevere 

in the case of Cd-GSH complexation, the anodic signal was well separated from the Cd(II) 

reduction signal. 

 

MCR-ALS was not applied for this case as the free metal concentrations are out of the linear 

range and due to the presence of anodic oxidation signals of the free peptide under this 
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experimental condition whose evolution pattern is quite unpredictable. In addition the shape of 

the free metal reduction voltammograms changes continuously which hinder the correct 

application of MCR- ALS methodology. However the observed signals are relatively well 

separated as compared to the corresponding signals observed on mercury electrodes [51] 

therefore there is a way to analyse the trend of the pure components during the titration process 

qualitatively. To do so the peak intensity of free metal and the complex signals were plotted 

against the ratio of cadmium added to the initial peptide concentration (Cd:GSH) (Figure 23).  

 

Figure 23a shows that as the Cd:GSH ratio increases,  the 1:2 Cd:GSH complex reduction signal  

(located at -0.94 V) grows sharply to reach a plateau at a concentration ratio of 0.5. This result is 

quite consistent with a previous study made using polarographic techniques [51]. Figure 23b 

shows the evolution of  the Cd(II) reduction signal  which includes the labile complex and the 

free metal. The attempt to explain the evolution of  the free metal and the labile complex 

concentration profile was not consistent with a previous finding as the free metal is not expected 

to exist before the ratio of 0.25 [51]. Also a change in the slope is expected at Cd:GSH ratio of 

around  1.0 due to the appearance of free metal but this was not observed in this case as Figure23 

b shows. The most probable reason for this deviation is the splitting of the free metal signal 

which creates ambiguity for the assignment of the peaks for the free metal and labile complex. In 

the case of Pb-GSH complexation study on BiFE where signal splitting of free metal reduction 

signal is absent a clear change of peak intensity and peak potential shift was observed which 

means  the appearance of free lead at higher Pb:GSH concentration ratio [34]. Therefore to get 

clear information about the complexation process of Cd-GSH system either the concentration of 

the metal ion should be very low, in the region where signal splitting is absent, or a different 

electrode should be used. Then, the next step is to try if BiSPCE can improve the drawbacks of 

BiFE, especially taking into account the absence of peak splitting for the free metal alone.  
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Figure 22.  Differential voltamogram s measured during the titration of 2x10
-5

 M GSH with Cd 

solution in borate buffer at pH 7.5 by using BiFE. 

 

Figure 23. Peak current vs [Cd]:[GSH] ratio in borate buffer solution (a) for the complex signal 

and (b) for the labile and free Cd reduction signal. 
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3.4.3 Cd-GSH system on BiSPCE 

 

As stated above a better information is expected from the use of screen printed electrodes since 

the signal splitting of the Cd(II) reduction is absent . An improvement in the peak intensity of the 

signals is also expected as observed from the comparison of BiFE and BiSPCE sensitivity for the 

metal. Comparing the results obtained using both electrodes, it can be seen that all the signal that 

appear on BiFE are also present in BiSPCE (Figure 24). However the metal reduction signal on 

BiSPCE is sharper than the corresponding in BiFE and the peak potentials for the free metal and 

labile complex are relatively stable ( the lateral movement along the potential axis is reduced). 

The difference in shape of the voltamograms is associated with the absence of splitting of Cd(II) 

reduction signal on BiSPCE. As in the previous case, MCR-ALS analysis could not be applied 

for BiSPCE due to the loss of linearity of the free metal reduction and the non familiar shape of 

the voltamograms. However, as Figure 24 shows all the voltammograms are well separated and 

qualitative analysis can be used for explanation of complexation process.  

 

Figure 24. Differential voltamograms measured using the titration of 2x10
-5

 M GSH with Cd 

solution in borate buffer at pH 7.5 by using BiSPCE. 
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Figure 25. Peak current intensity vs Cd:GSH rato (a) for the 1:2 Cd:GSH complex and (b) for the 

total labile and free metal cadmium reduction signal 

However it should be stated that some voltamograms recorded by this electrode had very 

different peak potential position which was not observed in the case of BiFE. This indicates that 

BiSPCE has lower reproducibility as compared to BiFE. Consequently these voltamograms were 

removed from the data matrix before the data treatment step. 

 

Like in the case of BiFE, at the beginning of the titration only the anodic signal for the free GSH 

is observed , a signal which decreases with further addition of Cd(II) solution as shown in Figure 

24.  The peak current associated with the 1:2 Cd:GSH reduction signal increases sharply and 

levels off  when 0.5 Cd:GSH concentration ratio is reached (Figure 25a ) as observed in  BiFE 

and other previous studies [34,51]. The peak potential for this complex is quite stable, (Figure 

24) which is quite consistent with previous observations showing the inert nature of Cd-GSH 

formed between two GHS molecules and one Cd ion through the sulphur group of the ligand 

(Figure 26). 

 

With regards to the Cd(II) reduction process from the labile complex and free metal , Figure 25b 

shows the total Cd(II) reduction profile contributed from the labile complex and the free Cd(II).  

Accordingly, until a concentration ratio of 0.25 reduction of Cd(II) contributed from the labile 

complex was not seen and this tells us that in the beginning of the titration Cd(II) ion forms 

a b 
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preferably 1:2 stable complex and from the ratio of 0.25 reduction of Cd(II) starts  and increases 

sharply until the concentration ratio value of 1.0 is reached. Previously it was suggested by 

M.S.Diaz-Cruz,et.al [51] that in this concentration ratio region the incoming Cd(II) is expected 

to form complex of 2:2 Cd:GSH where the incoming Cd(II) is complexed probably with 

carboxylate part of gluthation which was already complexed in 1:2 Cd-GSH  with sulphur group 

as shown in Figure 27. 

 

 

 

 

 

 

Figure 26. Cd-GHS complex formation reaction at low Cd:GSH ratio 
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Figure27. Complex formation reaction for higher Cd:GSH ratios 

 

Therefore in the concentration ratio region above 0.25 the labile and stable complexes exist 

simultaneously even at higher metal concentration. This signifies that the electrochemical 

process of the first complex (the stable one) is not substituted by the electrochemical response of 

the second complex and the two complexes interact as shown in Figure 27.  However, at higher 

concentration ratios the dominant species is expected to be the 2:2 Cd:GSH complex. For higher 

concentration ratio (Cd:GSH > 1) the free metal reduction signal starts to appear which is clearly 

observed from the bending of the curve (Figure 25 b). The deflation of this curve is a result of 

the loss of sensitivity of the electrode when its surface gets saturated by excessive metal ion 

present in the solution. 
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From the above observation, it can be concluded that BiSPCE can be applied for speciation 

studies of metals in the presence of relatively simple thiol peptides like GSH. Particularly for 

metals like Cd(II) and Zn(II) whose reduction signal split on BiFE the use of BiSPCE is the best 

optionto get comparable result with that of the conventional mercury electrodes whose use is 

becoming unacceptable due to the adverse environmental implications. 

  

3.5   (γ-Glu-Cys)2Gly Complexation with Cadmium Study on BiSPCE 

Toevaluate the applicability of BiSPCE for metal complexation studies with phtochelatins PC2-

Cd complexation sequence was studied and the result was compared with previous studies. In a 

similar way as in the study of Cd-GSH complexation, direct titration (i.e addition of 10
-3

 M PC2 

into 2x10
-5

 M Cd
2+  

in 20 ml of buffer solution) and indirect titration (addition of 1x10
-3

 M Cd
2+

 

to 2x10
-5

 M PC2) were performed. As the latter titration mode gave sufficient information 

therefore it was selected to discuss the complexation process taking place between Cd and PC2. 

Figure 28b shows the mesh plot for the current matrix produced during the titration process. 

Before the addition of Cd
2+

, anodic oxidation of the bismuth electrode (signal 1)  was observed 

at -0.65V which decreases and disappear upon the addition of Cd
2+

 solution. Again as the case of 

Cd-GSH complexation anodic oxidation of the electrode material due to the presence of  Cd- PC2 

complex was very weak as compared to the case of mercury electrode [25]. Further additions of 

Cd
2+

 produce a signal associated with complex reduction (signal 4) at around -1.0 V and then a 

signal appears at -0.75 V ( signal 3) . Finally the free metal reduction signal is observed at high 

metal to thiol ratios (signal 2). 

To understand the concentration profile of the individual species present in the system during the 

titration (free metal, complexes and free ligand) the usual MCR-ALS analysis was applied with 

four component:  one for the metal ion, two for the successive complexes and one for the free 

ligand with the constraints of non-negativity and signal shape.  But the lack of fit was much more 

than the acceptable limit (27%) and for this reason the number of components was varied to 

lower the error.  However no improvement was observed. This is mainly due to loss of linearity 

by the lateral movements of signals of some components along the potential axis [48]. 

 



Result and Discussion 

 

49 

 

-1.1-1-0.9-0.8-0.7-0.6-0.5
0

0.5

1

1.5

2

2.5

3
x 10

-5

E/V

I/
A

 

 

 

 

 

 

Figure28. (a) The voltammogram profile of the titration of 2x10
-5  

M of  PC2  with 1x10
-3 

 M of  

Cd
2+

 in borate buffer solution at pH 7.5 (b) the corresponding mesh plot of the current data 

matrix. 

Due to this reason the alternative method was used, i.e. the shift of the potentials for those signal 

whose peak potential is not at fixed position were corrected by a program shifcalc/shiftfit before 

resolving the full data matrix by MCR-ALS as explained in section 2.6. Then the concentration 

profile (C matrix) is obtained for all components and also additional information, shift potential 

(∆E), is obtained which can be used for estimation of  the stability constant of the labile 

complex. In our case the best result was obtained by considering four components where three of 

them have moving peaks along the potential axis while the remaining one shows stable peak 

potential. A visual inspection of the experimental matrix depicted in Figure 29 a shows that all 

the signals were moving except the first one (anodic oxidation of the electrode material 

associated with the free peptide). Due to the weak intensity of this anodic signal, it can hardly 

affect the linearity of the data even if there is a significant movement along the potential axis. 

Therefore potential shift correction was not applied for this signal (∆E = 0). 

After peak potential movement correction by shiftfit/shiftcal with reference to the unitary 

voltamogram, Vo (Figure 29 a) MCR-ALS was applied by assuming the four components 

defined by a single peak and applying the constraints of non-negativity (for both concentrations 
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and signals), selectivity and signal shape. Based on the above assumption, the lack of fit for the 

matrix decomposition was improved to 7.6% which is much better than the error observed for 

MCR-ALS analysis without potential peak correction step.  

 

 

 

 

 

Figure 29. Analysis of the experimental data matrix produced from titration of 2x10
-5 

M PC2 

with 1x10
-3

M Cd in 0.05 borate buffer solution at pH 7.5 ; (a) estimation of the initial reference 

voltammogram from the experimental data matrix (b) the application of shiftfit/shiftcalc for 

correction of signals movements in the potential axis to produce corrected matrix (Icorr) (c) 

application of MCR-ALS for the decomposition of Icorr into pure voltammograms and (d) 

concentration matrix (C). 
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Figure 29 summarizes the results of MCR-ALS decomposition obtained together with the shift 

correction. The pure signals (Figure 29c) are named according to the position of their signals 

and, as stated previously from the free ligand and metal study, component 1 and 2 correspond to 

the anodic signal of the electrode material and free metal reduction signal, respectively, whereas 

component 3 and 4 correspond to the reduction of cadmium complexed with the peptides in two 

different ways [51]. The evolution of their concentration profiles is depicted in Figure 29d and 

the complexation process is explained as follows.  

As stated previously it is observed that the anodic oxidation of the electrode material decreases 

with addition of Cd
2+

 (component 1). In the beginning of the titration where the peptide 

concentration is very high Cd
2+

 ion are believed to form 1:2 Cd-PC2 complexes as observed from 

the fast increase of this complex concentration (component 4) until metal-ligand concentration 

ratio around 0.5,  where it reaches a plateau  (Figure 29 d). This observation confirms that the 

stoichiometry of the complex involves two peptide units per metal ion. The continuous 

movement of the peak potential of the reduction signal of this species (Figure29 a) implies the 

lability of the complex.  Though at low cadmium-to-ligand ratios 1:4 stable compelexes where 

Cd
2+

 ion coordinates tetrahedrally with four sulfur atoms of different peptides were observed as a 

dominant species by 1H-NMR [53], XAFS [19] and some electrochemical methods [25] under 

the experimental condition of this study this species could not be observed. The results of ESI-

MS experiment at lower metal– to-ligand ratio also proved the absence of this complex species. 

Starting from the ratio of 0.25 the signal related with another complex starts to be observed 

which stabilizes at the ratio 1.0 (component 3). Therefore the stoichiometry of this will be 1:1, 

where one cadmium ion binds with at least one sulfur group of the peptide. The formation of 1:1 

Cd-PC2 complex was observed starting from Cd-PC2 ratio of about 0.25 before the 1:2 Cd-to-PC2 

formation is completed at around 0.5 Cd-to-PC2 ratio. This suggests the simultaneous formation 

of 1:2 and 1:1 complexes instead of successive complex formation.  At metal-to-ligand ratio 

higher than around 1.0, where component 3 is stabilized, the free metal reduction is observed 

which is indicated by the linear increment of component 2. 

The matrix (Irep) which resembles the experimental matrix (Iexp) was produced from the 

product CV
T
 of the matrices obtained by MCR-ALS shifted by the shiftcalc program by using 

the optimal ∆E values. In general a good reproduction of the experimental matrix was possible 
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from the result of MCR-ALS analysis. The error distribution along the potential axis is shown in 

Figure 30(c). 

 

 

 

Figure30.  Error distributions along the potential axis(c) as a result of the deviation of the 

reproduced marix , Irep (b) from the experimental matrix Iexp (a) 
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It can be seen that an appropriate choice of the reference signals (Fig. 7b) produces a set of 

potential shifts and current decreases (Fig. 7e) with a good reproduction of the original data 

matrix (Fig. 7d), confirmed by a reasonable lof (6.7%). 

 

ESI-MS experiments at various metal to ligand concentration ratios were done to detect the 

available complex species in a particular solution with the view to get supportive information for 

the complexation sequence suggested from the result of voltammetric method above. 

 

 

Molar ratio of the 

components (Cd:PC2) 

m/z + ve(int.%) 

 

Assignment 

 

 

1:4 538.33 [PC2+H]
+
 

 1191 [Cd(PC2)2-H]
+
 

 1301 [Cd2(PC2)2  -H]
+ 

(minor) 

   

1:1 538.33 [PC2+H]
+
 

 652.013 [Cd(PC2)-H]
+
 

 1191 Cd(PC2)2-H]
+
 

 761.9 Cd3(PC2)2-H]
+
 (minor) 

   

2:1 538.33 [PC2+H]
+
 

 652.013 [Cd(PC2)-H]
+
 

 

1410 

 

[Cd3(PC2)-H]
+ 

(minor) 

 

 

Table 4. ESI-MS data obtained for solutions containing PC2, Cd(II), and Bi(III) in various 

proportion  in 1:9 acetonitrile: 20 mM ammonium acetate in water at pH 7.5. 

 

For a solution containing 1:4 Cadmium-to-PC2 the dominantly observed species were Cd(PC2) 

and Cd(PC2)2 as shown in Table 4 which support the finding for the existence of  both 1:1 and 

1:2 complexes at lower metal–to-ligand  ratio. Quantitative comparison of the peaks appearing 

for those complexes in the various sample solution was difficult from the main mass spectra 

spectrum due to the large peak associated with the uncomplexed PC2  that obscure the rest of the 

peaks. However magnification of the individual peaks in the spectrum reveals that Cd2PC2 and 

CdPC2 are the dominant species for higher metal concentration while Cd(PC2)2  species was 
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observed to be dominant at equal metal-to-ligand ratio and at relatively higher ligand 

concentration. However significant amount of polynuclear metal complexes were not detected in 

any sample solution. 
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4. CONCLUSION 

The present study demonstrates the suitability of BiSPCE for metal speciation studies of 

Cd2+ in the presence of thiol rich peptides with possibility of using MCR-ALS in some 

cases. 

The absence of signal splitting, wider linearity, and higher sensitivity was observed for 

metal determination as compared to BiFE which support the suitability of BiSPCE for 

metal speciation studies in relatively wide concentration ranges especially for metals 

whose reduction signal splits on the use of BiFE that include Cd
2+

 and Zn
2+

. The other 

improvement observed on the use of BiSPCE is that the anodic signal associated with 

the free ligand was significantly weakened in comparison to its existence on the 

mercury electrode. In addition the entire set of signals observed using this electrode 

were well separated in most cases and this may allow a qualitative and quantitative 

analysis of the complexation sequence without the need of chemometrical support. The 

other important fact observed is that BiSPCE showed a very high sensitivity to the free 

metal reduction signal which implies the suitability of this electrode for metal 

determination investigations.  Although the reproducibility of this electrode was lower 

than the corresponding BiFE its use for such speciation studies is still reasonable. 

From the results of ESI-MS experiment, extensive complex formation of Bi(III) with 

thiol peptides was observed, which restricts the use of  in situ mode of Bi-film electrode 

preparation from a solution containing Bi(III), peptides and the analyte metals. 

Consequently in this study Bi-film was prepared on the screen printed carbon electrode 

in ex situ mode and gave consistent results with previous studies made on Cd
2+

 metal 

complexation with SH-bearing compounds on the conventional mercury electrode.  

From optimization of the experimental conditions it was found that the best condition 

was pH 7.5 in 0.05 borate buffer solution, which gave a wide working potential window 

and a relatively good signal improvement for the reduction of the complexes species. 

Due to the inert electrochemical character of Cd-GSH species on the bismuth film 

electrode the complexation study at lower metal and peptide concentration (< 10-5 M), 

which is the useful range for further chemometrical data analysis, was not possible. For 

this reason adsorptive accumulation of the complex species on to the film electrode was 



Conclusion 

 

 56

applied to achieve the study of complexation process at lower peptide and ligand 

concentration. However no significant improvement of the signal intensity of the 

reduction of those complex species was found and also a well established relationship 

between the concentration of species and their respective signal intensity was not 

observed. Therefore complexation process was done at higher metal and peptide 

concentration for the purpose of qualitative interpretation of the complexation sequence 

for GSH-Cd system. In contrast, a relatively better signal intensity was obtained for 

complexes associated with Cd-PC2 therefore MCR-ALS was applied to extract 

information about the stiochiometries of the various Cd-PC2 complexes formed after the 

necessary data correction. 
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